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Abstract

The overall behavior of a system depends on a large number of factors related to

the underlying hardware, system software, and running applications. In addition,

system behavior may be influenced by interactions among these factors, where the

impact of an individual factor on a system depends on the settings of other factors.

A ‘system knowledge base’ that captures how different factors and multi-factor in-

teractions affect the end-to-end behavior of a system is a prerequisite for managing

systems effectively. This dissertation addresses the hypothesis that we can learn such

a knowledge base in an automatic, proactive, and timely manner by planning and

conducting experiments.

An experiment is a run of the system for a specific setting of the system’s work-

load, resource allocation, and configuration. In this dissertation, we develop a general

experiment-driven framework that incorporates: (a) policies for automatic planning

of experiments to explore a large space of factors and interactions efficiently; and (b)

mechanisms to conduct experiments for three important system domains: Web ser-

vices, batch computing, and storage servers. The policies and mechanisms leverage

techniques from design of experiments, active machine learning, and system virtual-

ization to build a sufficiently accurate system knowledge base quickly. The disserta-

tion makes the following contributions:

• Quantifies the linear and non-linear impact of a factor or an interaction on

system behavior, and develops experiment-planning algorithms to estimate the

impact of important factors and interactions in a system. We use this work to

rank the factors and interactions that can affect the performance (e.g., through-

put) of multitier Web services.

• Develops experiment-planning algorithms to build models that predict the sys-
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tem behavior as a function of factors and interactions that affect this behavior.

We explore a continuum of modeling alternatives ranging from a priori models

to black-box models. We learn models to enable task and data placement of

batch computing applications, and to predict performance measures of Web

services like response time and throughput.

• Develops policies to determine how long to run an experiment and how many

times to repeat an experiment to attain target levels of confidence and accuracy

in experimental results at low cost. We use the policies to benchmark stor-

age servers by systematically mapping a storage server’s saturation throughput

across a range of server workloads and configurations.

Our empirical evaluation with real and synthetic applications on physical as well

as virtual hardware resources shows that our experiment-driven framework can learn

an effective knowledge base by conducting only 1-5% of the total number of possible

experiments.
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Chapter 1

Introduction

Over the last few decades the computing infrastructure has transformed from a col-

lection of a few machines in a single room to planetary-scale systems such as grids

and networked data centers that allow a user to access computing resources anytime

and anywhere. However, the complexity of these systems raises serious manage-

ment challenges [40, 67]. Failure to manage such systems in an efficient and effective

manner continues to affect the bottom line of businesses [115], scientific research at

educational institutions [41], and even national security [51].

The challenges in managing systems arise not just from their scale, but also from

the interactions between system workload, system software, and hardware compo-

nents [12, 24]. An adequate knowledge of how these interactions impact end-to-end

system behavior is a fundamental prerequisite for addressing system management

challenges. This dissertation presents an experiment-driven framework for building

such knowledge proactively and automatically. It develops policies and mechanisms

that leverage virtualization, design of experiments, and active machine learning to

expose the interactions among the parameters in an efficient, accurate, and principled

manner.

1.1 System Complexity

The behavior of a system is a complex function of the system workload, the hardware

resources allocated to the system, and the system configuration. Each of these can be

characterized by a vector of factors or parameters; if we represent the system behavior

by a vector �B, system workload by a vector �W , hardware resources allocated to the
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Table 1.1: Examples of parameters in 〈 �B, �W, �R, �C〉 vectors.

System
domain

System behavior
vector �B

Workload
vector �W

Resource
vector �R

Configuration
vector �C

Multitier
Web
Services

Response time and
throughput, avail-
ability

Arrival rate,
mix of re-
quests,
number of
clients

CPU, mem-
ory

Buffer pool
size

Batch
Appli-
cations

Execution time CPU-
intensity,
degree of
parallelism

CPU, mem-
ory, and
network
bandwidth

File system

Storage
Systems

Response time and
throughput

Arrival rate,
r/w ratio,
locality

Number of
disks, type of
disks

Block size, file
system

system by a vector �R, and system configuration by a vector �C then:

�B = F ( �W, �R, �C). (1.1)

Table 1.1 illustrates a subset of parameters in 〈 �B, �W, �R, �C〉 vectors for three

important system domains. In this dissertation, the system behavior vector �B consists

of metrics that characterize the performance of the system. A discussion of these

domains follows.

• Multitier Web Services. The behavior �B of a multitier Web service is usually

specified by measures such as the service’s response time and throughput, its

utilization of system resources, and its availability. The system workload �W in

this case represents parameters such as the arrival rate and mix of requests, and

the number of concurrent clients. The system hardware �R captures parameters

such as the amount of CPU and memory assigned to each tier of the service,

and the system configuration �C captures the configuration parameters in each

tier of the service.

• Batch Applications. The execution time �B or makespan of a computational
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workload depends on the provisioning (how much) and placement (where) of

hardware resources �R allocated to it, such as the CPU, memory, and network

resources, and the characteristics �W of the workload (CPU-intensity, memory

reference locality, degree of parallelism, etc.), which in turn may depend on

application inputs such as the data processed by the application.

• Storage Systems. The behavior �B of a storage service, e.g., its response

time and throughput, is a complex function of the characteristics of server’s

I/O workload �W such as its locality and r/w ratio, the hardware resources �R

allocated to the storage server such as the number and type of disks (SCSI or

IDE) and its network bandwidth, and configuration �C comprising parameters

such as the underlying file system type, block size, and RAID configuration.

The goal of system administrators is to keep the system behavior in its “sweet

spot” range, as shown in Figure 1.1. The sweet spot is attained by making informed

design, engineering, and management choices for the system hardware and system

configuration, i.e., controlling the settings or values of parameters in the resource

vector �R and the configuration vector �C. There is also considerable interest in making

systems self-managing, or autonomic [67]. A self-managing system would keep its

behavior in the desired range by adjusting the settings of parameters in �R and �C

automatically. Consider the following examples:

• Capacity planning. A common scenario is the provisioning and placement of

resources for each tier of a multitier Web service in a data center. The goal is

to control the settings of parameters in resource vector �R, e.g., the amount of

CPU and memory resources of each tier, to obtain a desired �B for a given �W .

For example, the goal may be to keep the average response time below 50 ms

for a given mix and arrival rate of requests [105, 112].
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Figure 1.1: System behavior �B is a function of the system workload �W , system
resources �R, and system configuration �C. The space of settings of parameters in
〈 �W, �R, �C〉 can be quite large. The goal of system management is to control the

settings of resource vector �R and configuration vector �C to keep the system in its
“sweet spot”.

• System software configuration. Tuning the parameters in the database tier of

a multitier Web service is a common software configuration task. The goal is

to choose a setting for the parameters in �C for the system software to obtain a

desired �B for a given �W [86].

• Admission control. Request throttling in Web services, as well as intelligent

routing of requests among different servers, are common admission control sce-

narios. The goal is to configure the system, i.e., find a setting for the param-

eters in �C, for controlling the workload �W that is allowed in the system so as

to maintain a desired behavior �B [6].
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Figure 1.2: A system knowledge base encapsulates the relationship among system
behavior, workload, resources, and configuration parameters. The relationship is
useful for addressing system management tasks.

1.2 Building a System Knowledge Base

Controlling the settings of system parameters requires a knowledge of how the set-

tings of parameters in 〈 �W, �R, �C〉 impact the system behavior �B. For example, the

knowledge might consist of answers to questions such as:

• Which parameters have a significant impact on system behavior?

• Which parameters interact significantly?

• What is the relationship among the parameters comprising the system behavior

�B and system workload �W , resources �R, and configuration �C?

A system knowledge base encapsulates answers to such questions. It consists of

any relationship among the system parameters that is useful for addressing system

management tasks; see Figure 1.2. Such a knowledge base is a prerequisite for a

management controller that must make informed management decisions for tasks like
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Figure 1.3: High-level steps involved in building the system knowledge base for
system management.

resource provisioning, resource allocation, and application and system design [45, 60,

63]. The effectiveness of the management decisions by the controller depends on the

accuracy of the knowledge base.

The management controller that uses the knowledge base may be different from

the controller that builds it. This dissertation focuses on the mechanisms and the

policies for the controller that builds the knowledge base. Figure 1.3 illustrates the

high-level steps that are involved in building the knowledge base. The steps are

described as follows:

1. Identify the Structure of the Knowledge Base. The first step consists

of identifying the structure of the knowledge base that is required to address

the management task. The structure determines the parameters that go into

the knowledge base and the relationship among the parameters. The specific

system domain and the management tasks determine the adequate structure.

For a large variety of system management tasks, the knowledge base consists of
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models that approximate the system behavior as a function of the parameters

that affect the system. For example, the goal of resource provisioning in net-

work computing systems is to assign compute, network, and I/O resources to

applications in an efficient manner [81]. A model that can predict the impact

of alternate resource assignment choices is useful for making efficient assign-

ment choices [21]. Here, the structure of the knowledge base consists of the

parameters that serve as input to the model, and one or more functions that

capture the relationship among the parameters to predict the impact of any

given resource assignment.

Sections 1.5 and 1.6 present concrete examples of the system knowledge base

from three system domains: Web services, batch computing, and storage servers.

2. Gather Samples of System Behavior. The controller needs samples of sys-

tem behavior to build the knowledge base that is identified in Step 1. A sample

consists of an observation of system behavior for a given setting of system pa-

rameters, i.e., a 〈 �Wi, �Ri, �Ci, �Bi〉 tuple, where i represents the ith sample, and

�Bi the behavior observed on a fixed setting of parameters that determine the

workload �Wi, resources �Ri, and configuration �Ci.

3. Learn the Knowledge Base from Samples. The controller applies some

induction or learning techniques on a table of samples to learn the knowledge

base. The choice of techniques depends on the structure of the knowledge base

and the desired accuracy of the knowledge base. For example, if the knowledge

base consists of a system model then the techniques may range from simple

linear regression to more sophisticated regression trees [24, 92]. In closed-loop

systems, the knowledge base thus attained may further provide feedback to

Step 1 in order to refine the structure of the knowledge base [67].
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1.3 A Fundamental Challenge: Sampling

Each of the steps in Figure 1.3 is a research challenge in itself [45]. The research

community has given significant attention to Steps 1 and 3, e.g., [24, 112, 66]. How-

ever, fundamental to the overall process is the set of samples of system behavior upon

which the knowledge base is built. The samples must be representative of the system

behavior that is or could be encountered in practice. Without such a set of samples,

the controller may not be able to learn an accurate knowledge base, irrespective of

the techniques used in Steps 1 and 3.

Moreover, the decisions made in Steps 1 and 3 may be incorrectly influenced by

a set of samples that do not represent the complete system behavior. To illustrate,

suppose the knowledge base consists of a simple linear regression model that predicts

system performance as a function of some parameters as shown in Equation 1.2. In

this model, the Xis are the input parameters to the model, and ais are the model

coefficients associated with the parameters.

P = a1X1 + a1X2 + . . . + anXn + c (1.2)

In Step 1, the controller must decide which parameters or Xis to include in Equa-

tion 1.2. Based on the analysis of available samples the controller may incorrectly

conclude that certain parameters have little or no influence on the system behavior,

and hence exclude those parameters from the model.

Some of the challenges involved in building a representative set of samples are as

follows:

• Cost of Acquiring a Sample. Acquiring a sample may have a significant cost;

a sample may “cost” time or use of extra system resources. For example, a

sample may represent a complete run of a batch application on a set of resources
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assigned to run the application [102]. Higher costs—e.g., for long-running batch

tasks—limit the rate at which samples can be acquired.

• Number of Parameters. The number of workload, resource, and system config-

uration parameters can be quite large (space of �W, �R, �C in Figure 1.1). The

samples must expose the impact of important parameters. As the dimension-

ality of the set of parameters increases, the number of samples needed to learn

an accurate knowledge base can increase exponentially. Acquiring samples cor-

responding to a mere 1% of a 10-dimensional space with 10 distinct values per

dimension and average sample-acquisition time of 5 minutes, takes around 951

years!

For example, in RUBiS—a popular three-tier open source ecommerce bench-

mark [22]—the workload �W involves a mix of 26 transaction types. The

database tier of RUBiS also has hundreds of database configuration param-

eters. These combined with the hardware resource parameters, e.g., CPU and

memory resources allocated to each tier, contribute to a large space of param-

eters that affect RUBiS’ performance.

• Parameter Interactions. A subset of the parameters in �W , �R, and �C vectors

may also interact with each other. For example, in a multitier Web service, the

memory size at the application tier can control the effectiveness of the buffer

pool size in the database tier; or a typically CPU-bound workload might become

I/O-bound for some value of system configuration parameters, and vice versa.

The samples must expose the impact of all the relevant parameter interactions.

• Operating Range of Parameters. The samples must take into account the set-

tings of each parameter in 〈 �W, �R, �C〉 such that the settings capture the oper-

ating range for each parameter.
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1.4 Active Sampling

This dissertation presents an active sampling approach to acquire samples of system

behavior proactively, automatically, and in a principled manner. Active sampling

acquires samples of system behavior by planning experiments. An experiment consists

of conducting a run of an application workload for a fixed setting of parameters in �W ,

i.e., �Wi, on a fixed setting of parameters in �R and �C, i.e., �Ri, �Ci, to collect one sample

of system behavior, i.e., a 〈 �Wi, �Ri, �Ci, �Bi〉 tuple. Table 1.2 presents an example. The

table shows a list of three parameters, CPU, Memory, and Arrival Rate, and the

response time of a Web service on eight specific settings of these parameters. In this

example, 〈 �W, �R, �C〉 = 〈Arrival Rate, CPU, Memory〉.
The state of the art often consists of observing the system in its normal operation

passively to gather the samples. While recent research has shown promise with

such an approach [45], it suffers from several drawbacks. Samples collected only by

passive observations of system behavior may not be representative of the full workload

and system operating range—e.g., system behavior on a flash crowd may never be

observed—limiting the accuracy of the knowledge base learned from such samples.

Moreover, passive sampling cannot establish cause and effect relationship between

the change in settings of system parameters and system behavior since the effect

of different parameters is not explicitly controlled [53]. Even when the samples are

generated offline, either the techniques used to generate them are unscalable beyond

a few parameters [121], or the samples do not adequately cover the entire system

operating range, leading to point studies and brittle claims [110, 75].

Principled active sampling seeks to reduce the time before a reasonably accurate

knowledge base is available while addressing the sampling challenges outlined above.

Figure 1.4 illustrates the difference between the alternative sampling approaches. The

x-axis shows the progress of time for collecting samples and learning the knowledge
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Table 1.2: Samples of system behavior for different settings of three parameters.

CPU Memory Arrival Rate Response Time
1 GHz 1 GB 5 req/s 4 ms
2 GHz 1 GB 5 req/s 1 ms
1 GHz 2 GB 5 req/s 2 ms
2 GHz 2 GB 5 req/s 1 ms
1 GHz 1 GB 10 req/s 10 ms
2 GHz 1 GB 10 req/s 5 ms
1 GHz 2 GB 10 req/s 9 ms
2 GHz 2 GB 10 req/s 3 ms

base (e.g., a model), and the y-axis shows the accuracy of the knowledge base learned

from the samples available so far. While passive sampling may never collect a fully

representative set of samples, ad hoc active sampling can miss the relevant samples,

or take a long time to converge to an accurate knowledge base.

For example, one-parameter-at-a-time active sampling conducts experiments that

change the setting of parameters one parameter at a time while keeping the value

of other parameters constant. Such an active sampling approach will expose the

impact of each individual parameter on system behavior, but it will not expose the

interactions among the parameters. On the other hand, brute-force active sampling

conducts experiments that consider all possible combinations of the settings for each

parameter. This approach exposes the impact of all the parameters and parameter

interactions, but can take a long time to collect all the relevant samples (Section 1.3).

In addition to providing the relevant samples for learning an accurate knowledge

base, active sampling also enables stronger claims about cause and effect relation-

ship between parameters; system behavior observed from experiments that control

the settings of parameters explicitly enable such relationships to be studied more

effectively [85].
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Figure 1.4: Quick learning of an accurate knowledge base from accelerated active
sampling. While passive sampling may never gather enough samples to learn an
accurate knowledge base, active sampling without proper planning can take a long
time to collect the samples (brute-force active sampling), or even miss important
samples (one-parameter-at-a-time active sampling). For all the sampling approaches,
as the accuracy of the knowledge base converges to its best possible value, it may
have periods where it drops depending on the samples that are used to learn the
knowledge base and evaluate its accuracy.

1.5 Research Questions

The goal of this dissertation is to design, develop, evaluate, and apply policies and

mechanisms to build an accurate knowledge base in an automated, efficient, and

feedback-driven manner. It considers the research challenges involved in each step

of Figure 1.3, while focusing on Step 2 (the sampling step) and its interactions with

other steps. This dissertation addresses the following research questions:

1. How to represent the knowledge base? What is a practical way to rep-

resent the system knowledge base that captures: (a) the characteristics of the

application workload, e.g., its CPU- or I/O-intensity; (b) the impact of re-

sources assigned to the system, e.g., impact of varying CPU, memory, and

storage hardware characteristics; and (c) the system configuration choices, e.g.,
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the settings of the parameters in the system configuration files?

The goal is to formulate the knowledge base such that it is easy to understand,

build, and use. This dissertation considers the following structures for the

knowledge base which Section 2.1 further discusses.

• Rankings. A ranking of parameters and parameter interactions in order

of their impact on system behavior.

• Models. A model that predicts system behavior as a function of param-

eters. This work explores a spectrum of approaches ranging from a priori

application models to black-box models that require little or no prior in-

formation of applications and systems.

• Response Surfaces. A response surface maps the system behavior over a

particular region of interest, i.e., a region defined by settings of parameters

in 〈 �W, �R, �C〉.

2. What are the mechanisms for conducting experiments? The controller

needs mechanisms to conduct experiments for gathering the samples. The goal

is to generate the required samples in an on-demand fashion while making

efficient use of the resources available to conduct the experiments. The following

issues arise.

• Knobs. Experiments require “knobs” to set the values of parameters in

�W , �R, and �C. What are these knobs and what mechanisms are needed to

expose these knobs to the controller?

• Infrastructure. Once the controller has the knobs to set the values of

parameters in 〈 �W, �R, �C〉, it needs an infrastructure to conduct the exper-

iments. Experiments done on a production system may cause interference
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with the production application runs, especially if the system has little or

no virtualization support. What kind of ‘workbench’ does the controller

need such that the ‘workbench’ enables automatic and feedback-driven ex-

periments, and provides sensors to monitor the instrumentation data for

each experiment?

Section 2.3 discusses the mechanisms for gathering samples that this disserta-

tion considers.

3. What are the policies for conducting the experiments? The space of �W ,

�R, and �C parameters and the corresponding parameter settings can be quite

large (Section 1.1). Without a systematic exploration of these parameters, the

controller may take a long time to collect the relevant samples for learning an

accurate knowledge base. Hence, the controller requires policies for conducting

the experiments that consider the following.

• Choice of Samples. Which samples expose the impact of all the relevant

parameters, interactions between them, and their operating range? How

can the controller identify and collect such samples quickly?

• Sampling Order. What is the order in which the controller should con-

duct the experiments such that it can learn a reasonably accurate knowl-

edge base quickly?

• Feedback-driven Sampling. How can the controller use the feedback

from the samples collected so far to further guide the choice of new exper-

iments?

• Cost-Aware Sampling. How can the controller adapt the time and re-

sources that are used to gather the relevant samples to the desired accuracy

of the knowledge base?
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Sections 2.2 and 2.5 provide an overview of the policies that this dissertation

considers. Chapters 3, 4, and 5 present the policies in the context of different

system domains.

1.6 Contributions

This dissertation makes the following contributions:

1. A general experiment-driven framework for building the system knowl-

edge base. This dissertation presents a general experiment-driven framework

for building the system knowledge base in an automatic, proactive, and timely

manner by planning and conducting experiments. The framework incorporates:

(a) mechanisms to conduct experiments for three important system domains:

Web services, batch computing, and storage servers; and (b) policies for au-

tomatic planning of experiments to explore a large space of parameters and

interactions efficiently.

The framework combines techniques from two fields—Design of Experiments

and Active Machine Learning—to develop experiment-planning policies. The

dissertation demonstrates that the policies enable accurate learning of the

knowledge base in an efficient, automated, and feedback-driven manner. Chap-

ter 2 presents the overview of the overall framework.

2. Experiment-planning policies to identify important parameters and

interactions. This dissertation develops experiment-planning policies to iden-

tify the important parameters and interactions among parameters that affect

system performance by addressing the following queries.

• Quantify the linear and non-linear impact or effect of each parameter in
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workload �W , resource �R, and configuration �C parameters on system per-

formance P , and rank the parameters in order of their effect.

• Quantify the interactions among the parameters in 〈 �W, �R, �C〉 that affect

P , and rank these interactions in order of their effect.

Chapter 3 presents and evaluates the experiment-planning policies that ad-

dress the queries in the context of Web service management. The goal of a

Web service provider is to meet the service level objectives of a client and make

efficient use of resources to maximize its revenue. Hence, the service provider

must not only understand the impact of many (often hundreds) service con-

figuration parameters on the performance of a service for each hosted service,

but also understand the interaction of the parameter settings with each other

and with the allocated resources. This dissertation uses the experiment-driven

framework to quantify the impact of these parameters and their interactions.

3. Experiment-planning policies to learn models that predict system

performance. This dissertation presents experiment-planning policies that

collect samples to parameterize a predetermined model accurately and quickly.

The policies are model-agnostic and applicable for collecting samples to learn

any given model. This work applies the policies to learn a number of models

such as models that predict Web service response time and throughput (Chap-

ter 3), models to predict the execution time of batch applications (Chapter 4),

and models that guide the search for the saturation throughput of a storage

server (Chapter 5).

4. Experiment-planning policies for automated storage server bench-

marking.

Obtaining the saturation throughput or the peak rate of storage servers for a
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given workload and server configuration is a key building block for systematic

mapping of server peak rates across a larger space of server workloads and

configurations. This dissertation uses the experiment-driven framework to do

systematic response surface mapping that plots the peak rate of a storage server

over a space of workloads and server configurations. The benchmarking policies

obtain accurate peak rate measures with a target confidence level and accuracy

at low cost. Chapter 5 presents the policies in the context of NFS server

benchmarking.

5. Application performance models for resource planning of batch ap-

plications in a networked utility setting.

To schedule a batch application on the available resources automatically and

efficiently, a system requires accurate estimates of the application’s runtime

on a candidate resource assignment. The dissertation presents an end-to-end

application performance model that predicts the execution time of a batch

application as a function of compute, memory, and network resources assigned

to it and the properties of the data that the application processes. The work

shows that the model can be learned from commonly available noninvasive

instrumentation data that does not require any changes to the application or

the underlying system. Chapter 4 presents the model, its validation, and its

usage for resource planning of batch applications.
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Chapter 2

Experiment-Driven Framework

Figure 2.1 presents the overall experiment-driven framework. The figure is similar

to Figure 1.3 with an expanded sampling step (Step 2 in Figure 1.3). The sam-

pling step consists of a workbench of hardware resources that is used for conducting

the experiments. The experiments are issued by a workbench controller in order to

collect the samples for learning the knowledge base. The controller incorporates:

(a) mechanisms to configure and execute the experiment; and (b) policies that plan

the experiments.

The experiment-planning policies determine the choice and sequence of experi-

ments, the experiment runlength, and the number of times to repeat the experiment

for statistically accurate results. The policies take into account the knowledge base

being built, constraints such as the available resources in the workbench and the tar-

get accuracy of the knowledge base, and feedback from the analysis of samples from

previous experiments.

Figure 2.2 shows the overall sequence of operations in the experiment-driven

framework. The first step is to map the system management task to the knowledge

base that is needed to address the task (Step 1 in Figure 1.3). Next, the workbench

controller plans and conducts experiments according to the experiment-planning poli-

cies. The instrumentation data from the experiments is processed to build a table of

samples (see Table 1.2 for an example). The feedback from the analysis of the sam-

ple table goes as an input to the experiment-planning policies to determine the next

experiment(s). At any point during the execution of the operations, the available

table of samples may be analyzed to learn the knowledge base (Step 3 in Figure 1.3).
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Figure 2.1: Experiment-driven frame-
work for proactive learning of the system
knowledge base.

Figure 2.2: Sequence of operations in
the experiment-driven framework.

Table 2.1: Mapping of common management tasks to the knowledge base that is
useful for accomplishing the tasks.

Management Task Knowledge Base
Identify important parameters that af-
fect system behavior, e.g., [120, 57]

Numerical scores that quantify the im-
pact of parameters

Online provisioning, e.g., [113, 31] Predictive models
System benchmarking, e.g., [104, 36] Response surfaces of system behavior

Sections 2.1-2.5 discuss each operation in detail.

2.1 Identify the Structure of the Knowledge Base

The first step is to identify the structure of the knowledge base that is needed to

address a system management task. The appropriate choice and representation of

the knowledge base depends on the management task, the overall management goals,

and system parameters as shown in Figure 1.2. Section 1.2 characterizes the system

knowledge base.

Table 2.1 presents a mapping of some common management tasks to the knowl-
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Figure 2.3: A spectrum of modeling alternatives ranging from a priori models to
black-box models.

edge base that is useful to accomplish the tasks. A discussion of the mappings follows.

Numerical scores of parameters. A large space of parameters and interactions

among them can affect the system behavior. A common system management task is

to identify the parameters and interactions that have a significant impact on system

behavior [120, 57]. For example, tuning the settings of hundreds of configuration

parameters in a database system [116] requires the knowledge of parameters that

have the most impact on database performance [82].

By quantifying the impact of each parameter and interaction on system perfor-

mance in terms of numerical scores, we can use the scores to identify the parame-

ters and interactions that are important for system behavior. Hence, the knowledge

base consists of the numerical scores for each parameter and interaction. Chapter 3

presents the use of the experiment-driven framework to rank the parameters and

interactions in order of their impact on Web service response time and throughput.

The numerical scores of parameters and interactions are the basis for such rankings.

Predictive models. Models are essential for tasks such as forecasting, diagnosis,
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and repair of failure conditions [24], capacity planning [113], online provisioning [31]

and what-if analysis [79]. This dissertation explores a spectrum of modeling alterna-

tives ranging from a priori models to black-box models that require little or no prior

knowledge of applications and systems. Figure 2.3 illustrates the spectrum.

A priori models are attractive in part because of their ability to capture complexity

in the parameters and the structure of an analytical model. For example, queuing

models can easily represent the impact of factors such as latency hiding, arrival rate,

concurrency, and queuing on application behavior explicitly in the model parameters.

As a result, the system can use such models to reason about application and system

behavior beyond the samples used to learn the model parameters—increasing their

explanatory power. Several researchers have explored such models for automated

system management, e.g., [105, 112, 66, 113, 31]. However, a priori models are less

general because they often require a prior understanding of application, e.g., the

internal application structure and its prefetching and queuing behavior. In addition,

the system may require the use of sophisticated instrumentation to gather the samples

for parameterizing the model.

On the other hand, black-box models are general since they require little or no

prior understanding of application and system behavior. As a result, black-box mod-

els are becoming popular for managing the increasing complexity in computer sys-

tems, e.g., [24, 45, 60, 123]. However, the accuracy of such models depends heavily

on the range of system behavior seen in the samples used to parameterize them,

and they might be inaccurate for extrapolation beyond that range [59]. Section 1.3

presents the challenges involved in gathering a representative set of samples.

Both a priori and black-box modeling must address a common set of questions:

(a) what are the parameters that serve as input to the model; (b) what is the structure

that relates the different parameters; and (c) how to identify and collect the samples
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that are required to parameterize the model accurately. In this dissertation, we

use the experiment-driven framework to address the three questions in the context

of specific system domains, while focusing on developing policies for selecting the

samples automatically and quickly to parameterize any given model.

Chapter 3 presents the use of the experiment-driven framework to identify the set

of important parameters that affect system behavior in the context of modeling the

performance of Web services. Chapter 4 presents the use of framework to iteratively

refine the structure of the model that predicts the execution time of batch applica-

tions. Chapters 3, 4, and 5 present mechanisms and policies to collect the samples

for learning accurate models quickly and automatically. Chapter 6 further discusses

the role of the experiment-driven framework in addressing the questions raised above.

Response surfaces. Response surfaces map the performance of a system over some

region of interest that is defined by the combinations of settings of parameters.

Knowledge of such response surfaces is crucial for understanding the performance

tradeoffs of adding resources and/or changing configurations for different workloads.

Chapter 5 presents the use of the experiment-driven framework to map such

response surfaces accurately and efficiently in the context of benchmarking a storage

server. It presents response surfaces that plot the performance of a storage server

across different workloads as a function of two important parameters: the number

of disks attached to the storage server and the number of I/O threads in the server.

The surfaces show that adding more disks can improve the storage performance only

if there is a sufficient number of I/O threads to issue requests to those disks, and

that the appropriate number of I/O threads is workload-dependent.
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Table 2.2: An example of an experiment design. 1 represents the choice of high
value for a parameter, and −1 represents the choice of low value for a parameter.
The high and low values for a parameter are chosen from its overall operating range.

CPU Memory Arrival rate
-1 -1 -1
1 -1 -1
-1 1 -1
1 1 -1
-1 -1 1
1 -1 1
-1 1 1
1 1 1

2.2 Plan Experiments

After identifying the structure of the knowledge base, the next step is to plan a

set of experiments to collect the samples for building the knowledge base. The total

space of possible experiments is exponential. For a total of n parameters in 〈 �W, �R, �C〉
where each parameter can be set to l possible values, the total number of experiments

is ln. The experiment-planning policies (Figure 2.1) must choose experiments that

can generate the samples to build an accurate knowledge base quickly while making

efficient use of resources for conducting the experiments. In this dissertation, the

controller policies leverage the work done in two fields to explore the large experiment

space: design of experiments [53] and active machine learning [96]. Both fields are

based on rigorous theoretical foundations, and offer a range of techniques to guide

the choice of experiments.

The controller policies produce an experiment design that determines the choice

and sequence of experiments. An experiment design is a table of experiments, where

each row of the table consists of one experiment. An experiment consists of setting

each parameter in 〈 �W, �R, �C〉 vectors to a value from a legal range of values for the

parameters, i.e., their operating range. Table 2.2 shows an example of an experiment
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Table 2.3: Mapping of the knowledge base to the experiment design that generates
samples to learn an accurate knowledge base quickly.

Knowledge
Base

Experiment
Designs

Design Description

Importance scores
of parameters

Screening Quantify the impact of parameters and in-
teractions between the parameters

Model Model Learn-
ing

Learn accurate models with a minimal
number of samples

Response surfaces
of system behavior

Response Sur-
face Methodol-
ogy (RSM)

Map system behavior over a particular re-
gion of interest, identify optimal operating
range of parameters, optimize system be-
havior

design of 8 experiments with 3 parameters. The design considers only two values

per parameter: the high value, represented by 1, and the low value, represented by

−1. Note that the design considers all the combinations of high and low values, and

hence the total number of experiments is: 23 = 8. Such a design is called 2n factorial

design, where n is the number of parameters (Section 3.5).

The experiment design that the policies produce depends on the knowledge base

that the controller is building, which in turn depends on the management task. Ta-

ble 2.1 shows the mapping of some common system management tasks to the knowl-

edge base that is useful for addressing the tasks. The controller policies must further

map the knowledge base to the experiment design. Table 2.3 summarizes the broad

category of designs that this dissertation considers, and shows the mapping for the

knowledge base in Table 2.1. A discussion of these categories follows.

• Screening [53]. As the name suggests, screening designs screen the large space

of parameters to identify the parameters and interactions that have the most

significant impact on system behavior. These designs use a small fraction of the

total possible space of experiments. For example, Plackett-Burman (PB) [78]

screening design uses O(n) experiments to quantify the impact of n parameters

on system behavior.
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Chapters 3 and 4 present the screening designs in the context of ranking pa-

rameters and interactions in order of their impact on Web service performance

and execution time of batch applications respectively. Chapter 4 also presents

the use of such designs to rank a set of functions in order of their ability to

capture the execution time of batch applications.

• Model Learning [96]. The goal of these designs is to identify experiments to

generate samples that can be used to learn a model with a specific structure

using a minimal number of experiments. Such designs are useful for learning

an accurate model under some time, resource, or other budget constraints. For

example, if a user can afford to conduct only 10 experiments to learn a specific

model, then these designs identify the 10 experiments that generate samples

which will maximize the accuracy of the learned model.

Chapters 3, 4, and 5 present the model-learning designs in the context of learn-

ing models that predict Web service performance, execution time of batch ap-

plications, and map a response surface for benchmarking storage servers re-

spectively. While the designs in Chapter 3 focus on learning models with any

given structure, the designs in Chapter 4 learn a model with a specific structure

that incorporates prior knowledge about application behavior. The designs in

Chapter 5 focus on mapping accurate response surfaces efficiently.

• Response Surface Methodology (RSM) [78]. Typical applications of RSM

designs include: (a) mapping the system behavior over a particular region of

interest. The region of interest is defined by settings of parameters in 〈 �W, �R, �C〉;
and (b) determining the values of parameters in 〈 �W, �R, �C〉 that result in optimal

or target system behavior. Chapter 5 discusses the use of these designs in the

context of storage server benchmarking to obtain benchmarking results with
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Algorithm 1: Conduct an Experiment

Input: A specified value li for each parameter Fi in �F , where �F is a
subset of parameters in 〈 �W, �R, �C〉; system behavior metric of interest B.
Output: Measure B for 〈F1 = l1, . . . , Fn = ln〉 and return a complete
sample.

1) Obtain hardware resources for the experiment;

2) Create a resource configuration, i.e., CPU, memory, network, and disk
configuration, with the values set as per 〈F1 = l1, . . . , Fn = ln〉;

3) Instantiate the application on the resources;

4) Configure the system configuration and application workload according to
the values in 〈F1 = l1, . . . , Fn = ln〉;

5) Start instrumentation;

6) Run the application workload for a predetermined period;

7) Stop instrumentation;

8) Collect instrumentation data during the experiment which when processed
yields the 〈F1 = l1, . . . , Fn = ln, B〉 sample that goes into a database of
samples;

target confidence and accuracy at low cost.

The experiment-planning policies determine how to use the designs in a unified

manner to learn an accurate knowledge base quickly. Depending on the knowledge

base that the controller is building, the policies may use the designs independently or

in combination. Chapters 3 and 4 present experiment-planning algorithms that show

how to use the screening and model-learning designs sequentially to guide the choice

of experiments for: (a) ranking parameters and interactions in order of their impact

on system performance; and (b) learning models that predict system performance.
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2.3 Conduct Experiments

Algorithm 1 outlines the steps that controller takes for conducting an experiment.

The controller obtains and prepares the resources according to the settings of param-

eters in �R, deploys the application on the resources, configures the system according

to the settings of parameters in �C, and configures the application workload according

to the settings of parameters in �W . It also starts, stops, and records instrumentation

data which when processed yields a 〈 �Wi, �Ri, �Ci, �Bi〉 sample for the ith experiment in

the experiment design. The implementation of each step depends on the knowledge

base that the controller is building and the specific system domains such as Web

services and scientific applications. Chapters 3, 4, and 5 present concrete instances

of each step.

The controller conducts the steps in Algorithm 1 programatically by leveraging

existing mechanisms to generate a range of workloads, resources, and system configu-

rations. The infrastructure for conducting the experiments consists of a testbed that

also provides programmatic control to allocate resources for an experiment, deploy

the experiment according to the settings of parameters in 〈 �W, �R, �C〉, collect and store

streams of instrumentation data from the experiment, and repeat the experiment if

necessary.

2.3.1 Mechanisms for Conducting Experiments

The controller requires mechanisms or “knobs” to set the values of parameters ac-

cording to the settings of parameters in each experiment of the experiment design,

i.e., knobs to set the value of parameters in the workload vector �W , the system re-

source vector �R, and the system configuration vector �C. We discuss each in turn.

Setting �W . Experiments require that the controller have the ability to generate a
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range of settings in �W to expose the wide variety of workloads that a system may

encounter in practice, e.g., to expose the system to a flash crowd scenario. General

knobs to set the parameters in �W are elusive. One solution is to use application-

specific workload generators to discover and vary the important parameters for a

workload in a realistic fashion, in order to capture the system behavior for a given

�W [104].

A range of reconfigurable benchmarks already exist to emulate workloads for key

application classes of interest. In Chapter 3 we use the synthetic workload generators

that come prepackaged with Web services such as RUBiS [22] and TPC-W [109] to

generate a wide variety of Web workloads. Chapter 4 uses GAMUT [77], an applica-

tion emulator, that offers knobs to create batch workloads with varying CPU and I/O

demands. In Chapter 5 we use Fstress [5], a synthetic storage workload generator

that offers knobs to configure the properties of the workload’s dataset and its request

mix.

Setting �R. The heterogeneity in physical cluster resources [62] allows a range of

settings for the resource vector �R. Alternatively, virtualization technologies such as

Xen [33] and VMWare [106] offer knobs for controlling the settings of hardware re-

source vector �R even on homogeneous resources. By using the controls offered by

virtualization, it is easy to create virtual machines (VMs) with varying amounts of

CPU, memory, and I/O resources. While the knobs offered by the virtualization

technology are not exhaustive, e.g., ability to control CPU cache size does not exist,

they make it possible to observe a workload’s behavior on a range of system resources.

Setting �C. Most system and application software already provide knobs for setting

the configuration parameters in the configuration vector �C. For example, a database
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system provides means for tuning a large number of parameters in its �C [116].

2.3.2 Experiment Workbench

In this dissertation, the controller uses an initial prototype of Automat [122] as a

workbench for conducting experiments. Automat is a testbed targeted for research

into mechanisms and policies for self-managing systems. Automat is layered upon

Shirako, a toolkit for secure, on-demand leasing of shared networked resources [58].

Automat provides an infrastructure to configure a chosen setting of parameters in

〈 �W, �R, �C〉 automatically (Steps 1-4 in Algorithm 1). Automat can instantiate ex-

periments in parallel; concurrent experiments cut down the elapsed time required to

conduct a set of experiments. Furthermore, Automat provides support for pluggable

monitoring to collect the instrumentation data from each experiment (Steps 5-8 in

Algorithm 1).

2.3.3 Repeating Experiments

For each experiment, the controller must choose the runlength, which is the time

interval over which to observe the system behavior, and the number of independent

trials for that experiment. Given the inherent variability in the experimental pro-

cess [72], one trial is usually insufficient to measure the system behavior accurately.

The best that can be done in such a setting is to make a probabilistic claim about the

interval in which the experiment result lies, based on the observations from multiple

independent trials [59].

Chapter 5 presents experiment-planning policies to determine how long to run an

experiment and how many times to repeat an experiment in the context of storage

server benchmarking. The goal of the policies is to attain target confidence and

accuracy in experimental results at low cost.
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2.4 Collect and Process Instrumentation Data

The controller collects the instrumentation data from the experiments and processes

it to yield a table of samples. Table 1.2 shows an example of a sample table. The

overall framework is independent of the instrumentation methodology as long as

the tools for collecting the data are available. This dissertation uses noninvasive

instrumentation data—data that a system can easily collect using commonly available

system tools, and without modifying the application or system. The premise is that

for the knowledge base to be of practical use, the controller should be able to generate

samples from instrumentation data that is widely available.

Sophisticated instrumentation, e.g., modifying application sources or binaries [19],

may yield more accurate data. However, there are several barriers to using such in-

strumentation, e.g., slowdown of applications, sophisticated tools for instrumenting

application source or binaries, and limited or no prior knowledge about the applica-

tions. At the same time, noninvasive instrumentation may be of little use if it yields

insufficient data or inaccurate knowledge base.

2.5 Analyze Samples to Learn the Knowledge Base

Once the sample table is available, the controller can analyze it to build the knowledge

base. The data analysis techniques depend on the knowledge base that the controller

builds. For example, if the controller is building regression models, then the data

analysis consists of learning the coefficients of a regression model, e.g., by using least

squares estimation [59]. The data analysis has several other goals in addition to using

standard techniques for learning the knowledge base.

• Establish Accuracy. The analysis must establish the accuracy of the knowl-

edge base. To do so, the controller must identify appropriate accuracy metric(s).
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Often one metric may be insufficient to evaluate the accuracy of the knowledge

base, and hence it must consider several metrics. Chapters 3 and 4 present the

multiple accuracy metrics that this dissertation considers.

• Guide the Structure of the Knowledge Base. Data analysis must guide

the controller in refining the structure of the knowledge base in Step 1; see

loop L1 in Figure 2.2. The analysis of existing samples may give insights into a

better choice and representation of the knowledge base. For example, suppose

the goal is to build an accurate linear regression model, and experiments are

conducted according an experiment design to collect samples for learning the

model. The analysis of the samples might reveal the presence of significant non-

linear effects. This allows the controller to refine the structure of the model to

capture the non-linear system behavior as well. Chapter 4 uses the data analysis

to iteratively refine the structure of the model that predicts the execution time

of batch applications.

• Guide the Choice of Experiments. Data analysis must guide the controller

in augmenting the experiment design based on the feedback from the previous

experiments; see loop L2 in Figure 2.2. For example, the analysis may reveal

that a parameter that is excluded from a model has a significant impact on the

system behavior. In such a case, the controller must generate more experiments

to expose the impact of that parameter in the samples. Chapters 3, 4,and 5

show how the analysis of available samples guides further choice of experiments.

2.6 Summary

This chapter presents our experiment-driven framework that incorporates the mech-

anisms and policies to learn the system knowledge base proactively, efficiently, and
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in a feedback-driven manner. The instances of the operations in the framework, as

shown in Figure 2.2, depend on the management task, the knowledge base being

built, system domain, and constraints such as available resources in the workbench

and the target accuracy of the knowledge base. Chapters 3-5 present the use of the

overall framework to learn the system knowledge base in the context of Web services,

batch applications, and storage servers.
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Chapter 3

Management Queries for Web Service
Management

This chapter presents the use of experiment-driven framework for building the knowl-

edge base required to process the management queries in the context of Web service

management. The policies for building the knowledge base are general and applicable

to other system domains as well.

3.1 Background

Databases with custom-written clients dotted the computing landscape for a long

time. The advent of the Web brought about Web services (or Internet services) com-

posed of “thin clients” that accessed databases through Web interfaces. As the scale

of these services increased, stored procedures made their way out of the database into

a new tier, the application server, running “business logic.” This multitier, database-

backed architecture supports many popular Web services such as Amazon, eBay,

and Yahoo!. Many enterprises are moving towards a service-oriented architecture

by putting their databases behind Web interfaces, thereby providing a well-defined,

interoperable method for interacting with their data.

Web services usually have service level objectives, or SLOs, that specify the mea-

sures and properties for an acceptable level of service [54]. For example, an SLO for an

online brokerage may stipulate that a certain percentile of all transactions complete

within 1 second, regardless of the middleware, databases, or network components

involved in overall transaction processing.

Many services have difficulty meeting their SLOs. A recent study [100] found
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Table 3.1: Example of factors that affect Web service performance.

�W Arrival rate of Web requests, Web request mix, number of clients
�R CPU speed, memory size, number of disks
�C Database configuration factors such as buffer pool size for index blocks,

open table descriptors, and sort operations

that 72% of the top-40 Web sites suffer user-visible problems such as slowdowns and

failures. Walmart.com experienced a 10-hour outage during the 2006 U.S. Thanks-

giving holiday season, potentially losing customers and revenue [115]. Customers of

the most popular online U.S. tax filing service, TurboTax, were unable to file their

returns on the eve of the deadline [111]. The prospect of such problems places a

huge burden on administrators who manage Web services. The increasing complex-

ity and scale of Web services is making the administrator’s task even more difficult.

This chapter presents the use of the experiment-driven framework from Chapter 2 to

build the knowledge base that will enable administrators to make informed system

management decisions.

3.2 Problem Statement

The performance of a Web service is a function of its workload, the configuration of

each Web service tier, and the hardware resources allocated to each tier. Each of

these may be characterized by a vector of factors, as summarized in Table 3.1.

Performance �P . We characterize the performance of a Web service by metrics such

as average service response time, average service throughput, and average number of

errors returned by the service in a given time interval.

Workload �W . A Web service workload consists of: arrival rate of clients, the class
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or type of clients, and the number of concurrent clients that access the Web service.

The service priority for clients characterizes the client class, and the usage profile

determines the client type. As an example, consider the eBay-like auction service

RUBiS [22]. RUBiS’s workload �W is characterized by three types of user sessions

�W = 〈browse, bid, sell〉 where each of browse, bid, and sell represent the number of

concurrent clients doing a distinct activity. browse sessions are from unregistered

users who browse the site. buy sessions are from registered users who, in addition

to browsing, may bid on items and consult a summary of their current bids, their

rating, and the comments left by other users. sell sessions are from paid users who

put up items for sale.

Resources �R. This workbench controller (Chapter 2, Figure 2.1) uses virtualization

technology to control the hardware resources allocated to each service. It allocates

virtual machines (VMs) with varying amounts of CPU, memory, and I/O resources

to each tier of the service.

Configuration �C. Setting the values of �C involves modifying the factors in the ser-

vice configuration or making choices with respect to the system software such as the

communication protocol being used between the tiers, the operating system running

on the hardware, and the file system used on the storage devices.

Supporting Management Queries on System Behavior. Let �P be the perfor-

mance metrics of interest for a Web service. Let �F = 〈F1, . . . , Fn〉 be the subset of

factors in the larger factor space in 〈 �W, �R, �C〉. This work builds the knowledge base

required to address the following example queries:

Q1: Quantify the impact or effect of each factor in �F on �P , and rank the factors in
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order of effect.

Q2: Are there strong interactions among factors in �F that affect �P? Rank these

interactions in order of their effect on �P .

Q3: Approximate the function that determines �P for any given setting of factors in

�F .

Impact of Factors: Understanding the effect of various factors on system perfor-

mance is a prerequisite for system administration tasks like tuning [116] and capacity

planning [31]. For example, as part of system tuning, an administrator may need

to find out which factors in the resource vector �R or the configuration vector �C to

change to improve system performance metrics �P for a given setting of factors in the

workload vector �W . Or, in capacity planning, the task may be to find what resources

to add to handle a projected increase in the workload �W at minimum cost.

Impact of Interactions: A big hurdle in isolating the effect of individual factors

is the presence of unknown interactions among factors. An interaction between two

factors Fi and Fj means that the changes in performance across multiple settings

of Fi are significantly different for different settings of Fj . Such interactions make

typical “tune-one-factor-at-a-time” efforts ineffective.

Modeling: While the effects of factors and interactions give insight into system

behavior, a complex administrative task like SLO maintenance under dynamic work-

loads may need a model of system behavior that can predict how varying settings of

factors in �R and �C affects �P for a range of settings of factors in �W .
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Figure 3.1: Running example with three factors F1, F2, and F3 with 3, 2, and 2
levels respectively.

3.3 Impact of Factors and Interactions

This section defines more rigorously the notion of interaction between factors, and

the impact or effect of factors and factor interactions on system response, e.g., Web

service performance. A complete treatment of these concepts is available in standard

texts on design and analysis of experiments, e.g., [72, 78, 85]. This section illustrates

the application of these concepts for system management using a running example

in Figure 3.1, which we created to explain the concepts.

Let �F = 〈F1, F2, . . . , Fn〉 denote the n factors of interest for a service, and P

denote the performance metric of interest. Each factor Fi has an operating range

that determines the values Fi can take. Each value that Fi can take is called a level

of Fi. For simplicity, we assume discrete numeric factors in this example, but the
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techniques extend to continuous-valued and categorical factors as well. Factor Fi

has li distinct levels, denoted L1, L2, . . . , Lli. Consider three factors F1, F2, and F3

with 3, 2, and 2 levels respectively. The columns labeled Levels in Figure 3.1 show

the 12 possible combinations of these three factors, and the next column shows the

corresponding value of the performance metric P . Each combination of levels and

the system performance for that combination represents a sample. Assume that all

these samples are already available. Recall from Section 2.2 that determining which

samples to collect is a key challenge, which we address in Sections 3.5.1-3.5.3.

One way to characterize the effect of a factor Fi on P is to measure the mean

change in P from the change in level(s) of Fi. For example, from the data in Figure

3.1, we can compute how much the mean value of P changes when F1 is changed

from it lowest level (L1) to its highest level (L3); the mean is taken over all samples

with that specific level of F1. F1 is at level L1 in the first four samples in Figure

3.1—with mean P = 1+3+2+3
4

= 2.25—and at level L3 in the last four samples with

mean P = 2.5+3.5+3+3
4

= 3. Thus, the change in the mean value of P when F1 is

changed from its lowest level to its highest level—called the linear effect of F1—is

0.75. Figures 3.2(a)–(c) illustrate the linear effects of factors F1–F3.

Note that the absolute linear effect of factor F1 is much lower than that of F2.

However, Figure 3.2(d), that shows the mean value of P for all three levels of F1,

illustrates that changing F1 from L1 to L2 produces a significant change in P , and

so does changing F1 from L2 to L3. These changes cancel one another, making

the linear effect small. Linear effects cannot capture such non-linear influence since

the effects are estimated using only two levels. To estimate higher-order effects we

need more than two levels. For example, the quadratic effect of F1 is calculated as

(P̄3 − P̄2) − (P̄2 − P̄1), where P̄i denotes the mean P at level Li of F1. As expected,

F1 has high magnitude of quadratic effect of -4.75.
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Figure 3.2: Impact of different factors and interactions in our running example.
The performance is averaged across all the levels of other factors.

Figure 3.3 demonstrates the effect of three CPU levels on RUBiS’ average response

time. Here, the effect of changing CPU level from 20% to 60% is not the same as

changing the CPU from 60% to 100%. If we consider only two CPU-levels, then we

cannot capture the non-linear effect of CPU on the Web service performance. Hence,

it may be important to consider more than two levels in the sample table for one or

more factors to expose their non-linear effect.

There is an interaction between factors Fi and Fj when a change in Fi produces

a different change in mean P at two different levels of Fj . Figure 3.2(e) visualizes

such an interaction among factors F1 and F2 in the running example. The example

shows the change in P as result of change in levels of F1, for each level of F2. Note

the different shape of the two plots indicating interaction between the two factors.

On the other hand, Figure 3.2(f) shows that there is almost no interaction between

factors F2 and F3. Similarly, interactions can exist among three or more factors as

well.
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Figure 3.3: Non-linear effect of CPU on RUBiS’s response time. More than two
levels of factors are required to expose such non-linear effects.
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Figure 3.4: Interaction between the CPU and workload factors. The change in
RUBiS’ average response time for different CPU resource allocations is different at
different settings of workload factors for the range of settings considered in this figure.

Figure 3.4 illustrates the effect of changing CPU-levels on RUBiS’ average re-

sponse time for two workloads. The effect of changing CPU-levels is different for the

two workloads and depends on the type of workload. Hence the two lines intersect,

and the Web service workload factors and the CPU factor interact with each other.

3.3.1 Computation of Impact

The running example illustrates the intuitive meaning of the effect of factors and

interactions. This section presents a general method to measure the effect of factors

and interactions from a given set of samples like those in Figure 3.1. We first describe
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the method for two and three factors before generalizing it.

For the two-factor case, let Pij denote the value of P in the sample where factor F1

is at its ith level, and factor F2 is at its jth level. Similarly, for the three-factor case,

Pijk denotes the value of P in the sample where factor F1 is at its ith level, factor

F2 is at its jth level, and factor F3 is at its kth level; and so on. For simplicity, we

assume that there is only one sample per distinct combination of factor levels. The

definition of effect is easy to extend to the case with multiple samples per distinct

combination of factor levels [72].

We use a “star notation” to represent multiple samples, where a “∗” instead of a

level for a factor represents all the levels of that factor. For example, in the two-factor

case, P̄i∗ denotes the mean of Pij across all samples where factor F1 is at its ith level.

Similarly, P̄∗∗ represents the overall mean across all samples.

The general method to measure the effect of factors and interactions is based

on Factorial Analysis of Variance (Factorial ANOVA) from Statistical Design of

Experiments [53]. Here, the variation in performance that is present in the samples

is partitioned into the variation that can be accounted for by selected factors and

inter-factor interactions. The quantity used to measure variation is called sum of

squares (SS). The total variation in P is measured by the total sum of squares (SStot).

For the two-factor case, SStot can be written as:

SStot =
∑

i

∑
j

(Pij − P̄∗∗)2 (3.1)

The Pij − P̄∗∗ term in Equation 3.1 can be further broken down as:

Pij − P̄∗∗ = (P̄i∗ − P̄∗∗) + (P̄∗j − P̄∗∗) + (Pij − P̄i∗ − P̄∗j + P̄∗∗) (3.2)

If the RHS in Equation 3.2 is squared and summed over i and j, then all the cross-

product terms disappear, giving:
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SStot =
∑

i

∑
j

(Pij − P̄∗∗)2 =
∑

i

∑
j

(P̄i∗ − P̄∗∗)2 +

∑
i

∑
j

(P̄∗j − P̄∗∗)2 +
∑

i

∑
j

(Pij − P̄i∗ − P̄∗j + P̄∗∗)2

= SSF1 + SSF2 + SSF1F2 (3.3)

SSF1 =
∑

i

∑
j(P̄i∗− P̄∗∗)2 is the sum of squares of the deviation between the overall

mean performance and the mean performance at each level of F1. This quantity

measures the total variation in P that can be accounted for by F1 alone; so SSF1

is an estimate of the effect of F1 on P . Similarly, SSF2 =
∑

i

∑
j(P̄∗j − P̄∗∗)2 is an

estimate of the effect of F2 on P .

SSF1F2 =
∑

i

∑
j(Pij − P̄i∗ − P̄∗j + P̄∗∗)2 is an estimate of the effect of the inter-

action between F1 and F2 on P . Intuitively, the (Pij − P̄i∗ − P̄∗j + P̄∗∗) term that

calculates SSF1F2 subtracts out the influence of F1’s level and F2’s level from each

Pij. Thus, SSF1F2 captures the variation in P that cannot be accounted for by F1 or

F2 individually.

In general, Factorial ANOVA partitions the total variation in P (SStot) into two

components: (i) explained variation due to assignable causes such as certain factors

and interactions, and (ii) unexplained variation that can arise due to measurement

errors, or factors and interactions that are not considered. The difference between

the total sum of squares SStot and the sum of all other SSs is represented by error

sum of squares or SSE. A small value of SSE implies that most of the variability is

explained by the factors and interactions considered in the analysis.

The process of decomposing the total variability in a data set, SStot, into dif-

ferent components is simply an arithmetic procedure. The only assumption is that

the average or the mean system response across the levels of different factors is a
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useful metric in calibrating the overall effect of a factor or an interaction. Further

assumptions in ANOVA are needed only when the decomposed measures are used to

construct statistical tests for comparing the statistical significance of a factor or an

interaction. The decomposition of variability and the tests for statistical significance

are often coupled tightly even though the tests are not really part of ANOVA [85].

Factorial ANOVA can be used to estimate the effect of any number of factors and

multiway factor interactions. For example, for three factors F1-F3, the effect of each

factor and interaction can be calculated as:

SStot =
∑

i

∑
j

∑
k

(Pijk − P̄∗∗∗)2 = SSF1 + SSF2 + SSF3 +

SSF1F2 + SSF1F3 + SSF2F3 + SSF1F2F3 (3.4)

The above partitioning relies on the equality:

Pijk − P̄∗∗∗ = (P̄i∗∗ − P̄∗∗∗) + (P̄∗j∗ − P̄∗∗∗) +

(P̄∗∗k − P̄∗∗∗) + (P̄ij∗ − P̄i∗∗ − P̄∗j∗ + P̄∗∗∗) +

(P̄i∗k − P̄i∗∗ − P̄∗∗k + P̄∗∗∗) + (P̄∗jk − P̄∗j∗ − P̄∗∗k + P̄∗∗∗) +

(Pijk − P̄ij∗ − P̄i∗k − P̄∗jk + P̄i∗∗ + P̄∗j∗ + P̄∗∗k − P̄∗∗∗) (3.5)

As in the two-factor case, when the RHS in Equation 3.5 is squared and summed over

i, j, k, the cross-product terms disappear. For our running example, Figure 3.1 shows

the SS using Factorial ANOVA for the three factors, three two-factor interactions,

and single three-factor interaction. Note that the magnitude of these numbers is

consistent with the intuitive definition of effect that Figure 3.2 illustrates.

The SS measure for each factor and interaction can be decomposed into linear,
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quadratic, and other components. This decomposition is based on the method of

orthogonal contrast coefficients [53] which we illustrate next for three factors, and

then generalize. A column vector of contrast coefficients 〈c1, . . . , cm〉 associates each

sample in the table of m samples with an integer coefficient ci. For example, the

column for F1,Lin in Figure 3.1, shows one contrast coefficient vector 〈c1, . . . , cm〉 for

the linear effect of factor F1 as follows:

ci =

⎧⎨
⎩

−1 if F1 = L1 (F1 is at level L1)
1 if F1 = L3 (F1 is at level L3)
0 otherwise

(3.6)

Consider a set of contrast coefficient vectors with the following properties:

1. The sum of all the contrast coefficients in the contrast coefficient vector is 0,

i.e., for each 〈c1, . . . , cm〉,
∑i=m

i=1 ci = 0.

2. The sum of coefficients that result from the product of any two contrast coef-

ficient vectors, 〈c1, . . . , cm〉 and 〈c′1, . . . , c′m〉, is 0, i.e., for each 〈c1, . . . , cm〉 �=
〈c′1, . . . , c′m〉,

∑i=m
i=1 cic

′
i = 0.

The above properties makes the contrast coefficient vectors orthogonal. Each such

vector 〈c1, . . . , cm〉 enables us to compute one effect and one SS measure for a fac-

tor or interaction through a contrast defined as C =
∑

i ciPi. An effect can be

calculated from a contrast C with suitable averaging, while an SS is calculated as

SS = C2
P

i

P
j

P
k c2i

. We illustrate these properties using the running example.

Columns F1,Lin, F1,Quad, F2,Lin, and F3,Lin in Figure 3.1 show four orthogonal

contrast coefficient vectors. Their respective contrasts are also shown. The contrast

from the coefficient vector in column F1,Lin can be used to compute the linear effect

and linear sum of squares (SSF1,Lin) of factor F1. Similarly, the contrast in column
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F1,Quad can compute the quadratic effect and quadratic sum of squares (SSF1,Quad) of

factor F1. The contrasts in columns F2,Lin and F3,Lin can compute the linear effect

and linear SS for factors F2 and F3 respectively.

For a factor with l levels, effects or SS of up to order l− 1 can be calculated with

appropriate orthogonal contrast coefficient vectors [53]. The SS for this factor that

is calculated using Factorial ANOVA is the sum of the SS up to order l − 1 that

are calculated from the coefficient vectors. This property relates Factorial ANOVA

to the method of orthogonal contrast coefficients. Factors F2 and F3 in our running

example have two levels each, so we cannot compute their quadratic or higher order

effect; thus SSF2 = SSF2,Lin and SSF3 = SSF3,Lin. Similarly, since F1 has three levels,

we cannot compute its cubic or higher order effect; thus SSF1 = SSF1,Lin +SSF1,Quad.

The interesting property of orthogonal contrast coefficient vectors is that the co-

efficient vector for any binary or multiway interaction among factors is easily derived

by multiplying the individual coefficient vectors on an index-by-index basis. For ex-

ample, the column F2,LinF3,Lin in Figure 3.1 shows the coefficient vector for the F2F3

interaction that is derived by multiplying the vectors in columns F2,Lin and F3,Lin.

The SS measure from this vector is equal to the SS derived for the F2F3 term using

Factorial ANOVA. More specifically, since F2 and F3 have two levels each, we can

write SSF2F3 = SS(F2,Lin)(F3,Lin).

Since F1 has three levels, for the interaction between factors F1 and F2, we

have SS(F1,Lin)(F2,Lin) + SS(F1,Quad)(F2,Lin) = SSF1F2. The contrast coefficient vec-

tor for SS(F1,Lin)(F2,Lin) is the product of the coefficient vectors in columns F1,Lin

and F2,Lin, and that for SS(F1,Quad)(F2,Lin) is the product of the coefficient vectors in

columns F1,Quad and F2,Lin. Finally, we have SSF1F2F3 = SS(F1,Lin)(F2,Lin)(F3,Lin) +

SS(F1,Quad)(F2,Lin)(F3,Lin).
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3.3.2 Summary

In this section we use two methods—Factorial ANOVA and orthogonal contrast

coefficients—to estimate the effect of each factor and inter-factor interaction on sys-

tem performance P . The description revolves around two- and three-factor scenar-

ios in our running example, but it is easy to generalize across any number of fac-

tors [53, 72]. For most of this chapter, we consider SS from Factorial ANOVA as the

default measure of effect.

To estimate the effects, we need samples of system performance similar to samples

shown in Figure 3.1. Section 3.4 presents the algorithm that collects the samples

required to estimate the effects automatically and quickly.

3.4 Experiment-Driven Collection of Samples

Section 3.2 presents three example management queries on system behavior. A key

challenge is to identify and collect samples that can be used to compute an accurate

query result quickly. Algorithm 2 presents the experiment-planning algorithm for

data collection and analysis to process a given management query. The steps are

instances of the operations in the experiment-driven framework from Chapter 2;

recall Figure 2.2. The algorithm leverages the experiment designs from Section 2.2

and techniques from Section 3.3 in a unified manner to generate the samples for

computing the query result.

For the ranking-queries Q1 and Q2, the typical approach consists of conducting

experiments from one of the screening designs alone, e.g., [120]. Algorithm 2 combines

the screening designs with model-learning designs in a sequential manner such that

the controller can conduct more experiments to improve the accuracy of the ranking

queries even after exhausting the experiments from the screening designs. Moreover,

the algorithm also aligns the choice of the screening design with the overall goals of
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Algorithm 2: Experiment-Driven Sample Collection

Input: (i) Complete set of factors �F ; (ii) Web-service management query, Qi;
(iii) Maximum allowed number of experimental runs, MAX RUNS.

Output: A table of samples which is analyzed to compute the query result
for query Qi.

1) Pick a screening experiment design for bootstrapping (Section 3.5);

2) Conduct experiments according to the experiment design (Section 3.6);

3) Build an initial table of samples from the experiments in Step 2;

4) while (num exps < MAX RUNS )

a. Design and conduct the next experiment(s) using a model-learning
design (Section 3.7);

b. Add the sample(s) from Step a to the table of samples;

c. num exps++;

end

the ranking queries. As Section 3.5 explains, ranking the factors and interactions

based on their linear effect requires less experiments than ranking based on their

non-linear effect.

Similarly, for the model-learning query Q3, the algorithm uses the screening de-

signs to generate a set of initial samples that can determine the important factors

and interactions that the model must consider. Hence, the screening step can en-

sure that the model not only includes all the important factors and interactions, but

also eliminates unimportant factors and interactions to reduce the complexity of the

model [59]. Sections 3.5-3.8 present the algorithm in detail. Section 3.9 evaluates the

algorithm by evaluating the accuracy of the query results that are attained from the

samples output by the algorithm.
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3.5 Bootstrapping Using Screening Designs

Step 1 in Algorithm 2 consists of choosing an experiment design (Section 2.2) for

bootstrapping the query processing. The bootstrapping involves choosing an initial

set of experiments to generate samples which can be analyzed to guide the choice

of future experiments (Section 2.5). The algorithm uses screening designs for this

purpose (Section 2.2). In this work, we investigate the use of the following screening

designs since these are some of the most popular screening designs used for product

design, process control, and process trouble shooting in engineering disciplines [83].

3.5.1 Screening Designs for Linear Impact

Section 3.3.1 shows how to quantify the effect of factors and interactions based on

their linear impact using two levels per factors. While the two levels can be any pair

from the different levels per factor, they usually are the lowest and highest levels that

are assigned contrast coefficients −1 and 1 respectively.

2n Full Factorial Designs: The straightforward scheme is to conduct all 2n possible

experiments given two levels each for the n factors F1, . . . , Fn; called the 2n Full

Factorial Design [53]. Figure 3.5 shows such a design for three factors F1-F3. This

table is the subset of Figure 3.1 from which the four samples where factor F1 is at

level L3 are dropped; and the L1 and L2 levels for each factor are mapped to the

contrast coefficients −1 and 1 respectively.

Section 3.3 shows how to compute the SS measures for all factors and interactions—

which includes three single factor SS, three two-way interaction SS, and one three-way

interaction SS—for 23 samples in Figure 3.5.

2n−p Fractional Factorial Designs: The experimental effort in a 2n design quickly
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becomes exorbitant as n grows. For example, if n = 10 then 1024 experiments

are required, which at 10 minutes per experiment, requires around seven days to

complete. Note that 2n design captures the effects of all the factors and interactions.

However, the behavior of most systems is primarily a function of the effects of single

factors and effects of some low-order (e.g., pairwise) interactions [78]. A design

that captures the effects of single factors and low-order interactions requires a small

fraction of the 2k factorial design. Such designs are called 2k−p Fractional Factorial

Designs.

For p ≥ 1, such designs can estimate important factor and interaction SS measures

at only a 1
2p fraction of the 2n full factorial design [53]. However, this reduction in

the number of experiments exposes a tradeoff: a 2n−p design cannot isolate the SS

measure for every factor and multi-factor interaction.

Consider our running example. Suppose we use a 23−1 design where we collect

only the samples in rows 2, 3, 5, and 8 in Figure 3.5, i.e., we conduct the experiments

〈−1,−1, 1〉, 〈−1, 1,−1〉, 〈1,−1,−1〉, 〈1, 1, 1〉 to collect the respective samples. The

other four experiments are not conducted.

The row labeled Aliased SS in Figure 3.5 gives the factor and interaction SS for

the four samples. Notice that SSF1 = SSF2F3, SSF2 = SSF1F3, and SSF3 = SSF1F2.

The reason for this pattern is clear if we examine the contrast coefficient vectors

restricted to the four samples. The contrast coefficient vector for F1 is the same as

the coefficient vector for F2F3, namely, 〈−1,−1, 1, 1〉. Identical coefficient vectors

will give rise to identical SS measures (Section 3.3), so we cannot separate out the

individual effects of the respective factors and interactions. This phenomenon is

called aliasing. In the 23−1 design discussed above, the effect of the factors F1, F2,

and F3 are aliased respectively with that of the interactions F2F3, F1F3, and F1F2.
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Figure 3.5: Running example with two levels per factor.

3.5.2 Controlling Aliasing Through Resolutions

We now present the concept of design resolution [78] which is a way to characterize

2n−p designs such that the aliases in the design are known a priori. Resolutions are

indicated using roman numerals. Commonly used resolutions are III, IV, and V.

Resolution III A 2n−p design is of resolution III when no single-factor effect is aliased

with another single-factor effect, but each single-factor effect is aliased with one or

more two-factor interactions. Note that the example 23−1 design has resolution III.

For n factors, we can generate resolution III designs that have O(n) experiments only.

PBDF (Plackett-Burman Design with Foldover) is an example of a popular res-

olution III screening design [59, 120] that ranks N independent factors X1, . . ., XN

based on their effect on a dependent parameter Y . PBDF requires that N + 1 be

a multiple of 4, with dummy parameters added as needed. PBDF identifies a set of
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Table 3.2: Experiment design for PBDF

X1 X2 X3 X4 X5 X6 X7 Y

+1 +1 +1 -1 +1 -1 -1 y1

-1 +1 +1 +1 -1 +1 -1 y2

-1 -1 +1 +1 +1 -1 +1 y3

· · · · · · · · · · · · · · · · · · · · ·
-1 -1 +1 -1 +1 +1 -1 y15

+1 +1 +1 +1 +1 +1 +1 y16

experiments where the configuration of X1, . . . , XN for each experiment is given by

a specific experiment design. The general design is described in [120]. This chapter

presents an example.

Table 3.2 shows a part of the design when N = 7. This design has 2 ∗ 8 = 16

rows because 8 is the nearest higher multiple of 4 for N = 7, and PBDF requires

twice that many rows. Each row specifies the configuration of X1, . . . , XN for a run.

The value of Y given by the run is also shown. A “+” (“−”) value for a parameter

represents a value that is higher (lower) that the normal range of values for that

parameter. PB designs can have a complicated aliasing structure and hence must be

used carefully [78].

After performing all 16 runs, the effect of each parameter on Y is computed by

multiplying the parameter’s value in each row with the value of Y for the row, taking

the sum across all rows, and taking the absolute value of the sum. For example, the

effect of parameter X1 is |y1 − y2 − y3 · · · − y15 + y16|. Finally, the parameters are

ranked in decreasing order of their effect on Y .

Resolution IV A 2n−p design is of resolution IV when no single-factor effect is

aliased with that of another single-factor or two-factor interaction, but some two-

factor interactions are aliased with one or more two-factor interactions. Single-factor

effects may be aliased with three-factor or higher-order interactions. While resolution
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IV designs need more experiments than resolution III designs for the same number

of factors, they still have O(n) experiments.

Resolution V A 2n−p design is of resolution V when no single-factor effect is aliased

with that of another single-factor or two-factor interaction, and no two-factor inter-

action is aliased with another two-factor interaction. Two-factor interactions may

be aliased with three-factor or higher-order interactions. Resolution V designs are

good for studying all the single-factor and two-factor interaction effects independent

of each other. If all interactions of three factors and higher are insignificant com-

pared to single-factor and two-factor effects—which is often true in practice—these

designs give accurate estimates of all single-factor and two-factor effects. Resolution

V designs require O(n2) experiments.

In practice, we observe that the effects of higher-order interactions are usually much

less than that of single-factor and two-factor effects. Figure 3.5 illustrates this phe-

nomenon. Note that
SSF1F2F3

SStot
= 1.125

83.875
is 1.3%. This phenomenon motivates an itera-

tive technique to process queries Q1 and Q2 (Section 3.2) for linear effect measures:

start with a low resolution 2n−p design (say, resolution V) and keep increasing the

resolution until we capture all dominant effects. The challenge is to determine if we

have missed any dominant effects.

Recall the method of Factorial ANOVA from Section 3.3. Factorial ANOVA

estimates the component SSexpl of the total variation SStot that is explained by a

selected set of factors and interactions. The magnitude of the unexplained variation

SStot −SSexpl is a conservative estimate of the total effect of factors and interactions

that are ignored. If the fraction of unexplained variation
SStot−SSexpl

SStot
is small, then

we can stop; otherwise we can increase the resolution and do experiments to collect

more samples.
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Despite their limitations in estimating the effect of all factors and interactions

accurately, the two-level fractional designs are most widely used in engineering [83].

This is because in most engineering disciplines the knowledge gleaned from two-level

fractional designs is sufficient for most management tasks. The effect of high-order

interactions is often negligible.

3.5.3 Screening Designs for Linear and Quadratic Impact

A factor or interaction could have a non-linear effect on performance, like the over-

all effect of factor F1 that the running example illustrates in Figure 3.1 and Figure

3.2(d). We cannot estimate such an effect without conducting experiments with at

least three levels of the factors. In this section, we describe experiment designs to

estimate quadratic effect in addition to linear effect; and in Section 3.7, we present

model-learning designs that can capture effect arising from the full operating range

of input factors.

3n Full Factorial Designs: A straightforward design to capture quadratic effect is

to conduct the 3n experiments with each of the n factors set to three levels each: low,

high, and a level in between. Because of its exponential nature, this design becomes

impractical much faster than 2n designs.

Central Composite Designs (CCD): A CCD is a design that augments a 2n−p

design with a selected set of new experiments that capture quadratic effect in addition

to linear effect. A CCD for factors F1, . . . , Fn consists of the three distinct sets of

experimental runs. We use the contrast coefficients −1, 0, 1 for the low, median, and

high levels respectively for each factor.

• A set of corner runs from a 2n−p fractional factorial design, typically of resolu-
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tion IV or V. Recall from Section 3.5.1 that these experiments have the form

〈c1, c2, . . .〉 where ci ∈ {−1, 1}.

• A center run, which is an experiment with each factor Fi set to its median level.

(This experiment may be repeated a few times for precision.) This experiment

has the form 〈0, 0, . . . , 0〉.

• A set of 2n axial runs, which are experiments identical to the center point except

for one factor, which will take on the low and high levels. All factors are set

in this way to give the 2n experiments of the form: 〈−1, 0, . . . , 0〉, 〈1, 0, . . . , 0〉,
〈0, −1, . . ., 0〉, 〈0, 1, . . . , 0〉, · · · , 〈0, 0, . . . ,−1〉, 〈0, 0, . . . , 1〉.

These three sets of runs play important and slightly different roles in a CCD. The

corner runs help estimate factors and interactions with high linear effect. The center

and corner runs together help test whether there is significant non-linear behavior;

and if such behavior exists, the center and axial runs help estimate factors and

interactions with high quadratic effect.

3.6 Conducting an Experiment

Algorithm 3 outlines the steps involved in conducting a single experiment. Broadly,

it consists of obtaining resources for the experiment, instantiating the Web service

and the clients, configuring the service and the client(s) according to the settings

of each factor in �F , and running the workload for a predetermined period. The

instrumentation on the client and server consists of measures that are useful for

computing the response time of each Web transaction. Section 2.3 describes how

the workbench controller configures resources and configuration. To configure the

workload, we use synthetic workload generators that can generate a wide variety of

Web service workloads (Section 3.9.1).
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Algorithm 3: Conduct a Web service experiment

Input: A specified level li for each factor in �F , where �F is a subset of
factors in 〈 �W, �R, �C〉; performance metric of interest P . Output: Measure
P for 〈F1 = l1, . . . , Fn = ln〉 and return a complete sample.

1) Obtain CPU, and Memory resources for the Web service and workload
client(s);

2) Create a resource configuration for the Web service such that the CPU,
memory, network, and disk levels are set as per 〈F1 = l1, . . . , Fn = ln〉;

3) Instantiate the Web service on the resources;

4) Configure the Web service client(s) according to the levels in
〈F1 = l1, . . . , Fn = ln〉;

5) Coordinate between the Web service and its clients such that the clients
are launched only after the service is ready to receive the requests;

6) Start instrumentation on the client and server;

7) Run the client workload for a predetermined period;

8) Stop instrumentation;

9) Collect instrumentation data during the experiment which is processed to
yield the 〈F1 = l1, . . . , Fn = ln, P 〉 sample which goes into a table of
samples;

3.7 Model-Learning Designs

Section 3.5 presents screening experiment designs that are useful for bootstrapping

the experiment-driven collection of samples (Step 1 in Algorithm 2). The screening

experiment designs, which consider only 2 or 3 levels per factor, can generate samples

for computing the linear and quadratic effect of each factor. The linear and quadratic

effect measures often suffice to give a good understanding of how various factors and

interactions affect system behavior. Hence, we can obtain the query result for the

ranking-queries Q1 and Q2 (Section 3.2) by using the screening designs alone.

However, system administrators and self-managing system components may also
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be interested in ranking factors and interactions based on their full effect which

accounts for all input factor levels. In this section, we propose model-learning ex-

periment designs that generate samples which can be analyzed to compute the result

for such queries. Section 2.2 introduces the model-learning experiment designs. The

same designs can also generate samples to compute the results for query Q3 which

asks to approximate a function that determines Web service performance for any

given combination of input factor levels.

To use such designs, we first choose the structure of the model that we want

to learn, e.g., a linear regression model. Then we learn the model using a set of

bootstrap or initial samples. The set of initial samples are generated from Steps

1 − 3 of Algorithm 2. The next step is to use the learned model to output the next

set of experiment(s) to conduct. The next set of experiments are chosen from the

pool of total possible experiments T . For n factors, each with l levels, the total pool

of possible experiments consists of nl, excluding the experiments done so far. Since

the next experiment is chosen from all the possible samples, model-learning designs

consider all levels per factor for each factor automatically. Section 3.7.1 presents the

algorithm for choosing the next experiment.

In this work we consider first-order, first-order with interaction, and second-order

regression models as described below. We consider these models for generating the

samples in Step 4 of Algorithm 2 to compute the result of the ranking-queries Q1

and Q2 as well as query Q3 where the goal is to learn a model with a given structure.

However, the model-learning designs are agnostic of the model structure, and can

support any structure such as the more sophisticated regression trees [71].

Regression models capture the dependence of P on the input factors F1, . . . , Fn

and inter-factor interactions as follows:

• First-order model: P = β0 +
∑

i βiFi + ε
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Algorithm 4: Active Machine Learning Algorithm.

Inputs: Current sample table, Model M , pool of total possible
experiments, T . Output: An experiment.

1) Use 10-fold cross-validation to learn 10 models 〈M1, . . . , M10〉 on the
current set of data samples that were obtained in the previous steps of
Algorithm 2;

2) Use 〈M1, . . . , M10〉 to obtain 10 predictions 〈p1, . . . , p10〉 for each
experiment i in T ;

3) Compute the variance in the predictions, vi for each experiment i in T to
obtain v1, . . . , vn for n experiments in T .

4) Choose the experiment i, such that vi = max(v1, . . . , vn).

• First-order model with interaction terms: P = β0 +
∑

i βiFi +
∑

i�=j βijFiFj + ε

• Second-order model: P = β0 +
∑

i βiFi +
∑

i�=j βijFiFj +
∑

i βiiF
2
i + ε

Here, ε is an error term that is assumed to be an IID (independent and iden-

tically distributed) Gaussian random variable [59]. The β parameters are regres-

sion coefficients that Algorithm 2 estimates during model-fitting on samples collected

through experiments. The method of least squares is a common technique for model-

fitting [53]. Let pi, 1 ≤ i ≤ m, denote the observed value of P in each of m samples

collected so far. Also, let qi denote the model-predicted value of P in each case. Least

squares chooses the values of β parameters that minimizes the model’s squared error:
∑m

i=1 ε2 =
∑m

i=1(pi − qi)
2.

3.7.1 Active Machine Learning

Active machine learning algorithms, e.g., [96], iteratively identify the next experiment

from the total space of experiments T , that will maximize the accuracy of the model

being learned. These algorithms assume that the structure of the model being learned
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is known a priori. We use a committee-based approach [30, 57] for selecting the next

experiment from T . Algorithm 4 presents the overall approach. The idea behind the

committee-based approach is to select the experiment that causes maximum disagree-

ment among a committee of models that are learned from the current sample table.

The premise is that adding that point to the sample table will result in capturing a

previously unseen behavior of the Web service, and hence enable learning a model

that is accurate across a wide range of Web service behavior. The selected experiment

is conducted, its results added to the sample table, and the process repeats.

For learning models that predict Web service performance, we find the committee-

based approach to be sufficient for learning an accurate model quickly. However,

there are several alternatives to the committee-based approach that are available in

the literature for active machine learning, e.g., [87] as well as design of experiments,

e.g., [9]. An exhaustive comparison of different approaches remains an interesting

area for future work.

3.8 Query Processing

At any point during the execution of Algorithm 2, we can compute the query result for

Q1, Q2, or Q3 based on the current set of samples from the experiments thus far. For

example, for the ranking queries Q1 and Q2, we can compute the SS effect measure

to quantify the impact of factors and interactions; and for the modeling query Q3,

we can fit a model with a given structure. First-order model with interaction terms

is our default model for all the queries.

The algorithm can run as long as there are resources to conduct more experiments.

Algorithm 2 represents the experimental budget as an upper bound MAX RUNS on

the number of runs that can be conducted. Other conditions may include the desired

accuracy of the query results. Section 4.6.6 presents techniques to evaluate the current
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accuracy of a model that is being learned using the experiment-driven framework.

3.9 Evaluation

3.9.1 Experimental Setup

We use two multitier Web services, TPC-W and RUBiS, to evaluate the experiment-

driven approach (Algorithm 2). RUBiS [22] is an open source multitier Web service

that implements the core functionality of an auction site like eBay: selling, browsing,

bidding. We identify three types of clients in RUBiS: browse-only client, bid-only

client, and sell-only client. We add an additional type of client, called AboutMe in

RUBiS, because users of auctions sites tend to spend a lot of time on their personalized

home pages on the site (e.g., My eBay). These personalized home pages tend to have

many customization options, and can generate significant load on the service.

TPC-W is a transactional Web ecommerce benchmark [109]. It specifies an ecom-

merce workload that simulates the activities of a retail website, placing heavy load

on the backend database. It implements the core functionality of an online bookstore

such as Amazon. Clients in TPC-W show two distinct types of behavior, browsing

and ordering. Table 3.3 summarizes the �P , �W, �R, �C, �F vectors for the Web services.

We consider 4 workload and 2 resource factors for RUBiS, and 2 workload, 2

resource, and 3 database configuration factors for TPC-W. We use three performance

metrics: the average Web service response time, Web service throughput, and the

number of errors seen by the clients. A number of client requests can receive an

invalid response from the server. The invalid response can occur for several reasons,

e.g., if the service is overloaded and cannot process the client request. We count the

number of such responses during each experiment and represent it as the number-of-

errors performance metric.

We use Automat [122] as the controller workbench to conduct the experiments
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�PRUBiS,TPC−W Average service response time, service throughput, number of service
errors

�WRUBiS Number of Sell [4], Browse [4], Bid [4], AboutMe [4] clients
�WTPC−W Number of Browse [3], Order [3] clients
�R CPU [5], Memory [4]
�CTPC−W mysqld key buffer size [3], mysqld table cache [3],

mysqld sort buffer size [3]
�FRUBiS 〈 �WRUBiS , �R〉, 6 factors
�FTPC−W 〈 �WTPC−W , �R, �CTPC−W 〉, 7 factors

Table 3.3: Factors, levels, and performance metrics for RUBiS and TPC-W. The
number of levels for the factors [l] is given.

(Section 2.3, Figure 2.1). Section 5.4 presents techniques to identify an experiment’s

runlength and number of times to repeat the experiment automatically to ensure

statistically accurate experiment result. For this study we ran each experiment once

and for a fixed duration of 5 minutes.

3.9.2 Validation Methodology

For validating the query results computed by our approach, we compare the query

result that we obtain by analyzing the samples from using Algorithm 2 to the query re-

sult that we obtain from the analysis of the complete dataset that contains all the sam-

ple from the full space of experiments. The result from the analysis of all the samples

is the correct query result. For example, RUBiS has �W = 〈bid, buy, sell, AboutMe〉
where each factor has 4 levels in our experimental setup; and �R = 〈CPU, Memory〉
where CPU and Memory have 5 and 4 levels respectively. Thus, the total number of

samples is: 4 × 4 × 4 × 4 × 5 × 4 = 5120. Similarly, for TPC-W the total space of

samples is: 3 × 3 × 3 × 3 × 3 × 4 × 5 = 4860.

The graphs that we report have x and y axes similar to Figure 1.4. The x-axis

shows the number of samples generated from the experiments so far by Algorithm 2.

The y-axis shows the accuracy of the query result computed from these samples

by comparing this result to the correct result computed from all samples. We use
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three accuracy metrics for the ranking-queries Q1 and Q2, and one metric for the

modeling-query Q3 as follows:

• Effect Difference (ED). Suppose we are ranking m factors or interactions.

Let est1, . . . , estm be the respective effect measures estimated from the sam-

ples collected so far, and let cor1, . . . , corm be corresponding correct measures

computed from all samples. We normalize each set of measures by dividing

by the maximum value, denoted estmax and cormax respectively. We define the

(normalized) Effect Difference as ED = 1
m

∑m
i=1 | esti

estmax
− cori

cormax
|. 0 ≤ ED ≤ 1,

with lower values indicating more accurate ranking.

Top-k Ranking Distance (RD(k)). Suppose we are ranking m factors (or

interactions). Let ri represent the rank estimated based on the current samples

for the factor (interaction) that is at rank i in the correct ranking based on all

samples. (Ranks start at 1 and go up to m.) The (normalized) top-k ranking

distance RD(k) is defined as
Pk

i=1 |ri−i|
Pk

i=1 m−i
. 0 ≤ RD(k) ≤ 1, with lower values

indicating more accurate ranking of the k most important factors.

Order Preserving Degree (OPD) [123]. A ranking result preserves the

relative order of factors or interactions i, j iff resti(<, =, >)restj holds when the

corresponding rcori
(<, =, >)rcorj

holds, where rest and rcor respectively represent

ranks obtained using the current samples and all samples. Given m factors or

interactions, OPD = |OPP |
m2 where OPP is the set of order-preserving pairs, i.e.,

i, j that have the same relative order in both rankings. 0 ≤ OPD ≤ 1, with

higher values indicating more accurate ranking.

• Mean Absolute Percentage Error (MAPE). To compute the accuracy of

a model generated for query Q3, we choose T = 1000 test samples at random

from the full space of samples, and compute the model-predicted performance
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pest for each test sample. MAPE is defined as 1
T

∑T
i=1

|pest−pobs|
pobs

, where pobs is

the actual performance observed for the sample.

3.9.3 Computing and Validating Query Results

We use Algorithm 2 to generate the samples for computing the results for the three

types of Web service management queries (Section 3.2). This section evaluates the

algorithm to demonstrate that it can generate the samples for computing accurate

query results by conducting less than 1-2% of the total possible space of experi-

ments. We compute all the accuracy metrics after obtaining each new sample that

an experiment generates.

Ranking Single Factors (Q1). Figure 3.6 shows the accuracy metrics ED, RD(k),

and OPD for rankings factors in order of their effect on Web service throughput for

both RUBiS and TPC-W. In Step 1 of Algorithm 2, the bootstrap experiment design

is a resolution V 2n−p design, which is our default for the all queries. For the accuracy

metric RD(k), k = 3 for RUBiS, and 4 for TPC-W, i.e., we investigate the accuracy

of ranking top 3 out of 6 factors and top 4 out of 7 factors for RUBiS and TPC-W

respectively.

The figure shows that the accuracy of rankings approaches that of rankings with

the complete dataset with less than 1% of the total possible experiments. Data anal-

ysis techniques like Factorial ANOVA (Section 3.3) and model-fitting (Section 3.7)

require a minimum number of samples to start generating results, causing the initial

abrupt jumps in accuracy. Note that for RUBiS, RD(k) and OPD metric show a

slight deterioration towards the end. This happens because the effects of some of

the factors are quite similar; for such factors, even a minor deviation from the com-

plete dataset-based effect can result in a ranking that is different from the complete

dataset-based ranking.
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Figure 3.6: Quick convergence of the rankings of factors to their best possible value
for the throughput performance metric.

The results for other performance metrics are also similar. Figures 3.7 shows the

accuracy of rankings for the average response time metric, and Figure 3.8 shows the

accuracy for the number-of-errors metric. In both cases, Algorithm 2 uses less than

1% of the total possible experiments to generate samples that result in a ranking

accuracy that approaches the accuracy with the complete dataset.

Ranking Factor Interactions (Q2). Figure 3.9 shows that the ranking accuracy

metrics of two-factor interactions approaches that of rankings with the complete

dataset with less than 1% of the experiments for both RUBiS and TPC-W for the

throughput performance metric. RUBiS has a total of 15 pairwise interactions with

6 factors. TPC-W has a total of 21 pairwise interactions with 7 factors. For both

Web services we compute RD(k) metric with k = 10.

Note that for TPC-W even though ED converges quickly an accurate ranking,
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Figure 3.7: Quick convergence of the rankings of factors to their best possible value
for the average response time performance metric.
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Figure 3.8: Quick convergence of the rankings of factors to their best possible value
for the number-of-errors performance metric for RUBiS. The number of errors for
TPC-W was always 0 for all the experiments with TPC-W.

the RD(k) and OPD metrics converge slowly. The reason is that many of the lower-

effect interactions for TPC-W have very similar values of effect, so even minor noise in

their estimates can alter the ranking considerably. The results for other performance

metrics are shown in Figures 3.10 and 3.11; with less than 1% of the total possi-

ble experiments, the ranking of interactions converges to the ranking with complete

dataset.

Learning a Predictive Model (Q3.) While validating query Q3 results for Web
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Figure 3.9: Quick convergence of the ranking of interactions to their best possible
value for the throughput performance metric.

services, the goal is to demonstrate that Algorithm 2 can generate samples to quickly

converge to an accurate model across models with different structures; the choice of

model structure is not the focus here. Chapter 4 focuses on the appropriate model

structure for predicting the execution time of batch applications. In chapter 4 we also

investigate model accuracy by examining its mean absolute error, worst case error,

and 80 and 90 percentile error in addition to MAPE (Section 4.8.1).

Figures 3.12 (a) and 3.12 (b) show that the accuracy of the model learned using

samples generated by Algorithm 2 approaches that of the model learned with com-

plete dataset with less than 1% of the experiments for TPC-W and RUBiS. Here, we

use the first-order model with interaction terms (Section 3.7), and the model predicts

the throughput metric. Figures 3.13 (a) and 3.13 (b) show the similar result for the

average response time metric using the first-order model with interaction terms for

RUBiS and TPC-W. Here, we observe that:
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Figure 3.10: Quick convergence of the ranking of interactions to their best possible
value for the average response time performance metric.

• The accuracy of model learned using samples that Algorithm 2 generates ap-

proaches that of the model learned with complete dataset with less than 1% of

the total possible experiments for both TPC-W and RUBiS.

• The accuracy of the model that predicts RUBiS’ average response time with

complete dataset is 50%. The reason is that the first-order model with inter-

actions is not the right model structure for modeling RUBiS’ average response

time metric. Models with more sophisticated structure are able to learn a more

accurate model. Figure 3.14 shows the accuracy of the model that predicts

RUBiS’ average response time using a regression tree model [71], which results

in better accuracy.

For the number-of-errors performance metric, we are unable to learn a reasonably

accurate model with complete dataset either with the first-order model with inter-

actions or regression trees. However, the accuracy of the model that is learned from

66



20 40 60 80 100 120 140 160
0

0.5

1

Number of Experiments

E
D

RUBiS

20 40 60 80 100 120 140 160
0

0.5

1

Number of Experiments

R
D

RUBiS

20 40 60 80 100 120 140 160
0

0.5

1

Number of Experiments

O
P

D

RUBiS

Figure 3.11: Quick convergence of the ranking of interactions to their best possible
value for the number-of-errors performance metric for RUBiS. The number of errors
is always 0 for all the experiments with TPC-W.

the samples that Algorithm 2 generates converges to the accuracy of the model from

all the possible samples with less than 1% of the total possible experiments. Choice

of an appropriate model structure for predicting the number-of-errors performance

metric remains an interesting avenue for future work. Chapter 4 investigates the

model structure for predicting the executing time of batch applications.

3.10 Related Work

To the best of our knowledge, this is the first work in systems management that explic-

itly quantifies the effect of interactions between the factors, and develops mechanisms

and algorithms to capture the effect. Recent work in the computer architecture com-

munity has used design of experiments to explore the large space of factors that can

affect the CPU performance. Joshua et al. [120] use design of experiments to rank

the hardware factors in order of effect on CPU performance. However, the techniques

used in [120] may not separate the effect of factors from that of interactions [76].

Ïpek et al. [57] use a predictive model to explore the CPU architecture design

space; the samples for learning the model are collected using active machine learning
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Figure 3.12: Accuracy of model
that predicts RUBiS’ and TPC-W’s
throughput. The model that is
learned from samples that Algorithm 2
generates converges to the accuracy
with the complete dataset with less
than 1% of the total number of exper-
iments.
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Figure 3.13: Accuracy of model
that predicts RUBiS’ and TPC-W’s
response time. The accuracy of the
model that predicts RUBiS’ average
response time is only 50% even with
the complete dataset. However, Al-
gorithm 2 converges to this accuracy
with less than 1% of the total number
of experiments.

algorithm similar to the one that we use. However, the model does not consider

interactions between the factors or the separation of the effect of factor from the

effect of interactions between the factors. The techniques in our work can be used

to identify the important factors and interactions, and hence complement the work

in [57].

There is a large body of work on building performance models for Web service

management, e.g., [113, 105, 66]. In most of the work, the samples for learning the

models are collected passively from a service’s normal operation. Section 1.3 presents

the limitations of passive sampling for learning accurate models. Our work can be

used to identify and collect the relevant samples for learning the models proposed in

prior work.

3.11 Conclusions and Future Work

Managing system performance requires an accurate understanding of the factors

and interactions that affect the system. This chapter presents mechanisms and
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Figure 3.14: The more sophisiticated regression tree model has a better accuracy
as compared to the first-order model with interactions (Figure 3.13) for predicting
RUBiS’ average response time.

experiment-planning algorithms to expose the important factors and interactions

that affect the service performance, and learn models to predict system performance

in the context of queries that arise in Web service management. This chapter does

not explore the structure or use of models for Web service management, and focuses

on learning the model with a given structure.

In general, identifying an appropriate model structure is an interesting and chal-

lenging problem. Chapter 6 further discusses the problem. The next chapter investi-

gates the model structure for building models that can predict the execution time of

batch applications as a function of the hardware resources assigned to the application

and the properties of the data that the application process. The next chapter also

presents the use of predictive models to do resource planning for batch applications

in a utility computing setting.
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Chapter 4

Resource Planning for Batch Applications

Previous chapter presents the use of experiment-driven framework to quantify the

impact of important factors and interactions that affect system behavior, and learn

models that can predict system behavior in the context of Web service management.

This chapter focuses on identifying, building, and using predictive models to enable

effective and efficient resource planning for batch applications in a distributed and

shared collection of compute and storage resources—a networked computing utility.

Shared computing utilities allocate compute, network, and storage resources to com-

peting applications on demand. An awareness of the demands and behaviors of the

hosted applications can enable the management controller to manage its resources

more effectively.

This chapter presents an application performance model with a specific structure

that captures the execution time of batch applications as a function of: (a) the

compute, memory, and network resources assigned to the application; and (b) the

properties of the data that the application process. It presents NIMO : a system

that uses experiment-driven framework to learn such models proactively using only

noninvasive instrumentation data that requires no changes to application or system.

Finally, the chapter shows the use of the model to do resource planning for batch

applications in a utility setting.

4.1 Background

High-performance computing has become a key driver for rapid advances in a range of

sciences including astrophysics, bioinformatics, systems biology, and climate model-
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ing [47, 101]. This new area of computational science has given rise to many resource-

intensive scientific applications. For example, modern high-energy particle detectors

generate up to 1015 bytes of data for analysis per year [10]. Other sources of important

scientific applications include BIRN [16], GEON [43], and SDSS [99].

The typical scientific application can be represented as a workflow consisting

of one or more batch tasks linked in a directed acyclic graph (DAG) representing

task precedence and data flow (e.g., [15]). Complex scientific workflows are often

run on networked computing utilities—systems that allocate compute, network, and

storage resources on demand from a large heterogeneous resource pool. Examples of

networked utilities include clusters of machines [25], computational grids [39], utility

data centers, PlanetLab, and outsourced storage services [81].

A number of researchers have recently pointed out the critical need for automated

systems to manage scientific workflows [47, 101]. One aspect of workflow management

is workflow planning that involves finding an efficient plan for executing a workflow

on a networked utility. Workflow planning is both important and challenging. Many

scientific workflows perform complex computations, process very large amounts of

data, or both. The difference in completion time can be on the order of days between

a good execution plan for a workflow and a poor one [15]. These differences are mag-

nified when workflows run on networked utilities composed of highly heterogeneous

pools of geographically distributed resources.

A plan for a workflow G specifies a resource assignment for each batch task in

the workflow. A task may be a batch application or a data-staging task interposed

between a pair of application tasks. The resource assignment comprises the hardware

resources—compute, network, and disk storage—that are assigned simultaneously to

run G. G’s performance can vary significantly across different resource assignments.

To construct an effective assignment for G, the planning system must predict the in-
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teraction of application characteristics (e.g., compute-to-communication ratio) with

resource factors (e.g., CPU speed, cache, and I/O system behaviors). Specifically,

the system needs a model that can predict G’s total execution time on a candidate

resource assignment. Execution time is a common performance metric for scien-

tific application workflows. Accurate models are a prerequisite for selecting efficient

resource assignments.

This work use the experiment-driven methodology (Chapter 2) to build simple and

efficient predictive models with a specific structure based on limited prior application

knowledge. It evaluates the effectiveness and accuracy of the models on a set of

biomedical applications that run frequently on a shared production cluster at Duke,

called the DSCR. It also illustrates the use of models to guide resource planning in

the following scenarios:

• Task placement. Mapping individual tasks to candidate resources involves bal-

ancing multiple factors that affect performance on different CPU, host, network,

and storage configurations. A system could use the models to evaluate alterna-

tives and select the best candidates to maximize some objective.

• On-time computing and SLOs. A utility often must meet service-level objectives

(SLOs) and performance targets for hosted applications. In a computational

setting, specific deadlines may exist for tasks that deal with real-world events

such as storm forecasting [93] and response. The system must find resource

assignments that meet the performance constraints.

• Storage outsourcing and data staging. Storage access delays can be a key barrier

to harnessing remote computing resources [46] or outsourced storage. This work

shows how a system can use models to estimate the performance impact of

remote I/O and the benefits of task migration or local staging.
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Figure 4.1: Three plans for executing a workflow G in a wide-area utility: P1: run
G locally at site A; P2: run G at site B and access data remotely from A; P3: stage
the data at site C and run G locally at site C.

4.2 Motivating Example

Consider the scenario depicted in Figure 4.1, with three sites A, B, and C comprising

a networked utility. Suppose a user at site A wants to run a workflow G on the utility.

The input data for G is stored at A. Site B has the fastest compute resources, but

insufficient storage to store G’s input data locally. Site C has faster compute resources

than A and sufficient local storage for G’s data. The utility resource planner must

choose a plan to execute G. Candidate plans include:

P1: Run G locally at A.

P2: Run G at B, so G gets the best compute resource available, but incurs remote

I/O to A for data access.

P3: Stage G’s data to C from A, and run G locally at C.
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Figure 4.2: Architecture of NIMO.
Figure 4.3: Overview of the mod-
el-guided planning approach.

Previous studies have shown that plan performance can vary significantly depending

on application characteristics and underlying resource characteristics, e.g., [46, 21,

37, 89]. For example, plan P2 may be more efficient than plans P1 and P3 if G does

a lot of computation, but relatively little I/O.

4.3 Overview

This section presents the overview of the NIMO system. NIMO (NonInvasive Model-

ing for Optimization) is a workflow planning system that generates effective resource

assignments or plans for workflows running on large-scale networked utilities. Fig-

ure 4.2 shows NIMO’s overall architecture consisting of: (i) a scheduler that enu-

merates and selects plans for a workflow; (ii) a modeling engine, consisting of an

application profiler, a resource profiler, and a data profiler, that learns the model to

predict the execution time of a workflow for a plan. The modeling engine uses the

workbench controller (Chapter 2, Figure 2.1) to collect training samples to learn the

models proactively.
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4.3.1 Scheduler

NIMO’s scheduler is responsible for generating and executing a plan for a given

workflow G. The scheduler enumerates candidate plans for G, estimates the execution

time or runtime of each plan, and chooses the execution plan with the minimum total

execution time. A plan P for workflow G is an execution strategy that specifies a

resource assignment for each task in G. The scheduler uses a performance model

M(G, I, �R) to estimate the execution time of G with input dataset I on a resource

assignment �R. Thus M(G, I, �R) comprises the system knowledge base (Section 2.1)

in this work.

The model is similar to the models that Chapter 3 presents, in that it predicts

the performance of an application as a function of factors that affect application

behavior. However, unlike Chapter 3 that focuses on the learning of models with any

given structure, the model in this chapter has a specific structure based on limited

prior application knowledge.

4.3.2 Modeling Engine

Figure 4.3 gives an overview of how NIMO estimates the performance of candidate

plans. NIMO builds profiles of resources and frequently executed applications by

analyzing instrumentation data gathered from previous runs. A performance model

M for an application G predicts the performance of a plan for G given three inputs:

(i) G’s application profile, (ii) resource profiles of resources assigned to the plan, and

(iii) data profile of the input data. Hence, in this work, the workload vector �W

consists of G’s data profile, the resource vector �R consists of resource profile of the

resources assigned to the plan, and �C is held constant (Equation 1.1).

Intuitively, the application profile captures how an application uses the input data

and the resources assigned to it. Resource profiles specify parameters or factors that
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characterize the function and power of those resources in an application-independent

way. For example, a resource profile might represent a compute server with a fixed

number of CPUs defined by factors such as clock rate and cache sizes, with an at-

tached memory of a given size. Similarly, storage resources can be approximated

by factors such as capacity, spindle count, seek time, and transfer speed. The data

profile comprises the data characteristics of G’s input dataset, e.g., the input data

size. The profiles are described in Section 4.4.1.

4.3.3 Workbench

NIMO’s modeling engine automatically learns the performance model for G from the

samples attained by deploying G on selected resource assignments, either to serve

a real request, or proactively to use idle or dedicated resources (a “workbench”;

see Figure 2.1). NIMO’s modeling engine actively initiates experiments—new runs

of G on selected resource assignments—in the workbench guided by the workbench

controller policies (Chapter 2). The goal is to obtain sufficient training samples for

learning an accurate performance model for G quickly.

Instrumentation data is collected during an experiment, then aggregated to gen-

erate a sample as soon as the experiment completes. NIMO relies only on high-level

metrics collected by commonly-available monitoring tools: (i) processor and disk us-

age data is collected using the popular sar utility [98]; and (ii) network I/O measures

are derived from the nfsdump/nfsscan tools [35]. The goal is to use noninvasive in-

strumentation that requires no changes to operating system or application software.

4.4 Performance Model

A workflow G consists of one or more tasks linked in a directed acyclic graph (DAG)

representing task precedence and data flow [15]. A plan makes a resource assignment
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�R to each task Gi ∈ G. Suppose that each task Gi accesses its inputs and outputs

from the storage resources specified in �R, and that Gi fires only when its predecessors

have produced its inputs, as is common [15].

In addition to the batch tasks in G, a plan may also interpose additional tasks for

staging data between each pair of batch tasks in G. For example, a staging task Gij

between tasks Gi and Gj in the workflow DAG, copies the parts of Gj’s input data

produced by Gi from Gi’s storage resource to that of Gj. Section 4.2 illustrates such

a staging task.

Let Gi, 1 ≤ i ≤ l be the tasks—including both batch and staging tasks—in a

plan. Let �Ri = 〈Ci, Ni, Si〉 be the resource assignment made by P to task Gi. That

is, when the scheduler schedules Gi on the networked utility, Gi executes on the

compute resource Ci and accesses its input and output datasets from the storage

resource Si over the network resource Ni. (Ni will be null if Si is local to Ci.)

The performance of the plan for executing G is determined by the performance of

the tasks in its critical path, which can be found using existing techniques [38]. Given

an estimate of the execution time of each task in the plan, the overall execution time

of the plan is easy to estimate. Hence, this work focuses on modeling the performance

of individual tasks Gi, or (equivalently) graphs G consisting of a single task.

4.4.1 Profiles

Consider a batch task G’s execution as an interleaving of compute phases, in which

the compute resource is doing useful work, and stall phases, in which the compute

resource is stalled on I/O. For the execution of task G with input data I on the

resource assignment �R, we define:

• The compute occupancy of G on �R, denoted oa, is the average time spent com-

puting per unit of data processed by G.
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• The stall occupancy of G on �R, denoted os, is the average time for which the

compute resource is idle per unit of data. Stall occupancy os = on + od, where

on and od capture the portion of occupancy caused by delays in the network

and storage (disk) resources respectively. Note that the “stall occupancy” com-

ponents for network and storage do not represent the service demands or uti-

lization at those resources; rather, they represent the compute stalls caused by

delays at those stages, given the overall resource assignment.

The occupancies are determined by the interaction of the application and the re-

sources, given the behavior of the application on the input data I. �R’s resource profile

characterizes the resource properties, and the data profile represents the significant

characteristics of I. G’s application profile captures the interaction and the resulting

application behavior in terms of the properties of the resource and data profiles. The

profiles are defined as follows:

Resource Profile: A resource profile �ρ is a vector 〈ρ1, ρ2, . . . , ρj〉 where each ρi

measures the value of some performance factor in �R. The performance factors are

properties of the resources, and are quantifiable independently of any specific task.

For example, for a compute resource, the factors may include processor speed, cache

size, memory size, memory latency, and memory bandwidth.

Data Profile: The data profile �λ of an input data I captures any characteristics of

I that may correlate with resource demands, such as size, format type metadata, or

histograms capturing data distribution.

Application Profile: G’s application profile includes four predictor functions fa(�ρ,�λ),

fn(�ρ,�λ), fd(�ρ,�λ), and fD(�ρ,�λ). fa, fn, and fd are occupancy predictor functions that

78



predict G’s occupancies oa, on, and od respectively on a resource assignment �R and

input data I, as a function of �R’s resource profile �ρ and I’s data profile �λ. The data

flow predictor function fD(�ρ,�λ) estimates D, the total data flow processed by G (i.e.,

the total number of units of data read and written by G) for a given �R and I.

Suppose the goal is to predict the completion time of G given G’s application

profile 〈fa, fn, fd, fD〉, the resource profile �ρ of a candidate resource assignment �R, and

input data I’s data profile �λ. NIMO predicts G’s completion time by the performance

model M(G, I, �R):

Completion T ime = fD(�ρ,�λ) × (fa(�ρ,�λ) + fn(�ρ,�λ) + fd(�ρ,�λ)) (4.1)

4.4.2 Discussion of the Model Structure

In Figure 2.2 that shows the overall sequence of operations for building a system

knowledge base, e.g., the model that this chapter proposes, the first step consists of

identifying the structure of the knowledge base. For the model that this chapter pro-

poses, we make a crucial choice to capture significant performance effects implicitly

in the predictor functions, rather than explicitly in the structure of an a priori ana-

lytical model. The complexity arising from factors such as CPU caching, file caching,

I/O patterns, latency hiding, concurrency, and queuing behavior at storage servers

is captured implicitly in the training samples for learning the predictor functions and

not in the model parameters. As long as the effects of these factors show in the

training samples, the statistical learning techniques can capture them.

We considered the alternative of using a closed-loop queuing network model pa-

rameterized by analysis of the training samples. An explicit model would capture

factors such as concurrency, latency hiding behavior, and queuing effects in the struc-

ture of the analytical model, so it can extrapolate beyond the samples used to learn
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it. However, this approach is less general, and it may be difficult to obtain param-

eters such as service demands (utilization) from noninvasive instrumentation data,

particularly for resources such as storage servers. In addition, this approach requires

NIMO to infer the degree of concurrency in the closed-loop system, e.g., resulting

from the depth of operating system prefetching, or the threading structure of the

application.

By simplifying the structure of the model and relying on statistical learning,

NIMO reduces the a priori knowledge required to model the application performance.

This has several benefits. NIMO can build black-box models of applications, and

hence apply to a large class of applications. Moreover, the model can be learned

from high-level, commonly available, noninvasive instrumentation data. However,

there is a cost for this generality. First, the training data and the statistical learning

techniques required to learn an accurate model can be complex. Second, the model

loses some of its ability to extrapolate beyond the behavior seen in the training data,

and hence it is crucial that the training samples expose the application performance

on the entire system operating range. Chapter 6 further discusses the spectrum of

modeling alternatives.

4.5 Learning Data and Resource Profiles

In this work, the data profile for an input dataset I in NIMO is limited to I’s to-

tal size in bytes. NIMO obtains resource profiles by running standard benchmark

suites that are designed to expose the differences that are most significant for the

performance of real applications. It uses whetstone [29] to calibrate processor speeds,

lmbench [73] to calibrate memory latency and bandwidth, and netperf [80] to cali-

brate the network latency and bandwidth between compute and storage resources.

The resource profiling approach is independent of the specific benchmarks as long
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as they capture the underlying resource characteristics. Other researchers have: (1)

confirmed that simple benchmarks can be used in profiling high-performance comput-

ing platforms [19]; (2) studied benchmark selection for comprehensive coverage [120];

and (3) devised strategies for robust resource profiling in the presence of competition

for shared resources [114].

4.6 Experiment-Driven Learning of Models

NIMO’s modeling engine uses the experiment-driven framework to learn the predictor

functions comprising G’s application profile. NIMO associates a specific dataset I

along with a cost model for a task G. That is, a separate cost model is built for

each task-dataset combination. The advantage is that the variable parameters in

the predictor functions in G’s application profile now consist of the resource-profile

factors only, and not the data-profile factors. That is, the predictor functions have

the simpler form f(�ρ) instead of f(�ρ,�λ). While the problem of automatically learning

G’s predictor functions simplifies, it largely remains the same and nontrivial. The

disadvantage is that NIMO has to learn a new cost model for each new input dataset

for G. However, many scientific applications are often run repeatedly on the same

input dataset, and these runs tend to have similar resource-usage behavior [88].

If NIMO is given a reasonably large and representative set of samples of the form

〈ρ1, ρ2, . . . , ρk, oa, on, od, D〉, then the problem of learning accurate predictor functions

〈fa(�ρ), fn(�ρ), fd(�ρ), fD(�ρ)〉 reduces to a statistical learning problem of fitting accurate

functions to predict each of oa, on, od, and D using subsets of factors in ρ1, ρ2, . . . , ρk.

The challenge, however, is that NIMO does not initially have a representative sample

set for training. Instead, NIMO collects each sample by conducting an experiment,

i.e., proactively running G to completion on a selected resource assignment in the

workbench. The total overhead of collecting training samples can be extremely high
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because of the curse of dimensionality—resource profile �ρ = 〈ρ1, . . . , ρk〉 may con-

tain many factors (i.e., k may be large)—and the high cost of data acquisition per

sample—collecting a sample 〈ρ1, . . . , ρk, oa, on, od, D〉 involves a complete run of G on

�R, which could take up to hours or days for some scientific tasks.

Algorithm 5 illustrates the main steps that NIMO uses to learn G’s application

profile. (Details of these steps are discussed in Sections 4.6.1–4.6.6.) The algorithm

is an instance of the sequence of operations in the experiment-driven framework;

see Figure 2.2. The algorithm consists of an initialization step and a loop. The

loop continuously refines the structure of the model (loop L1 in Figure 2.2) and

the accuracy of the predictor functions (loop L2 in Figure 2.2) by learning from

new samples acquired by running G on new resource assignments instantiated in the

workbench.

4.6.1 Initialization

The initialization step of Algorithm 5 (Step 1) runs the task G on a designated ref-

erence resource assignment �Rref = 〈Cref , Nref , Sref〉 where C represents the compute

resource assignment, N represents the network resource assignment, and S represents

the storage resource assignment. Based on this run, NIMO measures the compute,

network-stall, and disk-stall occupancies—called the reference occupancies—and the

total data flow—called the reference data flow—of G on �Rref . The details of this

step follow from: (i) Algorithm 6, which shows how NIMO runs a task on a resource

assignment instantiated in the workbench; and (ii) Algorithm 7, which shows how

NIMO computes the occupancies and total data flow for a run. Specifically, the ini-

tialization step runs G on �Rref using Algorithm 6, then it measures G’s occupancies

and total data flow on �Rref using Algorithm 7.

Once NIMO computes the reference occupancies in Step 1 of Algorithm 5, it
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Algorithm 5: Experiment-driven learning of predictor functions fa(ρ1, . . . , ρk),
fn(ρ1, . . . , ρk), fd(ρ1, . . . , ρk), and fD(ρ1, . . . , ρk) for task G

1) Initialize: (Section 4.6.1) Obtain reference occupancies oaref , onref , odref

and reference data flow Dref for G on a reference resource assignment
�Rref ; Set fa(�ρ) = oaref , fn(�ρ) = onref , fd(�ρ) = odref , and fD(�ρ) = Dref

(constant functions);

2) Design the next experiment: (Sections 4.6.2–4.6.4)

2.1 Select a predictor function for refinement, denoted f (Section 4.6.2);

2.2 Should a factor from ρ1, . . . , ρk be added to the set of factors already
used in f? If yes, then pick the factor to be added (Section 4.6.3);

2.3 Select new assignment(s) to refine f using the set of factors from Step
2.2 (Section 4.6.4);

3) Conduct the chosen experiment: (Section 4.6.5)

3.1 Run G in the workbench using the assignment(s) picked in Step 2.3;

3.2 After each run, generate the corresponding sample
〈ρ1, . . . , ρk, oa, on, od, D〉, where oa, on, od are the observed occupancies
and D is the observed total data flow;

3.3 Learn f (and other predictor functions) from the new sample set;

4) Compute current prediction error: (Section 4.6.6) Compute current
prediction error of each predictor. If the overall error in predicting
execution time is below a threshold, and a minimum number of samples
have been collected, then stop, else go to Step 2.

initializes the predictor functions to constant functions that predict the compute,

network-stall, and disk-stall occupancies and the total data flow of G on any resource

assignment �R as equal to the corresponding reference values; which is a reasonable

thing to do based on the single run of G so far. NIMO refines the predictor functions

in Algorithm 5 as it collects more samples.

There are many ways in which NIMO can choose the reference assignment �Rref =

〈Cref , Nref , Sref〉 from the different candidate assignments available in the workbench:

• Random assignment (Rand): Pick each of Cref , Nref , and Sref at random from

83



Algorithm 6: Running G on �R = 〈C, N, S〉

1) Instantiate a Network File System (NFS) server on the storage resource S

in �R. Export a storage volume from S containing G’s input dataset I, and
mount this volume on C. Set G to access this volume;

2) Set routing tables in C and S so that all communication happens via a
specific router r running NIST Net [102]. r is configured to emulate the
network specifications (e.g., latency and bandwidth) of S;

3) Start monitoring tools (Section 4.3.3) to measure the execution time T
and C’s utilization U (required by Algorithm 7) for this run;

4) Start G on C. When the task finishes, stop the monitoring tools, and
compute T and U .

among the corresponding resources in the workbench.

• High-capacity assignment (Max): Pick the compute resource with the fastest

processor speed, the network resource with minimum latency, and the storage

resource with maximum transfer rate.

• Low-capacity assignment (Min): Pick the compute resource with the slowest

processor speed, the network resource with maximum latency, and the storage

resource with minimum transfer rate.

4.6.2 Guiding the Sequence of Exploration for the Predictor

Functions

In each iteration of Algorithm 5, Step 2.1 picks a specific predictor function to re-

fine by collecting more samples for training. We consider both static and dynamic

schemes to guide this sequence for exploring the predictor functions across iterations.

Static Schemes: A static scheme first decides a total ordering of the predictor
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Algorithm 7: Computing task G’s occupancies on �R = 〈C, N, S〉

1) Using Algorithm 6, run G on �R, and measure C’s average utilization U ,
G’s execution time T , and the total data flow D (using network I/O
traces);

2) Solve for oa and os from U = oa

oa+os
, D

T
= 1

oa+os
;

3) Use network I/O traces to derive the average time spent per I/O in the
network resource N and in the storage resource S;

4) Split os = on + od into on and od in proportion to the ratio of network and
storage components of the average I/O time from Step 3, to obtain
〈oa, on, od, D〉.

functions fa(�ρ), fn(�ρ), fd(�ρ), and fD(�ρ), then defines a fixed traversal plan for picking

the predictor function to refine in each iteration. NIMO currently supports two

techniques each for ordering and for traversal. The two ordering techniques are:

• Domain-knowledge-based where a domain expert specifies a total order of the

predictor functions to NIMO. For example, the expert may know that the scien-

tific task G is likely to be CPU-intensive for most resource assignments because

G performs complex computations per unit of data in I, so fa(�ρ) should come

first in the total order and be refined first.

• Relevance-based where NIMO estimates the relevance of the predictor functions

on G using the classic Plackett-Burman design with foldover (PBDF) exper-

iment design [120] (Section 3.5.2). NIMO orders the predictor functions in

decreasing order of effect. To order the four predictor functions using PBDF,

NIMO performs eight runs of G on predefined resource assignments.

The two techniques to traverse a given total order are:

• Round-robin where NIMO chooses the predictor functions to refine across iter-
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Algorithm 8: Dynamic scheme for picking the predictor function to refine in an
iteration of Algorithm 5

1) Let s1, . . . , sm be the m training samples of the form
〈ρ1, ρ2, . . . , ρk, oa, on, od, D〉 collected so far;

2) Supplement each of the m samples with the predicted compute occupancy
oap from the current fa(ρ1, . . . , ρk); similarly, the predicted network-stall
occupancy onp from the current fn(ρ1, . . . , ρk), the predicted disk-stall
occupancy odp from the current fd(ρ1, . . . , ρk), and the predicted data flow
Dp from the current fD(ρ1, . . . , ρk);

3) Use the m actual and predicted value-pairs 〈oa, oap〉 to compute the current
prediction error Ea of fa(ρ1, . . . , ρk) (see Section 4.6.6); similarly, compute
En, Ed, and ED from the respective 〈on, onp〉, 〈od, odp〉, and 〈D, Dp〉 pairs;

4) Pick for refinement the predictor function with maximum current
prediction error.

ations in a round-robin fashion from the given total order.

• Improvement-based where NIMO traverses the total order from beginning to

end, and keeps refining the current predictor function until the reduction in

the prediction error obtained in the last iteration drops below a predefined

threshold. (Section 4.6.6 describes the computation of the current prediction

error of a predictor function.) When the reduction in error drops below the

threshold, NIMO moves on to the next predictor function in the total order.

When it exhausts all predictor functions, it resumes at the beginning of the

total order.

Dynamic Schemes: Dynamic schemes do not use a static ordering of the predictor

functions. Instead, the function to refine in each iteration is based on the training

samples collected so far. NIMO currently considers one dynamic scheme that, in

each iteration, chooses to refine the predictor function with the maximum current

prediction error, as illustrated in Algorithm 8.
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4.6.3 Adding New Factors to Predictor Functions

Step 2.2 of Algorithm 5 decides when to add a new resource-profile factor to a predic-

tor function f(�ρ), and if so, which of the k factors from ρ1, . . . , ρk to add for maximum

potential reduction in f(�ρ)’s prediction error. (Recall from Step 1 of Algorithm 5

that f(�ρ) is initially set to a constant function having no variable parameters.) As

in Section 4.6.2, NIMO’s twofold strategy is to first define a total order over the

ρ1, . . . , ρk factors with respect to f(�ρ), and then to define a traversal plan based on

this order to select factors for inclusion in f(�ρ).

Following a approach similar to the one in Section 4.6.2, a total ordering of the

resource-profile factors ρ1, . . . , ρk for predictor function f(�ρ) can be:

• Domain-knowledge-based where a domain expert specifies a total ordering of

ρ1, . . . , ρk for f(�ρ). For example, the expert may know that the task has a

purely sequential I/O pattern. Thus, the memory-size factor may have minimal

effect on the compute occupancy oa, so this factor can be placed towards the

end of the total order for fa(�ρ).

• Relevance-based where NIMO first estimates the effect of each resource-profile

factor on the occupancy predicted by f(�ρ) using PBDF. Then, it orders the

resource-profile factors in decreasing order of effect.

Based on the total ordering of factors ρ1, . . . , ρk for a predictor function f(�ρ), NIMO

decides when to add the next factor in the total order to the current set of factors in

f(�ρ). The improvement-based approach that NIMO uses here adds the next factor in

the order when the reduction achieved in prediction error during an iteration with the

current f(�ρ) (i.e., with the current set of factors) falls below a predefined threshold.

When NIMO exhausts all factors, it resumes at the beginning of the total order.
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Figure 4.4: Techniques for selecting new sample assignments (PB = Plackett-Bur-
man [120]).

4.6.4 Selecting New Sample Assignments

Step 2.3 of Algorithm 5 chooses new assignments to run task G and collect new

samples for learning. To create a new assignment �R, NIMO needs to select a value of

each factor ρi in �R’s resource profile, while accounting for the factors that Section 1.3

outlines.

Figure 4.4 shows the range of techniques for selecting new samples that this

chapter considers. The techniques are shown in terms of their general performance

and tradeoff on the two metrics above, namely, covering the operating range of factors,

and capturing significant interactions among factors. The techniques are described

by an Lα-Iβ naming format, where (i) α represents the number of significant distinct

values, or levels, in the factor’s operating range covered by the technique, and (ii) β

represents the largest degree of interactions among factors guaranteed to be captured

by the technique. Among these techniques, the ones which we are currently working

with are:

• Lmax-I1: This technique, described in Algorithm 9, systematically explores all
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Algorithm 9: Selecting the next sample assignment using Lmax-I1

1) Let f(�ρ) be the current predictor function chosen for refinement in Step
2.1 of Algorithm 5. Let ρr be the factor most recently added to f(�ρ) in
Step 2.2 of Algorithm 5. Let IN ⊂ �ρ be the set of factors already
considered for addition in f(�ρ), and OUT ⊂ �ρ be the set of factors not

considered for addition in f(�ρ). Let �Rref be the designated reference
assignment chosen in the initialization step of Algorithm 5;

2) Lmax-I1 chooses the new assignment as follows:

1. All factors in IN and OUT are set to the corresponding values in �Rref ;

2. The value of ρr is set to the next unselected value from the
binary-search sequence—lo, hi, lo+hi

2
, 3lo+hi

4
, lo+3hi

4
, 7lo+hi

8
, 5lo+3hi

8
, and

so on—where lo and hi are the minimum and maximum values ρr can
take. That is, lo is chosen for the first assignment, hi is chosen for the
next assignment, and so on.

levels of a newly-added factor using a binary-search-like approach. However, it

assumes that the effects of factors are independent of each other, i.e., there are

no interactions among them. Hence it chooses values for factors one factor at

a time.

• L2-I2: This technique is an adaptation of PBDF. Given the total number of

factors, L2-I2 specifies the number of samples required and the values of factors

in each sample. L2-I2 captures two levels (e.g., low and high [120]) per factor

and up to pair-wise interactions among factors.

In our evaluation (Section 4.9), we find that these simple techniques are suffi-

cient for selecting the experiments for learning a reasonably accurate execution time

model quickly. Section 3.7 presents general and more sophisticated model-learning

experiment designs for selecting the sample assignments.
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Algorithm 10: Learning G’s compute occupancy predictor function fa(�ρ)

1) Suppose m runs of G have been conducted, where run i is on �Ri. Let

〈ρ1i
, . . . , ρji

〉 be the subset of �Ri’s resource-profile factors added to fa(�ρ) so
far;

2) Use Algorithm 7 to generate m training data points where the ith point is
〈ρ1i

, . . . , ρji
, oai

〉;
3) Normalize the training points using a baseline assignment �Rb with resource

profile �ρb. (Currently, NIMO chooses �Rb = �Rref .) Let G’s compute

occupancy on �Rb be oab
, so the ith normalized training data point is

〈 ρ1i

ρ1b
, . . . ,

ρji

ρjb
,

oai

oab
〉;

4) Use regression on the training data to learn a function F (�ρ) that predicts
the value of oa

oab
from the normalized values of ρ1, . . . , ρj . Set fa(�ρ) =

oab
×F (�ρ).

4.6.5 Conducting the Selected Experiment

In Step 3.1 of Algorithm 5, NIMO instantiates the assignment selected in Step 2.3 in

the workbench and runs the task; details of running task G on a resource assignment

�R are given in Algorithm 6. The compute, network-stall, and disk-stall occupancies,

and the total data flow, are collected from the run as described in Algorithm 7.

These measures give a new sample of the form 〈ρ1, . . . , ρk, oa, on, od, D〉. NIMO then

analyzes all the samples collected so far, including the one collected most recently,

to refine the predictor function chosen in Step 2.1 of Algorithm 5 with its current

factor set as chosen in Step 2.2. If the latest run provides a new sample for another

predictor f based on the current set of factors included in f , then NIMO refines f as

well. The details of this step are given in Algorithm 10 for fa; fn, fd, and fD can be

learned similarly.
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4.6.6 Computing Current Prediction Error

NIMO considers two techniques for computing the current prediction error of a pre-

dictor function f(�ρ):

1. Cross-validation: In this technique, NIMO uses leave-one-out cross-validation

to estimate the current prediction error of f(�ρ) [1]. For each sample s out of

the m samples collected so far, NIMO learns f(�ρ) using all samples other than

s (using Algorithm 10). NIMO then uses f(�ρ) to predict the corresponding

occupancy for s, and computes the absolute percentage error. For example, if

the predictor function is fa(�ρ), and the actual and predicted occupancies for s

are oa and oap respectively, then the absolute percentage error is |oa−oap|
oa

×100%.

The average of the m individual values of absolute percentage error, denoted

Mean Absolute Percentage Error (MAPE), is the current prediction error.

2. Fixed test set: In this technique, NIMO designates a small subset of resource

assignments in the workbench as an internal test set. The test assignments

may be a random subset of the possible assignments in the workbench, or

chosen more robustly; When a fixed test set is used, the initialization step

of Algorithm 5 begins by running the task on each assignment in the test set.

NIMO computes the current prediction error of f(�ρ) as the MAPE in predicting

occupancy on each assignment in the test set. Note that the samples collected

for this test set are never used as training samples for any predictor function.

4.7 Experimental Evaluation

We validate the model, evaluate the techniques to learn them, and present the use of

model for resource planning as follows:
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• Model Validation. Section 4.8 presents the model validation and explores the

sensitivity of the model accuracy to a number of factors. The validation consists

of using a standard cross-validation methodology to evaluate the effectiveness

of model induction on multiple metrics.

The evaluation shows that the proposed models parameterized from noninvasive

instrumentation data are sufficiently accurate to be of use in utility resource

planning. The mean percentage error in application completion time predictions

for a given assignment of compute, network, and storage resource is within

10%, and ranking accuracy of candidate assignments is close to 95-100% for all

the real application tasks and for all but one synthetic application task. The

worst reported mean percentage error in completion time prediction occurs for

a synthetic application task doing sequential file reads—30%. Even in this

case, the induced models are accurate to within 23% for 90% of the trials, and

ranking accuracy of candidate assignments is close to 90% for all trials.

• Experiment-Driven Model Learning. Section 4.9 evaluates the algorithms

for experiment-driven learning of models (Section 4.6). The evaluation shows

that experiment-driven learning reduces the time to learn accurate models by

an order of magnitude compared to approaches that sample a significant part of

the entire sample space. The evaluation considers samples attained on physical

resources as well as virtual machines.

• Model-Guided Planning. Section 4.10 illustrates the potential role of the

induced performance models to guide resource planning in several scenarios

for a network utility: task placement, on-time task completion, and storage

outsourcing or data staging.
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Table 4.1: Applications used in NIMO experiments.

Application Description
fMRI [55] Statistical parametric mapping to normalize func-

tional MRI images of human brains
CardioWave [91] Cardiac electrophysiology simulation (MPI)
BLAST [3] Search genomic dataset for matches on proteins

and nucleotides
NAMD [90] Simulation of large biomolecular systems (MPI)
GAMUT [77] An application emulation tool for generating

work-mixes; generate 6 synthetic tasks with equiv-
alent compute costs but different access patterns:
rand./seq. read/write, and rand./seq. read and
write in 1:1 ratio

4.8 Model Validation

This work considers a range of applications and resource assignments in the work-

bench (Figure 2.1). A recent survey of 280, 000 jobs submitted to the DSCR cluster

from a diverse set of user groups (computational biology, physics, chemistry, biochem-

istry, biomedical, statistics, etc.) show that almost 90% of the jobs are sequential

batch jobs. The techniques in this work are applicable to parallel applications, but

we do not consider them in this work. All applications that we analyze in this work

run on a single CPU. The parallel applications that we analyze in this work run on

a single node.

We use standard cross-validation methodology to evaluate the effectiveness of

model induction with various training sets, and the accuracy of the resulting per-

formance predictions. Section 4.8.1 uses multiple accuracy metrics to profile the

prediction accuracy, and Section 4.8.2 explores the sensitivity of the results to train-

ing set selection.

Workloads. Table 4.1 lists the applications used in the experiments. The fMRI,

CardioWave, BLAST, and NAMD applications are used in biomedical research at
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Duke and elsewhere. We consider one representative input dataset for each applica-

tion. GAMUT is a tool for emulating cluster application workloads with controlled

degrees of CPU, I/O (including I/O patterns), and memory usage. GAMUT is use-

ful for generating synthetic workloads to explore the space of possible application

behaviors comprehensively.

Candidate resources. NIMO’s testbed contains five compute nodes—451 MHz,

797 MHz, 930 MHz, 996 MHz, 1396 MHz—with Intel PIII architecture, CPU cache

size ranging from 256 KB to 512 KB, memory size ranging from 512 MB to 2 GB,

and Linux 2.4.25 kernel. We used NISTnet [20] to impose varying network round-trip

delays: 0, 2, . . . , 16, 18 ms. For the experiments reported in this work we held the

storage system, memory size, CPU architecture (Pentium III), and network band-

width constant. The five different CPU configurations and ten network latencies

yield a total of 50 candidate resource assignments for a task in the testbed.

Model Construction. NIMO currently uses first-order multivariate linear regres-

sion [78] models for the structure of the predictor functions. (More sophisticated

regression techniques, e.g., transform regression [123] or higher-order regression can

be applied in NIMO without changing the overall approach.) A typical predictor func-

tion in our experiments has the form: f(�ρ) = a1g1(ρ1)+a2g2(ρ2)+ · · ·+akgn(ρk)+ c,

where each ai is a regression coefficient, each ρi is a resource-profile factor, each gi

is a transformation function, and c is a constant. Apart from the default g(ρi) = ρi

transformation, this work also consider reciprocal transformations. For example, a re-

ciprocal transformation is applied to the CPU speed factor because occupancy values

are inversely proportional to CPU speed. The experiments reported in this section fo-

cus on learning the three occupancy predictor functions fa, fn, and fd automatically,

and assume that the data-flow predictor fD is known.
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The accuracy experiments use a 50-way cross-validation methodology as follows.

For each application in Table 4.1 we use the following simple strategy for learning the

model. Section 4.9 evaluates the experiment-driven approach for automated model-

learning (Section 4.6).

1. We fix one of the 50 candidate assignments as the reference assignment �Rref .

2. NIMO learns the predictor functions for the application using a training set of

14 (28%) of the 50 candidate assignments containing at most one non-reference

resource.

3. The resource assignments not in the training set constitute the test set on which

we compare model-predicted completion times with measured completion times

to evaluate prediction accuracy.

4. For cross-validation and sensitivity analysis, we repeat Steps 1–2 50 times with

different training and test sets. A different �Rref is selected for each trial.

As an illustration, Figure 4.5 shows two projections of a subset of training data

collected for fMRI. These projections show that the dominant effect on compute oc-

cupancy in this case comes from the speed of the compute resource (as characterized

by whetstone performance, Section 4.5). Similarly, in these assignments, changes in

network latency affect only network occupancy, but have little effect on compute oc-

cupancy. Based on this training data, NIMO learns the following occupancy predictor

functions for fMRI, with occupancy measured in microseconds per byte.

fa =
4.40

ρcpu speed
− 0.2, fn = 4.46 ρnet lat + 0.7, fd = 0.32

Here, fD = 0.1064×109 bytes. ρcpu speed and ρnet lat are factors of the resource profile of

the candidate assignment normalized to the reference assignment. Depending on the
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Figure 4.5: Impact of CPU speed and network latency on fMRI’s occupancies.

heterogeneity in the hardware resources, the predictor functions may depend on more

factors, e.g., architecture type, memory size, number of disk spindles, and network

bandwidth. Section 4.6.3 presents techniques that can automatically identify the

most relevant factors. When we evaluate the above model on the test assignments,

the predicted completion times are within 5% of the measured completion times.

4.8.1 Model Accuracy

Figure 4.6 summarizes the accuracy of the completion times predicted by the induced

performance models. It reports the following metrics:

• Absolute Error (AE) and Percentage Absolute Error (PE). AE mea-

sures the absolute difference between predicted completion time and measured

completion time. PE measures the corresponding percentage error. AE and

PE are particularly relevant to the use of models to identify candidate resource

assignments to meet a completion time target.

• Top-k Ranking Distance (RD(k)). Consider n resource assignments that

are ranked in the order �R1, . . . , �Rn based on increasing completion time for

application G. Let pi be the model-predicted rank of �Ri. The normalized
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Figure 4.6: Summary of accuracy metrics for 4 real and 6 synthetic applications
using 50-way cross validation. μ = Mean, σ = Standard Deviation, Wst = Worst
Case Error, 90 pc = 90th percentile.

top-k ranking distance RD(k). for model predictions is
Pi=k

i=1 |pi−i|
Pi=k

i=1 n−i
. When the

model is used to select resource assignments in a utility setting, a low value of

RD(k) indicates good performance. 0 ≤ RD(k) ≤ 1, with RD(k) = 0 indicating

accurate ranking of the k best assignments.

• Order Preserving Degree (OPD) [123]. A model preserves the relative

order of resource assignments i and j iff tpi
(<, =, >)tpj

holds when toi
(<, =, >

)toj
holds, where tp and to respectively represent model-predicted and measured

completion times. Given n candidate assignments, OPD = |OPP |
n2 where OPP

is the set of order-preserving pairs. 0 ≤ OPD ≤ 1, with OPD = 1 indicating

accurate ranking.

For each metric, Figure 4.6 reports the mean, standard deviation, worst-case value

(100th percentile), and 90th percentile value from a 50-way cross-validation. Note

that mean percentage error from model predictions is under 11%, and ranking-related
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errors are low (high OPD and low RD). The worst reported PE occurs for a synthetic

application doing sequential file reads (GAMUT seq. read in the table). Even in

this case, the induced models were accurate to within 23% for 90% of the trials.

Section 4.8.2 explores this issue in more detail below.

4.8.2 Sensitivity Analysis

Choice of reference assignment

As noted, the induced predictor functions normalize resource occupancy as relative to

occupancy observed on a designated reference assignment �Rref (see Algorithm 10).

The 50-way cross-validation experiments in Figure 4.6 select a different reference

assignment �Rref for each trial. The low variances in Figure 4.6 suggest that model

induction is robust to the choice of reference assignment.

Queuing delays and concurrency

Although we do not investigate parallel applications in this work, our approach ap-

pears to be robust across degrees of concurrency in storage access. The key assump-

tion is that the internal degree of concurrency is fixed in the application and the OS

it runs on, i.e., the CPU initiates a bounded number of pending I/Os. Given this

assumption, the parameterization captures the impact of queuing (e.g., in the storage

system) implicitly.

We create a synthetic task (GAMUT rand. write in Figure 4.6) that saturates the

storage resource to introduce a bottleneck. Figure 4.7 shows the impact of queuing

delays on the occupancies. As seen in the figure, faster network or faster CPU

increases the occupancy at the storage resource and vice versa. Such an effect is also

created if concurrency at the compute resource introduces an I/O rate that cannot

be handled by the storage resource, e.g., in the case of a parallel application with
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Figure 4.7: Impact of CPU speed and network latency on occupancies of GAMUT
doing random file writes. Note that the storage resource is saturated and hence the
storage occupancy changes with CPU speed as well as network latency.

high degree of parallelism.

NIMO learns the following predictor functions for this synthetic task. The mean

percentage error is within 10% as shown in Figure 4.6. This suggests that our ap-

proach is reasonably robust with respect to queuing delays as well.

fa = 0.019 + 0.59/ρcpu speed + 0.007 ∗ ρnet lat

fn = −0.184 − 0.16/ρcpu speed + 0.42 ∗ ρnet lat

fd = 1.04 + 0.34/ρcpu speed − 0.19 ∗ ρnet lat

Latency hiding and operating range

Figure 4.8 shows the impact of latency hiding in the case of a synthetic task doing pure

sequential reads (GAMUT seq. read in Figure 4.6). The worst case percentage error

for this task is 30%. We found that this error occurs because prefetching behavior

of the file system hides the network latency up to a certain point, causing a non-

linear impact on the network occupancy. This result highlights the importance of

exposing the impact of entire operating range of any factor, e.g., network latency, on

the application performance. Section 4.6 presents techniques that take into account
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Figure 4.8: Impact of network latency on occupancies of GAMUT doing sequential
file reads. Prefetching hides I/O latency up to a point, making a single linear function
insufficient to predict network occupancy throughout the operating range.

the entire operating range of any given factor, and Section 4.9 evaluates them.

4.9 Experiment-Driven Learning of Models

The evaluation of experiment-driven learning has two goals: (i) to evaluate the dif-

ferent algorithmic choices introduced in Section 4.6; and (ii) to show that NIMO

reduces the overall time to learn reasonably accurate models significantly . The ex-

perimental setup is similar to that of Section 4.8 with an addition of memory factor

to the resource profile. Specifically, we use 5 CPU speeds, 5 memory sizes, and 6

network latencies, for a total of maximum of 150 candidate resource assignments for

each batch task. For brevity, we use BLAST by for demonstrating the performance

of our algorithms, and the results for other applications are similar.

The metric we use to report the current accuracy of a model M in our experiments

is M ’s Mean Absolute Percentage Error (Section 4.6.6) in predicting total execution

time on an external test set of 30 resource assignments chosen randomly from the

workbench. Note that the external test set is different from the internal test set

used by NIMO to compute the current prediction error (Section 4.6.6), and is never
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Table 4.2: Choices for steps of Algorithm 5. ∗ denotes the default in experiments
unless otherwise noted

Step Alternatives

Initialization Min∗, Rand, Max
Predictor refinement Static + Round-Robin∗, Static + Improvement-based,

Dynamic
Factor addition Relevance-based (PBDF)∗, Static
Sample selection Lmax-I∗

1 , L2-I2

Prediction error Cross-Validation∗, Fixed Test Set (Random), Fixed
Test Set (PBDF)

exposed to NIMO for training or testing.

Experiment-driven learning of predictor functions depends on the choices made

at the different steps of Algorithm 5 as explained in Section 4.6. This work evaluates

various alternatives for each of the following five steps:

1. Initialization: The reference assignment that decides the starting point in the

resource assignment search space (Section 4.6.1)

2. Predictor refinement: The order and traversal NIMO uses to refine the predictor

functions (Section 4.6.2)

3. Factor addition: The order and traversal NIMO uses to add factors to each

predictor function (Section 4.6.3)

4. Sample selection: The choice of value for each resource-profile factor to generate

a new sample assignment for a run of the task (Sections 4.6.4 and 4.6.5)

5. Prediction error: The technique to compute the current prediction error at any

point in time (Section 4.6.6)

While evaluating any of these 5 factors, we fix the choices for the other 4 factors to

defaults as shown in Table 4.2.

101



4.9.1 Initialization

The reference assignment serves several purposes in NIMO: (i) starting sample assign-

ment for the learning algorithm (Algorithm 5); (ii) baseline for normalizing training

samples (Algorithm 10); and (iii) reference for setting factor values during sample

selection (Algorithm 9). Different reference assignments may lead to completely dif-

ferent training samples, and hence, different MAPE statistics. We begin our experi-

mental results with the evaluation of alternatives from Section 4.6.1 for choosing the

reference assignment. Note that we fix the choice for each other step of Algorithm 5

to the default given in Table 4.2.

Figure 4.10 shows the impact of three alternatives for choosing the reference

assignment on the overall accuracy and convergence time of the learned model for

BLAST : (a) a randomly chosen assignment (Rand); (b) a high capacity assignment

(Max ); and (c) a low capacity assignment (Min). Each point in the figure corresponds

to the MAPE when a new sample is added to the training data or a new factor is

added to a predictor during learning.

We can make the following observations from Figure 4.10: (i) the plots start at

different times; (ii) the MAPE values do not converge smoothly, e.g., there may be

a sharp drop when a new training point is added; and (iii) while Max converges in

the shortest time to a reasonably-accurate model, Min and Rand converge to models

with lower errors. We explain these observations next.

Among the three alternatives, the reference assignment in Max has the maximum

resource capacity, so it results in the shortest time to finish the first run and generate

a training sample. Also, note that in the default Lmax-I1 strategy for sample selec-

tion, only one factor in any new sample assignment is set to a value different from

the corresponding value in the reference assignment. Hence, Max will generate new

training samples at a faster rate than Min or Rand.
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The nonsmooth nature of the plots in Figure 4.10 is a consequence of NIMO’s

online exploration of the space of resource assignments to learn predictor functions

with the right factors. The prediction errors may drop sharply, e.g., when a relevant

factor is added to a predictor. Recall that the MAPE values in Figure 4.10 are based

on an external test set that is never exposed to NIMO for training or testing.

Min and Rand converge to models with lower errors than Max. Our hypothesis

is that the set of training samples produced when Min or Rand is used is more

representative of the space of sample assignments than when Max is used. That is,

Min and Rand may be leading to training sets that capture the operating range of

relevant factors and the significant interactions among factors better.

4.9.2 Exploration Sequence for Predictors

The sequence in which NIMO explores predictor functions for refinement across it-

erations of Algorithm 5 determines the time to learn accurate models. In Figure 4.9

we evaluate the static and dynamic strategies from Section 4.6.2 for guiding pre-

dictor refinement through ordering and traversal. As usual, choices for the other

steps are the defaults given in Table 4.2. The strategies we compare in Figure 4.9

are: (i) static order fd, fa, fn + round-robin traversal; (ii) static order fd, fa, fn +

improvement-based traversal; and (iii) dynamic ordering and traversal.

The main observations from Figure 4.9 are: (i) round-robin traversal performs

better than improvement-based traversal for static ordering; and (ii) the dynamic

strategy takes the longest to converge and shows the most nonsmooth behavior.

Improvement-based traversal of predictors is sensitive to the order in which the

predictors are refined as well as the improvement threshold used (Section 4.6.2). In

Figure 4.9, the static order is the nonoptimal fd, fa, fn order—the actual relevance

order computed using PBDF is fn, fa, fd—and the improvement threshold is 2%—i.e.,
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we move to the next predictor in the order when the reduction in prediction error

with the current predictor falls below 2%. The MAPE of the improvement-based

strategy remains high until fn starts being refined (around 400 minutes), when it

drops sharply. On changing the static order to fn, fa, fd, the improvement-based

strategy learns an accurate model quickly (as shown by the Min plot in Figure 4.10).

Round-robin traversal of the static order acquires samples for each predictor in turn,

so it is less sensitive to the correctness of the order or the threshold.

The accuracy-driven dynamic strategy performs the worst in Figure 4.9. Recall

from Section 4.6.2 that the dynamic strategy chooses to refine the predictor with the

maximum current prediction error. In Figure 4.9, the dynamic strategy gets stuck

initially in a local minima where it keeps refining fa until all samples for the factors

in fa are exhausted, and fn starts being refined (around 550 minutes). The problem

with the dynamic strategy is that the current prediction error of a predictor f is not

representative of f ’s relevance to the total task execution time.

4.9.3 Adding New Factors to Predictors

Accurate learning of predictor functions can happen only when relevant factors are

added quickly to the functions. Recall from Section 4.6.4 that the factors in the
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predictor function currently chosen for refinement dictate which sample assignments

are selected for training. Our next experimental results show that adding factors

to predictors in an incorrect order can delay convergence to accurate models. We

consider the two alternatives from Section 4.6.3 for determining the order in which

factors are added to predictors:

• Relevance-based ordering that determines relevant factors and their order using

PBDF as: (i) fa—cpu speed, memory size, (ii) fn—network latency, memory

size, and (iii) fd—network latency.

• Static ordering set as: (i) fa—network latency, memory size, cpu speed, (ii) fn—

cpu speed, memory size, network latency, and (iii) fd—cpu speed, memory size,

network latency. The static ordering is kept different from the relevance-based

ordering to show the importance of adding factors in the right order.

Figure 4.11 compares the two alternatives. While the relevance-based order learns

an accurate model quickly, the incorrect static order causes nonsmooth behavior and

slow convergence.
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4.9.4 Selecting New Sample Assignments

A good sample-selection strategy must cover the operating range of relevant factors

and expose all significant interactions among factors while acquiring only a small

number of samples. We evaluate two strategies from Section 4.6.4 for sampling new

assignments: Lmax-I1 and L2-I2. Recall that the Lmax-I1 strategy covers the operating

range of relevant factors, but it may fail to expose significant interactions among

factors. The L2-I2 strategy adds training samples one at a time from the design

matrix specified by PBDF. L2-I2 considers only two levels from the operating range

of each factor, but it can expose significant two-way interactions among factors.

Figure 4.12 compares the two alternatives. Here we observe that Lmax-I1 con-

verges quickly to an accurate model, while L2-I2 fails to converge. Our hypothesis

is that the simple Lmax-I1 strategy is enough to expose any significant interactions

among factors for BLAST. On the other hand, with only two levels considered for

each factor, L2-I2 fails to obtain good regression functions for the predictors. We

are now exploring sampling schemes that can guarantee the capture of significant

interactions among factors and also provide good coverage of the operating range of

relevant factors.

4.9.5 Computing Current Prediction Error

An important component of NIMO’s accelerated learning algorithm is the computa-

tion of current prediction error for each predictor. This error is used by other steps

of Algorithm 5, e.g., by the improvement-based traversal and the dynamic strategy

for choosing the predictor function to refine. We consider the two strategies from

Section 4.6.6 for computing the prediction error: (i) leave-one-out cross-validation

using all samples collected so far; and (ii) using a fixed internal test set. The fixed

test set is chosen in two ways: (a) a set of 10 assignments chosen randomly from
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Figure 4.14: Accuracy of NIMO
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the space of possible assignments; and (b) a set of 8 assignments chosen from the

samples specified by PBDF. The results are shown in Figure 4.13. Here, we use the

accuracy-driven dynamic strategy for refining the predictor functions to study the

impact of internal test sets on MAPE. All other factors are set to their defaults as

shown in Table 4.2.

Figure 4.13 shows the strengths and weaknesses of the approaches. Compared

to fixed test sets, cross-validation starts producing results earlier, but it shows non-

smooth behavior and slow convergence. Cross-validation produces its initial error

estimates from the very few samples collected so far, causing the observed nonsmooth

behavior. However, these estimates get more accurate over the course of experiment-

driven learning as more samples are collected. The fixed test set approach requires

an upfront investment of time to obtain the test samples, which delays the start of

the learning process. However, fixed test sets give more robust estimates of predic-

tion error because these sets are representative of the total sample space in terms of

capturing operating ranges and factor interactions.
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4.9.6 Experiment-Driven Learning on Virtual Machines

Virtual machine technology promises important benefits for grid computing and clus-

ter batch job systems, including improved isolation, customizable workspaces, and

support for checkpointing and migration [49]. Figure 4.14 shows the accuracy of the

models that NIMO learns based on samples attained on Xen virtual machines [33].

The models predict the runtime of an application as a function of CPU, and memory

shares assigned to it. 10 CPU × 9 memory configurations comprise the total number

of virtual resource assignments. NIMO uses Algorithm 5 to collect the relevant train-

ing samples by executing the application on a few virtual resource assignments proac-

tively. The accuracy of the model is evaluated on all virtual resource assignments

that are not used for training. The figure shows that NIMO can learn reasonably

accurate performance models with a few training sample runs on virtual machines as

well.

4.9.7 Summary of Experimental Results

We apply the experiment-driven methodology for learning models for three real

biomedical applications other than BLAST. Table 4.3 shows the time to learn an

accurate model and the corresponding MAPE values for all four applications. The

table shows that as the factor space gets larger, NIMO reduces the time to learn

reasonably accurate models by an order of magnitude compared to approaches that

first sample a significant part of the entire space and then build models all-at-once

(the active sampling without acceleration strategy in Figure 1.4).

We summarize the results of our experiments evaluating the algorithmic choices

presented in Section 4.6:

• The Min approach tends to select reference assignments that produce training

sets that are representative of the total sample space.
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Table 4.3: Gains from experiment-driven learning

Appl. #Attrs MAPE NIMO’s Learn-
ing Time (hrs)

Learning Time
for All Samples
(hrs)

Sample Space
Used (%)

BLAST 3 10 12 130 3
fMRI 3 10 4 112 3
NAMD 2 4 2 16 5
C. Wave 2 10 2 16 5

• Unlike the improvement-based strategy, round-robin traversal is not sensitive

to the (static) ordering of predictors, nor does it require a predefined thresh-

old. Round-robin traversal also avoids the local-optima problem of dynamic

approaches that are based on current prediction error.

• Adding factors in relevance order based on PBDF is a good approach for adding

new factors to predictors. Other factor orders may significantly delay conver-

gence to accurate models.

• In our experiments, the Lmax-I1 strategy for selecting new sample assignments

performs better than L2-I2 mainly because of the limited factor operating range

considered by L2-I2.

• A fixed internal test set, chosen randomly or using PBDF, is a reasonable choice

for computing current prediction error. Cross-validation-based approaches show

nonsmooth behavior and slow convergence.

4.10 Model-Guided Planning in Utilities

The primary goal of NIMO is to guide autonomic resource management in a net-

worked utility setting. This section illustrates how an autonomic utility can use the

models induced by the NIMO system for several planning scenarios.
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Table 4.4: Candidate assignments for fMRI.

Candidate Assgs. CPU speed Network latency (ms)
A1 996 MHz 4
A2 797 MHz 4
A3 1396 MHz 10
A4 451 MHz 2

Table 4.5: Comparing assignment choices.

Choice of Assg. Performance
Actual best = A1 Completion time = 16.67 min

Model-predicted = A1 Predicted time = 17.46 min
Fastest CPU = A3 23% slower than A1

Fastest network = A4 50% slower than A1

4.10.1 Selecting Task Placement

A utility resource manager can evaluate the models directly to compare the predicted

performance of a set of competing candidate resource assignments. For example, the

utility can predict which combination of CPU and I/O resources will yield the shortest

completion time for a batch task.

Table 4.5 compares the measured performance of fMRI [55] runs on four candi-

date assignments A1–A4 shown in Table 4.4. It shows the predicted and measured

completion times for the candidate (A1) preferred by an induced model, and com-

pares them to the candidates chosen by two simple alternative strategies: (i) select

the assignment with the fastest CPU clock; and (ii) select the assignment with the

lowest latency to network storage. Since the delivered performance depends on the

combination of CPU and I/O resources, the naive approaches cannot identify the

best candidate. The model captures the relative importance of the different factors

alone and in combination for each application, so it can guide the choice of the best

candidate.
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4.10.2 On-Time Computing

A resource manager can also use the models to search for a candidate assignment

that meets a specified completion time target t for a task or a sequence of tasks, such

as the critical path of a complex workflow graph. For a chain of n tasks, eligible

candidates must satisfy the inequality:

n∑
i=1

Di(oai
+ oni

+ odi
) ≤ t

Identifying eligible candidates is a heuristic search problem in the general case, but

it is often possible to solve directly for factor values that yield target occupancies for

each resource, i.e., when the occupancy is driven by continuously valued factors such

as CPU clock speed. Figure 4.15 plots occupancies for candidate assignments for an

fMRI instance with a completion time target of t = 20 minutes. The figure shows

the subset of candidates that meet the target completion time, the set that does not

meet the target, and also the model-predicted “boundary” between these two. For

each occupancy value of oa and on, the resource manager can obtain the profile of

the corresponding resources using the predictor functions fa and fn (Section 4.6).

4.10.3 Storage Outsourcing and Data Staging

A utility must estimate the performance impact of remote I/O and the benefits

of application migration or local staging. To evaluate the potential of model-guided

planning in this setting, we applied our approach to data published in a recent empir-

ical study of storage outsourcing [81]. The study investigates the viability of storage

outsourcing by measuring the impact of remote data placement, caching, and local

data staging under various workloads with varying network latencies to the storage

site. We induce performance models for two synthetic benchmarks—PostMark [61]
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Figure 4.16: Accurate prediction of re-
sults from an empirical study of storage
outsourcing. We parameterize the model
using three configurations (single bars),
and predict the throughput for the re-
maining ones (double bars). The maxi-
mum error in prediction is 10%.

and SPEC-SDET [42]—by taking data published for three remote storage configura-

tions as training data, and then use the models to predict the results for the other

configurations. The worst case percentage error (PE) was 6% and 10% for Post-

Mark and SPEC-SDET respectively. Figure 4.16 shows the results for SPEC-SDET.

We conclude that our approach has excellent potential to capture the phenomena

explored in this comprehensive empirical study.

A utility may use the models to evaluate remote storage and data staging al-

ternatives in conjunction with task placement. Data staging options—in which the

candidate plan copies an input or output data set between sites before or after task

execution—are modeled as one or more additional stages inserted into a task graph.

The predicted completion time is the sum of the predicted times for the data staging

steps and task execution.

Table 4.6 shows sample candidate assignments for fMRI involving both remote

I/O and local I/O with data staging for the input dataset. The table shows that

neither data staging nor remote I/O is always preferred. The models identify the

best alternative and predict the overall completion time accurately even when data
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staging is involved.

Table 4.6: Candidate assignments for fMRI with and without input data staging;
the preferred choice of each pair is shown in bold.

Candidate
Assg.

CPU
speed
(MHz)

Network
latency
(ms)

Data
staging
done?

Actual
time
(mins)

Model
Predicted
(mins)

1.1 451 14 Yes 54.47 53.48
1.2 451 14 No 35.16 37.65

2.1 996 14 Yes 23.43 22.78
2.2 996 14 No 28.25 26.71

3.1 996 2 Yes 24.63 24.44
3.2 996 2 No 14.58 15.40

4.1 451 16 Yes 28.21 25.51
4.2 451 16 No 37.43 39.81

4.11 Related Work

Much of the previous work on model-based provisioning and placement focuses on

online Internet services, which are driven by the arrival patterns of requests and

queuing behavior [31, 105, 112, 113]. In contrast, we focus on compute batch tasks

that run to completion at machine speed, so we do not need to model request arrivals.

Hippodrome [7] uses detailed performance models and an optimizing planner to assign

storage resources in a shared utility. Hippodrome emphasizes storage performance

and modeling of contention; our approach is complementary in that it addresses

the interaction of computation and storage access and their impact on end-to-end

application performance.

Several previous studies support the potential of statistical techniques to capture

application performance behavior accurately. For example, two early surveys ([74,

88]) found that a large class of scientific applications exhibit marked regularity in CPU

usage and I/O activity over the execution interval. Some applications show data-
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dependent behavior—their resource usage depends on parameters or the contents of

the input data—and several groups are exploring how to map such dependencies when

they exist, e.g., [108, 118, 34]. Although this work does not consider data-dependent

behavior, NIMO’s data profiles can represent input data characteristics that affect

application resource demands; these complementary projects may help to understand

the most relevant characteristics and how to capture them.

Accurate prediction of completion time is a prerequisite for many provisioning

and scheduling strategies, e.g., [21, 89]. AppLeS [21] is a grid scheduling framework

that uses estimates of computation and file transfer times to decide task placement.

Menasce et al. [14] use queuing analysis to predict the throughput of a stream of

batch tasks competing for homogeneous shared resources, assuming the behavior

of individual tasks is known. A number of systems approximate NP-hard optimal

scheduling assignments given estimates of performance or utility, e.g., [65]. All these

systems can benefit from our work in predicting the completion times of individual

tasks on heterogeneous resources.

Some recent prediction work instruments the program source or its binary, e.g., [19],

or assumes knowledge of the program internals. For example, Rosti et al. [95] instru-

ment the source code of parallel applications to derive stochastic prediction models.

In contrast, we rely only on noninvasive instrumentation, so our model predictions

may be less accurate. [119] provides a black-box approach to predict completion

time on heterogeneous platforms, but the approach requires a partial execution of

each candidate application on each target system.

Remote storage access is a key barrier to harnessing remote computing resources

effectively [81, 46]. Our approach models the impact of storage placement and access

costs on end-to-end performance, as a basis for intelligent placement of tasks and

data. Wolski et al. [37] evaluate the impact of various data-staging strategies on
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wide-area task farming, and show that staging overhead can often be overlapped

with computation. The models in this work are conservative with respect to this

phenomenon, but could be extended to account for it.

Various mechanisms exist to realize a range of choices for data staging and task

placement in networked systems. BAD-FS [15] assigns work to compute servers and

storage servers to maximize the benefit of local caching and buffering. Logistical

Networking [13] addresses the global scheduling of data movement and computation.

Stork [68] is a batch scheduler that schedules data migration tasks as first-class citi-

zens alongside computation. Abacus [4] uses analytical models to drive dynamic task

placement for data-intensive cluster applications. Our work gives a model-guided

approach to select among candidate task and data placements in such systems, and

to induce the models automatically.

Database technology is well-suited to handle many aspects of workflow man-

agement as evident from the number of WorkFlow Management Systems (WFMSs)

[101]—e.g., Griddb [70], GriPhyn [48], Kepler [2], and Zoo [56]—that exist to provide

functionality such as modeling, execution, provenance, auditing, and visualization for

workflows. Workflow planning is similar to query optimization in database systems,

but it poses an entirely new set of challenges. A task in a workflow G is typically a

script in a programming language like Perl or Matlab. Hence, a WFMS usually has

no prior knowledge about G’s resource usage characteristics, or its performance sensi-

tivity to the diverse hardware platforms comprising the underlying networked utility.

Consequently, G is a black-box to the WFMS, making it challenging to generate an

accurate cost model for G.

Traditional work on cost modeling in relational databases, e.g., [50] assume that

the execution plans are composed of operators belonging to a small well-defined

family of operators. This assumption does not hold for scientific workflows. Statistical
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learning methods have been used to develop cost models for: (i) complex user-defined

functions, e.g., [52]; (ii) remote autonomous database systems in the multidatabase

setting, e.g., [124]; and (iii) complex XML operators [123]. The general approach is

to first identify a set of query and data features that potentially determine operator

costs, and then to use given training data to learn the relationship among the values

of the identified features and operator cost. NIMO differs from this category of work

in two ways: (i) it addresses the problem of automatically acquiring the right training

data to minimize the overall learning time; and (ii) it considers an application as a

black-box and relies only on noninvasive measurement streams to make our work

more widely applicable.

4.12 Conclusions and Future Work

This chapter presents the NIMO system that uses the experiment-driven framework

to learn models for predicting the execution time of batch applications running on

large-scale networked utilities. NIMO is noninvasive in that it uses training data from

passive instrumentation streams collected using common profiling tools, requiring no

changes to the operating system or applications. Our experimental results indicate

that NIMO can learn fairly-accurate models quickly for real scientific applications.

There are many avenues for future work. To enable a fully automated model-

learning, NIMO needs an algorithm that can automatically select the best combina-

tion of choices for each step of Algorithm 5 for any given application. Moreover, to

handle an application whose resource usage is highly data dependent, NIMO needs

to capture the data dependency using factors in the data profile of the application’s

input data. Identifying the right set of factors in the data profile for a black-box

application remains an interesting open problem.
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Chapter 5

Automated Server Benchmarking

“For better or worse, benchmarks shape a field.”

-David Patterson

Systems researchers and developers devote a lot of time and resources to running

benchmarks to gain insight into the performance impacts and interactions of system

design and management choices, and workload characteristics. In the marketplace,

benchmarks are used to evaluate competing products and candidate configurations

for a target workload. This chapter presents the use of the experiment-driven frame-

work from Chapter 2 for automated server benchmarking, in particular storage server

benchmarking.

5.1 Background

Server benchmarking isolates the performance effects of choices in server design and

configuration, since it subjects the server to a steady offered load independent of its

response time. It reliably stresses the system under test to its saturation point where

interesting performance behaviors may appear. Although application benchmarks

are commonly used in systems research, they do not establish the bounds of the

system’s operating range or its behavior under stress. In the storage arena, NFS

server benchmarking is a powerful tool for investigation of system behavior at all

layers of the storage stack. A workload mix can be selected to stress any part of the

system, e.g., the buffering/caching system, file system, or disk system. By varying the

components alone or in combination, it is possible to focus on a particular component

in the storage stack, or to explore the interaction of choices across the components.
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For example, the SPEC SFS benchmark and its predecessors [64] have been in use

for decades to establish NFSOPS ratings for network file servers and filer appliances

using the NFS protocol. SPEC SFS is a server benchmark: client load generators

subject the server under test to a request mix offered at some arrival rate (or test

load) over a test interval to obtain an aggregate measure of the server’s response time

at that load level. To obtain an NFSOPS rating, the benchmark runs a sequence of

trials at varying load levels to identify the point at which the response time measures

begin to exceed specified maximum thresholds with a standard request mix. The

NFSOPS rating is the rate of request completions at that load level, representing the

saturation throughput or peak rate that the server can process. A similar methodology

is used in other industry-standard server benchmarks, such as the TPC transaction

processing benchmarks [27].

The work in this chapter presents the application of experiment-driven frame-

work for storage server benchmarking. The objective is to devise policies for the

automated workbench controller in Figure 2.1 that can obtain peak rate measures

with a target confidence level and accuracy at low cost. In particular, the policies

support systematic response surface mapping that plots the peak rate over a space

of workloads and/or system management and design choices. Figure 5.1 gives an

example of response surface mapping using the peak rate. The example is discussed

in Section 5.2.

A large number of factors can affect storage server performance. Section 1.3

discusses the importance of sampling multi-dimensional space with care. In addition,

it is crucial to optimize the “inner loop” of response surface mapping: the search

for the peak rate for each sample point in the space. For example, suppose we are

mapping the impact of five factors on a file server’s peak rate, and that we sample

five values for each factor. If the benchmarking process takes an hour to find the
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Figure 5.1: Surfaces that depict how the peak rate, λ∗, changes with number of
disks and number of NFS daemon (nfsd) threads for two Fstress workloads (DB TP
and Web server).

peak rate for each factor combination, then the total time for benchmarking is 130

days. The benchmarking automation policies can shorten this time by pruning the

sample space, planning experiments to run on multiple hardware setups in parallel,

and optimizing the inner loop.

This chapter presents techniques that optimize the inner loop by searching for the

peak rate in an efficient way that balances cost, accuracy, and confidence for the re-

sults of each test load, while meeting target levels of confidence and accuracy to ensure

statistically rigorous final results. It also shows how the controller can use heuristics

and established response surface methodology to prune the multi-dimensional sample

space.

5.2 Overview

The performance of a storage server is a function of its workload, its configuration,

and the hardware resources allocated to it. Each of these may be characterized by a

vector of factors, as summarized in Table 5.1.
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Table 5.1: Example of factors that affect storage server performance.

�W read/write ratio, random/sequential ratio, metadata/data ratio, dataset
size, file size distribution, directory structure, request mix

�R CPU speed, memory size, number of disks
�C Number of I/O daemons, type of file system, block size

Performance �P . This work characterizes the benchmark performance of a storage

server by its peak rate or saturation throughput, denoted λ∗. λ∗ is the highest request

arrival rate λ that does not drive the server into a saturation state. The server is said

to be in a saturation state if a response time metric exceeds a specified threshold. In

this work, saturation occurs when either of two conditions hold: (i) the mean response

time of the server, which is the aggregate server response time of client requests over

some time interval, exceeds > Rsat = 40 ms, or (ii) the 95-percentile server response

time exceeds a specified threshold latency Lsat = 2000 ms.

Workload �W . In this work, the workbench controller uses a configurable synthetic

workload generator called Fstress [5] to explore a wide range of NFS workloads defined

by various workload factors. Fstress offers knobs for the controller to configure the

properties of the workload’s dataset and its request mix, and preconfigured parameter

sets intended to be representative of workloads encountered in practice; see Table 5.3.

Resources �R. The controller can vary the amount of hardware resources assigned

to the system under test, depending on the capabilities of the workbench testbed.

Our prototype can instantiate Xen virtual machines sized along the memory, CPU,

and I/O dimensions. Experiments for this work use a small number of physical con-

figurations in the workbench.
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Configurations �C. To benchmark the storage server across a range of storage server

configurations such as the file system type and block size, the controller modifies the

relevant properties of the server configuration files before creating the server file

system.

5.2.1 Storage Server Benchmarking

Figure 5.1 shows an example of a benchmarking result produced by the automated

workbench. It shows the peak rate for different combination of NFS server daemons

(nfsds) and disk spindles for two different Fstress workloads: a database workload

(DB TP) and a Web server (Web server) workload. Such a result is called a

response surface: it gives the response of a metric (peak rate) to changes in the

operating range of the factors in a system [78].

Knowledge of response surfaces is crucial for understanding the performance

tradeoffs of adding resources and/or changing configurations for different workloads.

For example, the figure shows that adding more disks can improve the peak rate only

if there is a sufficient number of nfsds to issue requests to those disks, and that the

appropriate number of nfsds is workload-dependent.

Algorithm 11 presents the overall benchmarking approach that is used by the

workbench controller to map a response surface. Table 5.2 shows the measures that

are relevant to server benchmarking. The overall approach consists of an outer loop

that iterates over the samples in 〈F1, . . . , Fn〉, where F1, . . . , Fn is a subset of factors

in the larger 〈 �W, �R, �C〉 space (Step 2). The inner loop (Step 3) finds the peak rate

λ∗ for each sample by generating a series of test loads for the sample. To find the

peak rate, the controller must choose: (a) the test load λ at which to conduct the

experiment; (b) the runlength r, which is the test interval over which to observe the

server response time while the workload is running against the server at load λ; and
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(c) the number of independent trials t with load λ.

Given the inherent variability in a storage system as well as in the experimental

process, it is impossible to compute the true value of mean server response time for

a given setting of the factors of interest. Figure 5.3 illustrates the variability in the

mean server response times from multiple independent trials for a range of test loads.

The best that can be done in this setting is to make a probabilistic claim about

the interval in which the mean response time lies based on the mean response time

measurements from multiple independent trials [59]. For example, by observing the

mean response time at a test load λ for 10 independent trials, we may be able to

claim that we are 95% confident that the mean server response time lies within the

range [25ms, 30ms].

Such a probabilistic claim can be characterized by a confidence level, and the

confidence interval at this confidence level. In the example above, [25, 30] represents

the confidence interval at a 95% confidence level. For t trials of a workload at test

load λ we compute the confidence interval as follows:

• Compute the mean server response time: μ =
∑t

i=1 Ri/t, where Ri is the server

response time for the ith trial. Note that the mean server response time from t

trials is a mean of the aggregate server response time at each trial.

• Compute the standard deviation for the server response time:

σ =
√∑t

i=1(Ri − μ)2/(t − 1).

• Confidence interval for the response time at confidence 100c% is given as:

[μ − zpσ/
√

t, μ + zpσ/
√

t] (5.1)

where p = (1 + c)/2, and zp is the quantile of the unit normal distribution at p.

If the number of trials t <= 30, we replace zp by tp;t−1, which is the p-quantile
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of a t-variate with t − 1 degrees of freedom, assuming that the response time

values from t trials come from a normal distribution. We verify that response

times do come from a normal distribution using a normal probability plot.

Intuitively, a higher value of the confidence level implies that one is more certain

of the interval in which the mean server response time lies. Similarly, a tighter bound

on the confidence interval implies that the mean response time computed from the

repeat observations is close to its true value. Hence, the tightness of the confidence

interval captures the accuracy of the true value of mean response time. If the interval

is narrow, then the accuracy is high, and if the interval is wide, the accuracy is low.

For a confidence interval [low, high], this work computes the percentage accuracy as:

accuracy = 1 − error = (1 − high − low

high + low
) (5.2)

5.2.2 Problem Statement

In this work, the goal of the automated feedback-driven controller is to address the

following problems.

1. Find Peak Rate. For a given sample from the outer loop of Algorithm 11,

minimize the benchmarking cost for finding the peak rate λ∗ subject to a target

confidence level c and target accuracy a. Determining the NFSOPS rating of

an NFS filer is one instance of this problem.

2. Map Response Surface. Minimize the total benchmarking cost for mapping

a response surface for all 〈F1, . . . , Fn〉 samples in the outer loop of Algorithm 11.

Minimizing benchmarking cost involves choosing values carefully for the runlength

r, the number of trials t, and test loads λ so that the controller converges quickly
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Table 5.2: Server benchmarking parameters that determine the benchmarking cost
and accuracy.

λ∗ Peak rate of the server.
Rsat Mean server response time threshold at peak rate.
s Factor that determines the width of the peak-rate region [Rsat ± sRsat] (see

Section 5.4.1).
Psat The threshold on the percentage of requests that must complete under a

specified threshold latency, Lsat.
Lsat

a Target accuracy (based on confidence interval width) for the estimated value
of Rsat.

c Target confidence level for the estimated Rsat.
r Runlength of each trial of the workload at a test load.
t Number of independent trials at a test load.
ρ Load factor = λ/λ∗ where λ is a test load.
l Number of test loads run before converging to λ∗ with desired accuracy and

confidence level.

to the peak rate. Sections 5.3 and 5.5 present algorithms that the controller uses to

address these problems. Section 5.6 evaluates the algorithms to demonstrate that the

controller maps the response surfaces efficiently, and the cost of finding the peak rate

as well as mapping the surface adapts to the target confidence and accuracy specified

by the storage server administrator.

5.3 Finding the Peak Rate

In the inner loop of Algorithm 11, the automated controller searches for the peak rate

λ∗ for a sample in 〈F1, . . . , Fn〉 by subjecting the server to a sequence of test loads.

A principled approach for the inner loop must converge quickly and efficiently to an

estimate of λ∗ that meets the target accuracy and confidence. A strawman approach

proceeds as follows (the notation is from Table 5.2):

• Runlength r. Use a fixed r for each test load.

• Number of trials t. Use a fixed t for each test load.
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Algorithm 11: Mapping Response Surfaces

1) Inputs: (a) 〈F1, . . . , Fn〉, which is the subset of factors of interest from the

full set of factors in 〈 �W, �R, �C〉; (b) Different possible settings of each
factor;

2) // Outer Loop: Map Response Surface.
foreach distinct sample 〈F1 =f1, . . . , Fn =fn〉
do

3) // Inner Loop: Find Peak Rate for the Sample.
Design a sequence of test loads [λ1, . . . , λl] to search for the peak rate λ∗;

foreach test load λ ∈ [λ1, . . . , λl] do
Choose number of independent trials t for λ;

Choose runlength r for each trial;

Do t independent runs of length r each, with workload generated at
load λ;

end
Set λ∗ = λ, where λ ∈ [λ1, . . . , λl] is the largest load that does not take
the server to the saturation state;

end

• Sequence of test loads [λ1, . . . , λl]. Start at a default value, and use a linear

increasing sequence of test loads λ where each load differs from the previous

one by a small fixed increment. Stop when the current test load saturates the

file server.

This section shows that the strawman can be highly inefficient in terms of the bench-

marking cost and may lead to an inaccurate estimate of λ∗. However, the strawman

serves as a good illustration of the insights behind the improved algorithm that Sec-

tion 5.4 presents.

Sequence of test loads. The number of loads, l, in the strawman depend on the

increment size used to get successive values of the test load. Since the peak rate can

vary significantly not just across workloads, but even for the same workload as shown

in Figure 5.1, choosing a good value of the increment becomes more of an art.
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Figure 5.2: An efficient policy for finding peak rate converges quickly to a load
factor near 1, and reduces benchmarking cost by obtaining a high-confidence result
only for the load factor of 1. It is significantly less costly than a simple linear search
with a fixed runlength, and fixed number of trials per test load (e.g., SPECsfs [26]).

Figure 5.2 illustrates the search for λ∗ using the strawman approach for runlength

r = 5 minutes, number of trials t = 10 trials, and a small increment in test load so

that the search for λ∗ yields an accurate result. This work represents the sequence

of test loads by load factor, ρ = λ
λ∗ . At load factor of 1, λ = λ∗, and the search for

the peak rate terminates. The figure compares the strawman to an efficient search

technique for finding the peak rate.

The figure shows that a linear increase in load factor can incur a much higher

benchmarking cost to converge to the peak rate. The strawman not only considers

a large number of load factors that are not close to 1, but also incurs the same

benchmarking cost at all load factors. Since the goal is to find the peak rate, an

efficient approach must quickly eliminate load factors that are not close to 1, and

incur most of the benchmarking cost near ρ = 1; Sections 5.4 and 5.5 present such

approaches.
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Figure 5.3: Mean server response time at different test loads for the DB TP Fstress
workload using 1 disk and 4 NFS daemon (nfsd) threads for the server. The variability
in mean server response time for multiple trials increases with load. The results are
representative of other server configurations and workloads.

Number of trials. The runlength r and the number of independent trials t for each

test load determine the benchmarking cost incurred at that load. Figure 5.3 shows

a scatter plot of mean server response time at different test loads for 5 trials at each

load. Note that the variability across multiple trials increases with load, and that

multiple trials are essential at high loads to get reasonable estimates. The figure

shows that that the number of trials, t, must adapt to the choice of the test load in

the search process. Ideally, t must be high near a load factor of 1, and low otherwise.

For the strawman approach, 10 trials may be too many at low load factors and too

little near ρ = 1, depending on the corresponding variability of response time.

Runlength. Figure 5.4 shows the scatter plot of mean server response times at two

load factors, ρ = 0.3 and ρ = 0.9. The figure plots the mean server response times

against different runlengths of the workload. It shows that the variability in mean

server response time for multiple trials decreases with increase in an experiment’s
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Figure 5.4: Mean server response time at different workload runlengths for the
DB TP Fstress workload using 1 disk and 4 NFS daemon (nfsd) threads for the
server. The variability in mean server response time for multiple trials decreases with
increase in runlength. The results are representative of other server configurations
and workloads.

runlength. Hence, when the workload is run for a short duration, more trials are

needed to obtain an accurate measure of mean server response time; and vice versa.

Also, for the same runlength, the variability is higher at higher load factors, especially

when the runlength is small. Thus, for the strawman approach, with 10 trials per

test load, r = 5 minutes may be too high at low load factors.

5.3.1 Choosing the Runlengths and Number of Trials to Meet

Target Confidence and Accuracy

An automated approach for finding the peak rate must automatically determine the

choice of t and r for each test load λ, while adapting to: (a) the value of the load

factor, and (b) the target confidence and accuracy of the estimated peak rate λ∗. The

goal is to converge quickly to ρ = 1. Higher number of trials and longer runlengths

are useful near a load factor of 1, but must be minimal at other load factors.

From Equations 5.1 and 5.2 for confidence intervals and accuracy, it follows that,

for a given confidence level c, more trials tend to give tighter confidence intervals,
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and hence higher accuracy. Similarly, as the confidence level increases, the width

of the confidence interval also increases, requiring more trials to maintain a target

accuracy. For the scatter plot in Figure 5.4, at load factor 0.3 and runlength of 90

seconds, the data gives us 70% confidence that 5.6 < R̄ < 6 , or 95% confidence

that 5 < R̄ < 6.5. (R̄ is the mean server response time.) The data also determines

the runlength needed to achieve target confidence and accuracy: a runlength of 90

seconds achieves an accuracy of 87% with 95% confidence, but it takes a runlength

of 300 seconds to achieve 95% accuracy with 95% confidence.

Accuracy and confidence decrease with higher load factors unless the number of

trials t and/or the runlength of each trial r is increased. For example, at load factor

0.9 and runlength 90, the data gives us 70% confidence that 21 < R̄ < 24 (93.3%

accuracy), or 95% confidence that 20 < R̄ < 27 (85.1% accuracy). The controller

can run the experiment with a longer runlength in order to achieve a given target

confidence level and/or accuracy. For example, in order to achieve accuracy ≥ 87%

at 95% confidence, the controller need a runlength of 120 seconds or more.

In addition to increasing the runlength, increasing the number of trials is another

way to improve the confidence level and accuracy. Figure 5.5 quantifies the tradeoff

between the runlength and the number of trials required to attain a target accuracy

and confidence for different workloads. It shows the number of trails required to

meet an accuracy of 90% at 95% confidence level for different runlengths. The figure

shows that to attain a target accuracy and confidence, one needs to conduct more

independent trials at smaller runlengths, and vice versa. It also shows that there is a

sweet spot for the runlength of an experiment that causes significant reduction in the

number of trials. Figure 5.5 shows that runlength ≥ 3 minutes is sufficient to attain

the sweet spot for the number of trials in our setting. In general, the controller can

use such curves as a guide to pick a suitable runlength.
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Figure 5.5: Number of trials required to get 90% accuracy for mean server response
time at 95% confidence level at low and high load factors for different runlengths.
The results are for server configuration with 1 disk and 4 nfsds, and representative
of other server configurations.

5.4 Search Algorithm for Peak Rate

Algorithm 12 illustrates our end-to-end search-based approach for estimating the

peak rate for a given setting of factors, while meeting target levels of confidence and

accuracy. The measures used by this algorithm are summarized in Table 5.2.

5.4.1 Inputs

The inputs to Algorithm 12 specify the high level goals of storage server benchmarking

such as the operating bounds of the server and the target confidence and accuracy of

the estimated peak rate.

• Rsat, the threshold on the mean server response time. The server saturates

when its mean response time exceeds this threshold, i.e., R̄ > Rsat.

• Psat, the threshold on the percentage of requests that must complete under a

threshold latency Lsat. The server saturates when this threshold is not met,

i.e., P < Psat.
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• Width parameter s that defines the peak-rate region [Rsat ± sRsat]. The peak

rate λ∗ is any test load that causes the mean server response time to be in this

region. (The region [Psat ± sPsat] is defined similarly.)

• Target confidence c in the peak rate that the algorithm estimates.

• Target accuracy a of the peak rate that the algorithm estimates.

Algorithm 12 consists of three key steps that involve choosing: (a) a sequence of

test loads to try; (b) the number of independent trials at any test load; and (c) the

runlength of the workload at that load.

5.4.2 Sequence of Test Loads

For choosing a test load to try, Algorithm 12 uses one of several load-picking algo-

rithms; Algorithm 13, termed Binsearch, is one such example. Section 5.5 describes

these algorithms in detail and their cost and accuracy tradeoffs. All load-picking al-

gorithms take as input the value of past test loads that Algorithm 12 attempts, and

the corresponding mean server response times. The output consists of a load that is

a potential peak rate. This load then becomes the next test load in Algorithm 12.

5.4.3 Number of Trials

For the current test load λcur, Algorithm 12 first conducts two trials to generate

an initial confidence interval for R̄λcur , the mean server response time at load λcur,

at 95% confidence level. (Steps 6 and 7 in Algorithm 12). Next, a test is done to

check whether the confidence interval overlaps with the peak-rate region input to

the algorithm (Step 9). Overlap is tested by comparing the bounds of the peak-rate

region and the confidence interval. These steps establish with 95% confidence level

whether the current test load is a potential peak rate. If there is no overlap, then
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Algorithm 12 moves on to the next test load as guided by a load-picking algorithm

such as Algorithm 13 (Step 2).

If there is an overlap of the regions, then Algorithm 12 identifies the current test

load λcur as an estimate of a potential peak rate. It then computes the accuracy of

the mean server response time R̄λcur at the current test load, at the target confidence

level of c% (Section 5.2.1). If the accuracy at the target confidence matches the target

accuracy a, then the algorithm terminates (Step 4), otherwise it conducts more trials

at the current test load (Step 6).

As the algorithm conducts more trials at the current test load, the accuracy

improves because the confidence interval gets narrower (Section 5.3.1). As a result,

one of two things happen: (i) the overlap test of the confidence interval and the

peak-rate region fails (Step 10), in which case the algorithm correctly moves on to

the next test load; or (ii) the overlap test does not fail and after some number of

trials, the algorithm attains the target accuracy.

5.4.4 Runlength for Test Load

To simplify the choice of runlength for each experiment at a test load (Step 5),

Algorithm 12 uses the sweet spot that is derived from Figure 5.5 (Section 5.3.1). The

figure shows that for all workloads that this work considers, a runlength around 3

minutes attains the sweet spot for the number of trials.

5.4.5 Discussion

Algorithm 12 automatically adapts the number of trials at any test load according

to the load factor and the desired confidence and accuracy. Section 5.6 presents

empirical results that demonstrate the same.

For very low or very high load factors, the algorithm conducts a small (often the
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minimum of two in our evaluation) number of trials to establish with 95% confidence

that the current test load is not the peak rate (Step 10). However, as soon as the

algorithm identifies a test load λ to be a potential peak rate, which happens near a

load factor of 1, it spends more time at λ to check whether it is in fact the peak rate.

Since the algorithm computes the confidence interval after each trial, it conducts the

minimum number of trials to establish whether λ is the peak rate.

The while condition in Step 4 of Algorithm 12 matches the current accuracy of the

potential peak rate with the target accuracy at a target confidence. Since the accuracy

and confidence improve with more trials, if the target confidence and accuracy are

low, the algorithm will automatically conduct less trials before it terminates. Thus,

the benchmarking cost will be low if the desired target confidence and accuracy are

low, and vice versa.

5.5 Mapping Response Surfaces

Algorithm 11 shows how to map a response surface for a space of samples correspond-

ing to a subset of interesting factors in 〈 �W, �R, �C〉: the outer loop iterates over the full

space of samples, and the inner loop finds the peak rate for each sample. Mapping a

response surface poses two challenges:

• Algorithm 12 from Section 5.4 is used to implement the inner loop. However,

the algorithm needs a good load-picking policy to generate a sequence of test

loads. An efficient controller policy will generate a new test load based on the

feedback of the previous results, e.g., the server response time and throughput

observed on the earlier test loads (see loop L2 in Figure 2.2). Sections 5.5.1-5.5.4

describe the load-picking algorithms that this work considers.

• Algorithm 11 also needs a policy for choosing the samples in the outer loop.
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Algorithm 12: Searching for the Peak Rate

1) Initialization. Peak Rate, λ∗ = 0; Current accuracy of the peak rate,
aλ∗ = 0; Current test load, λcur = 0; Previous test load, λprev = 0;

2) Use Algorithm 13 to choose a test load λ by giving current test load λcur,
previous test load λprev, and mean server response time R̄λcur at λcur as
inputs;

3) Set λprev = λcur and λcur = λ;

// Conduct trials until the target accuracy for the peak rate is reached at
the desired confidence.

4) while (aλ∗ < a at confidence c)

5) Choose the runlength r for the trial;

6) Conduct the trial at λcur, and measure server response time from this
trial, Rλcur ;

7) Compute mean server response time at λcur, R̄λcur , from all trials at
λcur. Repeat Step 6 if the number of trials, t, at λcur is 1;

8) Compute confidence interval for the mean server response R̄λcur at
target confidence level c.

9) Check for overlap between the confidence interval for R̄λcur and the
peak rate region.

10) if (no overlap with 95% confidence)

Go to Step 2 to choose the next test load;

else

λ∗ = λcur; // A potential peak rate has been reached;

Compute accuracy aλ∗ at confidence c;

end
end

Section 5.1 explains that exhaustive enumeration of the full factor space in the

outer loop can incur an exorbitant benchmarking cost. Depending on the goal of

the benchmarking exercise, the controller can choose more efficient techniques.

Section 5.5.5 discusses some of these techniques.
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Algorithm 13: Binsearch Input: Previous load λprev; Current load λcur; Mean
response time R̄λcur at λcur; Output: Next load λnext

1) Initialization.
if (λcur == 0)

Set λnext to a default value;

Start Geometric Phase, and return λnext;

2) Geometric Phase.
if (R̄λcur < Rsat)

Returnλnext = λcur × 2;

else
// End Geometric Phase; Start Binary Search;

binsearchlow = λprev, and go to Step 3;

end

3) Binary Search Phase.
if ( R̄λcur < Rsat) binsearchlow = λcur;

else
binsearchhigh = λcur;

end

Return λnext = (binsearchhigh + binsearchlow)/2;

5.5.1 The Binsearch Load-Picking Algorithm

Algorithm 13 outlines the Binsearch algorithm. Intuitively, Binsearch keeps doubling

the current test load until it finds a load that saturates the server. After that,

Binsearch applies regular binary search, i.e., it recursively halves the most recent

interval of test loads where the algorithm estimates the peak rate to lie.

This algorithm allows the controller to find the lower and upper bounds for the

peak rate within a logarithmic number of test loads. The controller can then estimate

the peak rate using another logarithmic number of test loads. Hence, the total number

of test loads is always logarithmic irrespective of the start test load or the peak rate.
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5.5.2 The Linear Load-Picking Algorithm

The Linear algorithm is similar to Binsearch except in the initial phase of finding the

lower and upper bounds for the peak rate. In the initial phase it picks an increasing

sequence of test loads such that each load differs from the previous one by a small

fixed increment.

5.5.3 Model-guided Load-Picking Algorithm

The general shape of the response-time Vs. load curve is well known, and it does not

change drastically for different workloads or server configurations. Using the insight

offered by the open-loop queuing theory results [59], we capture the curve by a model:

R = a+ b
λ
, where R is the response time, λ is the load, and a and b are constants that

depend on the settings of factors in 〈 �W, �R, �C〉. To learn the model, the controller

needs tuples of the form 〈λ, Rλ〉. Since the controller can record the server response

times at different test loads, it can learn the model online as it collects 〈λ, Rλ〉 tuples

for a given sample in the outer loop of Algorithm 11.

Algorithm 14 outlines the model-guided algorithm. If there are insufficient tuples

for learning the model, it uses a simple heuristic to pick the test loads for generating

the tuples. After that, the algorithm uses the model to predict the peak rate λ = λ∗

for R = Rsat, returns the prediction as the next test load, and relearns the model

using the new 〈λ, Rλ〉 tuple at the prediction. The whole process repeats until the

search converges to the peak rate. As the controller observes more 〈λ, Rλ〉 tuples,

the model-fit will improve progressively, and hence the model will guide the search

to an accurate peak rate. In many cases, this happens in a single iteration of model

learning (Section 5.6).

However, unlike the previous approaches, a model-guided search is not guaranteed

to converge. Model-guided search is dependent on the accuracy of the model, which
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in turn depends on the choice of 〈λ, Rλ〉 tuples that are used for learning. The choice

of tuples is generated by previous model predictions. This creates the possibility

of the learning an incorrect model which in turn yields incorrect choices for test

loads. For example, if most of the test loads chosen for learning the model happen

to lie significantly outside the peak rate region, then the model-guided choice of test

loads may be incorrect or inefficient. Hence, in the worst case, the search may never

converge or converge slowly to the peak rate. We have experimented with other

models including polynomial models of the form R = a+ bλ+ cλ2; they are all prone

to similar pitfalls.

To avoid the worst case, the algorithm uses a simple heuristic to choose the tuples

from the list of available tuples. Each time the controller learns the model, it chooses

two tuples such that one of them is the last prediction, and the other is the tuple

that yields the response time closest to threshold mean server response time Rsat.

More robust techniques for choosing the tuples is a topic of future work. Section 5.6

reports our experience with the model-guided choice of test loads.

5.5.4 Better Seeding

The load-picking algorithms in Sections 5.5.2-5.5.3 generate a new load given one

or more previous test loads. How can the controller generate the first load, or seed,

to try? One way is to use a conservative low load as the seed, but this approach

increases the time spent ramping up to a high peak rate. When the benchmarking

goal is to plot a response surface, the controller uses another approach that uses the

peak rate of the “nearest” previous sample as the seed.

To illustrate, assume that the factors of interest, 〈F1, . . . , Fn〉, in Algorithm 11 are

〈 number of disks, number of nfsds 〉 (as shown in Figure 5.1). Suppose the controller

uses Binsearch with a low seed of 50 to find the peak rate λ∗
1,1 for sample 〈1, 1〉. Now,
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Algorithm 14: Model-Guided Input: Previous loads λ1, λ2, ..., λcur−1; Current
load λcur; Mean response times R̄λ1 , R̄λ2, ..., R̄λcur at λ1, λ2, ..., λcur; Output: Next
load λnext

1) Initialization.
if (λcur == 0)

Return a default λnext;
end
if (number of test loads == 1)

if (R̄λcur < Rsat)
Return λnext = λcur × 2;

else
Return λnext = λcur/2;

end
end

2) Model Learning and Prediction.
Choose a value of R̄i from R̄λ1 , ..., R̄λcur−1 that is nearest to R̄sat. Let the
corresponding load be λi;

Learn the model R = a + b
λ

with two tuples 〈λcur, R̄λcur〉 and 〈λi, R̄i〉;
Return λnext = b

R̄sat−a
;

for finding the peak rate λ∗
1,2 for sample 〈1, 2〉, it can use the peak rate λ∗

1,1 as seed.

Thus, the controller can jump quickly to a test load that is close to λ∗
1,2.

In the common case, the peak rates for “nearby” samples will be close. Even

if they are not, the load-picking algorithms will still guide the search in the right

direction. However, they may incur additional cost to recover from a bad seed. The

notion of “nearness” is not always well defined. While the distance between samples

can be measured if the factors are all quantitative, if there are categorical factors—

e.g., file system type—the nearest sample may not be well defined. In such cases the

controller uses a default seed to start the search.
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5.5.5 Approximating the Response Surface

If the overall goal of server benchmarking is to understand the overall trend of how

the peak rate is affected by settings of certain factors of interest 〈F1, . . . , Fn〉—rather

than finding accurate peak rate values for each sample in 〈F1, . . . , Fn〉—then more

efficient techniques exist than iterating over all samples as in Algorithm 11. We

can leverage Response Surface Methodology (RSM) [78], a branch of statistics that

provides techniques to choose a small set of samples carefully so that the controller

can approximate the overall response surface efficiently.

By assuming that a low-degree multivariate polynomial model—e.g., a quadratic

equation of the form λ∗ = β0 +
∑n

i=1 βiFi +
∑n

i=1

∑n
j=1,j �=i βijFiFj +

∑n
i=1 βiiFi

2—

approximates the surface in the n-dimensional 〈F1, . . . , Fn〉 space, RSM provides

experiment designs (Section 2.2) for selecting a minimal set of samples for which the

controller must obtain the λ∗ to learn a fairly-accurate model, i.e., estimate values of

the β parameters in the model (see Section 3.7). We evaluate one such RSM design

in Section 5.6.

5.6 Experimental Evaluation

We evaluate the benchmarking methodology and policies with multiple workloads on

the following metrics.

Cost for Finding Peak Rate. Sections 5.4 and 5.5 present several policies for

finding the peak rate. We evaluate those policies as follows:

• The sequence of load factors that the policies consider before converging to the

peak rate for a sample. An efficient policy must quickly direct the benchmarking

effort to load factors that are near or at 1.

• The number of independent trials for each load factor. The number of trials
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should be less at low load factors and high around load factor of 1.

Cost for Mapping Response Surfaces. We compare the total benchmarking cost

for mapping the response surface across all the samples.

Cost Versus Target Confidence and Accuracy. We demonstrate that the poli-

cies adapt the total benchmarking cost to target confidence and accuracy. Higher

confidence and accuracy incurs higher benchmarking cost and vice-versa.

Section 5.6.1 presents the experiment setup. Section 5.6.2 presents the workloads

that we use for evaluation. Section 5.6.3 evaluates our benchmarking methodology

as described above.

5.6.1 Experimental Setup

Table 5.1 shows the factors in the 〈 �W, �R, �C〉 vectors for a storage server. We bench-

mark an NFS server to evaluate our methodology. In our evaluation, the factors in �W

consist of samples that yield four types of workloads: SPECsfs97, Web server, Mail

server, and DB TP (Section 5.6.2). The controller uses Fstress to generate samples

of �W that correspond to these workloads. We report results for a single factor in

�R: the number of disks attached to the NFS server ranging from 〈1, 2, 3, 4〉, and a

single factor in �C: the number of nfsd daemons for the NFS server ranging from

〈1, 2, 4, 8, 16, 32, 64, 100〉 to give us a total of 32 samples.

The workbench tools can generate both virtual and physical machine configura-

tions automatically. In our evaluation we use physical machines that have 800 MB

memory, 2.4 GHz x86 CPU, and run the 2.4.18 Linux kernel. To conduct an experi-

ment, the workbench controller first prepares an experiment by generating a sample

in 〈 �W, �R, �C〉. It then consults the benchmarking policy(ies) in Sections 5.5.1-5.5.5

to plot a response surface and/or search for the peak rate for a given sample with

target confidence and accuracy.
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Table 5.3: Summary of Fstress workloads used in the experiments.

workload file popularities file sizes dir sizes I/O accesses
SPECsfs97 random 10% 1 KB – 1 MB large (thou-

sands)
random r/w

Web server Zipf (0.6 < α <
0.9)

long-tail (avg
10.5 KB)

small (dozens) sequential reads

DB TP few files large (GB -
TB)

small random r/w

Mail Zipf (α = 1.3) long-tail (avg
4.7 KB)

large (500+) seq r, append w

5.6.2 Workloads

We use Fstress to generate �W corresponding to four workloads as shown in Table 5.3.

A brief summary follows. Further details are in [5].

• SPECsfs97: The Standard Performance Evaluation Corporation introduced

their System File Server benchmark (SPECsfs) [26] in 1992, derived from the

earlier self-scaling LADDIS benchmark [64]. A recent (2001) revision corrected

several defects identified in the earlier version [44].

• Web server: Several efforts (e.g., [8]) attempt to identify durable characteri-

zations of the Web. We derive the distributions for various parameters and the

operation mix from the previous published studies (e.g., [94, 28, 84, 32, 8]).

• DB TP: We model our database workload after TPCC [27], reading and writ-

ing within a handful of large files in a 2:1 ratio. I/O access patterns are random,

with some short (256 KB) sequential asynchronous writes with commit (fsync)

to mimic batch log writes.

• Mail: Electronic mail servers frequently handle many small files, one file per

users’ mailbox. Servers append incoming messages, and sequentially read the
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mailbox file for retrieval. Some users or servers truncate mailboxes after read-

ing. The workload model follows that proposed by Saito et al. [97].

5.6.3 Results

For evaluating the overall methodology and the policies outlined in Sections 5.4

and 5.5, we define the peak rate λ∗ to be the test load that causes: (a) the mean

server response time to be in [36, 44] ms region; or (b) more than 10% of the re-

quests to complete over 2000 ms. We derive the [36, 44] region by choosing mean

server response time threshold at the peak rate to be, Rsat = 40 and the width factor

s = 10% in Table 5.2. For all results except where we note explicitly, we aim for a λ∗

to be accurate within 90% of its true value with 95% confidence. The default value

of initial load in Algorithms 13 and 14 is 50 requests/sec.

Cost for Finding Peak Rate

Figure 5.6 shows the choice of load factors for finding the peak rate for a sample with

4 disks and 32 nfsds using the policies outlined in Section 5.5. Each point on the curve

represents a single trial for some load factor. More points indicate higher number of

trials at that load factor. For brevity, we show the results only for DB TP. Other

workloads show similar behavior.

For all policies, the controller conducts more trials at load factors at or near 1 than

at other load factors to find the peak rate with the target accuracy and confidence.

All policies without seeding start at a low load factor and take longer to reach close

to load factor of 1 as compared to policies with seeding. All policies with seeding

start at load factor close to 1, since they use the peak rate of a previous sample with

4 disks and 16 nfsds as the seed load.

Linear takes a significantly longer time because it uses a fixed increment by
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Figure 5.6: Time spent at each load factor for searching the peak rate for different
policies for DB TP with 4 disks, and 32 nfsds. The result is representative of other
samples and workloads. All policies except linear quickly converge to the load factor
of 1 and conduct more trials there to achieve the target accuracy and confidence.

which to increase the test load. However, Binsearch jumps to the peak rate region in

logarithmic number of load factors. The Model policy is the quickest to jump near

the load factor of 1 because the controller learns an accurate model quickly.

Cost for Mapping Response Surfaces

Figure 5.7 compares the total normalized benchmarking cost for mapping the response

surfaces for the three workloads using the policies outlined in Section 5.5. The costs

are normalized with respect to the lowest total cost, which is the Binsearch with

Seeding policy to find the peak rate for DB TP. Binsearch, Binsearch With Seeding,

and Linear with Seeding cut the total cost drastically as compared to the linear policy.

We also observe that Binsearch, Binsearch with Seeding, and Linear With Seeding

are robust across the workloads, but the model-guided policy is sensitive to some

workloads. This is not surprising given that the accuracy of the model guides the
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Figure 5.7: The total cost for mapping response surfaces for three workloads using
different policies.

search. While an accurate model can guide the search quickly to the peak rate, an

inaccurate model can direct the search in the wrong direction. Thus the model-guided

policy may take longer to find the peak rate.

The linear policy is not only inefficient, but also highly sensitive to the magnitude

of peak rate. The benchmarking cost of Linear for Web server peaks at a higher

absolute value for all samples than for DB TP and Mail, causing more than a factor

of 5 increase in the total cost for mapping the surface.

Reducing the Number of Samples. To evaluate the RSM approach that Sec-

tion 5.5.5 presents, we approximate the response surface by a quadratic curve in two

dimensions: peak rate = func(number of disks, number of nfsds). We use D-optimal

experiment design [78] from RSM to obtain the best of 6, 8, and 10 samples out of a

total of 32 samples for learning the response surface equation. We use Binsearch to

obtain the peak rate for the chosen samples.
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Table 5.4: Mean Absolute Prediction Error (MAPE) in Predicting the Peak Rate.

Workload Num. of Samples MAPE
DB TP 6, 8, 10 14, 14, 15

Web server 6, 8, 10 9, 9, 9
Mail 6, 8, 10 3.3, 2.8, 2.7

D-optimal design is an example of a model-learning design (Section 3.7). The

experiments in such designs are chosen from the total space of experiments such that

the resulting samples minimize the generalized variance of the parameter estimates

for the model that is being learned.

After learning the model, we use it to predict the peak rate at all the other samples

in the surface. Table 5.4 presents the mean absolute percentage error in predicting

the peak rate across all the samples. The results show that if the goal is simply to

approximate the surface, we can reduce the size of the sample space significantly.

Cost Versus Target Confidence and Accuracy

Figure 5.8 shows how the benchmarking methodology adapts the total benchmarking

cost to the target confidence and accuracy of the peak rate. The figure shows the

total benchmarking cost for mapping the response surface for the DB TP using the

Binsearch policy for different target confidence and accuracy values.

Higher target confidence and accuracy incurs higher benchmarking cost. At 90%

accuracy, note the cost difference between the different confidence levels. Other

workloads and policies exhibit similar behavior, with Mail incurring a normalized

benchmarking cost of 2 at target accuracy of 90% and target confidence of 95%.

So far, we configure the target accuracy of the peak rate by configuring the accu-

racy, a, of the response time at the peak rate. The width parameter s also controls

the accuracy of the peak rate (Table 5.2) by defining the peak rate region. For ex-
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Figure 5.8: The total benchmarking cost adapts to the desired confidence and
accuracy. The cost is shown for mapping the response surface for DB TP using the
Binsearch policy. Other workloads and policies show similar results.

ample, s = 10% implies that if the mean server response time at a test load is within

10% of the threshold mean server response time, Rsat, then the controller has found

the peak rate. As the region narrows, the target accuracy of the peak rate region

increases. In our evaluation so far, we fix s = 10%.

Figure 5.9 shows the benchmarking cost adapting to the target accuracy of the

peak rate region for different policies at a fixed target confidence interval for DB TP

(c = 95) and fixed target accuracy of the mean server response time at the peak rate

(a = 90%). The results for other workloads are similar. All policies except the

model-guided policy incur the same benchmarking cost near or at the peak rate since

all of them do binary search around that region. Since a narrower peak rate region

causes more trials at or near load factor of 1, the cost for these policies converge.
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Figure 5.9: Benchmarking cost adapts to the target accuracy of the peak rate region
for all policies. As the region narrows, the majority of the cost is incurred at or near
the peak rate. Linear and Binsearch incur the same cost close to the peak rate, and
hence their cost converges as they conduct more trials near the peak rate. The cost
is shown for DB TP. Other workloads show similar results.

5.7 Related Work

Several researchers have made a case for statistically significant results from system

benchmarking, e.g., [18]. Auto-pilot [117] is a system for automating the benchmark-

ing process such that a benchmarking experiment can obtain results with the target

confidence and accuracy for a single test load on the system. We use this idea as

a basis for an efficient and accurate search for the peak rate through a larger space

of a test loads, e.g., to obtain the saturation throughput for a server under a given

workload, resource allocation, and configuration.

While there are large numbers and types of benchmarks, (e.g., [23, 61, 17, 64])

that test the performance limits of a system in a variety of ways, there is a lack

of a general benchmarking methodology that provides benchmarking results from

these benchmarks efficiently with confidence and accuracy. Our methodology and

techniques for balancing the benchmarking cost and accuracy are applicable to all
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these benchmarks.

Zadok et al. [110] present an exhaustive nine year study of file system and storage

benchmarking that includes benchmark comparisons, their pros and cons [103], and

makes recommendations for systematic benchmarking methodology that considers a

range of workloads for benchmarking the server. Smith et al. [104] make a case for

benchmarks the capture realistic application behavior. Ellard et al. [36] show that

benchmarking an NFS server is challenging because of the interactions between the

server software configurations, workloads, and the resources allocated to the server.

One of the challenges in understanding the interactions is the large space of factors

that govern such interactions. Our benchmarking methodology benchmarks a server

across the multi-dimensional space of workload, resource, and configuration factors

efficiently and accurately, and avoids brittle claims [75] and lies [107] about a server

performance.

Synthetic workloads emulate characteristics observed in real environments. They

are often self-scaling [23], augmenting their capacity requirements with increasing

load levels. The synthetic nature of these workloads enables them to preserve work-

load features as the file set size grows. In particular, the SPECsfs97 benchmark [26]

(and its predecessor LADDIS [64]) creates a set of files and applies a pre-defined mix

of NFS operations. Fstress is a synthetic, flexible, self-scaling file service benchmark

similar to SPECsfs97. Like SPECsfs97, Fstress uses probabilistic distributions to

govern workload mix and access characteristics. Fstress adds file popularities, di-

rectory tree size and shape, and other controls. Fstress includes several important

workload configurations, such as Web server file accesses, to simplify file system per-

formance evaluation under different workloads [104] while at the same time allowing

standardized comparisons across studies.
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5.8 Conclusions and Future Work

This work presents efficient and effective controller policies for benchmarking servers,

in particular storage servers. The policies plot the saturation throughput or peak rate

over a space of workloads and system configurations. The overall approach consists

of iterating over the space of workloads and configurations to find the peak rate

for samples in the space. The policies find the peak rate efficiently while meeting

target levels of confidence and accuracy to ensure statistically rigorous benchmarking

results.

The controller may use a variety of heuristics and methodologies to prune the

sample space to map a complete response service. This work illustrates one such

approach, and an exhaustive comparison of different policies to prune the sample

space remains an interesting future work.
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Chapter 6

Spectrum of Models: A Discussion

Predictive system models are a prerequisite for a large variety of system manage-

ment tasks [45]. Section 2.1 introduces the spectrum of models that this disserta-

tion considers. This chapter further explores the spectrum in the context of the

experiment-driven framework.

6.1 Models

A model consists of a structure and parameters. The structure of a model defines the

relationship among the model parameters. To use a model that predicts the system

behavior as a function of parameters that affect the system, we must have sufficiently

accurate values for the model parameters as well as the correct model structure.

Section 2.1 introduces the spectrum of models ranging from a priori to black-box

models. In an a priori model both the model structure and model parameters are

known based on the knowledge of the internal details of the system. On the other

hand, in a black-box model, nothing is assumed about the internal working of the

system apart from what can be observed from outside the system. Hence, in such

models, neither the model structure nor the value of model parameters is known.

In practice, models lie somewhere in between the two extremes depending on how

much prior information is available about the model structure and parameters. In a

priori models the model structure is known, but accurate values of model parameters

are unknown. Similarly in black-box models there might be some prior knowledge

of system internals that can guide the guess for the appropriate model structure.

Sections 6.1.1 and 6.1.2 present a brief description of the two extremes and discuss
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the role of the experiment-driven framework from Chapter 2 in the overall spectrum.

6.1.1 A Priori Models

Consider a simple system with a single hardware device, where a stream of requests

access the device for some service. Figure 6.1 illustrates the response time of such a

system as a function of the system’s utilization. Equation 6.1 presents an example

of a simple a priori model that captures the response time behavior that the fig-

ure illustrates. The equation represents a queuing theory model of a single service

center [69].

The model outputs the response time R of a system as a function of: (a) service

demand of the system, D; and (b) utilization of the system, U . The service demand

D captures the service requirement for each unit of work that the system does. The

system utilization captures the busyness of the system for a given interval of time;

U = 1 implies that the system is fully utilized or busy for the entire duration of the

interval. The structure of the model shows that system response time R is directly

proportional to the service demand D, and inversely related to the available capacity

of the system 1 − U .

R =
D

1 − U
(6.1)

In the model, the parameter for system utilization U serves as an input to the

model, and the parameter for service demand D is the unknown parameter. The

model can easily capture the system behavior in Figure 6.1 assuming that accurate

value of the system service demand D is known. In practice, it is rarely the case that

the value of model parameters is known a priori even if the structure is well known.

Hence, the model parameters must be estimated from the observations of samples of

system behavior. For the model in Equation 6.1, we need to estimate the value of
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Figure 6.1: System response time as a function of the system utilization.

the system service demand D by observing the system utilization U and the system

response time R (or the system throughput [69]) when the system is in operation.

Once an accurate estimate of the system service demand is available, the model can

be used to predict the system response time R as a function of the system utilization

U .

The simple model in Equation 6.1 illustrates that in order to estimate the values

of unknown model parameters for a priori models we need samples of system be-

havior. As Section 1.3 discusses, gathering relevant samples of system behavior is a

challenging problem. For example, the service demand of a disk depends on factors

such as the layout of the data on the disk, the type of workload, the disk scheduling

algorithm, the operating system prefetching policies, and the caching hierarchy. The

samples must expose the impact of the important factors and interactions to obtain

a sufficiently accurate estimate of the disk service demand.

We can use the experiment-driven framework from Chapter 2 to obtain the rele-

vant samples quickly and efficiently to learn accurate estimates for the parameters.

In this work, we show that the experiment-driven framework is applicable for learning

the parameters for such models in two system domains. Chapter 4 presents an appli-
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cation performance model for batch applications, where the model structure is based

on prior knowledge of the behavior of batch applications (Section 4.4.1). Chapter 5

presents a server response time model, where the model structure is based on prior

knowledge of the behavior of response time curve as a function of load (Section 5.5.3).

A priori models are widely used for modeling computer systems. They offer valu-

able insight into the system behavior independent of their use to predict the perfor-

mance effects of management choices. In our work leading up to this dissertation we

developed the LAWS model that bounds the maximum or peak performance benefit

of low-overhead I/O as a result of innovations in networking hardware (e.g., faster

networks), or software (e.g., by protocol offload) for the entire space of applications.

The key parameters of LAWS consist of four ratios—Lag, Application, Wire, and

Structural or LAWS—that capture speed differences between the application host

and the network, the CPU-intensity of the application, and structural factors that

may eliminate a portion of network I/O overhead. We found LAWS to be useful for

understanding trends, gaining insights into system behavior as a result of different

design choices, and for interpreting previous and current empirical studies.

Moreover, if the samples to learn the model parameters are available, then such

models can be used to extrapolate system behavior beyond the behavior seen in

the samples. For example, Equation 6.1 captures the non-linear behavior of system

response time, and it can predict the response time correctly even if the samples

used to learn the service demand do not exhibit significant non-linear response time

behavior.

However, since systems consist of several interacting components, it is often dif-

ficult to understand the internal details of the system in order to create the correct

model structure. Moreover, systems change over time as system administrators re-

spond to varying workload demands. In such situations, existing a priori models may
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become brittle unless they adapt to the changes quickly [24].

6.1.2 Black-Box Models

Due to the challenges involved in formulating the correct structure for a priori models,

there is a considerable interest in black-box models that assume little or no prior

knowledge about the internals of a system. In such models, a model structure is

guessed and the model parameters are learned from the samples of system behavior

gathered during the system’s operation. Black-box models are general and applicable

to a wide variety of systems. They easily adapt to changing system environments and

can be induced automatically. Recent work in black-box modeling has shown great

promise for the use of such models for automated system management (e.g., [24, 121]).

Equation 6.2 illustrates a simple black-box model that predicts the system re-

sponse time as a function of the system utilization to capture the behavior that

Figure 6.1 illustrates. The model consists of two unknown parameters: a which is

the coefficient for the system utilization U ; U goes as an input to the model, and c

which is a constant. Note that unlike the model in Section 6.1.1 that requires the

knowledge of the system service demand, the model in Equation 6.2 does not assume

any prior information about the system’s behavior. It guesses that the response time

is a linear function of the system utilization, and hence the model structure represents

a linear additive model [72].

R = aU + c (6.2)

To learn the parameters of a black-box model, similar to that of a priori models,

we need samples of system behavior. For the model in Equation 6.2, the samples

consist of 〈R, U〉 tuples. Once such samples are available, it is easy to learn a and c

by applying statistical learning techniques such as least squares regression [53]. Note
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however that unlike a priori models, such models are good mainly for interpolation,

and their accuracy diminishes outside the operating range that is observed in the

samples. For example, if the model in Equation 6.2 is learned using samples that

only reflect the portion of Figure 6.1 that can fit a line, then the model will predict

inaccurate response time for system utilization outside the range observed in the

samples. Section 4.8.2 presents an empirical result where inadequate samples can

lead to inaccurate black-box models, and hence wrong inferences about the system

behavior.

The experiment-driven framework collects samples of system behavior proactively

to ensure that the samples expose the operating range of the relevant parameters

and interactions. Chapter 3 presents examples of black-box models that capture

the response time and throughput of Web services. We show that the experiment-

planning policies not only gather the relevant samples that are required to learn

accurate models with a given structure, but can also aid to simplify and verify the

model structure for black-box models.

For example, Sections 3.5.1, 3.5.3, and 4.6.2 present experiment-planning policies

to prune the large space of factors that affect system performance. Knowledge of

important factors can reduce the space of total factors that the model must con-

sider. Section 4.9 illustrates that reducing the factor space enables quick learning of

sufficiently accurate models.

Similarly, Sections 3.5.2 and 3.5.3 present experiment-planning policies to identify

if the factors interact with each other and if the factors have a non-linear impact

on system behavior. Considering the important interactions and non-linear effects

ensures that the model can capture a wide range of system behavior that may or may

not have appeared in a system’s normal operation.
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6.2 Summary

This chapter discusses the spectrum of models that Section 2.1 introduces. The

discussion shows that the challenge of gathering representative samples of system

behavior in order to estimate model parameters is common to both a priori and

black-box models. Hence, the experiment-driven framework is applicable for learning

models across the modeling spectrum.
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Chapter 7

Conclusions and Future Work

Computer systems are becoming increasingly complex to manage due to their scale,

the large number of factors that affect their behavior, and unknown interactions

among such factors. A ‘system knowledge base’ that captures how different factors

and multi-factor interactions affect the end-to-end behavior of a system is a prereq-

uisite for managing systems effectively. This dissertation addresses the challenge of

developing policies and mechanisms to enable building a sufficiently accurate knowl-

edge base automatically, efficiently, and proactively.

We argue that an accurate system knowledge base is difficult to learn by passively

observing the system in its normal operation, as is typical today. First, passive

observations may not be available to start with in order to learn the knowledge base.

Even if such observations are available, they may not expose the impact of all the

relevant factors and often unknown interactions between the factors in a scalable

manner. This dissertation makes a case for planning and conducting experiments to

build the knowledge base proactively.

We develop an experiment-driven framework that incorporates: (a) policies for

planning the experiments; and (b) mechanisms for conducting the experiments. The

policies that plan the experiments to explore a large range of factors and interactions

leverage existing work in two fields: design of experiments and active machine learn-

ing. Both these fields are built on rigorous theoretical foundations, and offer efficient

techniques to explore the multi-dimensional space of factors and interactions. The

mechanisms for conducting the experiments leverage system virtualization technolo-

gies to make efficient use of resources that are used for conducting the experiments.
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We demonstrate that the experiment-driven framework can learn the knowledge

base in an automated, timely, and proactive manner in three important system do-

mains. We apply the experiment-driven framework to: (a) quantify the impact of

important factors and interactions in a system; (b) build models that predict sys-

tem behavior as a function of factors and interactions that affect this behavior; and

(c) balance the effort spent in building the knowledge base with the desired confidence

and accuracy in the knowledge base.

Empirical results for three system domains—Web services, batch computing, and

storage servers—demonstrate that our approach is practical for building the knowl-

edge base across a range of systems. Figure 7.1 summarizes the key results across

the domains. One limitation of our approach is that it requires prior knowledge of

factors that may impact the system behavior, and their potential operating range.

While such knowledge is available for a wide range of systems, there may be settings

where it is difficult to glean. Our approach also depends on the availability of the

mechanisms and resources to conduct the experiments. In this work we show that

such mechanisms already exist for three important system domains.

7.1 Future Work

Based on the work in this dissertation, we identify the following interesting avenues

for future research.

7.1.1 Choice of Models

Models of system behavior are a prerequisite for automated system management.

Chapter 6 discusses the spectrum of modeling alternatives ranging from a priori

models to black-box models in the context of the experiment-driven framework. We

observe that without the sufficient and necessary samples to learn the model pa-
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Figure 7.1: Summary of results from the application of experiment-driven frame-
work to learn the system knowledge base across different system domains.

rameters, the models will be inaccurate irrespective of where they are in the overall

spectrum. Hence, the experiment-driven approach is applicable to the entire modeling

spectrum. The experiment-planning policies in this dissertation are model-agnostic

and can be used to learn any kind of model.

However, the appropriate choice of models in the overall spectrum remains an in-

teresting question to explore. The appropriate choice depends on the system domain,

the management tasks, the availability of prior information about the system, and

the techniques used to gather the samples for learning the model. The discussion

in Sections 4.6.2 and 6.1.2 touches upon the use of the experiment-driven frame-

work to guide the choice of models, but an automatic selection of models remains an

interesting avenue for future work.
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7.1.2 Choice of Experiment Designs

A key challenge while planning experiments is to choose experiments that can gen-

erate samples to learn a sufficiently accurate knowledge base quickly while making

efficient use of resources that are available for conducting the experiments. The

experiment-planning policies in this dissertation leverage standard techniques from

two fields—design of experiments and active machine learning—to guide the choice

of experiments. In our evaluation, we find that the standard techniques are sufficient

for generating samples to learn the knowledge base.

However, both design of experiments and active machine learning are themselves

active research areas. Hence, the state of the art in these fields may offer techniques

that are more efficient and scalable than the standard techniques. Exploring the state

of the art in these fields is an interesting area for future work.

7.1.3 Online versus Offline

The experiment-driven framework is applicable to online as well as offline scenarios,

i.e., it can be used online on production systems as well as offline on a separate

workbench. The experiment-planning algorithms in this dissertation focus on the

latter. In online systems, the framework must consider an additional challenge of

not causing drastic changes in the behavior of production systems. The literature in

design of experiments offers a separate method called evolutionary operation (EVOP)

to deal with this scenario [78]. EVOP does not require sudden changes to the system

that can disrupt its normal operation. It will be interesting to explore the practicality

of such methods for computer systems.
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7.1.4 Exploitation versus Exploration

Exploration versus exploitation is a classic dilemma in active machine learning [11].

Exploration improves the accuracy of the knowledge base by conducting more ex-

periments. However, excessive exploration provides diminishing returns at a cost:

resources may be wasted to improve the accuracy marginally.

We are exploring this dilemma in the context of batch computing systems [49].

Chapter 4 presents experiment-driven learning of models that predict the execution

time of a batch application when it is submitted to a batch scheduling system. On

each submission, the choice is between: (a) exploiting the model, i.e., using the

currently available model to schedule the application on available resources; and

(b) exploring the model, i.e., conducting an experiment to collect one more training

sample for improving the accuracy of the model. Exploration may result in longer

application execution time, but improve the accuracy of the model for subsequent

submissions. Similarly, exploitation with a sufficiently accurate model will result

in better scheduling, but an inaccurate model might cause longer execution and

inefficient use of resources.
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