
Precise Modeling of Design Patterns in UML

Jeffrey K. H. Mak

Department of Electronic

and Information

Engineering

The Hong Kong Polytechnic

University

jeffreym@eie.polyu.edu.hk

Clifford S. T. Choy

The Multimedia Innovation

Center

The Hong Kong Polytechnic

University

mccliff@polyu.edu.hk

Daniel P. K. Lun

Department of Electronic

and Information

Engineering

The Hong Kong Polytechnic

University

enpklun@polyu.edu.hk

Abstract

Prior research attempts to formalize the structure of

object-oriented design patterns for a more precise

specification of design patterns. It also allows automation
support to be developed for user-defined design patterns

in the future CASE tools. Targeting to a particular type of

automation (e.g. verification of pattern instances),
previous specification approaches over-specify pattern

structures to a certain extend. Over-specification makes

pattern specification ambiguous and disallows the
specification language to be used for specifying

compound patterns. In this paper, we present the

structural properties of design patterns which reveal the
true abstract nature of pattern structures. To support

these properties so as to solve the over-specification
problem, we propose an extension to UML 1.5 (basically

UML 1.4 with Action semantics). The specialization and

refining mechanism of UML provides also a smooth
support for the instantiation, refinement and integration

of pattern structures specified in UML. Our work makes

no significant extension to the UML 1.5 meta-model but
more in a UML Profile approach to ease the migration of

our work to UML 2.0, which has not yet officially

released by OMG during this work.

1. Introduction

Design patterns have increasingly gained acceptance
not only as reusable constructs for software development
but also the documentation and comprehension of the
architectural design of a software system. While software
teams and companies maintain their own set of design
patterns, automation support to the utilization of design
patterns is still very limited. Current researchers seek
automation support to different pattern activities in three
main aspects. As stated by Florijn et al. [16], CASE tools
may provide assistance to (1) apply design patterns; (2)
validate pattern implementations; and (3) discover pattern
instances for system comprehension and documentation.

Recent research [13,15,20,21] also suggest using the
pattern discovering technique for locating AntiPatterns
[14] and code ‘smells’. To provide automation support to
user-defined design patterns, CASE tools must be able to
capture precisely the recurrent structure and behavior of
design patterns, which is often referred as the pattern
leitmotifs [5]. This requires a modeling language that can
precisely specify the invariants of pattern leitmotifs.
Unfortunately, a precise modeling approach to pattern
leitmotifs is still absent. While the very few pattern
experts feel satisfactory with the intuitive approach to
design patterns, this brought a big obstacle for the
common practitioners to fully understand the invariants of
the design patterns. It increases the difficulties in learning
and discussing patterns and their relationships.

To enable a more vigorous approach to specify, apply
and analyze pattern leitmotifs, previous researchers [3-
8,12] attempted to suggest some more precise
specification languages to pattern leitmotifs. However,
their suggestions erroneously impose excessive
constraints to the leitmotif specifications. In other words,
the languages are inadequate to convey the abstract nature
(flexibility) of pattern leitmotifs that we claim it imprecise
in describing the high level constraints of pattern
leitmotifs.

Our work aims at providing a modeling language that

can truly reveal the abstract nature of design patterns yet

be precise enough for all practitioners to comprehend and

agree on the specified invariants of leitmotifs. We believe

that the development of pattern automation should be

based on such a model rather than the other way round as

the prior approaches do. In order to achieve this, we

reviewed the properties of design patterns. It results in a

list of properties [17] of pattern leitmotifs which

distinguishes leitmotif structures from the conventional

object-oriented (OO) models, class templates and

frameworks.

A number of modeling languages have been proposed

in the past. In particular, A. Lauder et al. [6] proposed the

integration of constraint diagram with UML class diagram

to allow pattern roles to be played by an uncertain number

of ModelElements. It improved the inflexibility found in

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

the LayOM[18] and attribute extension technique [19]. A.

H. Eden et al. [5] defined a subset of higher order

monadic logics called LePUS. It provided accounts for set

descriptions and relationships among set elements. This

approach is found deficient and highly complex for

specifying compound patterns and higher order

participants. We will leave this discussion in later part of

this paper. A.L. Guennec et al. [4] realized LePUS

concept in UML by applying the collaboration diagram to

specify the collaboration among pattern roles. This

approach inherited the shortfall from the LePUS approach

and unable to define a certain types of invariants in

pattern leitmotifs. However, their work clarified a certain

abstract nature of pattern leitmotifs and inspired us about

how meta-level collaborations [4] can be used to prevent

a certain deficiency found in prior approaches. DPML [7]

is one of the most recent works in design pattern

modeling. This work introduced a concept of dimension

stack, which prevented serious increasing of complexity

when modeling complex design patterns while the higher-

order logic approach in LePUS does. Also, it suggested

the separation of definition and implementation aspects

into two roles for a model that is more consistent with the

pattern-level abstractions. This concept had inspired us in

two aspects. Firstly, new kinds of building blocks are

missing to encapsulate the structural knowledge of pattern

leitmotifs. In particular, we agree their proposition that

the responsibility to declare and implement operations

should be considered separately in the context of design

patterns. Secondly, these building blocks must precisely

define the boundary of their realizations in design level

models.

In the next section, we present a list of distinguishing

properties of pattern leitmotifs that we consolidated in our

study. It illustrates the required language support for

modeling pattern leitmotifs. We point out how previous

approaches fail to convey these properties. In section 3,

we propose an extension to UML 1.5 that makes UML

sufficient to model the invariants of pattern leitmotifs.

Section 4 provides a case study to illustrate how a GoF

design pattern is modeled. In Section 5, we conclude our

works and propose future research directions.

2. Structural Properties of Pattern

Leitmotifs

Pattern leitmotifs are abstract design models in

designers’ mind. It captures the most essential invariants

that generate concrete solutions for specific design

problems. As stated by J. O. Coplien [1], ‘the structure of
patterns are not themselves solutions, but they generate

solutions’. Such flexibility distinguishes it from OO

design models, class templates and frameworks. In this

section, we present these distinguishing features in terms

of leitmotif structures. These are the features that we

extracted from the existing design patterns and therefore

must be supported in order to allow the specification of

pattern leitmotifs at the correct level of abstraction yet

remains its precision in stating the constraints that must

be enforced in the pattern instances.

2.1 Role Properties

Design patterns define the structural and behavioral

properties that must be fulfilled by classes and objects. It

is a partial description which shows a view (the invariants)

of the participating classes and objects. The concept of

role fits well to this property. In order words, a leitmotif

model defines a set of essential roles taken by structural

entities (e.g. classes and objects) and behavioral entities

(e.g. operations and methods), as well as the collaboration

among them. This is more general than the object role

model [2,3]. This property suggests that pattern leitmotifs

can be specified as a UML collaboration of meta-level

entities [4]. We hereinafter refer the entities of pattern

leitmotifs as roles and the participants of the entities as

actors.

2.2 Sets of actors and set relationships among

actors

Each role in a leitmotif model may be taken by a non-

fixed number of actors while some may not. All actors

taking the same role shares the same available features

defined by the role. While some roles may be taken by a

set of actors, the specification language must, therefore,

support the specification of the generalized relationships

between these roles.

We do not go into detail as this property has long been

recognized in the previous literature [3-7]. However, it

should be noted that the number of actors taking different

roles may be constrained by a certain ratio. For example,

in Visitor pattern [8], the number of classes taking the

Element role must be equal to the number of operations

taking the visitConcreteElement role.

2.3 Role Dimensions

 A role can be viewed through different dimensions.
Each dimension represents a particular categorization of
actors. For example, in the Abstract Factory pattern, the
ConcreteProduct actors can be categorized by their
product type or their product family. Being a particular
type of product, all ConcreteProducts actors of the same
product type are instantiated through the same interface.
Belonging to a particular product family, all
ConcreteProducts actors must be instantiated by the same
factory object.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

[4,5] realize role dimension with higher order variables.
For example, the ConcreteProducts role, which has two
dimensions, is defined as a 2-dimensional class. Higher
order role relationships are defined by generalized
relationships, namely, regular and total. This approach
unnecessarily imposes orders to different dimensions.
Such order increases the complexity of defining role
relationships of higher order roles.

2.4 Abstract Relationships among Roles

Relationships among roles do not one-to-one map to

design model constructs. This is one of the crucial

properties distinguishing pattern leitmotifs from generic

class templates and frameworks.

Firstly, some role relationships (which represent high

level relations among pattern-level entities) may be

reified into a set of design level relationships (which

represent object-oriented relations among model level

entities). For example, in the Abstract Factory pattern [8],

each ConcreteFactory actor has the instantiation

relationships to Products actors. This relationship defines

its responsibility to instantiate a particular set of Products

actors. However, whether the instantiation takes place

locally as the factory method in Factory Method pattern

[8] or delegates to other methods such as the clone

method in the Pluggable Factory pattern [9] is opened.

Previous approach including DPML does not allow such

flexibility. In the contrary, DPML [7] confined that all

instances of the same design pattern must share the same

structures and that “participants (including association
role) with no dimension can only be linked with a single

UML model elements”. This violates the above fact that

Pluggable Factory pattern contains Abstract Factory

pattern.

Secondly, relationships among patterns may be

reified into different types of design level relationships.

Figure 1 shows a simplified OMT diagram of Observer

pattern given in the GoF catalog [8]. Previous approaches

[4,5,6,7] directly follow the definition of OMT diagram

that the relationship between the Observer role and

ConcreteObserver role must be reified by inheritance.

They prematurely commit that there must exist an

inheritance relationship between the actor of the Observer

role and the actors of the ConcreteObserver role. In fact,

their relationship only restricts that the ConcreteObserver

actors must “implement the updating interface (of the

Observer actor)” [8]. UML provides a similar abstraction

by modeling it as a realization of an interface which “does

not imply inheritance of structure (attributes or

associations)” [10]. DPML declares that “Each proxy (a
role in pattern specification) in the design pattern

instance model is linked to a UML design element”. This

is not the case for some design patterns including

Observer pattern.

Figure 1. Canonical structure of Observer [8]

Considering the relationship between the Observer

role and the ConcreteObserver role, it could be reified

into no explicit model level relationships. This happens if

the Observer role and the ConcreteObserver role are

reified into one single class. It is reasonable because

conceptually, a single class may provide the Observer

interface as well as the implementation of the interface at

the same time. If there is only one class of objects acting

as the observer, it is not necessary to have a class only to

take the Observer role and another class to take the

ConcreteObserver role. Figure 2 shows an OMT diagram

illustrating a possible instantiation of the Observer

pattern. It is known as an instance of the Observer-

Mediator pattern [11]. Figure 3 shows three possible types

of reification of the relationship between the Observer

role and the ConcreteObserver role.

Figure 2. An instance of Observer-Mediator[8]

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Figure 3. Reification Alternatives of Role
Realization

3. Modeling Leitmotif Structure with Meta-

level Collaborations and Stereotypes

We take the meta-modeling approach suggested in

[4,7] to model the structures of pattern leitmotifs. In

particular, we consider pattern leitmotifs as a

collaboration of ModelElements [10]. A. L. Guennec at

el. [4] took the same view in his approach. However, we

have a major different from their works: we do not base

our modeling technique on the higher order logics. As a

result, our approach reduces the complexity of higher

order logics considerably for complex design patterns. In

this section, we propose our modeling approach with

extensions to UML 1.5 which allows a precise

specification to the generic structure of pattern leitmotifs.

3.1 Modeling Pattern Leitmotifs as Meta-level

Collaborations

According to the properties discussed in Section 2.1,

we consider the structure of pattern leitmotifs as UML

collaboration among the elements in UML Metamodel.

Roles in pattern leitmotifs can therefore be considered as

a UML ClassifierRole with meta-level elements as its

base class. However, it is illegal to assign meta-level

elements to be the base of UML ClassifierRoles. This

problem has been solved by A. L. Guennec et al. [4] using

the standard <<meta>> stereotype. More precisely, the

collaboration of meta-level elements, which specify the

leitmotif structure, becomes accessible in model level by

transposing it down to the model level with the <<meta>>

stereotypes. We reuse this technique in our approach.

Therefore, a pattern leitmotif is specified by a <<meta>>

stereotyped UML collaboration diagram. Figure 4 gives

the abstract syntax of the UML collaboration. Table 1

gives the mapping of terms from the pattern domain to the

UML domain.

Figure 4. Abstract Syntax of Collaborations in
UML 1.5 Specification [10]

Table 1. Synonyms between Pattern Domain and
UML Meta-model Domain

Pattern domain UML domain (all are meta-

stereotyped)

Pattern specification Collaboration

Pattern occurrence CollaborationInstanceSet

Role ClassifierRole

Actor Instance

Role relationships AssociationRole

Actor relationships Link

Defining pattern leitmotifs with meta-level

collaborations, the relationship between the roles and the

actors are no longer Bind dependency but the playedRole-

conformingInstance associations. Since all UML concepts

are defined as Classes in the abstract syntax of UML

Metamodel, a meta-stereotyped Instance can be any non-

abstract meta-level elements. However, we expect only

ModelElements to be used for modeling pattern

leitmotifs. Constraints are therefore added to confine the

use of meta-stereotyped Instance. These constraints are

specified in the following subsection.

3.1.1 Collaborations.

[1] In a <<meta>> collaboration, the base classifier must

be stereotyped with <<meta>> and its name must be

that of a subtype of ModelElement.

Context Collaboration inv:

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

 self.stereotype exists(s | s.name = ‘meta’) implies

 self.ownedElement

 select (cr | cr.oclIsKindOf(ClassifierRole))

 forall (cr : ClassifierRole |

 (ModelElement.allSubtypes()

 exists(c | c.name = cr.base.name))

and

 (cr.stereotype

 exists(c | c.name = ‘meta’)))

[2] There is no Interaction in a <<meta>> collaboration.

In fact, <<meta>> Interactions opens a good

opportunity for us to define the behavior of a

leitmotif model. However, this is outside the scope of

this work. Therefore, we impose a temporary

constraint to prohibit the use of <<meta>> interaction

to avoid undefined semantics.

Context Collaboration inv:

self.stereotype exists(s | s.name = ‘meta’)

implies self.interaction->isEmpty()

3.1.2 CollaborationInstanceSet

[1] All CollaborationInstanceSet of <<meta>>
Collaboration must also be sterotyped with
<<meta>>.

Context CollaborationInstanceSet inv:

 self.collaboration.stereotype

 exists(s | s.name = ‘meta’) implies

self.stereotype exists(s | s.name = ‘meta’)

[2] There is no InteractionInstanceSet in a <<meta>>

CollaborationInstanceSet. The reason is the same as

the case of <<meta>> Collaboration.

Context CollaborationInstanceSet inv:

 self.stereotype exists(s | s.name = ‘meta’)

implies self.interactionInstance isEmpty()

3.2 Modeling Role Relationships

AssociationRole in meta-level collaboration defines

the abstract relationships required among actors

(ModelElements) of leitmotif roles. To do so, different

types of role relationships are defined as stereotypes. All

these stereotypes are extended from the <<implicit>>
association stereotype. <<implicit>> stereotype is a

standard element in UML 1.5 for defining conceptual

relationships in UML models. This agrees to the abstract

properties of role relationships mentioned in Section 2.4.

Figure 5 shows the stereotypes that we propose as the

basic relationship among pattern roles in terms of UML

stereotypes. Due to the space limitations, we only provide

descriptions to three note-worthy relationships in Table 2

for the comprehension of the following discussion.

Figure 5. The stereotypes hierarchy for modeling
role relationships

Table 2. The Definitions of Role Relationship
Stereotypes

Stereotype Description

Base element: Association

Extended from: <<Implicit>>

<<Realize>> This stereotype defines that the

source role (Class) provides

implementation to the behavioral

feature of the target role

(Class/Interface). It can be reified

into the Realization, Generalization

or no explicit relationship in UML

Model.

<<Implement>> This stereotype defines that the

source role (Method) implements

the specification given by the

target role (Operation). It can be

reified into the polymorphism or

the implementation of operations.

<<Invoke>> This stereotype defines that the

triggering of the source role

(Operation/Method) will lead to

the invocation of the target role

(Operation/Method).

Note that all stereotypes can be reified into different

model-level relationships. This is due to the abstract

nature of role relationships mentioned in Section 2.4.

Note also that while the stereotypes we defined can be

reified into different model-level relationships, all

possible reifications (i.e. the mapping from the

stereotyped association to ModelElements that can reify

the association) can be defined formally with OCL [23]

and thus allow automatically checking whether a given

UML model is an instance of a given pattern. We do not

describe the mechanism of such automation due to the

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

scope and the space limitation of this paper. Interested

reader may refer to [22].

Considering the <<Realize>> stereotype, it can be

reified into Realization, Generalization or no explicit

relationship in UML design model. The reason behind

this is that this conceptual relationship can be achieved in

three different structures.

Firstly, if the source role is taken by a class and the

target role is taken by an interface, a standard UML

Realization [10] will be used to define the realization of

an interface by the class. However, a class (taking the

target role) can also act as an interface to define

behavioralFeature for subclasses (taking the source role)

to implement. In this case, although the model level

relationship is Generalization instead of Realization, the

realization concept is achieved. In the extreme case, one

class takes both roles if it defines and implements the

behavioralFeature at the same time. In this case, the

realization concept is achieved implicitly. This subsumes

the idea of DPML [7] that separating the concern of

behavioral definition and implementation into different

roles results in a leitmotif model that is closer to the mind

of pattern writers.

The <<invoke>> stereotype defines a high-level

behavioral relationship among two behavioralFeatures.

The reason to introduce behavioral description in the

structural model is to specify the constraints which

control the possible behavior among objects of different

classes. This is a very important type of variants in pattern

leitmotifs.

4. A Case Study

In this section, we illustrate how to model pattern

leitmotifs with the meta-level collaborations we propose.

The first case study provides the complete model of

Visitor pattern to show all basic modeling techniques we

propose and how the structural properties of leitmotifs are

supported with our proposition. The second case study in

Abstract Factory illustrates the importance of supporting

abstract relationships in a pattern specification language.

4.1 Modeling Visitor Pattern

Figure 6 shows the meta-level collaboration of the

Visitor pattern. Each pattern role is defined as a UML

ClassifierRole. Some of the ClassifierRoles are taken by

classifiers such as class (e.g. ConcreteElement), interface

or both of them (e.g. Element) while the others are taken

by behavioralFeatures such as operation (e.g. Accept),
method (e.g. VisitConcreteElement) or both of them. In

the following discussion, we refer to the set of instances

which conforms a certain ClassifierRole (in a single

collaboration instance) as the instance set of the

ClassifierRole. In addition, each instance in the

ClassifierRole’s instance set is referred as the instances of

that ClassifierRole.

ClassifierRoles are related to AssociationRoles which

define the abstract relationships required among

Instances. The composite relationship between the

Element role and Accept role defines the required

behavioralFeatures, Accept, of Element instances. Other

AssociationRole can also be seen among the

ClassifierRoles. The detail semantics (and constraints of

the association stereotypes) can refer to section 3.2.

Figure 6. Meta-level Collaboration of Visitor
Leitmotif

The number at the right upper corner of each

ClassifierRole denotes the number of its instances in one

collaboration instance (pattern instance). This is the

standard UML notation. However, a difference is that for

some ClassifierRole, the value is given in a mathematical

expression with variables of integer type. While there are

no restriction to the type of mathematical expression that

can be used to specify the object multiplicity, the

mathematical expression must give a positive integer in

any circumstances in order to maintain the wel-

formedness of the collaboration diagram.

In this example, there are m ConcreteVisitor instances

in each collaboration instance. We use this to maintain the

instance ratio among the ClassifierRole. Therefore, in any

collaboration instance,

of ConcreteVisitor instance

of VisitConcreteElement instance

m:mn=

The filtering property of UML quantifier let us

partition a large set of instances with different

categorizations. This property let us specify what

categorization of an instance set is related to another

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

instance set. Considering the VisitConcreteElement, there

are mn VisitConcreteElement instances for each

collaboration instance. Each has two dimensions, namely,

the visitor dimension (V) and the element dimension (E).

Figure 7 illustrates how the VisitConcreteElement
instances are partitioned in the V and E dimension.

The V-dimension partitions the mn

VisitConcreteElement instances into m sets. Each set is

related to its corresponding ConcreteVisitor instance

holding the same quantifier value. As a result, each

ConcreteVisitor instance owns n VisitConcreteElement
instances. Note that this number agrees to the ratio of

their instances obtained before. On the contrary, the E-

dimension partitions the VisitConcreteElement instance

set into n subsets. Similarly, each subset is related to its

corresponding Element holding the same quantifier value.

The value of the quantifiers can be obtained by assessing

the attribute values of the meta-level elements.

Figure 7. The partitioning of ConcreteVisitor
actors in V and E dimensions

When the leitmotif model is instantiated, the abstract
relationship can be reified into different model level
relationships for different situations. Also, each instance
may take any number of ClassifierRoles as long as it
conforms to the required properties. As a result, a variety
of concrete solutions can be obtained by varying these
two factors. Taking the GoF Visitor as an example, the
Element and ConcreteElement, as specified in the prior
approach, must be instantiated into a class hierarchy.
However, it is no longer mandatory in our approach.
Instead, the Element role could be taken by an interface
with a set of ConcreteElement class implementing it.

4.2 Modeling Abstract Factory Pattern

The use of the Abstract Factory pattern in the

Pluggable Factory pattern illustrates the significance of

conveying the true abstract nature of pattern leitmotifs.

The Pluggable Factory pattern, shown in Figure 8, is a

compound pattern composed by the Abstract Factory

pattern and the Prototype pattern. However, the class

hierarchy of the Factory role in the Abstract Factory

pattern is eliminated in the Pluggable Factory pattern.

Previous literature [9] explains that the Abstract Factory

class and the Abstract Factory class hierarchy are

removed because the hierarchy is no longer useful.

However, the Abstract Factory role is a participant of the

Abstract Factory pattern. It is a part of the invariants

which should never be removed from any composition of

this design pattern. Otherwise, the composition violates

the invariants of the Abstract Factory pattern. This

implies that the composition does not contain the Abstract

Factory pattern indeed. In addition, according to the

specification of Pluggable Factory, the Client “uses … the

interface declared by ConcreteFactory …”. Declaration

of the creation interface in the Abstract Factory pattern is

the responsibility of the Abstract Factory role according

to the GoF Catalog. Therefore, it is clearly that the

ConcreteFactory role in the Pluggable Factory pattern is

actually not the ConcreteFactory role in the Abstract

Factory pattern. Instead, it is a compound of the

AbstractFactory role and the ConcreteFactory role of the

Abstract Factory pattern. This can explain why the

ConcreteFactory role in the Pluggable Factory pattern

takes also the responsibility of the AbstractFactory role in

the Abstract Factory pattern. It also supports the

community’s belief that Pluggable Factory pattern uses

the Abstract Factory pattern.

Taking the previous approaches [4-7], the

AbstractFactory role and ConcreteFactory role must be

instantiated into a class hierarchy. It is apparently

conflicting to the case of the Pluggable Factory pattern.

On the contrary, in our approach, the AbstractFactory role

and the ConcreteFactory role can be defined as two

ClassifierRoles with a <<realize>> association. Therefore,

the Abstract Factory pattern in the Pluggable Factory

pattern is only a particular instance of the Abstract

Factory pattern where the Abstract Factory role and the

ConcreteFactory role are both taken by a single class.

Figure 8. An instance of Pluggable Factory [9]

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

5. Modeling Pattern Occurrences

ModelElements participate in a meta-level

collaboration through a conformingInstance-playedRole

association between the Instance and ClassifierRole as

shown in Figure 4. However, there is no explicit

semantics in UML v1.5 to specifying how the roles in

pattern leitmotifs are participated by ModelElements. The

participation was only modeled as parameter binding

dependency in UML 1.5 [10]. Since pattern leitmotifs

cannot be modeled by parameterized collaborations but

meta-collaborations that we are proposing, we need to

define a new meta-level element to capture the semantic

of role participations.

To minimize the work for migrating our proposition to

UML 2.0, we propose to replace the original

conformingInstance-playedRole association with a

RoleParticipation association class. Figure 9 shows the

extended meta-model after the replacement. Note that

there is no modification required for the original

specification of ClassifierRole and Instance.

5.1 Role Participation

A RoleParticipation specifies the participation of an
Instance in a ClassifierRole. It is a kind of Dependency in
which the playedRole (ClassifierRole) takes the server
role to define the Features conformed by the
conformingInstance (Instance) taking the client role.

Associations

playedRole: The classifierRole being played in the

participation.

conformingInstance: The instance playing the

classifierRole in the participation.

Well-formedness Rules
[1] The type of the conformingInstance must be the base

of the playedRole or any subclass of it.

context RoleParticipation inv:

 self.playedRole.base.allSubtypes()

 exists (c | c.name =

self.conformingInstance.type.name)

Notation

As shown in Figure 9, RoleParticipation is a kind of

Dependency. Therefore, the official notation for pattern

occurrences can straightly be reused as a representation of

pattern occurrences in UML models.

Figure 9. Extensions to UML Collaborations for
RoleParticipation

6. Conclusion and Future works

In this paper, we suggest a list of essential properties

of pattern leitmotifs. This set of properties distinguishes

leitmotif structures from conventional OO models, class

templates and frameworks. Based on this set of structural

properties, we examine the prior pattern specification

languages [3-7] and pinpointed their deficiency based on

these essentials. In general, the previous specification

languages [4-7] fall short in revealing the abstract nature

of pattern leitmotifs. In other words, they can only be

used to model some instances of a pattern leitmotif. We

believe that obtaining precise models of the pattern

leitmotifs is an important step towards CASE tool

supports of user-defined design patterns. Capturing the

true invariant of design patterns, engines and different

packages of common mappings from the meta-level

collaborations to model level structures can be suggested

to facilitate the application, verification and recovery of

design patterns. In that case, the automation support

would be more complete and usable than the ad hoc and

contemporary ones.

To provide a more complete and precise UML-based

modeling of pattern leitmotifs, we suggested an extension

to UML 1.5. In brief, we make use of the meta-modeling

techniques as [4,7] by using collaboration diagram to

specify the collaboration among ModelElements. To do

so, we specify an additional set of well-formedness rules

to the metamodel of UML Collaboration. One

AssociationClass named RoleParticipation is introduced

to provide semantics for the participation of roles. Since

RoleParticipation is a subclass of Dependency, the

participation of ModelElement in a leitmotif can be

represented no difference from the original UML

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

specifications. In addition, a set of stereotypes is defined

to encapsulate the high level relationships among roles.

We claim that these relationships convey the true abstract

nature of role associations that reveals designers’ intuition

to the invariants of pattern leitmotifs. The abstract

property of design pattern can therefore be retained by

avoiding premature commitments. Two case studies are

given to illustrate how this is achieved in our approach.

We believe that modeling design patterns with UML

have several significant advantages. Firstly, UML is a de

facto standard of software modeling which we can

reasonably foresee that it will become one of the

mainstream languages in software industry. Towards a

first class CASE tool support of user-defined design

patterns, integrating design patterns with UML semantics

ensures a more comprehensible and usable pattern

specifications to the pattern community. Secondly, while

the concept of components and frameworks has a

significant role in the UML 2.0, our work opens the

opportunity for a better collaboration between design

patterns and other software reuse technology such as the

components and the frameworks under a single modeling

platform.

We are currently working on the specification of

leitmotif behavior with the aid of Action Semantics. In

terms of CASE tools support, we are testing a few

mechanisms that allow generation of constraints for

pattern verification as well as matching rules for pattern

recovery given a UML design model. Study has also

started to explore how the current proposal can be adapted

to the UML 2.0 as a Profile for the modeling of Design

Patterns and reusable high-level design concepts.

7. Acknowledgments

This work is supported by the Hong Kong Polytechnic

University under grant no. G-W106.

8. Reference

[1] J. O. Coplien, Software Patterns, SIGS Management

Briefings, SIGS Books, New York, 1996.

[2] T. Reenskaug, P. Wold and Odd A. Lehne, Working
With Objects. Manning, Greenwich, 1995.

[3] D. Riehle, “Describing and Composing Patterns

Using Role Diagram”, In Proc. of the 1st International
Conference on Object-Orientation. St. Peterburg

Electrotechnical University. Russia. 1996. pp.137-152.

[4] G. Sunyé, A.L. Guennec, J-M Jézéquel. “Precise

Modeling of Design Patterns”, In Proceedings of

UML 2000, volume 1939 of LNCS, pages 482--496.

Springer Verlag, 2000.

[5] A. H. Eden. Precise Specification of Design Patterns

and Tool Support in Their Application. PhD thesis,

University of Tel Aviv, 1999.

[6] A. Lauder and S. Kent. “Precise visual specification

of design patterns”, ECOOP’98 Proceedings, Lecture

Notes in Computer Science, Springer, 1998, vol.

1445, pp. 114-134.

[7] Mapelsden, D., Hosking, J. and Grundy, J. “Design

Pattern Modelling and Instantiation using DPML”. In

Proceeding of TOOLS Pacific 2002, Sydney,

Australia. Conferences in Research and Practice in

Information Technology, 10. Noble, J. and Potter, J.,

Eds., ACS

[8] E.Gamma, Richard Helm, R. Johnson, and J.

Vlissides, Design Patterns: Elements of Reusable

Object-oriented Software. Professional Computing
Series. Addison-Wesley, Reading, MA, 1995.

[9] J. Vlissides, “Pluggable Factory Part II”, C++

Report, Feb, 1999.

[10] OMG. UML 1.5 Specification. Formal/2003-03-01.

[11] D. Riehle. “Composite Design Patterns”. In OOPSLA

’97 Conference Proceedings, ACM SIGPLAN Notes,

vol.32, no.10, pp.218-228, October 1997. ACM

Press.

[12] A. P. Flores and R. Moore, “GoF Structural Patterns:

A Formal Specification.” UNU/IIST Report No.207,

August, 2000.

[13] A. L. Correa, C. M. L. Werner, G. Zaverucha. Object
Oriented Design Expertise Reuse: An Approach

Based on Heuristics, Design Patterns and Anti-

patterns. Software Reuse: Advances in Software

Reusability. 6th International Conference, Vienna,

Austria, June 2000. Proceedings, Springer.

[14] W. J. Brown, R. C. Malveau, H. W. McCormick III,

T. J. Mowbray. AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis. Wiley

Computer Publishing, 1998.

[15] Jeffrey K. H. Mak, Clifford S. T. Choy and Daniel P.

K. Lun, “Hierarchical Relationships among Good

Design Patterns and Bad Design Patterns”, In

Proc. of International Conference on Computer

Science and Technology (CST’2003). ACTA Press,

pp.7-13.

[16] G. Florijn, M.Meijers, and P. v. Winsen. “Tool

support for object-oriented patterns”, ECOOP’97
Proceedings, Lecture Notes in Computer Science,

Springer, June 1997, vol. 1241, pp. 472-495.

[17] Doug Lea. “Christopher Alexander:an Introduction

for Object-Oriented Designers”. The Patterns

Handbook: Techniques, Strategies, and Applications,

Cambridge University Press, 1998, pp.407-422.

[18] J. Bosch. “Design Patterns as Language Constructs”,

Journal of Object-oriented Programming, vol.11, no.

12, 1998. pp.18-23.

[19] G. Hedin. “Language Support for Design Patterns

using Attribute Extension”, Workshop on Language

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Suppport for Design Patterns and Object Oriented

Frameworks (LSDF). In Proceeding ECOOP’ 97,

Springer Verlag, pp.209-231.

[20] O. Ciupke. “Automatic detection of design problems

in object-oriented reengineering”, In Proceeding of
TOOLS. 30:18-32, 1999.

[21] Y-G Guéhéneuc, H. A-Amiot. “Using Design

Patterns and Constraints to Automate the Detection

and Correction of Inter-class Design Defects”,

Technology of Object-Oriented Languages, 2001.

TOOLS 39. 39th International Conference and

Exhibition on, 2001.

[22] K. H. Mak, “Precise Specification of Design Patterns

and Compound Patterns”, 2nd Draft of MPhil. Thesis,

The Polytechnic University of Hong Kong, 2004.

[23] J. B. Warmer, The Object Constraint Language :
Precise Modeling with UML, Addison Wesley

Longman, 1999.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

