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Abstract

Prior research attempts to formalize the structure of 

object-oriented design patterns for a more precise 

specification of design patterns. It also allows automation 
support to be developed for user-defined design patterns 

in the future CASE tools. Targeting to a particular type of 

automation (e.g. verification of pattern instances), 
previous specification approaches over-specify pattern 

structures to a certain extend. Over-specification makes 

pattern specification ambiguous and disallows the 
specification language to be used for specifying 

compound patterns. In this paper, we present the 

structural properties of design patterns which reveal the 
true abstract nature of pattern structures. To support 

these properties so as to solve the over-specification 
problem, we propose an extension to UML 1.5 (basically 

UML 1.4 with Action semantics). The specialization and 

refining mechanism of UML provides also a smooth 
support for the instantiation, refinement and integration 

of pattern structures specified in UML. Our work makes 

no significant extension to the UML 1.5 meta-model but 
more in a UML Profile approach to ease the migration of 

our work to UML 2.0, which has not yet officially 

released by OMG during this work.

1. Introduction 

Design patterns have increasingly gained acceptance 
not only as reusable constructs for software development 
but also the documentation and comprehension of the 
architectural design of a software system. While software 
teams and companies maintain their own set of design 
patterns, automation support to the utilization of design 
patterns is still very limited. Current researchers seek 
automation support to different pattern activities in three 
main aspects. As stated by Florijn et al. [16], CASE tools 
may provide assistance to (1) apply design patterns; (2) 
validate pattern implementations; and (3) discover pattern 
instances for system comprehension and documentation. 

Recent research [13,15,20,21] also suggest using the 
pattern discovering technique for locating AntiPatterns 
[14] and code ‘smells’. To provide automation support to 
user-defined design patterns, CASE tools must be able to 
capture precisely the recurrent structure and behavior of 
design patterns, which is often referred as the pattern 
leitmotifs [5]. This requires a modeling language that can 
precisely specify the invariants of pattern leitmotifs. 
Unfortunately, a precise modeling approach to pattern 
leitmotifs is still absent. While the very few pattern 
experts feel satisfactory with the intuitive approach to 
design patterns, this brought a big obstacle for the 
common practitioners to fully understand the invariants of 
the design patterns. It increases the difficulties in learning 
and discussing patterns and their relationships. 

To enable a more vigorous approach to specify, apply 
and analyze pattern leitmotifs, previous researchers [3-
8,12] attempted to suggest some more precise 
specification languages to pattern leitmotifs. However, 
their suggestions erroneously impose excessive 
constraints to the leitmotif specifications. In other words, 
the languages are inadequate to convey the abstract nature 
(flexibility) of pattern leitmotifs that we claim it imprecise 
in describing the high level constraints of pattern 
leitmotifs. 

Our work aims at providing a modeling language that 

can truly reveal the abstract nature of design patterns yet 

be precise enough for all practitioners to comprehend and 

agree on the specified invariants of leitmotifs. We believe 

that the development of pattern automation should be 

based on such a model rather than the other way round as 

the prior approaches do. In order to achieve this, we 

reviewed the properties of design patterns. It results in a 

list of properties [17] of pattern leitmotifs which 

distinguishes leitmotif structures from the conventional 

object-oriented (OO) models, class templates and 

frameworks. 

A number of modeling languages have been proposed 

in the past. In particular, A. Lauder et al. [6] proposed the 

integration of constraint diagram with UML class diagram 

to allow pattern roles to be played by an uncertain number 

of ModelElements. It improved the inflexibility found in 
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the LayOM[18] and attribute extension technique [19]. A. 

H. Eden et al. [5] defined a subset of higher order 

monadic logics called LePUS. It provided accounts for set 

descriptions and relationships among set elements. This 

approach is found deficient and highly complex for 

specifying compound patterns and higher order 

participants. We will leave this discussion in later part of 

this paper. A.L. Guennec et al. [4] realized LePUS 

concept in UML by applying the collaboration diagram to 

specify the collaboration among pattern roles. This 

approach inherited the shortfall from the LePUS approach 

and unable to define a certain types of invariants in 

pattern leitmotifs. However, their work clarified a certain 

abstract nature of pattern leitmotifs and inspired us about 

how meta-level collaborations [4] can be used to prevent 

a certain deficiency found in prior approaches. DPML [7] 

is one of the most recent works in design pattern 

modeling. This work introduced a concept of dimension 

stack, which prevented serious increasing of complexity 

when modeling complex design patterns while the higher-

order logic approach in LePUS does. Also, it suggested 

the separation of definition and implementation aspects 

into two roles for a model that is more consistent with the 

pattern-level abstractions. This concept had inspired us in 

two aspects. Firstly, new kinds of building blocks are 

missing to encapsulate the structural knowledge of pattern 

leitmotifs. In particular, we agree their proposition that 

the responsibility to declare and implement operations 

should be considered separately in the context of design 

patterns. Secondly, these building blocks must precisely 

define the boundary of their realizations in design level 

models. 

In the next section, we present a list of distinguishing 

properties of pattern leitmotifs that we consolidated in our 

study. It illustrates the required language support for 

modeling pattern leitmotifs. We point out how previous 

approaches fail to convey these properties. In section 3, 

we propose an extension to UML 1.5 that makes UML 

sufficient to model the invariants of pattern leitmotifs. 

Section 4 provides a case study to illustrate how a GoF 

design pattern is modeled. In Section 5, we conclude our 

works and propose future research directions. 

2. Structural Properties of Pattern 

Leitmotifs

Pattern leitmotifs are abstract design models in 

designers’ mind. It captures the most essential invariants 

that generate concrete solutions for specific design 

problems. As stated by J. O. Coplien [1], ‘the structure of 
patterns are not themselves solutions, but they generate 

solutions’. Such flexibility distinguishes it from OO 

design models, class templates and frameworks. In this 

section, we present these distinguishing features in terms 

of leitmotif structures. These are the features that we 

extracted from the existing design patterns and therefore 

must be supported in order to allow the specification of 

pattern leitmotifs at the correct level of abstraction yet 

remains its precision in stating the constraints that must 

be enforced in the pattern instances. 

2.1 Role Properties 

Design patterns define the structural and behavioral 

properties that must be fulfilled by classes and objects. It 

is a partial description which shows a view (the invariants) 

of the participating classes and objects. The concept of 

role fits well to this property. In order words, a leitmotif 

model defines a set of essential roles taken by structural 

entities (e.g. classes and objects) and behavioral entities 

(e.g. operations and methods), as well as the collaboration 

among them. This is more general than the object role 

model [2,3]. This property suggests that pattern leitmotifs 

can be specified as a UML collaboration of meta-level 

entities [4]. We hereinafter refer the entities of pattern 

leitmotifs as roles and the participants of the entities as 

actors.

2.2 Sets of actors and set relationships among 

actors

Each role in a leitmotif model may be taken by a non-

fixed number of actors while some may not. All actors 

taking the same role shares the same available features 

defined by the role. While some roles may be taken by a 

set of actors, the specification language must, therefore, 

support the specification of the generalized relationships 

between these roles. 

We do not go into detail as this property has long been 

recognized in the previous literature [3-7]. However, it 

should be noted that the number of actors taking different 

roles may be constrained by a certain ratio. For example, 

in Visitor pattern [8], the number of classes taking the 

Element role must be equal to the number of operations 

taking the visitConcreteElement role. 

2.3 Role Dimensions 

 A role can be viewed through different dimensions. 
Each dimension represents a particular categorization of 
actors. For example, in the Abstract Factory pattern, the 
ConcreteProduct actors can be categorized by their 
product type or their product family. Being a particular 
type of product, all ConcreteProducts actors of the same 
product type are instantiated through the same interface. 
Belonging to a particular product family, all 
ConcreteProducts actors must be instantiated by the same 
factory object. 
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[4,5] realize role dimension with higher order variables. 
For example, the ConcreteProducts role, which has two 
dimensions, is defined as a 2-dimensional class. Higher 
order role relationships are defined by generalized 
relationships, namely, regular and total. This approach 
unnecessarily imposes orders to different dimensions. 
Such order increases the complexity of defining role 
relationships of higher order roles. 

2.4 Abstract Relationships among Roles 

Relationships among roles do not one-to-one map to 

design model constructs. This is one of the crucial 

properties distinguishing pattern leitmotifs from generic 

class templates and frameworks.  

Firstly, some role relationships (which represent high 

level relations among pattern-level entities) may be 

reified into a set of design level relationships (which 

represent object-oriented relations among model level 

entities). For example, in the Abstract Factory pattern [8], 

each ConcreteFactory actor has the instantiation 

relationships to Products actors. This relationship defines 

its responsibility to instantiate a particular set of Products

actors. However, whether the instantiation takes place 

locally as the factory method in Factory Method pattern 

[8] or delegates to other methods such as the clone 

method in the Pluggable Factory pattern [9] is opened. 

Previous approach including DPML does not allow such 

flexibility. In the contrary, DPML [7] confined that all 

instances of the same design pattern must share the same 

structures and that “participants (including association 
role) with no dimension can only be linked with a single 

UML model elements”. This violates the above fact that 

Pluggable Factory pattern contains Abstract Factory 

pattern. 

Secondly, relationships among patterns may be 

reified into different types of design level relationships. 

Figure 1 shows a simplified OMT diagram of Observer 

pattern given in the GoF catalog [8]. Previous approaches 

[4,5,6,7] directly follow the definition of OMT diagram 

that the relationship between the Observer role and 

ConcreteObserver role must be reified by inheritance. 

They prematurely commit that there must exist an 

inheritance relationship between the actor of the Observer 

role and the actors of the ConcreteObserver role. In fact, 

their relationship only restricts that the ConcreteObserver 

actors must “implement the updating interface (of the 

Observer actor)” [8]. UML provides a similar abstraction 

by modeling it as a realization of an interface which “does 

not imply inheritance of structure (attributes or 

associations)” [10]. DPML declares that “Each proxy (a 
role in pattern specification) in the design pattern 

instance model is linked to a UML design element”. This 

is not the case for some design patterns including 

Observer pattern. 

Figure 1. Canonical structure of Observer [8] 

Considering the relationship between the Observer 

role and the ConcreteObserver role, it could be reified 

into no explicit model level relationships. This happens if 

the Observer role and the ConcreteObserver role are 

reified into one single class. It is reasonable because 

conceptually, a single class may provide the Observer 

interface as well as the implementation of the interface at 

the same time. If there is only one class of objects acting 

as the observer, it is not necessary to have a class only to 

take the Observer role and another class to take the 

ConcreteObserver role. Figure 2 shows an OMT diagram 

illustrating a possible instantiation of the Observer 

pattern. It is known as an instance of the Observer-

Mediator pattern [11]. Figure 3 shows three possible types 

of reification of the relationship between the Observer 

role and the ConcreteObserver role. 

Figure 2. An instance of Observer-Mediator[8] 
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Figure 3. Reification Alternatives of Role 
Realization

3. Modeling Leitmotif Structure with Meta-

level Collaborations and Stereotypes 

We take the meta-modeling approach suggested in 

[4,7] to model the structures of pattern leitmotifs. In 

particular, we consider pattern leitmotifs as a 

collaboration of ModelElements [10]. A. L. Guennec at 

el. [4] took the same view in his approach. However, we 

have a major different from their works: we do not base 

our modeling technique on the higher order logics. As a 

result, our approach reduces the complexity of higher 

order logics considerably for complex design patterns. In 

this section, we propose our modeling approach with 

extensions to UML 1.5 which allows a precise 

specification to the generic structure of pattern leitmotifs. 

3.1 Modeling Pattern Leitmotifs as Meta-level 

Collaborations

According to the properties discussed in Section 2.1, 

we consider the structure of pattern leitmotifs as UML 

collaboration among the elements in UML Metamodel. 

Roles in pattern leitmotifs can therefore be considered as 

a UML ClassifierRole with meta-level elements as its 

base class. However, it is illegal to assign meta-level 

elements to be the base of UML ClassifierRoles. This 

problem has been solved by A. L. Guennec et al. [4] using 

the standard <<meta>> stereotype. More precisely, the 

collaboration of meta-level elements, which specify the 

leitmotif structure, becomes accessible in model level by 

transposing it down to the model level with the <<meta>> 

stereotypes. We reuse this technique in our approach. 

Therefore, a pattern leitmotif is specified by a <<meta>> 

stereotyped UML collaboration diagram. Figure 4 gives 

the abstract syntax of the UML collaboration. Table 1 

gives the mapping of terms from the pattern domain to the 

UML domain. 

Figure 4. Abstract Syntax of Collaborations in 
UML 1.5 Specification [10] 

Table 1. Synonyms between Pattern Domain and 
UML Meta-model Domain 

Pattern domain UML domain (all are meta-

stereotyped) 

Pattern specification Collaboration 

Pattern occurrence CollaborationInstanceSet 

Role ClassifierRole 

Actor Instance 

Role relationships AssociationRole 

Actor relationships Link 

Defining pattern leitmotifs with meta-level 

collaborations, the relationship between the roles and the 

actors are no longer Bind dependency but the playedRole-

conformingInstance associations. Since all UML concepts 

are defined as Classes in the abstract syntax of UML 

Metamodel, a meta-stereotyped Instance can be any non-

abstract meta-level elements. However, we expect only 

ModelElements to be used for modeling pattern 

leitmotifs. Constraints are therefore added to confine the 

use of meta-stereotyped Instance. These constraints are 

specified in the following subsection. 

3.1.1 Collaborations. 

[1] In a <<meta>> collaboration, the base classifier must 

be stereotyped with <<meta>> and its name must be 

that of a subtype of ModelElement. 

Context Collaboration inv:
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 self.stereotype  exists(s | s.name = ‘meta’) implies

 self.ownedElement 

 select (cr | cr.oclIsKindOf(ClassifierRole)) 

 forall (cr : ClassifierRole |   

 (ModelElement.allSubtypes() 

 exists(c | c.name = cr.base.name))  

and

 (cr.stereotype  

 exists(c | c.name = ‘meta’)))

[2] There is no Interaction in a <<meta>> collaboration.  

In fact, <<meta>> Interactions opens a good 

opportunity for us to define the behavior of a 

leitmotif model. However, this is outside the scope of 

this work. Therefore, we impose a temporary 

constraint to prohibit the use of <<meta>> interaction 

to avoid undefined semantics. 

Context Collaboration inv:

self.stereotype  exists(s | s.name = ‘meta’) 

implies self.interaction->isEmpty() 

3.1.2 CollaborationInstanceSet 

[1] All CollaborationInstanceSet of <<meta>> 
Collaboration must also be sterotyped with 
<<meta>>.

Context CollaborationInstanceSet inv:

 self.collaboration.stereotype 

 exists(s | s.name = ‘meta’) implies

self.stereotype  exists(s | s.name = ‘meta’) 

[2] There is no InteractionInstanceSet in a <<meta>> 

CollaborationInstanceSet. The reason is the same as 

the case of <<meta>> Collaboration. 

Context CollaborationInstanceSet inv:

 self.stereotype  exists(s | s.name = ‘meta’) 

implies  self.interactionInstance  isEmpty() 

3.2 Modeling Role Relationships 

AssociationRole in meta-level collaboration defines 

the abstract relationships required among actors 

(ModelElements) of leitmotif roles. To do so, different 

types of role relationships are defined as stereotypes. All 

these stereotypes are extended from the <<implicit>>
association stereotype. <<implicit>> stereotype is a 

standard element in UML 1.5 for defining conceptual 

relationships in UML models. This agrees to the abstract 

properties of role relationships mentioned in Section 2.4. 

Figure 5 shows the stereotypes that we propose as the 

basic relationship among pattern roles in terms of UML 

stereotypes. Due to the space limitations, we only provide 

descriptions to three note-worthy relationships in Table 2 

for the comprehension of the following discussion. 

Figure 5. The stereotypes hierarchy for modeling 
role relationships 

Table 2. The Definitions of Role Relationship 
Stereotypes 

Stereotype Description  

Base element: Association 

Extended from: <<Implicit>> 

<<Realize>> This stereotype defines that the 

source role (Class) provides 

implementation to the behavioral 

feature of the target role 

(Class/Interface). It can be reified 

into the Realization, Generalization 

or no explicit relationship in UML 

Model. 

<<Implement>> This stereotype defines that the 

source role (Method) implements 

the specification given by the 

target role (Operation). It can be 

reified into the polymorphism or 

the implementation of operations. 

<<Invoke>> This stereotype defines that the 

triggering of the source role 

(Operation/Method) will lead to 

the invocation of the target role 

(Operation/Method).  

Note that all stereotypes can be reified into different 

model-level relationships. This is due to the abstract 

nature of role relationships mentioned in Section 2.4. 

Note also that while the stereotypes we defined can be 

reified into different model-level relationships, all 

possible reifications (i.e. the mapping from the 

stereotyped association to ModelElements that can reify 

the association) can be defined formally with OCL [23] 

and thus allow automatically checking whether a given 

UML model is an instance of a given pattern. We do not 

describe the mechanism of such automation due to the 
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scope and the space limitation of this paper. Interested 

reader may refer to [22]. 

Considering the <<Realize>> stereotype, it can be 

reified into Realization, Generalization or no explicit 

relationship in UML design model. The reason behind 

this is that this conceptual relationship can be achieved in 

three different structures. 

Firstly, if the source role is taken by a class and the 

target role is taken by an interface, a standard UML 

Realization [10] will be used to define the realization of 

an interface by the class. However, a class (taking the 

target role) can also act as an interface to define 

behavioralFeature for subclasses (taking the source role) 

to implement. In this case, although the model level 

relationship is Generalization instead of Realization, the 

realization concept is achieved. In the extreme case, one 

class takes both roles if it defines and implements the 

behavioralFeature at the same time. In this case, the 

realization concept is achieved implicitly. This subsumes 

the idea of DPML [7] that separating the concern of 

behavioral definition and implementation into different 

roles results in a leitmotif model that is closer to the mind 

of pattern writers. 

The <<invoke>> stereotype defines a high-level 

behavioral relationship among two behavioralFeatures. 

The reason to introduce behavioral description in the 

structural model is to specify the constraints which 

control the possible behavior among objects of different 

classes. This is a very important type of variants in pattern 

leitmotifs. 

4. A Case Study 

In this section, we illustrate how to model pattern 

leitmotifs with the meta-level collaborations we propose. 

The first case study provides the complete model of 

Visitor pattern to show all basic modeling techniques we 

propose and how the structural properties of leitmotifs are 

supported with our proposition. The second case study in 

Abstract Factory illustrates the importance of supporting 

abstract relationships in a pattern specification language. 

4.1 Modeling Visitor Pattern 

Figure 6 shows the meta-level collaboration of the 

Visitor pattern. Each pattern role is defined as a UML 

ClassifierRole. Some of the ClassifierRoles are taken by 

classifiers such as class (e.g. ConcreteElement), interface 

or both of them (e.g. Element) while the others are taken 

by behavioralFeatures such as operation (e.g. Accept),
method (e.g. VisitConcreteElement) or both of them. In 

the following discussion, we refer to the set of instances 

which conforms a certain ClassifierRole (in a single 

collaboration instance) as the instance set of the 

ClassifierRole. In addition, each instance in the 

ClassifierRole’s instance set is referred as the instances of 

that ClassifierRole. 

ClassifierRoles are related to AssociationRoles which 

define the abstract relationships required among 

Instances. The composite relationship between the 

Element role and Accept role defines the required 

behavioralFeatures, Accept, of Element instances. Other 

AssociationRole can also be seen among the 

ClassifierRoles. The detail semantics (and constraints of 

the association stereotypes) can refer to section 3.2. 

Figure 6. Meta-level Collaboration of Visitor 
Leitmotif 

The number at the right upper corner of each 

ClassifierRole denotes the number of its instances in one 

collaboration instance (pattern instance). This is the 

standard UML notation. However, a difference is that for 

some ClassifierRole, the value is given in a mathematical 

expression with variables of integer type. While there are 

no restriction to the type of mathematical expression that 

can be used to specify the object multiplicity, the 

mathematical expression must give a positive integer in 

any circumstances in order to maintain the wel-

formedness of the collaboration diagram.  

In this example, there are m ConcreteVisitor instances 

in each collaboration instance. We use this to maintain the 

instance ratio among the ClassifierRole. Therefore, in any 

collaboration instance,  

# of  ConcreteVisitor instance

# of  VisitConcreteElement instance

m:mn=

The filtering property of UML quantifier let us 

partition a large set of instances with different 

categorizations. This property let us specify what 

categorization of an instance set is related to another 
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instance set. Considering the VisitConcreteElement, there 

are mn VisitConcreteElement instances for each 

collaboration instance. Each has two dimensions, namely, 

the visitor dimension (V) and the element dimension (E).

Figure 7 illustrates how the VisitConcreteElement 
instances are partitioned in the V and E dimension. 

The V-dimension partitions the mn

VisitConcreteElement instances into m sets. Each set is 

related to its corresponding ConcreteVisitor instance 

holding the same quantifier value. As a result, each 

ConcreteVisitor instance owns n VisitConcreteElement
instances. Note that this number agrees to the ratio of 

their instances obtained before. On the contrary, the E-

dimension partitions the VisitConcreteElement instance 

set into n subsets. Similarly, each subset is related to its 

corresponding Element holding the same quantifier value. 

The value of the quantifiers can be obtained by assessing 

the attribute values of the meta-level elements. 

Figure 7. The partitioning of ConcreteVisitor 
actors in V and E dimensions 

When the leitmotif model is instantiated, the abstract 
relationship can be reified into different model level 
relationships for different situations. Also, each instance 
may take any number of ClassifierRoles as long as it 
conforms to the required properties. As a result, a variety 
of concrete solutions can be obtained by varying these 
two factors. Taking the GoF Visitor as an example, the 
Element and ConcreteElement, as specified in the prior 
approach, must be instantiated into a class hierarchy. 
However, it is no longer mandatory in our approach. 
Instead, the Element role could be taken by an interface 
with a set of ConcreteElement class implementing it. 

4.2 Modeling Abstract Factory Pattern 

The use of the Abstract Factory pattern in the 

Pluggable Factory pattern illustrates the significance of 

conveying the true abstract nature of pattern leitmotifs. 

The Pluggable Factory pattern, shown in Figure 8, is a 

compound pattern composed by the Abstract Factory 

pattern and the Prototype pattern. However, the class 

hierarchy of the Factory role in the Abstract Factory 

pattern is eliminated in the Pluggable Factory pattern. 

Previous literature [9] explains that the Abstract Factory

class and the Abstract Factory class hierarchy are 

removed because the hierarchy is no longer useful. 

However, the Abstract Factory role is a participant of the 

Abstract Factory pattern. It is a part of the invariants 

which should never be removed from any composition of 

this design pattern. Otherwise, the composition violates 

the invariants of the Abstract Factory pattern. This 

implies that the composition does not contain the Abstract 

Factory pattern indeed. In addition, according to the 

specification of Pluggable Factory, the Client “uses … the 

interface declared by ConcreteFactory …”. Declaration 

of the creation interface in the Abstract Factory pattern is 

the responsibility of the Abstract Factory role according 

to the GoF Catalog. Therefore, it is clearly that the 

ConcreteFactory role in the Pluggable Factory pattern is 

actually not the ConcreteFactory role in the Abstract 

Factory pattern. Instead, it is a compound of the 

AbstractFactory role and the ConcreteFactory role of the 

Abstract Factory pattern. This can explain why the 

ConcreteFactory role in the Pluggable Factory pattern 

takes also the responsibility of the AbstractFactory role in 

the Abstract Factory pattern. It also supports the 

community’s belief that Pluggable Factory pattern uses 

the Abstract Factory pattern. 

Taking the previous approaches [4-7], the 

AbstractFactory role and ConcreteFactory role must be 

instantiated into a class hierarchy. It is apparently 

conflicting to the case of the Pluggable Factory pattern. 

On the contrary, in our approach, the AbstractFactory role 

and the ConcreteFactory role can be defined as two 

ClassifierRoles with a <<realize>> association. Therefore, 

the Abstract Factory pattern in the Pluggable Factory 

pattern is only a particular instance of the Abstract 

Factory pattern where the Abstract Factory role and the 

ConcreteFactory role are both taken by a single class. 

Figure 8. An instance of Pluggable Factory [9] 
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5. Modeling Pattern Occurrences 

ModelElements participate in a meta-level 

collaboration through a conformingInstance-playedRole

association between the Instance and ClassifierRole as 

shown in Figure 4. However, there is no explicit 

semantics in UML v1.5 to specifying how the roles in 

pattern leitmotifs are participated by ModelElements. The 

participation was only modeled as parameter binding 

dependency in UML 1.5 [10]. Since pattern leitmotifs 

cannot be modeled by parameterized collaborations but 

meta-collaborations that we are proposing, we need to 

define a new meta-level element to capture the semantic 

of role participations. 

To minimize the work for migrating our proposition to 

UML 2.0, we propose to replace the original 

conformingInstance-playedRole association with a 

RoleParticipation association class. Figure 9 shows the 

extended meta-model after the replacement. Note that 

there is no modification required for the original 

specification of ClassifierRole and Instance. 

5.1 Role Participation 

A RoleParticipation specifies the participation of an 
Instance in a ClassifierRole. It is a kind of Dependency in 
which the playedRole (ClassifierRole) takes the server 
role to define the Features conformed by the 
conformingInstance (Instance) taking the client role. 

Associations

playedRole: The classifierRole being played in the 

participation. 

conformingInstance: The instance playing the 

classifierRole in the participation. 

Well-formedness Rules
[1] The type of the conformingInstance must be the base 

of the playedRole or any subclass of it. 

context RoleParticipation inv:

 self.playedRole.base.allSubtypes()  

 exists (c | c.name = 

self.conformingInstance.type.name) 

Notation

As shown in Figure 9, RoleParticipation is a kind of 

Dependency. Therefore, the official notation for pattern 

occurrences can straightly be reused as a representation of 

pattern occurrences in UML models. 

Figure 9. Extensions to UML Collaborations for 
RoleParticipation 

6. Conclusion and Future works 

In this paper, we suggest a list of essential properties 

of pattern leitmotifs. This set of properties distinguishes 

leitmotif structures from conventional OO models, class 

templates and frameworks. Based on this set of structural 

properties, we examine the prior pattern specification 

languages [3-7] and pinpointed their deficiency based on 

these essentials. In general, the previous specification 

languages [4-7] fall short in revealing the abstract nature 

of pattern leitmotifs. In other words, they can only be 

used to model some instances of a pattern leitmotif. We 

believe that obtaining precise models of the pattern 

leitmotifs is an important step towards CASE tool 

supports of user-defined design patterns. Capturing the 

true invariant of design patterns, engines and different 

packages of common mappings from the meta-level 

collaborations to model level structures can be suggested 

to facilitate the application, verification and recovery of 

design patterns. In that case, the automation support 

would be more complete and usable than the ad hoc and 

contemporary ones.  

To provide a more complete and precise UML-based 

modeling of pattern leitmotifs, we suggested an extension 

to UML 1.5. In brief, we make use of the meta-modeling 

techniques as [4,7] by using collaboration diagram to 

specify the collaboration among ModelElements. To do 

so, we specify an additional set of well-formedness rules 

to the metamodel of UML Collaboration. One 

AssociationClass named RoleParticipation is introduced 

to provide semantics for the participation of roles. Since 

RoleParticipation is a subclass of Dependency, the 

participation of ModelElement in a leitmotif can be 

represented no difference from the original UML 
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specifications. In addition, a set of stereotypes is defined 

to encapsulate the high level relationships among roles. 

We claim that these relationships convey the true abstract 

nature of role associations that reveals designers’ intuition 

to the invariants of pattern leitmotifs. The abstract 

property of design pattern can therefore be retained by 

avoiding premature commitments. Two case studies are 

given to illustrate how this is achieved in our approach. 

We believe that modeling design patterns with UML 

have several significant advantages. Firstly, UML is a de 

facto standard of software modeling which we can 

reasonably foresee that it will become one of the 

mainstream languages in software industry. Towards a 

first class CASE tool support of user-defined design 

patterns, integrating design patterns with UML semantics 

ensures a more comprehensible and usable pattern 

specifications to the pattern community. Secondly, while 

the concept of components and frameworks has a 

significant role in the UML 2.0, our work opens the 

opportunity for a better collaboration between design 

patterns and other software reuse technology such as the 

components and the frameworks under a single modeling 

platform. 

We are currently working on the specification of 

leitmotif behavior with the aid of Action Semantics. In 

terms of CASE tools support, we are testing a few 

mechanisms that allow generation of constraints for 

pattern verification as well as matching rules for pattern 

recovery given a UML design model. Study has also 

started to explore how the current proposal can be adapted 

to the UML 2.0 as a Profile for the modeling of Design 

Patterns and reusable high-level design concepts. 
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