Carnegie Mellon University

Research Showcase @ CMU

Computer Science Department School of Computer Science

6-1996

Veritying the Performance of the PCI Local Bus
using Symbolic Techniques

S Campos
Carnegie Mellon University

Edmund M. Clarke
Carnegie Mellon University

W. Marrero
Carnegie Mellon University

M. Minea
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

Published In
Computer Design: VLSI in Computers and Processors, 1995. ICCD '95. Proceedings., 72-78.

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please

contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Verifying the Performance of the PCI Local Bus
using Symbolic Techniques

S. Campos E. Clarke W. Marrero M. Minea
June 18, 1996
CMU-CS-96-147

School of Computer Science
Carnegie Méllon University
Pittsburgh, PA 15213

Revised version of the paper appearing in the proceedings of |EEE International Conference in Computer
Design, Austin, TX, Oct. 1995

Abstract

Symbolic model checking is a successful technique for checking properties of large finite-state systems. This method has
been used to verify anumber of real-world hardware designs. Thismethodol ogy, however, isnot able to determinetiming or
performance properties directly. Since these properties are extremely important in the design of high-performance systems
and intime-critical applications, we have extended model checking techniquesto producetiming information. These results
allow a more detailed analysis of a model than is possible with tools that simply determine whether a property is satisfied
of not. We present algorithmsthat determine the exact bounds on the delay between two specified events and the number of
occurrences of another event in all such intervals. To demonstrate how our method works, we have modelled the PCI loca
bus and analyzed its tempora behavior. These results show the usefulness of this technique in analyzing complex modern
designs.

This research was sponsored in part by the National Science Foundation under grant no. CCR-9217549, by the Semiconductor
Research Corporation under contract 96-DJ-294, and by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of NSF, SRC, or the U.S. government.

Keywords:. real-time systems, formal verification, symbolic model checking, quantitative timing analysis,
PCI Loca Bus

1 Introduction

Model checking is atechnique for verifying finite-state hardware systems|[4, 5] that can handle extremely large
state spaces efficiently. It determines automatically if a system satisfies its specifications. Models with up to
10°° states can often be verified in minutes by using symbolic techniques [2, 12]. The method has been used
successfully to verify a number of real-world applications. For example, it has been used to find errors in the
Futurebus+ cache coherence protocol, adopted as a standard by both |EEE and the U.S.Navy [6].

Although very successful in finding errors, initial model checking agorithms can not be used to verify
or compute timing or performance information. Such information is extremely important when designing
high-performance hardware systems, or when trying to improve or maximize resource utilization. In addition,
guaranteeson hardware performance are often necessary when thehardwareisto beusedin areal -timeapplication.
In this case, it isimperative that the performance claims be substantiated with a formal anaysis that covers all
possible executions.

Several methods have been recently proposed [7, 8, 9] to verify real-time systems. These systems assume
that timing constraints are given explicitly in some notation like temporal logic and the verifier determinesif the
system satisfies the timing constraint. In [3] we have described how to compute timing properties of a real-time
software system using symbolic model checking techniques that explicitly compute the timing information as
opposed to simply checking a formula. In this paper we show how to apply these techniques to analyze the
performance of complex hardware systems.

Asin more traditional model checking approaches, a system description given in some hardware description
language is compiled into a state-transition graph and represented symbolically using binary decision dia-
grams[1]. Thisgraph isthen traversed using algorithms based on symbolic model checking techniques[2]. As
opposed to other approaches, our verification method computes quantitative timing information about a model
rather than just determining whether it satisfies a given specification or not. Our algorithms can be used not only
to verify correctness but also to evaluate and analyze performance which can lead to a better hardware design.

We present algorithmsto determine the minimum and the maximum length of a path between two given sets
of states representing specific events in the system. For example, we can use these algorithms to bound the
time between asserting a bus request and the corresponding bus grant. In addition, we may need to compute the
number of times a third event occurs within such an interval. In the scenario above we may be interested, for
example, in the number of times other transactions are issued between the bus request and the corresponding
grant. To determine this information, we describe algorithms that calculate the minimum and the maximum
number of times a specified condition can hold on a path from a set of starting statesto a set of final states. These

algorithms compute information that allows for a detailed analysis of hardware performance.

We use these techniques to analyze the performance of the PCI Local Bus. PCI is a high performance bus
architecture designed to become an industry standard for current and future high-performance systems. It isused
primarily in the Intel Pentium based systems, aswell asin the DEC Alpha processor systems. We model the PCI
bus, concentrating on itstemporal characteristics, and analyzeits performance. We compute transaction response
timein various configurations of the system. We are able to bound the response time of a PCl transaction as well
as to produce detailed information about each phase of the communications protocol. In addition, we compute
the overhead imposed by arbitration, by bus acquisition, and by other phases of the protocol. This type of
information allows the designers to understand the behavior of the system more accurately than the information
generated by traditional verification methods. Our resultsa so uncovered subtletiesin the behavior of the system
that could have been difficult to find otherwise. We believe that this example demonstrates how our method can
be used to assist in the verification and validation of complex hardware designs.

The remainder of the paper is organized as follows. Section 2 presents the underlying results for symbolic
model-checking with binary decisiondiagrams. In Section 3 the symbolica gorithmsfor computing the minimum
and maximum length of the paths between two state sets are presented. Symbolic agorithms for counting the
number of statesthat satisfy a given condition along a path between two sets of states are described in section 4.
Section 5 discusses the modeling of the PCI bus and section 6 showshow it can be analyzed using our techniques.

Section 7 concludes the paper with directions for future work.

2 Symbolic M odel Checking

Thehardware system being verified isrepresented asastate-transitiongraph. A statew inthismodel isrepresented
by avector assigning valuesto the statevariables vy, vo, . . ., v,. Thetransitionrelation N (7, ') isaformulathat
evaluates to true when there is atransition in the model from the state 7 to the state v/, where v = (v, ..., v,)
and v’ = (vi,...,v.). A pathin thetransition graph is defined as a sequence of states vg, 71, Tz, . . . such that
N (77, vi71) istruefor every ¢ > 0.

Boolean formulas can be constructed from the state variables of the model. A formulaissaid to be satisfied in
astateif and only if the assignment of variable values in the state to the corresponding variables in the formula
makes it true. In general, a formula can be satisfied in many states, and we identify a formula with the set of
states that satisfy it. Boolean formulas can be represented canonically by binary decision diagrams (BDDs) [1].
Efficient algorithms exist for computing all logica operations on BDDs, as well as for computing existential
guantification. Symbolic model checking exploits this efficiency by operating on sets of states represented
internally by BDDs [2]. For example, the BDD representing 7'(5) = {s’

N(s,s') holdsfor some s € S}, the
set of all successors of statesin astate set .S, can be easily constructed from the BDD for .S and the BDD for the

transition relation in one step, regardless of the number of statesin S and 7°(5).

2

The propertiesto be verified by themodel checker are expressed in computationtreelogic, CTL. Computation
trees are derived from state transition graphs. The graph structure is unwound into an infinite tree rooted at the
initial state. Pathsin thistree represent al possible computations of the program being modelled. Formulasin
CTL refer to the computation tree derived from the model. CTL isclassified as a branching timelogic, because
it has operators that describe the branching structure of thistree.

Formulas in CTL are built from atomic propositions (in our method, each proposition corresponds to a state
variable in the model), boolean connectives — and A, and temporal operators. Each operator consists of two
parts. a path quantifier followed by a temporal operator. Path quantifiers indicate that the property should be
true of all paths from a given state (A), or some path from a given state (E). The tempora operators describe
how events are ordered with respect to time for a path specified by the path quantifier. They have the following

informa meanings:

F ¢ (¢ holds sometimein the future) istrue of a path if there exists a state in the path that satisfies ¢.

G ¢ (¢ holds globally) istruefor apath if ¢ issatisfied by al statesin the path.

X ¢ (¢ holdsin the next state) meansthat ¢ istruein the next state of the path.

© U % (¢ holdsuntil ¢ holds) issatisfied by apathis istruein somestatein the path, and in al preceding
states, ¢ holds.

Bounded versions of the temporal operators exist [7]. They allow the expression of time-bounded properties,
which can be used to verify the real-time behavior of systems.

Some examples of CTL formulas are given below to illustrate the expressiveness of the logic.

e AG(req — AF ack): Itisalwaysthe casethat if the signal req ishigh, then eventualy ack will also be
high.

o AG(req — AF<s ack): A request isaways followed by an acknowledge within less than 5 steps.
o EF(started A\ —ready): Itispossibleto get to a state where started holdsbut ready does not hold.
e AG EF restart: From any stateit is possibleto get to the restart state.

o AG(send — Alsend U recv]): It isawaysthe case that if send occurs, then eventualy recv is true,

and until that time, send must remain true.

3 Minimum and Maximum Delay Algorithms

This section presents algorithms for computing minimum and maximum time del ays between specified events.
All computations are performed on states reachable from a predefined set of initial states. We also assume that
the transition relation is total. We consider the minimum delay algorithm first (figure 1). The agorithm takes
two sets of states asinput, start and final. It returns the length of (i.e. number of edges in) a shortest path from
adtate in start to astate in final. 1f no such path exists, the algorithm returns infinity. Recall that the function
T'(S) givesthe set of states that are successors of some statein .S. The function 7', the state sets R and R’, and

the operations of intersection and union can al be easily implemented using BDDs.

proc minimum (start, final) proc maximum (start, final)
1=0; 1=0;
R =dtart; R =TRUE;
R'=T(R)UR; R' =not_final;
while (R" # R A RN final = () do while (R # R A R' N start # () do
1 =14+ 1; 1=14+1;
R =R/, R =R,
R =T(R")UR; R'=T7YR") N not_final;
if (RN final # 0) if (R=R')
then return z; then return oo;
esereturn oo; esereturn z;

Figure 1: Minimum and Maximum Delay Algorithms

Thefirst algorithmisrelatively straightforward. Intuitively, theloopin the algorithm computesthe set of states
that are reachable from start. If at any point, we encounter a state satisfying final, we return the number of steps
taken to reach that state.

Next, we consider the maximum delay algorithm. Thisalgorithm also takes start and final as input. It returns
the length of alongest path from a state in start to a state in final. If there exists an infinite path beginning in a
state in start that never reaches a statein final, the algorithm returns infinity. The function 7-1(S’) givesthe set
of states that are predecessors of some statein S’ (i.e. T71(S’) = {s | N(s,s’) holdsfor some s’ € S’}). We
also denote by not_final the set of all states that are not in final. As before, the algorithm is implemented using

BDDs, however, a backward search isrequired in this case.
4 Condition Counting Algorithms

In many situations we are interested not only in the length of a path from a set of starting states to a set of final
states, but also in measures that depend on the number of states on the path that satisfy a given condition. For
example, we may wish to determine the minimum (maximum) number of times a given condition holds on any

path from starting to final states.

Both agorithmsin this section take asinput three sets of states: start, cond and final. The algorithms compute
the minimum and the maximum number of statesthat belong to cond, over al finite pathsthat begin with a state
in start and terminate upon reaching final.

To guarantee that the minimum (maximum) is well-defined, we assume that any path beginning in start must
reach a state in final in a finite number of steps. This can be checked using the maximum delay algorithm
described in the previous section. Finally, we ensure that all computations involve only reachable states, by
intersecting start with the set of reachable states computed a priori.

To keep track at each step of the number of statesin cond that have been traversed, we define a new state-
transition system, in which the states are pairs consisting of a statein the origina system and a positive integer.
Thus, if the original state-transition graph has state set .5, then the augmented state set will be S, = .S x IN.

If N C SxSisthetransitionrelationfor theorigina state-transition graph, we define the augmented transition
relation N, C S, x S, as

No({s, k), (s, k")) = N(s,s') AN(s' € cond Nk =k +1V s & cond Nk = k)
In other words, there will beatransitionfrom (s, k) to (s’, k) in the augmented transition relation N, iff thereis
atransitionfrom s to s’ inthe original transitionrelation NV and either s’ € condand ¥’ = k+ 1or s’ ¢ cond and
k' = k. We also define T to be the function that for agiven set U C S, returns the set of successors of all states
inU. Moreformally, 7' (U) = {«'

an initial bound £,,,,. can be selected to achieve a finite representation for &£, and new BDD variables can be

N,y (u,u') holdsfor somew € U}. Intheactual BDD-based implementation,

added dynamically if this bound is exceeded. The system is still finite-state because all paths we consider are

finite and £ is bounded by their maximum length.

proc mincount (start, cond, final)
current_min = oo;
R ={(s,1)| s € start N cond} U {(s,0) | s € start N cond};
loop
Reached _final = RN Final,
if Reached_final # () then
m = min{k | (s, k) € Reached_final};
if m < current_min then current_min = m,;
R' = RN Not_final,
if R = () then return current_min;
R=T(R),
endloop;

Figure 2: Minimum Condition Count Algorithm

Thealgorithm for computing the minimum count isgivenin figure 2. Inthealgorithm text, Final and Not final
denote the sets of statesin final and S — final, paired with all possible values of k. More formally:
Final = {(s,k) | s € final,k € IN} and Not_final = {(s, k)| s & final, k € [N}
5

The agorithm uses R to represent the state set in .S, reached at the current iteration, while Reached_final and
R’ are itsintersections with Final and Not_final respectively. Variable current_min denotes the minimum count
for al previous iterations. The computation of the minimum value of &k in a set of pairs (s, k) can be done
by existentially quantifying the state variables (computing K = {£ | 3(s, k) € S}) and following the leftmost
nonzero branch in the resulting BDD, provided an appropriate variable ordering is used.

At iteration ¢, the algorithm considers the endpoints of paths with i states. The reached states that belong to
final areterminal states on pathsthat we need to consider. The minimum count for these pathsis computed, using
the counter component of the path endpoints, and the current value of the minimum is updated if necessary. For
thereached statesthat do not belong to final, we continuethe loop after computingtheir successors. If al reached
statesareinfinal, there are no further pathsto consider and the a gorithm returns the computed minimum.

Finally, we note that the algorithm for the maximum count has the same structure and can be obtained by
replacing min with max and reversing the inequalities. Variants of both a gorithms can be used to compute other
measures that are a function of the number of states on a path that satisfy a given condition. For example, we
can determine the minimum and the maximum number of states belonging to agiven set cond over al pathsof a

certain length [in the state space.

5 ThePCI Local Bus

The PCI Local Bus[10, 11] isahigh performance bus architecture that can have a data width of 32 or 64 bits. It
has been designed by Intel to be used initslatest family of processors. Intel’s goal isto offer afast busdesign at
low cost that will accommodate current as well as future systems. PCI buses can be found in systems based on
Alphaor Pentium processors. The magjority of Pentium based systems manufactured today employ the PCI bus.
A typical PCI system can be seen in figure 3. The most important subsystems connected to the bus are the
processor, a video controller, a SCSl controller, and an ISA bridge controller, which connects the PCI busto a
slower ISA bus. Modems, floppy disk controllersand other low speed components are connected to the ISA bus.
Main memory and the secondary cache are connected directly to the processor using a PCl-memory-processor
bridge. Other components can be added to the system. Usually expansion slots are provided for this purpose.
Each of the subsystems shown above is allowed to request access to the bus and issue transactions. Slave
subsystems are a so supported; such subsystemsrespond to transactions, but do not issuethem. A simplified PCI
transaction can be seen infigure 4. The request for a transaction starts when a subsystem asserts its request line
REQ. It then waits until being granted the bus by the arbitration subsystem, which isindicated by the assertion of
the GNT line. Thisphaseisknown asthearbitration phase. The next phaseisthe busacquisition phase. Thebus
might not be idle when the new master is determined because the previous transaction may still be transferring

data. Another transaction cannot be issued before all data has been transferred. The bus is idle whenever both

6

Processor I | SCSI controller |

< PCI Loca Bus >

ISA bridge| | Video controller |

ISA Bus

Figure 3: The PCI Local Bus

signals FRAME and | RDY are deasserted in the same cycle, giving access of the bus to the new master. At this
point the master asserts the FRAME signa, indicating the end of the bus acquisition phase and the beginning of
atransaction. It aso has to assert the signal | RDY, meaning that it isready to send (or receive) data. The bus
master hasto wait for the target subsystem to respond by asserting its TRDY signal. Thisindicatesthat the target
isready to supply (or receive) data. The timeinterval between the start of a transaction and the assertion of the
TRDY signa is called the target response phase. Data transfer starts when both | RDY and TRDY are asserted.
One clock cycle before the end of the data transfer phase the FRAME signal is deasserted. At the next cycle both
| RDY and TRDY are deasserted, and the bus becomes idle. In addition, transactions can be cancelled in various
situations. Thisfeature of the protocol is discussed in more detail | ater.

Arbitrationinthe PCI busisimplemented by atwo phasearbiter asseen infigure 5. Each arbiter bank chooses
among its incoming requests, and sends its decision to the following bank. The output of Bank?2 will be the
new bus master. The decision isbased onthe pol i cy signal, which can be set to fixed priority or round-robin.
If al policies are set to the same value, the global arbitration policy will be either fixed priority or round-robin.
However, mixed arbitration policies are possible by combining different policiesin the banks.

Our model for the PCI bus follows the description above. Arbitration policies can be set to any possible
combination, allowing mixed arbitration policies. However, in our model we must make some restrictionsto the
protocol described. For example, we must restrict the amount of data being transferred in one transaction. If this
restriction is not implemented, no bounds on response time can be determined. 1n our model asingletransaction
can transfer between 1 and 16 cache lines of data. Our analysis will show how the information generated by

this model can be used to determine the response time for models without thisrestriction. A similar approach

7

REQ YN\ ! ! :
ar L N | =
FRAVE | y : i
|ROY | | L N
TRDY | | | I/ N\

| | | 1 :
Arbitrati B Target Datatransf
rbitration acquisition g atransfer
Figure 4: A transaction in the PCI Bus
Pol i cy —
SIOREQ—> 0 ponko
REQQ —{ 1
Pol i cy — Pngg—;
REQL — 0 k3 01 Bank2|—>
REQg —{ 1
10
Policy —
CPREQ— 0 panki
REQB —{ 1

Figure 5: The PCI arbiter

has to be taken with the possibility of cancelling an ongoing transaction. Again, in order to prevent starvation,
we must bound the number of times a transaction may be cancelled. Our final model for the PCI bus has 107
reachabl e states out of a state space of 1018 states. The transition relation uses less than 10,000 BDD nodes, and

the verification was completed in minutes.
6 Verification and Performance Analysis of the PCI Bus

Our analysis concentrates on the verification of issues such as transaction termination and arbitration fairness
as well as on transaction performance. Being able to estimate the response time of a transaction is extremely
important in any bus design, especially in one which has high performance a primary goal. The bus data transfer
rate and the overhead imposed by arbitration and communication protocol s are examples of parametersinvolved
in such an analysis. If those parameters cannot be determined, it will not be possible to design an optimized
system that fully utilizes the available resources.

Moreover, the PCI bus is a good aternative for critical applications in which a bounded response time is
vital. However, if the worst case response time of a transaction in the PCl bus hasn’t been specified, such
applicationswill most likely beimplemented using other bus architectures. By bounding the worst time response
of atransaction we hope to help application designers to evaluate the use of the PCI bus more accurately.

The correctness of the PCI bus protocol can be verified using the CTL model checker. For example, absence

of starvation for bus access and transaction termination can be verified by the following formulas:
AG(REQ — AF GNT)

AG(start_transaction — AF end_transaction)

The properties above show that the response time of PCI transactions is bounded, but they give no indication
of their performance. We will use the algorithms described in sections 3 and 4 to determine the response time
for transactions. The results of our quantitative analysis aso determine the correctness of the algorithm, for
example, atransaction aways finishesif its maximum response time is less than infinity.

In our performance analysis we will follow the structure of the protocol by computing the response time for
each phase of the transaction separately. In this way we can have a better understanding of the behavior of the
protocol. By computing the latency of each phase we are ableto assert the efficiency of each step in the protocol
and obtain the global behavior by adding individua figures. Results will be grouped into two categories, total
bus acquisition latency and total transaction latency. The first category corresponds to the total time between
a request being made on the bus and the subsystem actually being able to use the bus. The second category
represents the total usage of the bus, that is, the time between asserting the FRAME signal until the end of data

transfer. Table 6 shows the response times when the arbitration policy is set to round-robin in al banks and

9

Arbitration Bus Total bus Target Total
Bus Master acquisition | acquisition transaction

min | max | min | max | min | max | min | max | min | max
ISA bridge 1 95 1 18 2| 113 1 2 2 18
SCsl 1 95 1 18 2| 113 1 2 2 18
Video 1 38 1 18 2 56 1 2 2 18
Processor 1 38 1 18 2 56 1 2 2 18

Figure 6: Response timesfor globa round-robin policy

transaction cancelling is not allowed. Notice that in all cases discussed in this paper the latency for the data
transfer phase varies between 1 and 16 clock cycles, thereis no overhead associated with it. For that reason, this
column will not be shown in the tables.

From the table above we can see two interesting properties of the system. The tota transaction latency is at
most 18 clock cycles, and in this case 16 clock cycles of data are transmitted. This means that once a master
is able to use the bus, it can send data very efficiently. Another characteristic of the protocol is reflected on
the bus acquisition times. The maximum of 18 cycles corresponds to one transaction. After being granted the
bus the new master may have to wait for at most one more transaction to complete. This shows that once the
busis granted to a master, it will not be granted to another before the first one issues its transaction. Therefore
no starvation can occur after a master is granted the bus. This property can be verified by the following CTL
formula:

AG(GNT — A[GNT U FRAME])

A moreintriguing result can be seeninthe arbitration latency results. Thefirst two subsystemscan take almost
twice as long to access the bus as the others. In a round-robin environment, all subsystems should be granted
equal usage of theresource, but thisisnot truein our example. By analyzing the execution traces produced by our
toolswe are able to determine the reason for the unfair access to the bus. The problem arises from the connection
of the request lines to the arbiter as seen in figure 7. The ISA bridge and the SCSI controller are connected
together to bank 0, while the video and the processor subsystems are alone in their banks. If bustraffic is high,
the|SA bridge and the SCS| subsystems may have towait for the one another before their request reaches bank 2.
Subsequently they may have to wait for subsystems connected to the other banks to execute before being granted
the bus. In other words, they compete in both levels of arbitration, while the other subsystems only compete in
the last level. This causes the worst time latency to be approximately twice as long for these subsystems. We
can conclude from these results that two level arbitration may have a different behavior than an equivaent one
level arbiter. In this case the problem is caused by an asymmetric connection of request lines.

We can al so usetheseresultsto anayze the overhead imposed by the communi cation protocol onthetransaction

10

Policy —

sScsl —| 1
Policy — Po”gg_i
Video — 0 g 13 01 Bank2 |—>
_ 5 1 10
Policy —
Proc. —> (1) Bank1 L—
—_—

Figure 7: Connections of request lines to the arbiter

time. We have aready seen that after asserting the FRAME signal there is an overhead of 2 clock cycles. This
overhead is independent of the transfer size. If atransaction is allowed to transfer more than 16 cache lines of
data at once, the total utilization of the bus will increase. The designers of the bus can use this information to
determine which is the best transfer size for a given system.

The following two formul as have been used to verify the above statements:
AG (FRAME — AF5(state = DATA_TRANSFER))

AG((state = DATA_TRANSFER) — A[state = DATA_TRANSFER U end_transaction])

The first formula states that at most two cycles after the transaction starts, it will enter the data transfer phase.
The second formula states that once atransaction isin the datatransfer phase, it will continue in this phase until
itsend.

The overhead associated with arbitration can be computed in a similar way. It is more complex, however,
because the arbitration latency depends not only on the transaction time, but a so on the number of active request
lines. We use the condition counting algorithms to uncover more details about this problem. We compute the
number of transactions issued on the bus between the time a master requests access and the timeiit is granted
the bus. Up to 5 transactions can be issued during this period for the ISA bridge and the SCSI subsystems, and
up to 2 transactions can be issued for the video and processor subsystems. Total transaction time for each of
these intermediate transactions is 18 clock cycles. By comparing the total effective data transfer time with the
maximum arbitration time, we can see that each intermediate transaction has an arbitration time of one clock

cycle. Theseresultsare also valid for the video and processor subsystems. We can conclude that the arbitration

11

Arbitration Bus Total bus Target Total
Bus Master acquisition | acquisition transaction

min | max | min | max | min | max | min | max | min | max
ISA bridge 1 19 1 18 2| 113 1 2 2 18
SCsl 1 o0 1 18 2 o0 1 2 2 18
Video 1 o0 1 18 2 o0 1 2 2 18
Processor 1 o0 1 18 2 o0 1 2 2 18

Figure 8: Response times for global fixed priority policy

latency can be computed by the formula: Arbitration Latency = » * (Transaction_Latency + 1), where n isthe
maximum number of intermediate transactions that can be issued between arequest and the corresponding grant
(computed with the condition counting algorithms). This formula does not depend on maximum data transfer
size.

The above results assume a globa round-robin policy. The behavior of the system under a fixed priority
arbitration policy has also been studied and the results can be seen in table 8. The ISA bridge is the highest
priority subsystem on the bus. Its response time is much lower in the fixed priority configuration than in
the round-robin one. However, all other subsystems may starve, since the ISA bridge can continuously issue
transactions. Notice that only the arbitration time, but not the transaction time, is affected by the arbitration
policy. These response times can be used by the designer to check if the performance of the PCI busis adequate
for acritica application. Other combinations of arbitration policies are possible, but are not presented here for
the sake of brevity.

The model described above allows a detailed analysis of the behavior of the PCI bus protocol. Some features
of the actual bus, such as parity or data width, have been abstracted from our model, since they do not affect
the timing of transactions. However, there are other features that do affect timing such as the possibility of a
transaction being cancelled. Errors on the bus may occur, the target may be slow, or unable to produce the data.
For example, a transaction regquesting data from the ISA bus will most likely experience a long delay, simply
because of the relative speeds of the ISA and PCI buses. In the model described above this feature has been
abstracted out by the assumption that the target of a transaction responds immediately. A more redlistic model
that allows transactions to be cancelled has also been implemented.

In order to account for long delay responses and aborted transactions we introduce the concept of transaction
cancellationin our model. Transactionsmay be cancelled any timethey arein progress. Transaction cancellations
model the fact that in the actual PCI bus whenever atarget is unable to answer for a long time, it aborts the
transaction, which is reissued later. We model this situation by cancelling the transaction and restarting it

immediately by issuing another request. However, reissuing the transaction immediately would not correctly

12

Arbitration Bus Total bus Target Total
Bus Master acquisition | acquisition transaction

min | max | min | max | min | max | min | max | min | max
ISA bridge 1 95 1 18 2| 113 1 6 2| 132
SCsl 1 95 1 18 2| 113 1 6 2| 132
Video 1 38 1 18 2 56 1 6 2 75
Processor 1 38 1 18 2 56 1 6 2 75

Figure 9: Response timesfor global round-robin policy, maximum one cancel

model theresponsetimeof avery slow target. To accommodatethissituation, inour model acancelled transaction
isrestarted as many times as necessary to accommodate the target response time. Using the a gorithms described
we compute the overhead caused by cancelling and restarting a transaction, and use this result to determine the
number of retries for the response delay of a given target.

Moreover, unlimited cancellations may cause starvation. Therefore, in order to compute the worst time
response, we must limit the number of cancellations allowed. A cancellation brings the bus to the idle state, as

can be verified by the following CTL formula:
AG(ABORT — AX BUS_IDLE)

As a consequence, consecutive cancellations have the same behavior, because a cancellation brings the system
into the same state as before the transaction. Therefore, the total overhead caused by n cancelations is »
times the overhead of a single cancellation. Therefore, it suffices to consider the situation in which at most
one cancellation occurs. The results for a global round-robin arbitration policy in the presence of a most one
transaction cancellation are presented in table 9.

In this table we can see that arbitration latency is not affected by transaction cancellations. The reason is that
whenever atransaction is cancelled the current bus master rel eases the bus and becomes | ast in the round-robin
gueue. On the other hand, total transaction latency increases significantly. The execution trace of the transaction

with the worst latency shows the following sequence of events (for the ISA bridge subsystem):
1. A transaction starts but is cancelled just before completion, after 17 clock cycles.
2. Another request is made to complete it in the next cycle (one extra clock cycle).
3. An arbitration sequence of 79 cyclesfollows.
4. A bus acquisition phase starts and takes 17 clock cycles.

5. Thetransaction starts again, completing after 18 cycles.

13

The arbitration sequence appearing in item 3 isthe same as in the worst case, except that the request is made
when the bus is already idle because of the cancellation. The difference of 16 clock cycles corresponds to one
maximum data transfer phase done by another bus master, as shown by the counterexample for the worst case
arbitration latency (not presented for brevity). Thetotal delay caused by thefirst three itemsis the equival ent of
aworst case arbitration latency plus two clock cycles, caused by the cancellation. A bus acquisition phase and a
transaction latency phase, in which no cancellation occurs, account for the last 35 cycles. We can see then that
the overhead imposed by a transaction cancellation consists of a worst case arbitration latency, a maximum bus
acquisition phase, a maximum transaction latency (without cancellations) and one extraclock cycle. Again, this
formula applies for the video and processor subsystems. These results may be used to estimate the performance
of an implementation of the PCI in the presence of transaction aborts. The formula derived gives the overhead
for one transaction cancellation, and can be extended to many cancellations as well. In this manner, the worst
response time in various configurations of the system can be computed.

To summarize the results of our analysis, we have been ableto:

e Modd the PCI Local bus protocol and verify its correctness. In the round-robin case no starvation of

subsystems occur, and transactions always finish, even in the presence of limited cancellations.

e Determine the minimum and maximum latencies for each phase of the protocol, and show which phases

are affected by changes in the parameters (such as arbitration policy and presence of cancellations).
e Compute response times independent of specific values for the data transfer phase.

o Determine response time in the presence of limited transaction aborts using the condition counting ago-

rithms described.

These results alow the designers of the protocol to understand its actual behavior and how this behavior
changes when parameters of the system are modified. We believe that thisis valuableinformation when verifying
and optimizing a new hardware system. This example shows that our method can be used to analyze the
performance of modern hardware designs that have very complex behavior. 1t can help improvethe reliability of

new products and increase the efficiency of the design process.

7 Conclusion

Model checking is a well established technology for hardware verification. However, ssimply checking that a
circuit behaves correctly may not be enough. As time-critical applications become more common, and as the
necessity for faster and more efficient circuits increases, some guarantees about system performance may be

required. Thispaper presentsal gorithmsto compute minimum and maximum path lengths aswell asthe minimum

14

and maximum number of times an event occurs on al paths from a set of start states to a set of final states. The
analysis of the PCI Loca bus demonstrates the power of this technique. The PCI is a high-performance bus
design used in most Pentium processor based systems. By analyzing its performance we have shown that our
techniques can be used in complex industrial designs.

Thisisthefirst practical paper, to our knowledge, that combinesformal verification and performance anaysis.
The measurements produced by these algorithms can be used to analyze design decisions before the system is
actually implemented. In the PCI bus example, the description of the hardware can easily be modified to model
different arbitration policiesand different datatransfer sizes. Thisflexibility alowsdesignersto fine-tune system
parameters in order to maximize efficiency. We hope that our method can help to increase the reliability of

time-critical applications and the efficiency of their design process.

References

[1] R.E.Bryant. Graph-based agorithmsfor boolean function manipulation. | EEE Transactionson Computers,
C-35(8), 1986.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 10%°
states and beyond. In Symposiumon Logic in Computer Science, 1990.

[3] S.V.Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantitative characteristics
of finite-state real-time systems. In |EEE Real-Time Systems Symposium, 1994.

[4] E.M.Clarkeand E. A. Emerson. Synthesisof synchronization skeletonsfor branching timetemporal logic.
In Logic of Programs. Workshop, Yorktown Heights, NY, May 1981. Springer-Verlag, 1981. Lecture Notes
in Computer Science, volume 131.

[5] E.M.Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systemsusing
temporal |ogic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244—263,
1986.

[6] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A. Ness. Verification
of the Futurebus+ cache coherence protocol. In L. Claesen, editor, International Symposium on Computer
Hardware Description Languages and their Applications. North-Holland, April 1993.

[7] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning. In Lecture
Notesin Computer Science. Springer—Verlag, 1990.

[8] A. N. Fredette and R. Cleaveland. RTSL: a language for rea-time schedulability analysis. In IEEE
Real-Time Systems Symposium, 1993.

[9] R. Gerber and I. Lee. A proof system for communicating shared resources. In IEEE Real-Time Systems
Symposium, 1990.

[10] Intel Corporation. 82378 System I/O (SO) - PCI Local Bus, 1993.
[11] Intel Corporation. PCI Local Bus Specification, 1993.

[12] K.L.McMillan. Symbolic model checking—an approach to the state explosion problem. PhD thesis, SCS,
Carnegie Méelon University, 1992.

15

	Carnegie Mellon University
	Research Showcase @ CMU
	6-1996

	Verifying the Performance of the PCI Local Bus using Symbolic Techniques
	S Campos
	Edmund M. Clarke
	W. Marrero
	M. Minea
	Published In

	tmp.1272556639.pdf.slBbK

