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This paper introduces a robust, real-time system for detecting driver lane changes.  Under the framework of a
“mind-tracking  architecture,” the system simulates a set of possible driver intentions and their resulting
behaviors using an approximation of a rigorous and validated model of driver behavior.  The system
compares these simulations with a driver’s actual observed behavior, thus inferring the driver’s unobservable
intentions.  The paper demonstrates how this system can detect a driver’s intention to change lanes,
achieving an accuracy of 85% with a false alarm rate of 4%; detecting 80% of lane changes within 1/2
second and 90% within 1 second; and detecting 90% before the vehicle moves 1/4 of the lane width
laterally — that is, approximately when the vehicle first touches the destination lane line.

INTRODUCTION

Intelligent transportation systems (ITS) represent a core
part of research and development of the next generation of
vehicles.  While the many flavors of ITS span a broad scope of
devices, infrastructure, and technology, one major goal of ITS
in general arises in helping drivers to do what they intend to do
more safely and effectively.  Embedded in this goal is a simple
idea: for systems to help drivers do what they intend, they
must somehow infer drivers’ intentions from their observable
behavior.  Humans infer one another’s intentions continually
— for instance when a passenger warns the driver of a car in
the blind spot, the passenger has likely first inferred the
driver’s intention to change lanes, otherwise the warning
would be needless and probably distracting.  Similarly,
intelligent machine systems need some way of inferring driver
intent to provide safe assistance in both mundane and critical
driving situations.

My research team and I are currently developing a general
computational architecture for inferring human intent which
we call “mind tracking.”  In essence, the architecture provides a
computational framework for representing and tracking a
person’s intentions based on their observable behavior.  As
one test of this architecture, this paper describes an application
of mind tracking to the problem of inferring driver intent, with
the ultimate goal of being included in a variety of ITS
systems.  In particular, the paper addresses one very common
aspect of driver behavior, namely lane changing, and explores
how mind tracking can be used to detect a driver’s intention to
change lanes.  A first attempt at lane-change detection
(Salvucci & Siedlecki, 2003) yielded reasonable detection rates
but, in practice, led to sometimes inconsistent and misleading
predictions.  This paper represents a different and improved
approach to model representation and mind tracking, and offers
significant promise as a robust, real-time algorithm ready for
incorporation into intelligent vehicle systems.

The paper begins with an overview of the mind-tracking
architecture as well as a detailed description of its application
to lane-change detection.  It then discusses an evaluation study

in which the system was applied to human driver data taken
from a realistic highway simulation, demonstrating that the
system indeed can successfully detect driver lane changes with
high accuracy and low false-alarm rates.

LANE-CHANGE DETECTION
BY MIND TRACKING

The problem of detecting lane changes has proven
deceptively challenging for existing methods, including some
of the most powerful methods of statistical pattern
recognition.  Pentland and Liu (1999) and Oliver and Pentland
(2000) employed hidden Markov models to recognize lane
changes, but used a batch algorithm that detected whole
instances of a maneuver rather than continuous recognition of
streaming, real-time data as would be needed in a real vehicle.
Kuge et al. (2000) developed a recognition system for this
continuous case; however, their system used no information
about the surrounding environment, but rather focused only on
steering-based features.  For true real-time recognition, a
system must utilize contextual information to provide robust,
consistent detections as each new data point is collected from
the driver, vehicle, and environment.

This paper attempts to overcome the limitations of
previous work by detecting lane changes using the mind-
tracking architecture.  As mentioned, the mind-tracking
architecture is a computational framework for mapping a
person’s observable actions to their unobservable intentions.
At its core, the architecture uses a computational model that is
capable of predicting possible expected behavior(s) given a
particular intention — for instance, predicting the driver
behavior resulting from the intention to change lanes, turn, or
simply stay in the current lane.  The architecture can be best
described  as an iterating cycle of four steps, illustrated in
Figure 1: (1) data collection, (2) model simulation, (3) action
tracking, and (4) thought inference.  The following sections
describe each of these steps and how they are instantiated for
the particular goal of detecting the intention to change lanes.
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Data Collection
The first step of mind tracking involves collecting a

person’s observable behavior and recording the behavior as a
time-ordered vector of multimodal data.  The data are typically
sampled at a constant rate set in consideration of both the
temporal density of the data’s information and the density of
predictions from the computational model.  In addition to any
observable data, mind tracking also records current
environmental data in order to enable association of
environment factors with resulting behavior.  For the lane-
change application, the system records steering-wheel angle
and accelerator depression as well as environmental data (lateral
position and time headway) as described next.

Model Simulation
The second step of the process involves running several

versions of the cognitive model in parallel (conceptually if not
actually), each representing a particular stream of possible
intentions and actions.  The cognitive model itself is a
computational representation of a person’s intentions and
actions.  The model used here is based on a cognitive model of
driver behavior (Salvucci, Boer, & Liu, 2001) implemented in
the ACT-R cognitive architecture (Anderson & Lebiere, 1998).
The ACT-R driver model includes a cognitively plausible
model of lateral and longitudinal control and has been validated
to behave like human drivers in many aspects of common
driving scenarios (e.g., curve negotiation and lane changing on

a multi-lane highway).  While the full driver model would suit
our purposes here, a far simpler model based on this one
suffices for tracking intentions.

The driver model used here is structured as follows.  For
lateral control, we assume the model has access to two salient
visual features, namely the orthogonal lateral distance 

€ 

xnear
(in meters) of the road 10 m ahead to the vehicle’s current
heading, and the analogous quantity 

€ 

x far  calculated at 30 m
ahead.  Using this information the model calculates a desired
steering angle 

€ 

ϕ  as

€ 

ϕ = knear xnear + xlc( )+ k far x far + xlc( )
where 

€ 

xlc  is zero during lane keeping and non-zero when lane
changing, representing the desired displacement of the vehicle
during the maneuver (roughly equivalent to desired lateral
speed) with a sign dependent on the desired lane-change
direction (left or right).  The model also sets the accelerator
position 

€ 

α  based on another environmental variable, namely
the minimum time headway 

€ 

thw  to either the lead vehicle or,
if changing lanes, the lead vehicle in the destination lane:

€ 

α = kacc thw − thw follow( )
In this formulation, 

€ 

thw follow  is the desired following time
headway, and the resulting value 

€ 

α  is limited to the range
[-1,1] indicating zero-to-maximum depression of the throttle
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Figure 1: Schematic of the mind-tracking architecture.

PROCEEDINGS of the HUMAN FACTORS AND ERGONOMICS SOCIETY 48th ANNUAL MEETING—2004 2229

 at PENNSYLVANIA STATE UNIV on May 17, 2016pro.sagepub.comDownloaded from 

http://pro.sagepub.com/


for positive numbers and zero-to-maximum depression of the
brake for negative numbers.

Admittedly this model of the driver is grossly simplified
— for instance, the steering angle does not take into account
the vehicle’s current speed.  Nevertheless, we have found that
this simple model is quite sufficient in producing the desired
effect — effective tracking of driver intent — and is also
computationally straightforward, making possible the real-time
version of the full system presented here.

During simulation, the system runs simultaneous
simulations of several versions of the model.  Specifically, it
maintains a set of models and spawns off new models for the
next time step as follows: lane keeping (LK) stays LK and
spawns two lane changing models, left and right (LC-L and
LC-R); LC-L stays LC-L and LC-R stays LC-R until they
reach their destination lane, then terminate and return to LK
(thus, the set remains finite and reaches steady state with
respect to number of models).  A moving time window of 2 s
is maintained for each simulation along with the human data.

The model parameters, including constants k, were
approximated from the original ACT-R driver model and
adjusted informally to produce better tracking performance
during evaluation.  The final parameter values were as follows:

€ 

knear=2, 

€ 

k far=20, 

€ 

kacc=1, 

€ 

xlc  = 1.75 m (approximately one-
half the lane width), and 

€ 

thw follow=1.0 s.

Action Tracking
The third step of mind tracking involves matching the

observed behavior of the human driver with the predicted
behaviors of the model simulations.  Because each model
generates an action sequence analogous to the human driver,
we can compare the sequences directly and determine which
model sequence best matches the human sequence.  This
requires a similarity metric between a model M’s simulation
and the observed human data, computed as

€ 

S(M) = G(ϕ i
M , ˆ ϕ i,σϕ ) ⋅G(α i

M , ˆ α i,σα )
i
∏

as the product over all sample indices i in the moving window.
In the equation, 

€ 

ϕ i
M  and 

€ 

α i
M  are the steering angle and

accelerator position (respectively) for the model at sample i;

€ 

ˆ ϕ i  and 

€ 

ˆ α i are the analogous quantities observed from the
human driver; and G is a Gaussian distribution for the given
value, mean, and standard deviation (estimated along with the
model parameters).  Finally, a lane-change score is computed
using the most probable models LK for lane keeping and LC
for lane changing as

€ 

Score =
logS(LK)

logS(LC) + logS(LK)
where a score > .5 indicates a lane change.

Thought Inference
In the final step, mind tracking finds the inferred driver

intentions simply by examining the “thoughts” of the best-
matching model — that is, the intentions that produced this

model’s action sequence.  Thus, the end result of mind tracking
is inferred sequence of intentions over the length of the
moving window.  The process then repeats, shifting the
window by one sample and iterating the four-step process.

EVALUATION STUDY

We evaluated the proposed lane-change detection system
by running the system on a set of 11 human-driver protocols
collected during free-form driving on a multi-lane highway
(Salvucci, Boer, & Liu, 2001).  To evaluate the algorithm, we
required a rigorous definition of a lane change against which to
compare the tracker’s predictions.  To this end, we classified a
lane change as a segment in which the vehicle starts moving
toward another lane and continues, without reversal, through to
that lane.

Figure 2 graphs the true-positive versus false-positive (or
false alarm) rate for the system on these protocols (a so-called
ROC curve), where perfect recognition would pull the curve
through (0,1).  We see that the mind-tracking system
performed very well for both true and false positives.  In
particular, when using the 0.5 score threshold, the system
achieves 85% with 4% false alarms.

Figure 3 shows the ratio of lane changes detected over
time from the start of the maneuver.  The tracker already
detects 65% of lane changes at the very start, indicating that to
some extent, the tracker can detect the initial behavior that
leads into the maneuver.  After a half second, the tracker
reaches 80% detection, and reaches over 90% after one second.
As another way to view detection over time, Figure 4 shows
the detection ratio as a function of lateral movement from the
vehicle’s position at the start of the lane change.  Again the
tracker detects lane changes rapidly; most notably, it achieves
over 90% detection by the time the vehicle has moved 1/4 of
the lane width — that is, roughly when the vehicle first
touches the adjacent lane line.

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

False Positives

T
ru

e
 P

o
si

ti
v
e
s

Figure 2: Detection true vs. false positives.
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Figure 3: Detection ratio over time.
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Figure 4: Detection over lateral movement.

DISCUSSION

As demonstrated, the mind-tracking architecture can
quickly and accurately detect a drivers’ intention to make a lane
change.  The architecture is by no means limited to lane-
change detection, however; in fact, the basic ideas in the
architecture generalize well to other intentions such as turning,
stopping and starting, etc.  We are now exploring the
application of the architecture to other intentions, including
the development of further computational models for expected
behavior during these intentions and integrating these models
into the mind-tracking process to enable real-time driver intent
inference.
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