Laws for Dynamic Systems

Peter Henderson
Electronics and Computer Science
University of Southampton
S0O17 1BJ, UK

email: peter@ecs.soton.ac.uk

URL: http://www.ecs.soton.ac.uk/~ph

September 1997

Keywords Reuse Architecture, Reconfigurable
Systems, Non-Sop Operation, Active Objects, Reuse
Congtraints/Laws, Drop-in Components, Distributed
Components, Registry, Case Sudy

Abstract

A dynamic system is one which changes its configuration
as it runs. It is a system into which we @an drop new
components which then cogperate with the eisting ones.
Such systems are necessrily built from reusable
components, sinceas on as the system is reconfigured to
use some new components, those new components must
reuse the existing, still running, ones.

Design of reusable @mponents in this context is an
important problem. We suggest three laws which such
reusable @mponents might be required to oley, if
dynamic systems are to be dfedive and to be
emnomically built. We ill ustrate our conjedure that the
laws are dfedive by describing a generic architedure
based on the familiar registry services of OLE or CORBA
and by describing a simple point-of-sale system built
acoording to this architedure. We @nclude, of course,
that some interesting open questions remain. But we
sugeest that an approach to reuse based on refining the
threelawsis a promising dredion for system architedure
to take.

Background

For contemporary business process sipport systems, the
rate of evolution of the components from which they are
built has beacome a dominating factor in the requirement
for evolution of the system itself. Either the COTS

components go through a release o/cle, offering new
services which the business neads. Or, new business
requirements dictate a neel for new or evolved (legacy)
components [9]. The neal to rebuild the system, or a
major part of it, becomes a serious obstacle. Modern
architedures, such as OLE and CORBA [15, 16, 17] and
client/server architeduresin general, addressthisisaie by
providing for dynamic remnfiguration of components
while the system continues to run. The question arises,
what rules sould the reusable @mponents in such
dynamic systems obey, in order that the system continues
to suppdy an acceptible service throughout periods of
change?

In this dort paper, we will outline an approach we have
taken to the development of dynamic systems from
reusable, rewmnfigurable mmponents. The projeds on
which this work has been done are developing flexible
architedures for business process sipport systems [8].
Our approach has been to use traditional process
modelli ng languages to modd the business requirements
and to then map these models onto distributed
client/server implementations. For the mapping we have
taken a relatively formal approach [6] using the pi-
caculus [13, 14, 17]. The pi-calculus provides an
effedive means of describing the remnfiguration
requirements for an evolving system. These formal
models have led to the formulation of threelaws which we
suggest dynamic systems dould obey in order to
minimise the st of reusing legacy components, while
evolving others. For reasons we will explain, the laws and
examples of their application are described informally (or
semi-formally) here

Dynamic Systems

By a dynamic system, we mean a system built from
components where the system has the property that new
components can be "dropped-into" the system and the
system will continue to function, providing continuous
and continued service There are many examples of such
systems. Trivialy, whenever we run a new program on
our existing operating system, we have dropped a new
component into it without disrupting it. Similary, in a
commercial environment, when we make a new
application available to users, we have dynamicaly
evolved the system. In a client/server environment, when
we ingtall a new service or release a new client, again we
have evolved the available services in a desirable way.

Component Reuse

All these examples are trivial instances of component
reuse. They work because of agreed interfaces between the
collaborating components (eg fil es, databases, protocols).
Components designed for reuse in these ewvironments
follow strict guidelines as to the interfaces which they
present. New components adhere to the same guidelines

in order to become tolerated members of the community.

In architedures such as OLE, CORBA [15 and
Java/lORB/RMI [11] the usua mecdhanism which alows
for the flexibility required by dynamic recnfiguration, is
some kind of registry or obed request broker.
Components offering services publish their offer via the
registry. Components requiring services negotiate with
the registry and hence eventualy, with the service
providers to reach mutually safe collaboration.

It seams that the generic idea of a registry is rather
unavoidable for dynamic systems. Hence it become the
cornerstone of our suggested architedure. However, the
laws we give are daracterised in a way which does not
presume such an architecture.

Formal Models

We have made use of various formal modéling
techniques in the devel opment of the ideas presented here.
In particular we have made use of exeaitable
spedfications [5, 7] and of the pi-calculus [6, 13, 14].
Others have made use of similar formal models for
similar purposes[1, 17]. In a seminal paper about therole
of formal models in the mntext of contemporary software

engineging, Hoare [10] suggests that the use of formal
models to aid understanding, design and abstraction may
be a highly cost-effedive procedure. We have cetainly
found it to be the @se when considering an architedure
for reuse.

However, we have dosen to present our laws informally
and to present our examplesin a semi-formal way. Thisis
partialy to make them accessble to a wider audience But
partidly it is becuse we believe the level of formality
chosen here is appropriate to the nature of the ideas
presented. However, we have been influenced by the
responses we have had over receit months to the
presentation of these ideas (to academic and industrial
audiences) either asformal modelsin the pi-calculus or as
semi-formal models using the diagrams of the later
sedions. The formal models tend to dicit discusson on
the pi-calculus, whereas the diagrams dicit discusson on
reuse, reconfiguration and the generality (or otherwise) of
the architedure. This paper is intended to elicit debate of
the latter form.

ThreeLaws

In this ®dion we will give threegeneral laws for dynamic
systems and discuss ®me of their conseguences. In the
next sedion we will exemplify an architedure which
provides the mnceptual framework in which systems
obeying the laws can be developed. In the final sedion we
will return to a discusson of the mnsequences of the laws
framed here.

In an earlier sedion, we have given an informal definition
of a dynamic system, phrased in terms of components.
Before we @n procead, we neal to tighten up the
definitions of dynamic system and component.

We want to be able to say that systems are built from
components and to draw the meaning of component
sufficiently widely that any part of a system can be alled
a component. So components will have state. They will
respond to actions (eg messages, method invocations,
events etc) enquiring of or atering their state. But they
will also have autonomous behaviour. They will be active
oheds|[2, 3, 4]. We have devel oped the idea that a system
can be built from (and usefully described in terms of) a
single type of component elsewhegg [

We generalise the nation of component by saying that a

component suppies ®rvices (eg methods, message
handlers, event handlers) which may be used by other
components.

In these terms, a system is a colledion of components
which cooperate by each using the services supgied by
others. A dynamic system is a system which can be
reconfigured (new components added, old oned removed)
without having to stop.

We mnjedure that a dynamic system will operate safely
and effedivey if its components all obey the following
three laws.

1. A component, added to a system, may not disrupt
the behaviour of that system.

2. A component, using the services of another, does
S0 at its own risk and must proted itself from
damage.

3. A component offering a service does ® a its
own risk and must protect itself from misuse.

We will ill ustrate a system which is built from
components which obey these laws as a prodf of existence
in the next sedion. First, let us discuss ®me of the
apparent consequences of the laws.

A consequence of the first law is that a system can choose
to completely ignore a new component. That at least
would guarantee no disruption.

But such a cordlary implies that the system has me
behaviour independently of the behaviour of its
components. This is not our intention. The system
comprises its components and nothing else.

A consequence of the second law is that a component may
not rely upon the mntinued provision of a service
supdied by another component. If it did, then the supgier
could damage it simply by witholding the service.

A consequence of the third law is that the provider of a
service must be fair to its users. Otherwise it is open to a
denial-of-service attack, whereby a malicious user is able
to deny other users access by locking them out in some
way.

There are many such consequences of the laws. Rather
than daborate on more of them here, we will turn to an
example which illustrates an architecure which, it is

conjectured, supports components which obey these laws.

Needs NS, PLU
Knows NSI1, NS2

Figure 1 Components. Format (left) and Instance(right)

An Architectural Model

Figure 1 shows the model we are going to use to describe
our architedure. On the left of Figure 1 is the format for
presenting the detail s of a component. On the right is an
instance of a component which obeys the format.

A component isidentified by a unique name, which in the
model will be written direaly below the mmponent. Thus,
in Figure 1,Till1 is the name of a particular component.

All components have a type, which determines what
services they provide. This model does not go down to the
level of services. Other components know which services
they neal by knowing the type of component which
supdies them. The type of a component is written in the
first (sub-)box of the @mponent modd. Thusin Figure 1,
the component on the right is of typél.

Each component will neeal access to a set of service
providers. The second box of the @mponent description is
therefore a set of component types, call ed the needs of the
component. In Figure 1, Till1 neals to have accessto the
services provided by a component of type NS and a
component of typ®&L U.

Each component will, at any point in time, know of a set
of other components. This s, called knows in Figure 1,
will grow as the life of the cmponent extends. Obvioudy
the omponent's oljedive in life is to maintain a set of
components which it knows, and which suppdy the

services which it requires. In Figure 1, the component
Till1 knows of the componenidS1 andNS2.

Finaly, there will be a subset of the mmponents which it
actually uses. The fourth and final part of the description
of a component is this sbset. In Figure 1, although Tilll
knows ofNS1 andNS it only usedNSL.

To summarise:

A component is known by ldame.
A component has aype.

A component has a set called needs, which is st of
Types being the types of components which it
needs access to in order to work.

A component has a set called knows, which is st of
Names being the names of components which it
knows the existence of.

A component has a set called uses, which is st of
Names being the names of components which it
is currently using.

Clearly, there are reationships between the parts of a
component. Spedfically uses will be a subset of knows
and every component in knows will be of atype in needs.
Moreover, the relative values of these parts can be used to
describe the evolving state of a component. For example,
it may be in a state of using components which satisfy its
neals, or it may be in the state of ill needing
components. Wewill not go into these asped further here,
sinceit takes us away from our objedive of discussng the
three laws.

An Example

We are going to be very spedfic and show an example
taken from a retail, point-of-sale support system. The
system comprises tills (or cash-registers in the UK) at
which customers chedk out goads. Thetill s neel accessto
a component which provides price-lookup (PLU), among
many other services. The system is organised around a
registry (NameServer, NS) at which the providers of
services register their availability and from which the
users of such services learn the identity of providers.

The semi-formal notation introduced in the last sedion
and exemplified in Figure 1 has been designed for visual
presentation. Spedficaly, the presentation is an
animation using Powerpoint Slideshow. The dynamic

nature of the system is apparent from the features of this
animation. New components appear on the screen among
an unchanging backdrop of aready configured
components. As the story unfolds of how each component
configures and rewnfigures itsdf, the individual
attributes of each component change one at a time. The
visual cues which this gives are idealy suited to the
human eye and everyone sees instantly where their
attention should be.

The formal properties of the architedure are important,
but presenting them formally to scientists and engineasis
lesseffedive than the animation at diciting the necessary
debate about the design. The architedure is smplfied
because of the eistence of the forma modd. The
animation serves as an ideal overview of the formal
model. When eventually we get to very hard questions, or
to the nedal for very predse statements, then it istimeto
turn to the mathematics for help.

We @n not present the animation here (unless you are
reading this on the Web). The next best thing is to choose
some of the mgjor stages and to go through the sequence
of events between stages. This is what we will now do for
out point-of-sale system.

NS PLU
NS
NS1
NS1
NS1 PLU1

Figure 2 A NameServer (NS1) component and a Price Lookup
(PLUZL) component

The point-of-sale system is built around a registry
component (of type NS, NameServer) which provides an
introduction service Figure 2 shows the NameServer NS1
as it would have appeared at the beginning of time. In
Figure 2 we asaume a Price Lookup component PLU1 (of

type PLU) has just arrived. It already knows of NSL. This
prior knowledge of something (a registry, usualy) is
asaumed of all components. It is not the only architedural
choice we could have made.

The component PLU1 registers with NS1. Figure 3 shows
the system state which ensues.

NS PLU
NS
PLU1 NS1
NS1
NS1 PLU1

Figure 3 The Price Lookup component registers with the
NameServer

Now the system is ready for till sto come on line. Figure 4
shows the state which we have as the first till component
comes into existence.

NS PLU
NS
PLU1 NS1
NS1
NS1 PLU1
Till
NS, PLU
NS1
NS1
Till1

Figure4 A Till arrives, it requiresa PLU

The obvious squence of events takes place The Till,
Till1 knows only of the NameServer NSIL. It requests a
component of type PLU. The NameServer will supdy one
or more names. It only knows of PLU1, so we asaume it
supdies that. Now we move to the state shown in Figure
5.

NS PLU
NS
PLU1 NS1
NS1
NS1 PLU1
Till
NS, PLU
NS1, PLUL
NS1, PLUL
Till1

Figure 5 The Till learns of PLU1 from NS1 and connects to it

You can imagine how the animation proceals. A seaond
Till arrives and conneds to PLUL. A second PLU arrives
(call it PLU2) and registers with NSL. Now PLU1 fails,
but the system remvers becuse bath till s remnfigure to
usePLU2.

We go an. What if the NameServer fails? Wdl, to start
with its OK. Until a PLU fails. There are many scenarios
possble. Maybe the Tills must wait untii a new
NameServer arrives and the PLUs register. Maybe the
Till s took the precution of finding out about the second
PLU service and can reanfigure without a NameServer.
Maybe the Till s know about each other and one of them
knows of an alternate PLU service Each of these

scenarios demonstrates a different aspect of three laws.

Figure 6 shows a typical intermediate state where the
various components have done something to proted
themselves against failures.

NS NS PLU PLU
NS NS
PLU1 PLU1+2 NS1, NS2 NS1, NS2
NS1, NS2 NS2
NS1 NS2 PLUL PLU2
Till Till
NS, PLU NS, PLU
NS1, NS2, PLU1 NS1, NS2, PLU1
NS1, PLUL NS1, PLUL
Till1 Till2

Figure 6 A typical intermediate state where components have
done something to protect themselves against failures

But the interesting scenarios are not these fault tolerant
ones, even though they show reuse of legacy components.
The interesting scenarios are those where we go through a
component evolution (typical of COTS) where eventually
we replace an old component by a new one, other
components gill proteding themselves against damage.
We shall discuss sich scenariosin the mntext of our three
laws in the next section.

Discussion

Our conjedure is that, reusable components must obey
congtraints if they are to be good members of a
community comprising a dynamic system. Particulary, we
wanted to addressreuse in the cntext of dynamic systems
which we defined as colledions of components which
cooperate by suppying services to each other. We
enunciated three laws which we @njedured reusable
components could choose to oley. We suggested that a
system built from components obeying these laws would
have the desirable properties of effedive dynamic
remnfiguration, that is change of functionality without
loss of service.

To what extent have we been able to support this
conjedure? The architedure described in the exrlier
sedions is a prodf of existence of a set of components
which obey the laws and apparently deliver the stated
properties.

The first law is illustrated by arrival of components of
type Till and PLU which, on arrival, smply register with
or make arequest of the NameServer. This behaviour can
not disrupt the behaviour of the system per se, athough it
is dependent on the ahility of the other components to
proted themselves against instances of such components
which are, in some sense, undesirable members of the
community. The power of the first law comes from the
fact that it dictates that old components must take an
active part in the decision to collaborate with new ones.

The second law isill ustrated by the Till surviving the loss
of a PLU. Similarly, it isillustrated by the Till surviving
the loss of bath a PLU and a NameServer. The Till has
made use of these services at its own risk and has not been
damaged by their loss It would also be ill ustrated by the
more interesting scenario (too eaborate for inclusion
here) of a Till surviving the replacement of an old PLU
service by a new one which it subsequently finds deficient.
Obeying the seand law it would retain the ability to
reconfigure back to using the old service.

The third law is illustrated by the PLU proteding itself
against a denial-of-service attack, where a malicious Till
has tried to lock other users out. A PLU obeying the third
law would not allow this. A corollary is that the PLU
service must be multithreaded or connedionless or in
some way able to deliver the fairnessrequired by the third
law.

However, this prodf of existence such that it is, only goes
some way towards supporting our conjecture.

It is posshle that the laws are not even internally
consistent. Our examples only show that the suggested
architedure appears to be mnsistent and appears to obey
the laws.

Whil st it may be that any system which has the properties
we require will obey the laws. it is unlikely that the laws
are omplete in the sense that any system which obeys the
laws has the properties which we require.

The laws are probably not independent. Moreover, they
may even be redundant in that one may be a consequence
of the others.

Notwithstanding these difficult questions, the three laws
do seam to have some utility in scoping the architecural

debate which it is necessry to have in order to design
dynamic systems which are built from reusable legacy or
COTS components. This we have eemplified by
capturing a description of a common generic architedure
, the registry centred architedure @wmmon to OLE,
CORBA and client/server systems. We have taken the
debate in only one of many posshle diredions in this
paper. For example, we have made the asaumption that
the registry only knows of components which register
themselves. An alternative architedure might remove the
need for any action on the part of a new component.
Would such an architecture be more robust?

It will be interesting to discover, as these laws bewme
more refined and as the systems we build test their utility
for scoping the design of reusable @mponents and
continuoudly evolving systems, the etent to which this
initial formulation captured (or failed to capture) the
esence of what is, after al, just the way we build
contemporary systems.

Acknowledgments

| am indebted to many colleagues in ICL who have
encouraged me to develop these ideas over receit years
and have sponsored the projeds in which they were
developed. In particular Simon Hayward, Ed Parton, Alun
Roberts, Graham Pratten, Bob Snowdon and Peter
Wharton have mntributed, at different times, to the ideas
presented here. | am indebted to my colleagues in
Southampton who provide a stimulating environment in
which to argue on€'s case. And | am indebted to my
colleagues in IFIP WG 2.3 who are never satisfied with
anything, and so present me with an eternally reusable
challenge.

This work was carried out as part of EPRC grants
GR/J08928, GR/K08116, GR/K83014.

References

[1] Allen RJ, Remi Douence and David Garlan
Spedfying Dynamism in Software Architedures
Workshop of Foundations of Component Based
Systens, Zurich, 1997, see

http://www.cs.iastate.edu/~leavens/FoCBS/index.

html

[2] Birrell, A.D Greg Nelson, Susan Owicki, and
Edward P. Wobber. Network Objects. Software

(3]

[4]

(5]

6]

[7]

(8]

(9]

Practice and Experience, 25(S4):87-130,

December 1995. Also appeared as SRC Research

Report 115, see

http://gatekeeper.dec.com/pub/DEC/SRC/researc

h-reports/abstracts/src-rr-115.html

Brown, Marc H and Marc A Najork (1999
Disgtributed Active Objeds Computer Networks
and ISDN Systems, 281037%-1052 May 1996
(Proceedings of the Fifth International World
Wide Web Conference, Paris, France May 6-10,
1996. Digital Systems Research Center, Report
141a,
http://www.research.digital.com/SRC/bibindex/t
mp/30547.html

Carddli, Luca (1995 A Language with
Distributed Scope. Computing Systems, Vol 8,
Nol,Jan 1995.

Gravell, A. and P. Henderson, Exeauting formal
spedfications need not be harmful, Software
Engineering Journal, vol. 11, num 2., IEE
(1996).

Henderson P Formal Models of Process
Components, Workshop of Foundations of
Component Based Systems, Zurich, 1997, see
http://www.cs.iastate.edu/~leavens/FoCBS/index.
html

Henderson, P _Functional Programming, Formal
Spedfication and Rapid Prototyping, |IEEE
Transactions on Software Engineering, Vol.12,
No.2, pp.241-250, 1986

Henderson, P & Pratten, G.D. POSD - A
Notation for Presenting Complex Systems of
Processs, in Proceedings of the First IEEE
International Conference on Engineering of
Complex Systems, IEEE Computer Society Press
1995

Henderson, P Software Processes are Business
Proces®s Too 3¢ International Conference on
the Software Process, IEEE Computer Society
Press, Oct 1994

[10] Hoare C.A.R How did Software get to be so

reliable without prodf Keynote address at the
18" International Conference on Software
Engineering. IEEE Computer Society Press
1996 see aso
http: //mwww.comlab.ox.ac.uk/oucl/user s'tony.hoar
€/publications.html

[11] JavaSoft Java RMI spedfication 1996 see
http://www.javasoft.com

[12] Magee J and Kramer J Dynamic Structure in
Software Architedure Proceeedings of the ACM
Conference on Foundations of Software
Engineering, 1996

[13]Milner, Rohin _The Polyadic pi-calculus. a
tutorial International Summerschool on Logic
and Algebra of Specification, Marktoberdorf,
1991 see also
http://www.dcs.ed.ac.uk/lfcsreps/EXPORT/91/E
CS-LFCS-91-180/index.html

[14] Milner, Robin Elements of Interaction: Turing
Award Ledure Communications of the ACM,
Vol 36, No 1, January 1993

[15] Objed Management Group Common Objed
Reguest Broker: Architecture Specificatieee

[16] Sullivan K and Knight J.C Experience Assssng
an Architedural Approach to Large Scale Reuse
Proceedings of ICSE-18, 1996 IEEE Computer
Society Press

[17] Sullivan K, Socha J and Marchukov M Using
Forma Methods to Reason about Architedural
Standards 19" International Conference on
Software Engineering, Boston, |EEE Computer
Press, 1997

