
1

Laws for Dynamic Systems
Peter Henderson

Electronics and Computer Science
University of Southampton

SO17 1BJ, UK

email: peter@ecs.soton.ac.uk URL: http://www.ecs.soton.ac.uk/~ph

September 1997

Keywords Reuse Architecture, Reconfigurable
Systems, Non-Stop Operation, Active Objects, Reuse
Constraints/Laws, Drop-in Components, Distributed
Components, Registry, Case Study

Abstract

A dynamic system is one which changes its configuration
as it runs. It is a system into which we can drop new
components which then cooperate with the existing ones.
Such systems are necessaril y built from reusable
components, since as soon as the system is reconfigured to
use some new components, those new components must
reuse the existing, still running, ones.

Design of reusable components in this context is an
important problem. We suggest three laws which such
reusable components might be required to obey, if
dynamic systems are to be effective and to be
economically built . We ill ustrate our conjecture that the
laws are effective by describing a generic architecture
based on the familiar registry services of OLE or CORBA
and by describing a simple point-of-sale system built
according to this architecture. We conclude, of course,
that some interesting open questions remain. But we
suggest that an approach to reuse based on refining the
three laws is a promising direction for system architecture
to take.

Background

For contemporary business process support systems, the
rate of evolution of the components from which they are
built has become a dominating factor in the requirement
for evolution of the system itself. Either the COTS

components go through a release cycle, offering new
services which the business needs. Or, new business
requirements dictate a need for new or evolved (legacy)
components [9]. The need to rebuild the system, or a
major part of it, becomes a serious obstacle. Modern
architectures, such as OLE and CORBA [15, 16, 17] and
client/server architectures in general, address this issue by
providing for dynamic reconfiguration of components
while the system continues to run. The question arises,
what rules should the reusable components in such
dynamic systems obey, in order that the system continues
to supply an acceptible service throughout periods of
change?

In this short paper, we will outline an approach we have
taken to the development of dynamic systems from
reusable, reconfigurable components. The projects on
which this work has been done are developing flexible
architectures for business process support systems [8].
Our approach has been to use traditional process
modelli ng languages to model the business requirements
and to then map these models onto distributed
client/server implementations. For the mapping we have
taken a relatively formal approach [6] using the pi-
calculus [13, 14, 17]. The pi-calculus provides an
effective means of describing the reconfiguration
requirements for an evolving system. These formal
models have led to the formulation of three laws which we
suggest dynamic systems should obey in order to
minimise the cost of reusing legacy components, while
evolving others. For reasons we will explain, the laws and
examples of their application are described informally (or
semi-formally) here

.

2

Dynamic Systems

By a dynamic system, we mean a system built from
components where the system has the property that new
components can be "dropped-into" the system and the
system will continue to function, providing continuous
and continued service. There are many examples of such
systems. Triviall y, whenever we run a new program on
our existing operating system, we have dropped a new
component into it without disrupting it. Similary, in a
commercial environment, when we make a new
application available to users, we have dynamically
evolved the system. In a client/server environment, when
we install a new service or release a new client, again we
have evolved the available services in a desirable way.

Component Reuse

All these examples are trivial instances of component
reuse. They work because of agreed interfaces between the
collaborating components (eg files, databases, protocols).
Components designed for reuse in these environments
follow strict guidelines as to the interfaces which they
present. New components adhere to the same guidelines
in order to become tolerated members of the community.

In architectures such as OLE, CORBA [15] and
Java/ORB/RMI [11] the usual mechanism which allows
for the flexibilit y required by dynamic reconfiguration, is
some kind of registry or object request broker.
Components offering services publish their offer via the
registry. Components requiring services negotiate with
the registry and hence, eventually, with the service
providers to reach mutually safe collaboration.

It seems that the generic idea of a registry is rather
unavoidable for dynamic systems. Hence it become the
cornerstone of our suggested architecture. However, the
laws we give are characterised in a way which does not
presume such an architecture.

Formal Models

We have made use of various formal modelli ng
techniques in the development of the ideas presented here.
In particular we have made use of executable
specifications [5, 7] and of the pi-calculus [6, 13, 14].
Others have made use of similar formal models for
similar purposes [1, 17]. In a seminal paper about the role
of formal models in the context of contemporary software

engineering, Hoare [10] suggests that the use of formal
models to aid understanding, design and abstraction may
be a highly cost-effective procedure. We have certainly
found it to be the case when considering an architecture
for reuse.

However, we have chosen to present our laws informally
and to present our examples in a semi-formal way. This is
partiall y to make them accessible to a wider audience. But
partiall y it is because we believe the level of formalit y
chosen here is appropriate to the nature of the ideas
presented. However, we have been influenced by the
responses we have had over recent months to the
presentation of these ideas (to academic and industrial
audiences) either as formal models in the pi-calculus or as
semi-formal models using the diagrams of the later
sections. The formal models tend to eli cit discussion on
the pi-calculus, whereas the diagrams eli cit discussion on
reuse, reconfiguration and the generalit y (or otherwise) of
the architecture. This paper is intended to eli cit debate of
the latter form.

Three Laws

In this section we will give three general laws for dynamic
systems and discuss some of their consequences. In the
next section we will exempli fy an architecture which
provides the conceptual framework in which systems
obeying the laws can be developed. In the final section we
will return to a discussion of the consequences of the laws
framed here.

In an earlier section, we have given an informal definition
of a dynamic system, phrased in terms of components.
Before we can proceed, we need to tighten up the
definitions of dynamic system and component.

We want to be able to say that systems are built from
components and to draw the meaning of component
suff iciently widely that any part of a system can be called
a component. So components will have state. They will
respond to actions (eg messages, method invocations,
events etc) enquiring of or altering their state. But they
will also have autonomous behaviour. They will be active
objects [2, 3, 4]. We have developed the idea that a system
can be built from (and usefull y described in terms of) a
single type of component elsewhere [8].

We generali se the notion of component by saying that a

3

component supplies services (eg methods, message
handlers, event handlers) which may be used by other
components.

In these terms, a system is a collection of components
which cooperate by each using the services supplied by
others. A dynamic system is a system which can be
reconfigured (new components added, old oned removed)
without having to stop.

We conjecture that a dynamic system will operate safely
and effectively if its components all obey the following
three laws.

1. A component, added to a system, may not disrupt
the behaviour of that system.

2. A component, using the services of another, does
so at its own risk and must protect itself from
damage.

3. A component offering a service does so at its
own risk and must protect itself from misuse.

We will ill ustrate a system which is built from
components which obey these laws as a proof of existence,
in the next section. First, let us discuss some of the
apparent consequences of the laws.

A consequence of the first law is that a system can choose
to completely ignore a new component. That at least
would guarantee no disruption.

But such a corollary implies that the system has some
behaviour independently of the behaviour of its
components. This is not our intention. The system
comprises its components and nothing else.

A consequence of the second law is that a component may
not rely upon the continued provision of a service
supplied by another component. If it did, then the supplier
could damage it simply by witholding the service.

A consequence of the third law is that the provider of a
service must be fair to its users. Otherwise it is open to a
denial-of-service attack, whereby a malicious user is able
to deny other users access by locking them out in some
way.

There are many such consequences of the laws. Rather
than elaborate on more of them here, we will t urn to an
example which ill ustrates an architecture which, it is
conjectured, supports components which obey these laws.

An Architectural Model

Figure 1 shows the model we are going to use to describe
our architecture. On the left of Figure 1 is the format for
presenting the detail s of a component. On the right is an
instance of a component which obeys the format.

A component is identified by a unique name, which in the
model will be written directly below the component. Thus,
in Figure 1, Till1 is the name of a particular component.

All components have a type, which determines what
services they provide. This model does not go down to the
level of services. Other components know which services
they need by knowing the type of component which
supplies them. The type of a component is written in the
first (sub-)box of the component model. Thus in Figure 1,
the component on the right is of type Till.

Each component will need access to a set of service
providers. The second box of the component description is
therefore a set of component types, called the needs of the
component. In Figure 1, Till1 needs to have access to the
services provided by a component of type NS and a
component of type PLU.

Each component will , at any point in time, know of a set
of other components. This set, called knows in Figure 1,
will grow as the li fe of the component extends. Obviously
the component's objective in li fe is to maintain a set of
components which it knows, and which supply the

Till
NS, PLU
NS1, NS2
NS1

Till1

Type
Needs
Knows
Uses

Name

Figure 1 Components: Format (left) and Instance(right)

4

services which it requires. In Figure 1, the component
Till1 knows of the components NS1 and NS2.

Finally, there will be a subset of the components which it
actuall y uses. The fourth and final part of the description
of a component is this subset. In Figure 1, although Till1
knows of NS1 and NS2 it only uses NS1.

To summarise:

A component is known by a Name.

A component has a Type.

A component has a set called needs, which is set of
Types being the types of components which it
needs access to in order to work.

A component has a set called knows, which is set of
Names being the names of components which it
knows the existence of.

A component has a set called uses, which is set of
Names being the names of components which it
is currently using.

Clearly, there are relationships between the parts of a
component. Specificall y uses will be a subset of knows
and every component in knows will be of a type in needs.
Moreover, the relative values of these parts can be used to
describe the evolving state of a component. For example,
it may be in a state of using components which satisfy its
needs, or it may be in the state of still needing
components. We will not go into these aspect further here,
since it takes us away from our objective of discussing the
three laws.

An Example

We are going to be very specific and show an example
taken from a retail , point-of-sale support system. The
system comprises till s (or cash-registers in the UK) at
which customers check out goods. The till s need access to
a component which provides price-lookup (PLU), among
many other services. The system is organised around a
registry (NameServer, NS) at which the providers of
services register their availabilit y and from which the
users of such services learn the identity of providers.

The semi-formal notation introduced in the last section
and exempli fied in Figure 1 has been designed for visual
presentation. Specificall y, the presentation is an
animation using Powerpoint Slideshow. The dynamic

nature of the system is apparent from the features of this
animation. New components appear on the screen among
an unchanging backdrop of already configured
components. As the story unfolds of how each component
configures and reconfigures itself, the individual
attributes of each component change one at a time. The
visual cues which this gives are ideally suited to the
human eye and everyone sees instantly where their
attention should be.

The formal properties of the architecture are important,
but presenting them formally to scientists and engineers is
less effective than the animation at eli citing the necessary
debate about the design. The architecture is simplfied
because of the existence of the formal model. The
animation serves as an ideal overview of the formal
model. When eventually we get to very hard questions, or
to the need for very precise statements, then it is time to
turn to the mathematics for help.

We can not present the animation here (unless you are
reading this on the Web). The next best thing is to choose
some of the major stages and to go through the sequence
of events between stages. This is what we will now do for
out point-of-sale system.

The point-of-sale system is built around a registry
component (of type NS, NameServer) which provides an
introduction service. Figure 2 shows the NameServer NS1
as it would have appeared at the beginning of time. In
Figure 2 we assume a Price Lookup component PLU1 (of

PLU
NS
NS1
NS1

PLU1

NS

NS1

Figure 2 A NameServer (NS1) component and a Price Lookup
(PLU1) component

5

type PLU) has just arrived. It already knows of NS1. This
prior knowledge of something (a registry, usually) is
assumed of all components. It is not the only architectural
choice we could have made.

The component PLU1 registers with NS1. Figure 3 shows
the system state which ensues.

PLU
NS
NS1
NS1

PLU1

NS

PLU1

NS1

Figure 3 The Price Lookup component registers with the
NameServer

Now the system is ready for till s to come on line. Figure 4
shows the state which we have as the first till component
comes into existence.

PLU
NS
NS1
NS1

PLU1

NS

PLU1

NS1

Till
NS, PLU
NS1
NS1

Till 1

Figure 4 A Till arrives, it requires a PLU

The obvious sequence of events takes place. The Till ,
Till1 knows only of the NameServer NS1. It requests a
component of type PLU. The NameServer will supply one
or more names. It only knows of PLU1, so we assume it
supplies that. Now we move to the state shown in Figure
5.

PLU
NS
NS1
NS1

PLU1

NS

PLU1

NS1

Till
NS, PLU
NS1, PLU1
NS1, PLU1

Till 1

Figure 5 The Till learns of PLU1 from NS1 and connects to it

You can imagine how the animation proceeds. A second
Till arrives and connects to PLU1. A second PLU arrives
(call it PLU2) and registers with NS1. Now PLU1 fail s,
but the system recovers because both till s reconfigure to
use PLU2.

We go on. What if the NameServer fail s? Well , to start
with its OK. Until a PLU fail s. There are many scenarios
possible. Maybe the Till s must wait until a new
NameServer arrives and the PLUs register. Maybe the
Till s took the precaution of finding out about the second
PLU service and can reconfigure without a NameServer.
Maybe the Till s know about each other and one of them
knows of an alternate PLU service. Each of these
scenarios demonstrates a different aspect of three laws.

Figure 6 shows a typical intermediate state where the
various components have done something to protect
themselves against failures.

6

PLU
NS
NS1, NS2
NS1, NS2

PLU1

NS

PLU1

NS1

NS

PLU1+2

NS2

PLU
NS
NS1, NS2
NS2

PLU2

Till
NS, PLU
NS1, NS2, PLU1
NS1, PLU1

Till 1

Till
NS, PLU
NS1, NS2, PLU1
NS1, PLU1

Till 2

Figure 6 A typical intermediate state where components have
done something to protect themselves against failures

But the interesting scenarios are not these fault tolerant
ones, even though they show reuse of legacy components.
The interesting scenarios are those where we go through a
component evolution (typical of COTS) where eventually
we replace an old component by a new one, other
components still protecting themselves against damage.
We shall discuss such scenarios in the context of our three
laws in the next section.

Discussion

Our conjecture is that, reusable components must obey
constraints if they are to be good members of a
community comprising a dynamic system. Particulary, we
wanted to address reuse in the context of dynamic systems
which we defined as collections of components which
cooperate by supplying services to each other. We
enunciated three laws which we conjectured reusable
components could choose to obey. We suggested that a
system built from components obeying these laws would
have the desirable properties of effective dynamic
reconfiguration, that is change of functionalit y without
loss of service.

To what extent have we been able to support this
conjecture? The architecture described in the earlier
sections is a proof of existence of a set of components
which obey the laws and apparently deli ver the stated
properties.

The first law is ill ustrated by arrival of components of
type Till and PLU which, on arrival, simply register with
or make a request of the NameServer. This behaviour can
not disrupt the behaviour of the system per se, although it
is dependent on the abilit y of the other components to
protect themselves against instances of such components
which are, in some sense, undesirable members of the
community. The power of the first law comes from the
fact that it dictates that old components must take an
active part in the decision to collaborate with new ones.

The second law is ill ustrated by the Till surviving the loss
of a PLU. Similarly, it is ill ustrated by the Till surviving
the loss of both a PLU and a NameServer. The Till has
made use of these services at its own risk and has not been
damaged by their loss. It would also be ill ustrated by the
more interesting scenario (too elaborate for inclusion
here) of a Till surviving the replacement of an old PLU
service by a new one which it subsequently finds deficient.
Obeying the second law it would retain the abilit y to
reconfigure back to using the old service.

The third law is ill ustrated by the PLU protecting itself
against a denial-of-service attack, where a malicious Till
has tried to lock other users out. A PLU obeying the third
law would not allow this. A corollary is that the PLU
service must be multithreaded or connectionless or in
some way able to deli ver the fairness required by the third
law.

However, this proof of existence, such that it is, only goes
some way towards supporting our conjecture.

It is possible that the laws are not even internall y
consistent. Our examples only show that the suggested
architecture appears to be consistent and appears to obey
the laws.

Whilst it may be that any system which has the properties
we require will obey the laws. it is unli kely that the laws
are complete in the sense that any system which obeys the
laws has the properties which we require.

The laws are probably not independent. Moreover, they
may even be redundant in that one may be a consequence
of the others.

Notwithstanding these diff icult questions, the three laws
do seem to have some utilit y in scoping the architectural

7

debate which it is necessary to have in order to design
dynamic systems which are built from reusable legacy or
COTS components. This we have exempli fied by
capturing a description of a common generic architecture
, the registry centred architecture common to OLE,
CORBA and client/server systems. We have taken the
debate in only one of many possible directions in this
paper. For example, we have made the assumption that
the registry only knows of components which register
themselves. An alternative architecture might remove the
need for any action on the part of a new component.
Would such an architecture be more robust?

It will be interesting to discover, as these laws become
more refined and as the systems we build test their utilit y
for scoping the design of reusable components and
continuously evolving systems, the extent to which this
initial formulation captured (or failed to capture) the
essence of what is, after all , just the way we build
contemporary systems.

Acknowledgments

I am indebted to many colleagues in ICL who have
encouraged me to develop these ideas over recent years
and have sponsored the projects in which they were
developed. In particular Simon Hayward, Ed Parton, Alun
Roberts, Graham Pratten, Bob Snowdon and Peter
Wharton have contributed, at different times, to the ideas
presented here. I am indebted to my colleagues in
Southampton who provide a stimulating environment in
which to argue one's case. And I am indebted to my
colleagues in IFIP WG 2.3 who are never satisfied with
anything, and so present me with an eternally reusable
challenge.

This work was carried out as part of EPSRC grants
GR/J08928, GR/K08116, GR/K83014.

References

[1] Allen R.J, Remi Douence and David Garlan
Specifying Dynamism in Software Architectures
Workshop of Foundations of Component Based
Systems, Zurich, 1997, see
http://www.cs.iastate.edu/~leavens/FoCBS/index.
html

[2] Birrell, A.D Greg Nelson, Susan Owicki, and
Edward P. Wobber. Network Objects. Software

Practice and Experience, 25(S4):87-130,
December 1995. Also appeared as SRC Research
Report 115, see
http://gatekeeper.dec.com/pub/DEC/SRC/researc
h-reports/abstracts/src-rr-115.html

[3] Brown, Marc H and Marc A Najork (1996)
Distributed Active Objects Computer Networks
and ISDN Systems, 28:1037--1052, May 1996.
(Proceedings of the Fifth International World
Wide Web Conference, Paris, France, May 6-10,
1996). Digital Systems Research Center, Report
141a,
http://www.research.digital.com/SRC/bibindex/t
mp/30547.html

[4] Cardelli , Luca (1995) A Language with
Distributed Scope. Computing Systems, Vol 8,
No1,Jan 1995.

[5] Gravell , A. and P. Henderson, Executing formal
specifications need not be harmful, Software
Engineering Journal, vol. 11, num 2., IEE
(1996).

[6] Henderson P Formal Models of Process
Components, Workshop of Foundations of
Component Based Systems, Zurich, 1997, see
http://www.cs.iastate.edu/~leavens/FoCBS/index.
html

[7] Henderson, P Functional Programming, Formal
Specification and Rapid Prototyping, IEEE
Transactions on Software Engineering, Vol.12,
No.2, pp.241-250, 1986

[8] Henderson, P & Pratten, G.D. POSD - A
Notation for Presenting Complex Systems of
Processes, in Proceedings of the First IEEE
International Conference on Engineering of
Complex Systems, IEEE Computer Society Press,
1995

[9] Henderson, P Software Processes are Business
Processes Too 3rd International Conference on
the Software Process, IEEE Computer Society
Press, Oct 1994

[10] Hoare C.A.R How did Software get to be so
reliable without proof Keynote address at the
18th International Conference on Software
Engineering. IEEE Computer Society Press,
1996. see also
http://www.comlab.ox.ac.uk/oucl/users/tony.hoar
e/publications.html

8

[11] JavaSoft Java RMI specification 1996, see
http://www.javasoft.com

[12] Magee J and Kramer J Dynamic Structure in
Software Architecture Proceeedings of the ACM
Conference on Foundations of Software
Engineering, 1996

[13] Milner, Robin The Polyadic pi-calculus: a
tutorial International Summerschool on Logic
and Algebra of Specification, Marktoberdorf,
1991. see also
http://www.dcs.ed.ac.uk/lfcsreps/EXPORT/91/E
CS-LFCS-91-180/index.html

[14] Milner, Robin Elements of Interaction: Turing
Award Lecture Communications of the ACM,
Vol 36, No 1, January 1993

[15] Object Management Group Common Object
Request Broker: Architecture Specification see

[16] Sulli van K and Knight J.C Experience Assessing
an ArchitecturalApproach to Large Scale Reuse
Proceedings of ICSE-18, 1996 IEEE Computer
Society Press

[17] Sulli van K, Socha J and Marchukov M Using
Formal Methods to Reason about Architectural
Standards 19th International Conference on
Software Engineering, Boston, IEEE Computer
Press, 1997

