
Computation and Approximation of Piecewise Affine Control Laws
via Binary Search Trees

P. Tøndel
�
, T.A. Johansen

�
and A. Bemporad

�

Abstract
We present an algorithm for generating a binary search tree
that allows efficient computation of piecewise affine (PWA)
functions defined on a polyhedral partition. This is useful
for PWA control approaches, such as explicit model predic-
tive control (MPC), as it allows the controller to be imple-
mented on-line with small computational effort. The compu-
tation time is logarithmic in the number of regions in the PWA
partition. A method for generating an approximate PWA func-
tion based on a binary search tree is also presented, giving
further simplification of PWA control.

1 Introduction
Piecewise Affine (PWA) controllers arise naturally in various
applications, e.g. in the presence of constraints or as approx-
imations of nonlinear maps. In this paper we address the
problem of evaluating a PWA function. At first sight, this
may seem a trivial task, but when the function is complex, a
straightforward evaluation is computationally expensive. The
main motivation behind this work is the recent development
of explicit solutions to Model Predictive Control (MPC) prob-
lems, in which the solutions are complex PWA state feedback
laws. In [1] it was recognized that the linear MPC problem can
be formulated as a multi-parametric quadratic program (mp-
QP) and solved explicitly, with a PWA solution. An algorithm
to solve the mp-QP is also provided, however, a more efficient
algorithm is developed in [2]. An alternative solution strat-
egy is given in [3], where pre-determination of a small set of
sampling instants where the active set is allowed to change
gives a suboptimal solution, and in [4] based on a geometric
interpretation of the QP problem. Suboptimality of mp-QP is
also introduced in [5] by relaxing the optimality conditions,
and in [6], by imposing an orthogonal structure to the state
space partitioning. In [7] MPC problems with

�����
-norms

are formulated as multi-parametric linear programs (mp-LP)
and solved explicitly, while extensions to hybrid systems us-
ing multi-parametric mixed-integer LP (mp-MILP), can be
found in [8], and explicit robust MPC is treated in [9]. All of
these approaches lead to PWA state feedback laws. Evaluation
of PWA functions is also of interest with other PWA control
structures than explicit MPC control (e.g. [10, 11, 12, 13, 14]).
The most immediate way of evaluating a PWA function is to
do a sequential search through the regions representing the
PWA function (see Algorithm 1 below). For the case of ex-
act solutions to the mp-QP and mp-LP problems, the authors
of [15] propose a more efficient method regarding both search
time and storage by exploiting properties of the value function.
This method is however not feasible for more general PWA
function evaluation, and is still fairly time consuming since it
requires a sequential search. The evaluation of a PWA func-
�
Department of Engineering Cybernetics, Norwegian Uni-

versity of Science and Technology, 7491 Trondheim, Norway,
Petter.Tondel@itk.ntnu.no, Tor.Arne.Johansen@itk.
ntnu.no.�

Dipartimento di Ingegneria dell’Informazione, University of Siena,
53100 Siena, Italy, bemporad@dii.unisi.it.

tion is similar to the point location problem [16, 17] which has
been subject to some research in the computational geometry
field. However, this research has been mainly focused on pla-
nar problems, and also a few treatments of problems in three
dimensions. These solutions are not suitable for the problems
faced when evaluating the PWA solutions to MPC problems,
which may have higher dimensions. The off-line mp-QP al-
gorithm of [1] has the property that a binary tree structure
could be generated while the mp-QP problem is solved, but
it is not obvious how to modify the algorithm so that the re-
sulting search tree will be balanced.
In this paper we present an efficient data structure for the rep-
resentation of PWA functions, in an effort to minimize the
time needed to evaluate the function. We also seek to mini-
mize the storage required by this data structure, although this
is considered of secondary importance. The proposed method
is general, in the sense that it does not have special require-
ments on the PWA function. Overlapping regions and holes in
the partition are handled by the method. The proposed method
gives evaluation times which are logarithmic in the number of
regions in the PWA function, while the storage required by
the data structure is polynomial in the number of regions. It
can also be used for evaluating piecewise quadratic as well
as piecewise nonlinear functions, as long as the functions are
defined on a polyhedral partition. Some preliminary results
were presented in [18]. We also present an algorithm for sub-
optimal evaluation of explicit MPC solutions that allows to
trade-off between the complexity of the search tree and the
optimality of the solution. Similar to the method of [6] the
algorithm uses an orthogonal partition to get highly efficient
on-line evaluation.

2 Explicit Constrained Linear MPC
Below we give a short description of linear MPC problems
and their explicit solutions. For more details, see [1, 7]. For
treatment of hybrid systems and the explicit solution of mp-
MILP, see [8]. Consider the linear system

	�
��������	�
�������
 (1)��
�� �!	�

where 	
#"%$�& is the state variable, �
'"%$�(is the input
variable, � "'$)&�*+& , � "'$�&�*,(and - �/.0�21 is a controllable
pair. The output and the control input are subject to the bounds� (435&�6 �
 6 � (87:9 .;� (43<& 6 �
 6 � (47=9 , where � (435&�>� (87:9 and � (?35&@> � (47=9 . For the current 	
 , MPC solves the
optimization problem

A�B - 	
 1C� DFE<GHJILKNMNMNMNK HJIPORQ�SUTWV 	
��X V=YZ �
X\[]�^
_:`]a - V 	
� _ ��� VcbZ � V �
� _ V=dZ 1

(2)
subject to 	
Le
 ��	�
 and

��f)g h 6 �
� _ e
 6 ��f)i0j+.lkF� � .cm5m<m5.0n��f)g h 6 �
� _ 6 ��f)i0jo.lkp��q�.cm5m<m5.0nsr �

	
� _ ���ce
 � ��	
� _ e
 �t�/�
� _ .ukwvxq (3)�
�zy2� _ �{q,.uk|v}q
�
� _ e
 �;�!	
� _ e
 .uk|vxq

For ~ ��� , V 	 V=�Z ��	�����	 , � � � �}v q , � � � ���;q and� v�q . For ~ � � and ~ � � , V 	 Vc�Z � V ��	 V Z . For ease of
notation, we will in the sequel skip the index � , and use � for��
 and 	 for 	�
 . These problems can be reformulated as the
following multi-parametric programs:

1. ~ ��� : (mp-QP)

DFE<G�W`�� H��I MNMNMcH��I5OUQ�SUT�� �8� �z� � �t	 ��� � (4)

�Rm � m8� � 6{� ����	zm (5)

2. ~ � � or ~ � � : (mp-LP)

D2E5G�W`�� H��I MNMNMcH��IPORQ�SUTz� � � �4� � � (6)

�Rm � m�� � 6}� ����	z. (7)

where � is a vector of slack variables (see [7]).

Definition 1 A function ����� $¢¡ , is piecewise affine
(PWA) if �£�¥¤ &�¦3 ` � � 3|§ $�& , where � 3 are convex poly-
hedral regions with mutually disjoint interiors and � - 	W1¨�� 3 	F��k 3 .ª©W	 " � 3 .
In case of discontinuities over overlapping boundaries, namely
for some « , ¬ � 3 	\�@k 34� �'® 	\�¯k ® for 	 " � 3�° � ® �;± , we
assume that � - 	W1 is defined as one of the possible values.
The solutions to the mp-QP/mp-LP problems above are con-
tinuous PWA functions, which gives the control input as an
explicit function of the state, [1, 7]. We will in the next sec-
tion present an efficient data structure which allows very fast
evaluation of PWA functions.

3 On-line Search Tree
When a PWA controller is executed, the problem is to decide
which polyhedral region � 3 the current state 	
 belongs to,
and then compute the control input using the corresponding
affine control law. The most direct way of doing this is by the
following sequential search through the polyhedral regions of
the partition.

Algorithm 1 (Sequential search)

1 «)² �
2 while 	 �" � 3 and « 6�³�´
3 «�²µ« � �
4 end (while)
5 if « � ³ ´ � � , then 	 �" � , (problem infeasible), termi-

nate.
6 evaluate the control input, � - 	W1u� � 3 	F��k 3¶

In the worst case Algorithm 1 checks every region (and ev-
ery hyperplane) in the partition. We want a method to find
the region to which a given 	 belongs by evaluating as few
hyperplanes as possible.
An efficient way to exploit the convexity of polyhedral sets is
to build off-line a binary search tree (for on-line use) where

X2, F1

X6, F3 X4, F2

X1, F1

X3, F1

X5, F2j1

j6

j4 j5

j3

j2

·
1={1,...,6}¸

1=Ø
j1=1

·
2={1,2,6}¸

2={1-}
j2=4

·
3={2,3,4,5}¸

3={1+}
j3=3

·
5={6}¸

5={1-,4+}
F3

·
4={1,2}¸
4={1-,4-}

F1

·
6={4,5}¸

6={1+,3-}
F2

·
7={2,3}¸

7={1+,3+}
F1

N1

N2 N3

N4 N7N6N5

Figure 1: Partition and corresponding search tree

at each level one linear inequality is evaluated. Consider the
set of polyhedra ¹ � � .º�p»�.cm5m<m5.º� &�¦�¼ , and the corresponding set
of affine functions ¹ � �J. � » .cm5m<m5. ��½ ¼ defining an affine con-
trol law. Note that ¾ 6¿³z´ since several regions can have
the same control law. Let all unique hyperplanes defining
the polyhedra in the partition be denoted by À �® 	Á�ÃÂ ® for
¬ � � .Ä�+.Åm<m5m<.lÆ , and define Ç�®R- 	W1�� À �® 	xrÈÂ ® . Let the
index representation É of a polyhedron denote a combina-
tion of indexes combined with the sign of Ç�® , e.g. É �¹ � � .ºÊ � .0Ë [¼ would mean that Ç � - 	�1¨vÌq , Ç�Ío- 	W1¯vÌq andÇUÎR- 	�1 6 q . Such a set obviously defines a polyhedron in
the state space, Ïw-ÐÉ 1 . We can further define the set of poly-
hedral regions corresponding to É as the index set Ñ�-ÒÉ 1p�¹Ó«:Ô � 3�° Ïw-ÐÉ 1 is full-dimensional ¼ . For a set Ñ of polyhedra,
we can also define an index set of corresponding affine func-
tions ÕÖ-<Ñ 1u� ¹ k Ô � _ corresponds to � 3 . « " Ñ ¼ . The idea is to
construct a binary search tree such that for a given 	 " � , at
each node we will evaluate one affine function Ç ® - 	�1 and test
its sign. Based on the sign we select the left or the right sub-
tree. Traversing the tree from the root to a leaf node, one will
end up with a leaf node giving a unique affine control law � _ .
The main challenge is to design a tree of minimum depth such
that we minimize the number of hyperplanes to be evaluated
to determine the solution. Of secondary priority, is the desire
to keep the total number of nodes in the tree at a minimum, as
this would decrease the on-line memory requirements.
Each node of the tree will be denoted by n _ , and we will use
a list × to keep the indices of the nodes which are currently
unexplored. An unexplored non-leaf node n _ will consist of-<Ñ _ . É _ 1 , where É _ is the index set (with signs) of hyperplanes
obtained by traversing the tree from the root node to n _ andÑ _ � Ñ�-ÐÉ _ 1 . An explored non-leaf node will contain an index¬ _ to a hyperplane, while a leaf node will contain an affine
control law, � _ . See Figure 1 for an example of a simple
search tree. We will use the notation ’ Ø ’ for statements which
should be repeated for both ’ � ’ and ’ r ’. Let ÔUÙ�Ô denote the
number of elements in a set.
Note that Ñ�-ÐÉ ¤ ¬oÚ 1 § -<Ñ�-ÐÉ 1 ° Ñ�-5¬oÚ 1º1 , and that the dif-
ference between these two sets can be characterized by the
following lemma:

Lemma 1 If « " Ñ�-ÐÉ 1 ° ÑÛ-<¬ � 1 but « �" Ñ�-ÒÉ ¤ ¬ � 1 , then � 3 is
split into two full-dimensional polyhedra by the hyperplane ¬ ,
i.e. « " Ñ�-ÒÉ 1 ° Ñ�-<¬ � 1 ° Ñ�-<¬ [1 . The same result holds when¬ � and ¬ [are interchanged.

Proof: Since « �" ÑÛ-ÐÉ ¤ ¬ � 1 then Ïw-ÐÉ ¤ ¬ � 1 ° � 3 is not full-
dimensional. But since « " Ñ�-ÐÉ 1 and Ïw-ÐÉ 1?� Ïw-ÒÉ ¤ ¬ [1�¤Ïw-ÐÉ ¤ ¬ � 1 we have that Ïw-ÐÉ ¤ ¬ [1 ° � 3 is full-dimensional,
and so is Ïw-<¬ [1 ° � 3 , which implies « " Ñ�-5¬ [1 and completes
the proof.

¶
When exploring a node of the tree, the main goal is to re-
duce the number of remaining control laws as much as pos-
sible from the current to the next level of the tree. More
precisely, for a node n _ � -ÜÑ _ . É _ 1 , we want to select the
hyperplane ¬ _ as Ý�Þ0ß D2E5G ® D Ý�à�-lÔ Õ'-ÜÑ �_ 1 Ô . Ô ÕÖ-<Ñ [_ 1 Ô 1 , where
Ñ Ú_ � Ñ�-ÒÉ _ ¤ ¬ Ú 1 . This does, however, require the computa-
tion of Ñ Ú_ for every ¬ . Lemma 1 provides a computationally
efficient approximation of Ñ Ú_ as Ñ�-ÐÉ _ 1 ° Ñ�-<¬oÚ 1 . One can fur-
ther get the exact Ñ Ú_ by for each « " Ñ�-ÐÉ _ 1 ° Ñ�-<¬ � 1 ° ÑÛ-<¬ [1
solving the two LPs

D2E5G9�á�â�ã Ø!Ç�®�- 	W1:. (8)

which decide on which side of hyperplane ¬ does polyhedron «
lie. As the approximation can be used to select a few candidate
hyperplanes, there is only a small number of LPs which have
to be solved. We can now present an algorithm to build a
binary search tree:

Algorithm 2 (Build search tree)

1 Compute the index sets ÑÛ-<¬ � 1 and Ñ�-5¬ [1 for every ¬ "¹ � .cmÅmcm=.lÆ ¼ .
2 The root node of the tree is initialized as nä� ²-L¹ � .ÅmcmÅm=. ³�´J¼ .l±R1 .
3 The set of unexplored nodes is initialized as ×�²å¹ n � ¼ .
4 Select any unexplored node n _ " × and let ×æ²Ã×�çn _ .
5 Compute the approximations Ñ�-ÐÉ _ 1 ° Ñ�-<¬oÚ 1 for

all ¬ , and sort the hyperplanes by the quantityD Ý�à]-0Ô Õ'-ÜÑ�-ÒÉ _ 1 ° Ñ�-5¬ � 1º1 Ô . Ô Õ'-ÜÑ�-ÒÉ _ 1 ° ÑÛ-<¬ [101 Ô 1 .
6 Compute (the exact) Ñ Ú_ � ÑÛ-ÐÉ _ ¤ ¬ Ú 1 for each

of the first ³ ® elements of the sorted list of step 5
(See below for how ³ ® is selected). This is done
by solving the LPs (8) for each « " Ñ�-ÐÉ _ 1 °Ñ�-5¬ � 1 ° Ñ�-<¬ [1 . Select ¬ _ among these as ¬ _ �Ý�Þ0ß DFE5G ® D Ý�à]-0Ô ÕÖ-<Ñ �_ 1 Ô . Ô Õ'-ÜÑ [_ 1 Ô 1 .

7 Complete the node as n _ ²è¬ _ , and create two child
nodes, n Ú ²é-<Ñ Ú_ . É _ ¤ ¬ Ú 1 .

8 If Ô Õ'-ÜÑCÚ 1 Ô � � , add n Ú to × . Else n Ú is a leaf node,
and let n Úê²µÕ'-ÜÑuÚ 1 .

9 If × ��± , go to step 4, else terminate.¶
The computationally most expensive steps of this algorithm
are steps 1 and 6. In step 1, one has to determine for each
hyperplane, which side every region � 3 lies on. This can be
implemented by solving ��Æ ³z´ LPs (8), which is computation-
ally expensive for large problems. If the vertices of every � 3
are available, these LPs can be replaced by simple arithmetic
operations, giving considerably faster computation. If compu-
tation of the vertices is considered to expensive, one can for
each � 3 compute a set of points ë 3 , such that � 3)§ �íì ³]î -Òë 3 1
(�íì ³]î denotes the convex hull). Such vertices can e.g. be
found by using outer parallellotopic approximations as in [19].
Each of the ��Æ ³�´ cases can now be determined by simple
arithmetic operations, except when �íì ³]î -Ðë 3 1 is split by a

hyperplane, when LPs still has to be solved. In step 6, one
also has to solve LPs to find the exact Ñ Ú_ . The number³ ® of hyperplanes which are checked in step 6 can be var-
ied to trade-off between the off-line time required to generate
the search tree and the complexity of the tree. In the exam-
ples of Section 5, ³ ® has been chosen to be Ô ¬ 7 ZÄZ ´lï09 Ô , where¬ 7 ZÄZ ´lï09 � ¹Ä¬WÔ D Ý�à]-0Ô Õ'-ÜÑ�-ÒÉ _ 1 ° ÑÛ-<¬ 1º1 Ô . Ô Õ'-ÜÑ�-ÒÉ _ 1 ° Ñ�-5¬ 101 Ô 1C�DFE5G ®ªð D Ý�à�-0Ô ÕÖ-<Ñ�-ÐÉ _ 1 ° Ñ�-5¬cñ 1º1 Ô . Ô Õ'-ÜÑ�-ÒÉ _ 1 ° ÑÛ-<¬Åñ 101 Ô 1 ¼ , which
means that only hyperplanes which minimize the criterion in
step 5 are considered in step 6. To further decrease off-line
computation time, one can in step 5 consider only hyperplanes
corresponding to remaining polyhedral regions Ñ _ (e.g. ¬ÅÍ and¬ÓÎ for node n » in figure 1). Moreover, hyperplanes defining
the boundary only between regions with the same control law
(as ¬ » , ¬Óò and ¬ Î in Figure 1) can also be disregarded in step 5,
as they are not needed to complete the search tree.
Often the best hyperplane ¬ _ from step 6 is not unique. Among
the set of hyperplanes which are best from the criterion in
step 6, one can further refine the selection. Consider

1 DFE<G® - D Ý�à�-0Ô Ñ
[_ Ô . Ô Ñ �_ Ô 1º1 ,

2 DFE<G -lÔ Ñ [_ Ô . Ô Ñ �_ Ô 1 and DFE<G -0Ô ÕÖ-<Ñ [_ 1 Ô . Ô Õ'-ÜÑ �_ 1 Ô 1 .
By considering the first of these additional criteria, one tries
not only to reduce the number of possible control laws from
one level of the tree to the next, but also the number of poly-
hedral regions in which the state 	
 may be. Reducing the
complexity between tree levels in this way, has in examples
shown beneficial results. The second criterion considers the
least complex of the two child nodes. By reducing the com-
plexity of this node, one can reduce the total number of nodes
in the tree. This will however not contribute to reducing the
depth of the tree. The next algorithm is used on-line to traverse
the binary tree (see e.g. [20]).

Algorithm 3 (Traverse search tree)

1 Let the current node n _ be the root node of the tree.
2 while n _ is not a leaf node
3 Evaluate the hyperplane Ç�- 	�1u� À �z	CróÂ corresponding

to n _ .
4 Let n _ be the child node according to the sign of Ç�- 	�1 .
5 end (while)
6 Evaluate the control input � - 	�1 corresponding to n _ .¶

In general, the worst-case number of arithmetic operations re-
quired to search the tree and evaluate the PWA function is- � ³ � � 1ºôs��� ³]õ , where ô is the depth of the tree, õ is
the number of inputs and ³ is the number of states. At each
node there are ³ multiplications, ³ additions and

�
compari-

son. Moreover, � ³]õ operations are required to evaluate the
affine state feedback of the leaf node.
Regarding memory requirements for the data structure, the
most efficient is to store each of these solutions in a table, and
give a pointer to an element in this table for each leaf node
in the tree. Similarly, there is only a small subset of all the
hyperplanes representing the regions � 3 which is used in the
search tree. Moreover, each of these hyperplanes are usually
used in several nodes of the tree. So the hyperplanes should
also be stored in a table, while using pointers to this table in
the non-leaf tree nodes. This would require each leaf node
in the tree to contain one pointer to a table of control laws,
while each non-leaf node would contain one pointer to a table
of hyperplanes, and two additional pointers to its child nodes.

4 Estimated Complexity of the Tree
This section will give an estimate of the depth and number of
nodes in a tree for a given problem size. Such an estimate has
to be based on how good the hyperplanes selected in step 6 of
Algorithm 2 are. This estimate is given for the case when we
want to find the exact region a state 	 belongs to without con-
sidering that several regions can have the same affine control
law.
In the best case we will in each node of the tree be able to
select a hyperplane which has half of the remaining regions
on each side. This will obviously give a tree where the depth
would be ôö�è÷ùø5ú ß » - ³�´ 1�û , and each hyperplane would be
stored once in the tree. Obviously this best case estimate
would not be possible for anything else than problems with
a very special partition. We can however give a more realis-
tic estimate. Assume that the hyperplane selected in a noden _ has the property

f)i0jJü e ý Sþ e K e ý Oþ e ÿe ý þ e 6�� . � "�� q�m � � 1 , where� �;q,m�� corresponds to the best case. Since Ô Ñ _ Ô � ³�´ for the
root node, the depth of the tree would then be given by

³�´���� � � . (9)

or equivalently,

ô �
	 ø5G �&�¦ø5G ��
 ��=r ø5G ³�´ø5G ��� m (10)

If the tree is ’full’, that is the depth is the same for all leaf
nodes, the approximate number of nodes in the tree is

� � �;� ÷ [�� ��� ¦� ��� û�� ³ [ð ���ð ���´ m (11)

In our experience, an � of
»�

is a conservative estimate when
using Algorithm 2. This would give ôÃ� ÷ � m���ø5ú ß » ³�´ û and
the number of nodes would be ³ � M �´ . However, regardless of
the size of � , the depth of the tree would be a logarithmic
function of ³z´ , while the number of nodes would be polyno-
mial in ³�´ .
Note that the complexity of the tree would be considerably
reduced in the case of explicit MPC solutions, where we can
stop dividing the tree when we know the affine control law
which is optimal, without knowing the exact polyhedral region
in which the state is. Moreover, the tree is usually far from
’full’, so the estimate of number of nodes is conservative. The
examples in the next section therefore show a considerably
lower complexity than the given estimate.

5 Examples
In the examples of this section, Algorithm 1 is implemented
by storing each region in the partition, represented by its hy-
perplanes, and the corresponding affine function parameters.
Obviously this algorithm could be improved both in terms
of computational complexity and storage, e.g. by computing
unions of polyhedra where the affine control law is the same
(as in [21]).

Example 1 We have repeated the mp-QP example from [15]
and generated a search tree for comparison. Consider the
linear system � -� 1u�

�
� Í � - � 1 (12)

which is discretized with sampling time � ¡ � � . The system
is subject to input constraints, r � 6 � -� ��k,1 6 � and out-
put constraints, r � q 6 � -� ��k,1 6 � q . For the quadratic

case (mp-QP), an MPC controller is designed with n �¿Ë ,� �! Í * Í , � � q,m q � and
� �{q . The explicit PWA state feed-

back consists of 213 regions. Table 1 reports the comparison
between Algorithm 1, the algorithm from [15] and Algorithm
3 in terms of required storage and arithmetic operations to
compute the control input. The generated search tree has a
depth of

� � , containing
� Ê"�$# nodes. Ë%�JÊ unique hyperplanes

occur in the tree, and there are ��& different affine control laws
representing the PWA function. The off-line computations to
generate the tree was done in less than 1 minute, using Matlab
6.0 on a 1GHz Pentium III.

Table 1: Performance of search tree for mp-QP solution
Alg. 1 Alg. from [15] Alg. 3

Storage (real numbers) 9740 1065 1615
Storage (pointers) - - 2945
Arith. ops, worst case 20668 3489 116¶

Example 2 In [22] the authors gave a solution to a con-
strained optimal control problem, solving a traction control
problem using a hybrid model. This was formulated as an mp-
MILP, and solved explicitly. The resulting controller was a
PWA function consisting of ��q�' polyhedral regions, giving a
single control input as a function of 5 states. The performance
of using a search tree to represent this PWA function compared
to a sequential search is shown in Table 2. The search tree has
a depth of

� � , and consists of
�R� #�& nodes.

Table 2: Performance of search tree for mp-MILP solution
Alg. 1 Alg. 3

Storage (real numbers) 34776 1350
Storage (pointers) - 2277
Arithmetic ops. (worst case) 68834 156¶

6 Approximate Search Tree
As the complexity of the explicit MPC solution increases, it
would be desirable to make a trade-off between complexity
of the search tree and optimality of the solution. An approxi-
mate solution should be designed to take maximal advantage
of the properties of the search tree presented in Section 3. The
method proposed below does this by only allowing orthogonal
hyperplanes in the tree nodes. This has two main advantages
for the tree complexity: 1) The storage required by each hy-
perplane is only two numbers, an orthogonal direction and a
position. 2) The on-line evaluation of each node is one com-
parison only. The complexity of this tree would be as in the
best case analysis of section 4. For the algorithm to terminate,
we have to require the underlying PWA function to be contin-
uous. The proposed method will give a solution which is pri-
mary feasible, while the error compared to the exact solution
is bounded. The following lemma will be used in the sequel to
enforce primal feasibility on the solution, by considering only
the first õ components of the solution � - 	�1 .
Definition 2 The orthogonal projection of the polyhedron� � 	 ���Û»c� 6 Â onto the 	 -space consists of every 	 such
that there exists � with � � 	2���Û»c� 6 Â .
Lemma 2 Let �í� 6 � � ��	 be the orthogonal projection
of � � 6�� �x��	 onto the - ��.º	W1 -space, where � " $)(are
the first õ elements of � " $

X (. Consider a polyhedral
region � 3 , and let ë � ¹Jë � .cm5m<m5. ë &)(u¼ . ëo® "+*w& be a set
of points such that � 3 § �íì ³]î -Ðë 1 . Then �í� -Ðë 3 1 6 � �� ë 3 © ë 3 " ë implies that there exists � - 	�1 with � - 	�1 as the
first õ components such that � � - 	�1 6{� ����	;©�	 " � 3 .

Proof: Since �í� -Ðë 3 1 6 � � � ë 3 © ë 3 " ë we have that��� - 	�1 6 � � ��	Á©ä	 " � 34§ �íì ³]î -Ðë 1 due to convexity.
It now follows from the definition of the orthogonal projection
that for every 	 " � 3 there exist � - 	W1 with � - 	�1 as the firstõ components such that � � - 	�1 6{� ����	 . ¶
We will use ,

7.-�¡ ��D Ý�à9�á�â ã V � 3 	2��k 3 r � B - 	W1 V�/ (13)

as a measure to how good an approximation 0� 3 - 	�1u� � 3 	u�äk 3
is in the region � 3 . The algorithm can be summarized as fol-
lows: Given a hypercube � � , split � � into two hypercubes� � [and � � � by an orthogonal hyperplane. Find affine
control laws � [/� k [and � � 	�� k � such the correspond-
ing errors

, �
7�-Ò¡ and

, [
7.-�¡ are minimized in each hypercube. It-

erate on the position of the hyperplanes until

, �
7�-Ò¡ � , [

7�-Ò¡ . The
reason we want

, �
7.-�¡ � , [

7.-�¡ , is that one of these errors is an in-
creasing function of the position of the hyperplane, while the
other is decreasing. So D Ý�à�-

, �
7.-�¡ . , [7.-�¡ 1 is minimized when

, �
7�-Ò¡ � , [

7.-�¡ . If

,
Ú7.-�¡ is below an a priori provided bound, the

hypercubes are kept as part of the approximate solution. Else,
keep dividing � � [and � � � as was done with � � . Al-
gorithm 4 shows how a hypercube � � will be split into two
parts by a hyperplane � .
Algorithm 4 (Split hypercube)

1 Select a hyperplane � which splits the hypercube � �
into two equal sized hypercubes, � � Ú .

2 Let ë Ú be the set of vertices (which are easily com-
puted) of � � Ú , and let �2143�5 be a set of points. Ini-
tialize � 16375 ² ëóÚ .

3 Find a primary feasible affine function � 163 5 � � Ú 	��k Ú for � � Ú , which minimizes V �8143 5 - 	 3 1Rr/� B - 	 3 1 V /
for all 	 in �2143 5 , by solving

DFE<G1 5 K _ 5 K 9 5 � Ú (14)

�Rm � V � Ú 	 3 ��k Ú r¨� B - 	 3 1 V�/ 6:� Ú ©�	 3 " �2143 5
(15)�í� - î ® 1 6 � � � î ® © î ® " ë Ú . (16)

which can be formulated as an LP.
4 Find a set of points �;143 5 K &�<>= in � � Ú such that

V �?143 5 - 	W1ur�� B - 	W1 V�/ � � Ú(47=9 . © 	 " �2143 5 K &�<@= ,
where � Ú(87:9 is the minimizing � Ú from (14)–(16).

5 If � 163 S K &�<>= �;± and � 143 O K &)<>= �;± go to step 6, else
let �2163 5 ² �2143 5 ¤|�2143 5 K &�<>= , go to step 3.

6 Let

,
Ú7.-�¡ ² � Ú . If Ô

, [7.-�¡ r , � 7.-�¡ Ô 6 � , where � is some
small tolerance, the best hyperplane has been found for
this axis-orthogonal direction. Otherwise move the hy-
perplane � accordingly to

, [7.-�¡ and

, � 7.-�¡ , form � � Ú
and go to step 2.

¶
The computationally most expensive part in Algorithm 4 is
step 4, which is equivalent to minimizing a PWA function.
This can be done by Mixed Integer Linear Programming
(MILP) and parametric-MILP as in [5], or by simply solv-
ing two LPs for each polyhedral region in the exact solution,
which intersects the hypercube. The LP (14)–(16) may not
have a feasible solution. We then split the hypercube into two
equal sized parts.

We present an algorithm to create an approximate search tree
below. An unexplored non-leaf node n _ of the tree will con-
tain a representation of the hypercube corresponding to the
node, while an explored non-leaf node will contain an axis-
orthogonal hyperplane.

Algorithm 5 (Approximate search tree)

1 The root node of the tree is initialized as n � ² - � � � 1 ,
where � � � is the hybercube in which the solution is to
be approximated.

2 The set of unexplored nodes is initialized as ×�²å¹ n � ¼ .
3 Select any unexplored node n _ " × . Let ×�²¿×{ç n _ .
4 For each axis-orthogonal direction ì , find

,
7.-�¡ - ì�1ê�D Ý�à]-

, [
7.-�¡ - ì�1=. , � 7.-�¡ - ì�1º1 by applying Algorithm 4 and se-

lect the direction ì ï Z
 � Ý�Þ0ß D2E5G ï
,
7.-�¡ - ì�1 . Let � _ be

the corresponding hyperplane, and � � Ú_ be the two hy-
percubes generated by the split.

5 Complete the node as n _ ²è- � _ 1 and create two child
nodes n Ú{² - � � Ú_ 1 , where ë Ú_ is the vertices of the
corresponding hypercube.

6 Let � (87:9 be the maximum allowed error. If

,
Ú7.-�¡ - ì ï Z
 14�� (47=9 , add n Ú to × .

7 If × �;± , go to step 3, else terminate.

¶
Example 3 We have tested Algorithm 5 on an example from
[5], where the system � -� 1í� � - �!r � 1 � - � » �{�R���!��1L� - � 1 is
sampled with � � q�m � � , and an explicit MPC controller is
computed for a time horizon n � Ë with input constraints,r � 6 � - � 1 6 � . Because the hyperplanes generated by
this method are forced to be in axis-orthogonal directions, the
resulting controller will be complicated in parts of the state
space where the shape of the exact solution differs from the
axis-orthogonal directions. Often a linear transformation on
the state would be beneficial before applying Algorithm 5, and
in this case a rotation of the state space has been applied (�
and 	�» in the figures refers to the rotated coordinates). The
inverse transformation must of course be applied to the state
before traversing the tree on-line. The number of arithmetic
operations to traverse this tree is � ³]õ ��ô , as

�
compari-

son is needed to evaluate each hyperplane and � ³ operations
are required to evaluate each element in the affine control law.
Moreover, ³ - ³ r � 1 additional operations are required to per-
form the inverse linear transformation. The exact solution to
the mp-QP is shown in figure 2, while an approximate solu-
tion allowing

,
7.-�¡ 6 q�m Ê is shown in figure 3. Table 3 shows

the complexity of some approximate search trees compared to
a search tree generated by applying Algorithm 2 to the exact
solution. The approximate tree shows good performance in
terms of arithmetic operations/storage when the chosen maxi-
mum allowed error is not too low.

Table 3: Approximate search treesACBCDFE Depth Arithmetic ops. Storage (numbers)
0.1 14 24 640
0.2 7 17 220
0.3 5 15 136
0.4 4 14 80

Exact tree 8 44 603

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Partition of state space

Figure 2: MPC controller, exact solution with 73 regions

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Partition of state space

Figure 3: MPC controller, approximate solution with A�BGDFEIHKJ�L M
7 Conclusions

We have presented a binary tree structure designed to give
very efficient evaluation of PWA functions. Our method gives
a PWA function evaluation time which is logarithmic in the
number of regions representing the PWA function. This al-
lows considerably faster PWA function evaluation than ex-
isting methods. As the explicit solutions to MPC problems
are (often complex) PWA functions, the method is expected
to widely increase the sampling rates by which MPC can be
applied. A method for generating an approximate solution to
explicit MPC giving further improved on-line performance in
terms of evaluation time and required storage is also presented.

References
[1] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The
explicit linear quadratic regulator for constrained systems,” Automat-
ica, vol. 38, no. 1, pp. 3–20, 2002.

[2] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm
for multi-parametric quadratic programming and explicit MPC solu-

tions,” in Proc. 40th IEEE Conf. on Decision and Control, (Orlando,
Fl), 2001.
[3] T. A. Johansen, I. Petersen, and O. Slupphaug, “Explicit sub-
opitmal linear quadratic regulation with input and state constraints,”
Automatica, vol. 38, no. 7, pp. 1099–1111, 2002.
[4] M. M. Seron, J. D. Doná, and G. Goodwin, “Global analytical
model predictive control with input constraints,” in Proc. 39th IEEE
Conf. on Decision and Control, (Sydney), 2000.
[5] A. Bemporad and C. Filippi, “Suboptimal explicit RHC via
approximate multiparametric quadratic programming,” Journal of
Optimization Theory and Applications, In press.
[6] T. A. Johansen and A. Grancharova, “Approximate explicit
model predictive control implemented via orthogonal search tree par-
titioning,” in Preprints XV IFAC World Congress, (Barcelona), 2002.
[7] A. Bemporad, F. Borrelli, and M. Morari, “Model predictive
control based on linear programming - the explicit solution,” IEEE
Trans. Automatic Control, In press.
[8] A. Bemporad, F. Borrelli, and M. Morari, “Optimal con-
trollers for hybrid systems: Stability and piecewise linear explicit
form,” in Proc. 39th IEEE Conf. on Decision and Control, 2000.
[9] A. Bemporad, F. Borrelli, and M. Morari, “Piecewise linear
robust model predictive control,” in Proc. European Control Confer-
ence, (Porto, Portugal), Oct. 2001.
[10] G. Garcia and S. Tarbouriech, “Piecewise-linear robust con-
trol of systems with input constraints,” European Journal of Control,
vol. 5, no. 1, pp. 157–166, 1999.
[11] G. Wredenhagen and P. Belanger, “Piecewise-linear LQ con-
trol for systems with input constraints,” Automatica, vol. 30, no. 3,
pp. 403–416, 1994.
[12] A. Rantzer and M. Johansson, “Piecewise linear quadratic op-
timal control,” IEEE Trans. Automatic Control, vol. 45, pp. 629–637,
2000.
[13] A. Hassibi and S. Boyd, “Quadratic stabilization and control
of piecewise linear systems,” in Proceedings American Control Con-
ference, 1998.
[14] O. Slupphaug and B. A. Foss, “Quadratic stabilization of
discrete-time uncertain nonlinear multi-model systems using piece-
wise affine state feedback,” Int. J. Control, vol. 72, pp. 686–701,
1999.
[15] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari, “Effi-
cient on-line computation of explicit model predictive control,” in
Proc. 40th IEEE Conf. on Decision and Control, (Orlando, Florida),
2001.
[16] J. Snoeyink, “Point location,” in Handbook of Discrete and
Computational Geometry (J. E. Goodman and J. O’Rourke, eds.),
ch. 30, pp. 559–574, CRC Press LLC, 1997.
[17] M. T. Goodrich and K. Ramaiyer, “Point location,” in Hand-
book of Computational Geometry (J.-R. Sack and J. Urrutia, eds.),
pp. 121 – 153, Amsterdam: Elsevier Science Publishers B.V. North-
Holland, 1999.
[18] P. Tøndel and T. A. Johansen, “Complexity reduction in ex-
plicit linear model predictive control,” in Preprints XV IFAC World
Congress, (Barcelona), 2002.
[19] A. Vicino and G. Zappa, “Sequential approximation of fea-
sible parameter sets for identification with set membership uncer-
tainty,” IEEE Trans. Automatic Control, vol. 41, pp. 774–785, 1996.
[20] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures
and Algorithms. Reading, MA.: Addison-Wesley, 1983.
[21] A. Bemporad, K. Fukuda, and F. D. Torrisi, “Convexity recog-
nition of the union of polyhedra,” Computational Geometry, no. 18,
pp. 141–154, 2001.
[22] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat, “A hybrid
approach to traction control,” in Proc. 4th International Workshop on
Hybrid Systems: Comp. and Control, (Rome), 2001.

