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a b s t r a c t

This paper presents the first route choice model for bicyclists estimated from a large sam-
ple of GPS observations and overcomes the limitations inherent in the generally employed
stated preference approach. It employs an improved mode detection algorithm for GPS
post-processing to determine trips made by bicycle, which are map matched to an enriched
street network. The alternatives are generated as a random sample from an exhaustive, but
constrained search. Accounting for the similarity between the alternatives with the path-
size factor the MNL estimates show that the elasticity with regards to trip length is nearly
four times larger than that with respect to the share of bike paths. The elasticity with
respect to the product of length and maximum gradient of the route is small. No other var-
iable describing the routes had an impact. The heterogeneity of the cyclists is captured
through interaction terms formulated on their average behaviour.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The encouragement of cycling is a central element in just about all current plans for urban and suburban travel behaviour
change. The advantages of cycling are obvious, as it is healthy, energy efficient, quiet and compatible with the urban scale.
Well designed, continuous and safe cycling networks are the method of choice to encourage cycling, but their design requires
an in depth understanding of the trade-offs bicyclists make in their route choice: gradients versus length, traffic lights versus
roundabouts, traffic volume versus speeds, bicycle lanes versus direct connections. Next to better design guidance this im-
proved understanding would also improve the generalised cost estimates needed in mode choice modelling, where the cur-
rent representation of cycling is rudimentary at best.

Our current understanding of these trade-offs relies more or less completely on stated preference (SP) surveys, as previ-
ous revealed preference (RP) studies were with one exception (Aultman-Hall et al., 1997) not able to trace or did not try to
trace the routes, which the cyclists travelled between origin and destination. In the absence of RP-based route choice models,
our knowledge is not as soundly based as one would hope. The recent availability of on-going and long-duration GPS-based
observation of travellers has changed the situation fundamentally. It is now possible to trace the route choice of travellers in
great detail across all modes with lightweight, unobtrusive and cheap devices over multiple days (e.g. Wolf, 2000; Stopher,
2008). For large samples this comes at the price of the (automatic) processing of the GPS points and especially with the dif-
ficulty of identifying the modes used (e.g. Tsui and Shalaby, 2006; Schüssler and Axhausen, 2009a,b). For small samples it is
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possible to post-process the observations by hand and with the support of the respondents, but given the costs involved, this
is out of reach for large samples of respondents and trips.

The purpose of this paper is to report the first route choice model of bicyclists estimated on the basis of a very large
sample of GPS-observed person days. Its methods will help to close an important gap in the literature. It will highlight
the difficulties involved in creating the choice sets for estimation, will report the discrete choice estimation results for
its example data set and will conclude with a discussion of policy implications of the results, but also of their possible
biases.

The literature identifies a large set of attributes of the route and the cyclist as relevant for their choices, but it highlights
especially length/travel time, gradient, existence of cycle lanes, type of intersections, presence of parking, traffic volume and
age and cycling experience among the characteristics of the cyclists. A recent paper by Sener et al. (2008) provides an
exhaustive review of the English language literature since the mid 1970s up to 2007 covering both revealed and stated pref-
erence studies (e.g. Axhausen and Smith, 1986; Bovy and Stern, 1990; Shafizadeh and Niemeier, 1997; Stinson and Bhat,
2003; Hunt and Abraham, 2007; Hyodo et al., 2000, but see Tilahun et al., 2007), which they cite only in an earlier version.
None of the studies they cite is employing comparable data making comparisons and definite conclusions difficult. There is
no German or French literature to speak of since the early work of Leutzbach et al., 1986, which focused on rural bicycle
paths.

Aultman-Hall et al. (1997) geo-coded the cycle-stage4 of 397 commute trips reported by residents in Guelph, Ontario. They
compared the chosen paths against the shortest paths, but due to then missing algorithms were then not able to develop a route
choice model. The closest study and data set to the one presented here is Harvey and Krizek (2007), which instrumented a small
sample of volunteer cyclists recruited from relevant organisations for three weeks in Minneapolis. The about 50 participants
undertook nearly 1000 cycle trips during that period. The authors highlight that the participants did not always chose the short-
est route, but their analysis remains descriptive. No formal choice models were estimated.

The literature on route choice of car drivers and public transport users cannot be reviewed here, but see Prato (2009) for a
recent overview. Basically, the same problem applies: many SP – based studies and few RP results. Given the larger policy
interest here, there are earlier RP-based studies, but they have remained rare until the recent availability of GPS data. See
Ben-Akiva et al. (1984) for the first RP-based car route choice model.

The remainder of the paper is organised as follows. The next section will describe the work involved in obtaining the
routes from the available GPS observations. As the routes are matched to navigation networks a new approach described
in Section 3 must be employed to generate the choice sets. A descriptive analysis of the data is followed by the choice mod-
elling results. The final section provides the outlook and policy implications.

2. Data

Choice modelling requires both observed choices and matching sets of non-chosen alternatives. To construct the set of
alternatives a suitable network model is required, which had to be constructed, as none of the locally existing network mod-
els or maps contained all relevant attributes. The chosen routes were identified in a large scale GPS-data set made available
to us, which included 2435 person weeks tracking 73,493 trips in Zürich (see Schüssler and Axhausen, 2008, 2009a,b).

2.1. Street network

The street network was compiled from four different sources: VECTOR25 landscape model of Switzerland (SwissTopo,
2008), a complete (navigation-quality) digital street network of Canton Zurich (Kanton Zürich, Amt für Raumordnung und
Vermessung, 2007), the recommended bike routes of Zurich (Stadt Zürich, Tiefbauamt, 2007), and the built bicycle facilities
of Zurich’s communal master plan (Stadt Zürich, Tiefbauamt, 2007; Menghini, 2008). It merges the relevant characteristics
from each network resulting in a more detailed network, covering especially the marked bicycle routes and gradients, which
are a crucial consideration in Zürich, which is situated along the valley of the river Limmat and its neighbouring hill sides. It
consists of 24,680 links and 8686 nodes. The gradient of each link was calculated as the ratio of the height difference be-
tween the start and end point of each divided by the distance between them using the Digital Terrain Model DTM-AV of
Cadastral Survey from the Swiss Federal Office of Topography – Swisstopo. This height model is based on high precision laser
scanning from aeroplanes flying at 2000 m. The accuracy corresponds to ±0.5 m 1r and the density is of about 1 point per
2 m2.

2.2. GPS data

The choices and routes were extracted from a GPS study which was originally conducted by a private sector company
with the aim to explore how often participants pass specific advertising billboards. The study observed a representative
sample of 2435 Zürich residents for an average of 6.99 days in 2004. No personal characteristics were made available.

4 Axhausen (2008) defines a stage (unlinked trip) as the uninterrupted movement with one mode or means of transport. A trip is the sequence of stages
between two activities. In general a vehicle trip involves two walk stages and the stage with the vehicle.
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Mode had to be determined by the mode detection algorithm of Schüssler and Axhausen (2009a,b). For further analysis,
only GPS points for which the most probable mode was a bicycle were used here. At this point it is not possible to quan-
tify the share of false positives and wrong negatives in the processed data, i.e. walk stage identified as cycling or cycling
classified as car driving, but we employed optimised parameter sets (see Schüssler and Axhausen, 2008 or Schüssler and
Axhausen, 2009a,b). Still, the overall quality of the automatic processing is so high, that we do not assume that this is a
problem. The automatic processing identifies the stages of a trip (i.e. unlinked trips in American usage). As with all GPS-
data the problem sometimes arises that a stage is split into multiple parts due to interruptions of the trace in urban can-
yons, signal shadows etc. The processing attempts to link such parts into the whole stage, but it will never capture all of
these cases.

The original dataset depicted in Fig. 1 includes bike stages made by persons living in Zurich anywhere in Switzerland. In a
further step the data was filtered to include only those stages taking place in the city of Zurich (the silhouette of the city is
visible in the figure below). From a total of 1101,421 points and 9047 stages, 320,576 points and 3387 stages were retained.

After the filtering process these were mapped to the street network (in Navteq� format) using the map matching algo-
rithm developed by Schüssler and Axhausen (2009a,b) extending Marchal et al. (2006).

2.3. Results of the map matching

Fig. 2 depicts the results of the map matching procedure. The links used by bicyclists in the sample are displayed in red.
Grey links correspond to the rest of the street network.

Some errors were observed in the matching procedure, especially along links where a good point flow was not available,
or where a dense scatter of points was present. The errors were minimized by means of the data filtering described previ-
ously and by calibrating the parameter values for the matching algorithm (for further discussion see Menghini (2008)).

The processing identified 2498 unique origin–destination pairs. Additionally, person statistics for the entire GPS point
sample were generated (see below), as well as the link sequences of the chosen routes.

3. Generation of alternative routes

The alternative (non-chosen) routes for the origin–destination pairs were generated using the infrastructure provided the
multi-agent transport simulation toolkit (MATSim) (see www.matsim.org). The cost attribute considered was the length of
the link, which is consistent with the assumption that the speed of the cyclists depends in the main on their own choice. For
alternatives (see also Park and Rilett, 1997; Ramming, 2002; Van der Zijpp and Fiorenzo-Catalano, 2005; Prato and Bekhor,
2006 or Bovy and Fiorenzo-Catalano, 2006).

Fig. 1. Original GPS-data set: bicycle stages of persons living in Zurich.

756 G. Menghini et al. / Transportation Research Part A 44 (2010) 754–765



Author's personal copy

3.1. Alternative path generation

Schüssler et al. (2009) describe in detail the choice-set generation used. It employs a breadth-first search link elimination
approach. It searches for the shortest path between origin and destination and removes the links in turn. These shortest
paths become in turn the starting points for the next iteration of link elimination. The algorithm keeps track of the networks
generated and retains only unique and connected networks and in turn shortest paths for the choice set. The depth, i.e. num-
ber of links removed, is increased until the desired number of distinct routes in the choice set has been generated or the
original shortest path is exhausted. Schüssler et al. (2009) discuss various run time experiments and run-time inspired opti-
misations of the algorithm. Fig. 3 illustrates the algorithm with an example.

3.2. Additional route characteristics

In order to characterise the route and the trade-offs of the cyclists further route characteristics were calculated. Table 1
describes the variables added. It was not possible to add average or even time-specific traffic volumes, as there was no (dy-
namic) transport model of the required spatial and network resolution available yet.

The path-size factor of Ben-Akiva and Bierlaire (1999) was chosen to capture the similarity between the alternatives (for
an alternative treatment of the independence of irrelevant alternatives (IIA) property of the multinomial logit model see
Cascetta et al., 1996) (see below for further discussion of the IIA property):

PSin ¼
X
a2Ci

la

Li

1P
j2Cn

daj
L�Cn
Lj

with la, length of link a from Route i; Li, length of route i; Ci, set of links of route i; daj, indicator with value = 1 if the link is
part of route j, otherwise = 0; L�Cn

, length of the shortest route for the OD pair n; Cn, total number of routes between OD pair n.

Fig. 2. Results of the map matching procedure (darker links) – City of Zurich.
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The reason for excluding average traffic volume along the routes was explained above. The other omission is the degree of
parking, but inside the built-up area of Zürich all roads have curb-line parking. The few observed or alternative routes
through the wooded hillsides did not justify the data collection effort involved.

4. Descriptive analysis

The chosen routes are in comparison shorter, less steep, involve fewer traffic lights and more marked bike paths, which
are not necessarily special facilities, as these could not be identified in the basic maps available (see Table 2). In 35.9% of the
cases, the chosen route was also the shortest route.

The distributions are generally similar, but the chosen routes accentuate the skew in comparison with the non-chosen
alternative (see the examples in Fig. 4).

The multi-day nature of the data sets allows calculating personal characteristics for each cyclist, such as average speed of
the cycling stages. These can be used in-lieu of the unavailable socio-demographics to describe and differentiate the

Fig. 3. Illustration of the breadth-first search link elimination algorithm for choice-set generation. Source: Schüssler et al. (2009). d: depth; Sn: additional
alternatives found at depth n; S: size of the choice set; b(d): Number of candidate networks at depth d;

Table 1
Variables included in the choice set describing the routes.

Variable Description

Length Route length [m]
RiseAv Average absolute gradient [m/100 m]
RiseMax Maximum gradient [m/100 m]
BikePath Percentage of marked bike paths along the route [0–100]
TLights Number of traffic lights
PS Path size measure [R+]

Table 2
Comparison of the chosen and non-chosen routes.

Chosen Alternatives

Variable Unit Mean Median St. dev Mean Median St. dev

Route length [m] 999 742 852 1325 1163 718
Average gradient [m/100 m] 0.90 0.35 1.38 1.02 0.55 1.18
Maximum gradient [m/100 m] 3.27 1.45 4.27 5.24 3.14 5.58
Percentage of marked bike paths along the route [0–100] 78.6 86.1 25.1 68.7 72.0 22.4
Number of traffic lights [] 2.83 2.00 3.91 2.92 2.00 3.63
Path size measure [] 0.293 0.160 0.375 0.361 0.271 0.288
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Fig. 4. Distributions of selected characteristics of the chosen and non-chosen routes.

Table 3
Characteristics of the observed cyclists.

Variable Unit Mean Median St. dev

Number of observed bicycle stages [] 3.04 2.00 3.95
Average speed by cyclist [m/s] 2.80 2.76 0.62
Median speed by cyclist [m/s] 2.80 2.76 0.62
Average stage length [km] 0.999 0.917 0.515
Median stage length [km] 0.875 0.788 0.451
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respondents (Table 3). While the average speeds follow a roughly normal distribution (Fig. 5.), the distribution of the number
of trips by person are very left skewed, with only a small number undertaking most of their travel in Zürich by bicycle. The
range and shape of the Zürich distribution are comparable to the same distributions from two 6-week diary studies shown in
Fig. 6 (2003 Thurgau and 1999 Mobidrive) (see Axhausen et al., 2007, 2002).

5. Model estimation

The preferred model for discrete choices is the multinomial logic model (MNL) and its extensions within the GEV model
family (Domencich and McFadden, 1975; Ben-Akiva and Lerman, 1985; Train, 2003). The pervasive IIA – problem (indepen-
dence of irrelevant alternatives) can be accounted for through either explicit models of the error variance–covariance

Fig. 5. Distribution of the cyclists’ characteristics.

Fig. 6. Distribution of the number of cycle trips per mobile day and cyclist.
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structure or through explicit similarity measures, which is the only practicable for route choice with its very large choice sets
(for a review see Axhausen and Schüssler (2007)). As mentioned above, the path-size factor of Bierlaire and Ben-Akiva is used
here as it is has advantages to its alternatives. Models including the log of the Path Size (LogPS) were also estimated, but
consistently yielded worse model results. See model estimation results (Tables 5–8).

The models presented here are based on an initial analysis by Menghini (2008), but they are expanded with the derived
person characteristics (see Table 3). The models were estimated using the software BIOGEME (Bierlaire, 2003, 2008). The two
basic models are shown below in Table 4. Although a logarithmic transformation is recommended by Ben-Akiva and Bierlaire
(1999), there was prior evidence that the unconstrained Box-Cox-transformation can improve the model fit. This was
adopted here as well. The two models distinguish themselves through the addition of an interaction term between the max-
imum gradient and the length of the route. The other variables describe the effort and comfort of the route: length, maxi-
mum gradient rather then average gradient, number of traffic lights and the share of the length which is sign posted,
marked or a built cycle path. These basic models were expanded with additional terms: (b) with a personal speed interaction
term, (c) with a personal average length interaction term, (d) with both interacting terms.

The speed and length interactions added to models (b) and (c) respectively are:

þbBikePath �
average speed person

average speed all person

� �kAvSpeed

� BikePath ðbÞ

þbLength �
1

observation person

� �
� Length

average length person

� �k Path Length

ðcÞ

Table 5
Results for Model 1 (1/2).

(a) Basic model (b) With SPEED interaction

PS LogPS PS LogPS

Parameters 6 5 7 6
Observations 2498 2498 2498 2498
Final LOG likelihood �7516.19 �7597.91 �7510.65 �7592.17
Adjusted q2 0.2647 0.2568 0.2651 0.2572

Value Std. error t-test Value Std. error t-test Value Std. error t-test Value Std. error t-test

Estimated parameters
b_Length �0.01 0.0001 �43.10 �0.01 0.0001 �36.73 �0.01 0.0001 �43.17 �0.01 0.0001 �36.85
b_RiseMax �23.33 1.3079 �17.84 �23.69 1.3261 �17.87 �23.32 1.3077 �17.83 �23.69 1.3261 �17.87
b_Tlights 0.08 0.0151 5.33 0.10 0.0154 6.29 0.08 0.0151 5.32 0.10 0.0154 6.28
b_PS 1.01 0.0712 14.20 – – – 1.01 0.0712 14.18 – – –
Lambda_PS 1.61 0.1003 16.02 – – – 1.61 0.1004 16.02 – – –
b_BikePath 2.67 0.1327 20.10 2.70 0.1336 20.20 0.54 0.2742 1.95 0.53 0.2695 1.95
b_LogPS – – – �0.24 0.1095 �2.23 – – – �0.25 0.1092 �2.25
b_AvSpeed – – – – – – 0.94 0.2928 3.22 0.96 0.2928 3.28
b_PathLength – – – – – – – – – –

Table 4
Utility functions of the two basic Models (a).

U=

bLength � Lengthþ bRiseMax � RiseMaxþ bTLights � TLightsþ bBikePath � BikePathþ bPS �
PSk � 1

k

 !
ð1aÞ

bLength þ bRiseMax � RiseMaxþ bTLights � TLightsþ bBikePath � BikePathþ bPS �
PSk � 1

k
þ bIRiseLength � RiseMax

� Length ð2aÞ
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This formulation was first suggested by Mackie et al. (2003), and had been successfully used since for various Swiss anal-
yses capturing traveller heterogeneity explicitly (see Axhausen et al., 2008 or Hess et al., 2008).

In order to account for the possibility of a person reporting several observations, a weighting term was added in (c). No
panel effect was calculated because 68% of the persons contributed only one observation.

As mentioned before, the two models (d) include both interaction terms, and in models (e) the insignificant terms of the
previous models were excluded, i.e. the number of traffic signals in Model 1 and again the same and the maximum gradient
in Model 2. The results for all the model estimations are shown in Tables 5–8.

Due to the non-linear nature of the estimated models, elasticity values were calculated for the different parameters using
the following expression.

EPi ;Xi
¼ ei � bi � x

ei
i � ð1� PiÞ

Additionally, elasticity was calculated in two different ways for each parameter. The first value resulted from calculating
the elasticity for each observation and then averaging across all observations. The second value was calculated by first aver-
aging the variable and probability values, and subsequently calculating the elasticity. Results are shown in Table 9.

Finally, the trade-offs between the variables were calculated and the results shown in Table 10.
The overall model fit is high. The length interaction term improves the model substantially, capturing the heterogeneity

of the sample and their differences in destination choice. In both models the formulations with only the significant variables
are not or only barely significantly different in terms of the goodness of fit. The introduction of the maximum rise by length

Table 6
Results for Model 1 (2/2).

(c) With LENGTH interaction (d) With BOTH interactions

PS LogPS PS LogPS

Parameters 7 6 8 7
Observations 2498 2498 2498 2498
Final log likelihood �7359.94 �7609.48 �7352.59 �7602.62
Adjusted q2 0.2798 0.2556 0.2805 0.2561

Value Std. error t-test Value Std. error t-test Value Std. error t-test Value Std. error t-test

Estimated parameters
b_Length �2.98 0.2523 �11.79 �3.79 0.2855 �13.26 �3.00 0.2523 �11.87 �3.79 0.2843 �13.33
b_RiseMax �26.32 1.3216 �19.91 �28.01 1.3422 �20.87 �26.29 1.3210 �19.90 �27.99 1.3419 �20.86
b_Tlights 0.09 0.0153 5.86 0.08 0.0152 5.51 0.09 0.0153 5.87 0.08 0.0152 5.51
b_PS �0.04 0.0076 �5.32 – – – �0.04 0.0077 �5.32 – – –
Lambda_PS �1.89 0.0878 �21.51 – – – �1.89 0.0877 �21.50 – – –
b_BikePath 2.69 0.1393 19.32 2.82 0.1382 20.42 0.40 0.2134 1.88 0.52 0.2525 2.05
b_LogPS – – – �1.15 0.1074 �10.75 – – – �1.16 0.1073 �10.82
b_AvSpeed – – – – – – 1.11 0.3005 3.70 0.99 0.2776 3.58
b_PathLength 2.26 0.1096 20.62 2.20 0.0993 22.18 2.26 0.1090 20.71 2.21 0.0989 22.30

Table 7
Results for Model 2 (1/2).

(a) Basic model (b) With SPEED interaction

PS LogPS PS LogPS

Parameters 7 6 8 7
Observations 2498 2498 2498 2498
Final log likelihood �7490.55 �7571.08 �7484.72 �7564.95
Adjusted q2 0.2671 0.2593 0.2676 0.2598

Value Std. error t-test Value Std. error t-test Value Std. error t-tesat Value Std. error t-test

Estimated parameters
b_Length �0.01 0.0001 �44.00 �0.01 0.0001 �37.93 �0.01 0.0001 �44.09 �0.01 0.0001 �38.07
b_RiseMax �34.75 2.0867 �16.65 �35.30 2.0776 �16.99 �34.82 2.0866 �16.69 �35.38 2.0771 �17.04
b_Tlights 0.08 0.0151 5.54 0.10 0.0154 6.43 0.08 0.0151 5.53 0.10 0.0154 6.43
b_PS 1.00 0.0710 14.10 – – – 1.00 0.0710 14.07 – – –
Lambda_PS 1.60 0.1012 15.85 – – – 1.61 0.1013 15.85 – – –
b_BikePath 2.65 0.1328 19.94 2.68 0.1337 20.04 0.50 0.2598 1.93 0.49 0.2526 1.93
b_IRiseLength 0.01 0.0011 7.73 0.01 0.0011 8.02 0.01 0.0011 7.78 0.01 0.0011 8.09
b_LogPS – – – �0.23 0.1092 �2.12 – – – �0.23 0.1090 �2.15
b_AvSpeed – – – – – – 0.98 0.2956 3.30 1.00 0.2952 3.38
b_PathLength – – – – – – – – – – – –

762 G. Menghini et al. / Transportation Research Part A 44 (2010) 754–765



Author's personal copy

interaction term (Model 2) improves the fit significantly, and dominates the maximum rise term. Surprisingly, the path size
term and its Box-Cox parameter are never significant. We tested it in its logarithmic form and it remained insignificant.

As the mean elasticity shows (Elasticity 1), it is length, which dominates the choices of the Zürich cyclists, but the share of
bicycle path has also a substantial, but much smaller impact. The gradient has a strong impact on route choice as well, as
shown by the elasticity of the maximum gradient. Still, it is small in comparison with the impact of the length. It would inter-
esting test this again in a city, where the hillside could be detoured around, or even better in the context of destination
choice. The interaction term with the average length strengthens the dominance of the path length for those who travel be-
yond their mean trip length and therefore reduce the deviation from the shortest path. Surprisingly, given the literature, the
faster cyclists in Zürich prefer the marked routes, although these tend to follow minor roads.

The two elasticity formulae give strikingly different results in the case of length, which highlights the danger of evaluating
elasticities at the mean of the underlying variable.

Table 8
Results for Model 2 (2/2).

(c) With LENGTH interaction (d) With BOTH interactions

PS LogPS PS LogPS

Parameters 8 7 9 8
Observations 2498 2498 2498 2498
Final Log Likelihood �7359.89 �7608.77 �7352.55 �7601.97
Adjusted q2 0.2798 0.2555 0.2804 0.2561

Value Std. error t-test Value Std. error t-test Value Std. error t-test Value Std. error t-test

Estimated parameters
b_Length �2.97 0.2527 �11.76 �3.77 0.2861 �13.17 �2.99 0.2527 �11.84 �3.77 0.2849 �13.24
b_RiseMax �25.80 2.0754 �12.43 �26.05 2.1176 �12.30 �25.85 2.0716 �12.48 �26.11 2.1143 �12.35
b_Tlights 0.09 0.0153 5.85 0.08 0.0152 5.47 0.09 0.0153 5.86 0.08 0.0152 5.48
b_PS �0.04 0.0076 �5.31 – – – �0.04 0.0077 �5.31 – – –
Lambda_PS �1.89 0.0879 �21.49 – – – �1.89 0.0878 �21.49 – – –
b_BikePath 2.69 0.1392 19.33 2.82 0.1381 20.45 0.40 0.2139 1.88 0.52 0.2548 2.05
b_IRiseLength 0.00 0.0012 �0.32 0.00 0.0013 �1.19 �0.34 1.2219 �0.28 0.00 0.0013 �1.14
b_LogPS – – – �1.15 0.1076 �10.64 – – – �1.15 0.1075 �10.72
b_AvSpeed – – – – – – 1.11 0.3005 3.69 0.99 0.2772 3.56
b_PathLength 2.26 0.1098 20.56 2.20 0.1000 21.99 2.26 0.1093 20.65 2.20 0.0995 22.12

Table 9
Elasticities for parameters in combined Models 1 and 2.

Model (1d) both interactions Model (2d) both interactions

Final LL �7352.59 �7352.55
Adjusted q2 0.2805 0.2804

Parameters Value t-test Average across
observations

Of average
values

Value t-test Average across
observations

Of average
values

b_length �3.00 �11.87 �14.025 �5.428 �2.99 �11.84 �13.981 �5.419
b_RiseMax �26.29 �19.90 �0.741 �0.690 �25.85 �12.48 �0.728 �0.679
b_Tlights 0.09 5.87 0.229 0.205 0.09 5.86 0.228 0.204
b_BikePath 0.40 1.88 0.275 0.275 0.40 1.88 0.275 0.275
b_IRiseLength – – – – �0.34 �0.28 �0.013 �0.009

Table 10
Trade offs between different model parameters for final Models 1 and 2.

Model 1(d) Model 2(d)

Quotient Value Quotient Value

blength

bBikePath

�7.452 [%/m] blength

bBikePath

�7.425 [%/m]

blength

bRiseMax

0.114 [1/100 m] blength

bRiseMax

0.116 [1/100 m]

bTlight

bRiseMax

�0.003 [m/100 m] bTlight

bRiseMax

�0.003 [m/100 m]

blength

bIRise Length

8.835 [m/100 m]

bBikeAv
bIRise Length

�1.190 [m2/%.100 m]
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6. Perspectives and future work

This paper has shown that it is now possible to estimate high quality route choice models, here for cyclists, from GPS data.
The effort involved in cleaning the points and in identifying the modes is currently still substantial, but the fast progress in
the automation of these processes will soon make such data sets the rule and not the exception (e.g. Czerniak, 2002; Chung
and Shalaby, 2005; Zhou and Golledge, 2006; Quddus et al., 2007 or Schüssler and Axhausen, 2009a,b). This will have to be
matched by improved network databases, which will have to include a richer set of attributes, especially about the junctions,
parking and cycling facilities.

The results underline the importance of direct and marked routes for cyclists, in conjunction with an aversion for steep
maximum gradients in conjunction with long routes. The cyclist also avoid signal-controlled junctions. The other factors, as
far as we could estimate them, were non-significant, especially the average gradient. The cyclist consider the maximum gra-
dient and not the average gradient, which is reasonable.

The data limitations forced us to forgo testing further possibly relevant characteristics of the street network: average or
maximum traffic volume along the route, which we can only add when we have employed an assignment model of the study
area with a navigation – level street network; types of intersections, especially the impact of roundabouts, which in the case
of the city of Zurich are nearly completely absent, but a very prominent form of intersection control in Swiss suburbia and
small towns; the type of bike path, here in particular the effect of marked path versus built and separated paths.

While we are able to capture some of the heterogeneity of the cyclists through interaction terms with their mean trip
characteristics, it would be desirable to repeat this work with a data set including the socio-demographics of the respon-
dents, especially age, sex, body-mass index and a measure of risk aversion. The data set should, if the budget can afford this,
additionally contain a relatively balanced number of trips per persons, so as to be able to control for the panel nature of the
data set.

Finally, the results show again that a policy, which aims to increase the amount and length of cycling, will have to provide
direct, preferably marked, paths between origins and destinations of the travellers. Detours are only acceptable, if at all, for
short trips.
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