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A computer program for fast and accurate nu-
merical simulation of solid-state NMR experiments
is described. The program is designed to emulate
a NMR spectrometer by letting the user specify
high-level NMR concepts such as spin systems, nu-
clear spin interactions, rf irradiation, free preces-
sion, phase cycling, coherence-order filtering, and
implicit/explicit acquisition. These elements are
implemented using the Tcl scripting language to
ensure a minimum of programming overhead and
direct interpretation without the need for compi-
lation, while maintaining the flexibility of a full-
featured programming language. Basicly, there
are no intrinsic limitations to the number of spins,
types of interactions, sample conditions (static or
spinning, powders, uniaxially oriented molecules,
single crystals, or solutions), and the complexity
or number of spectral dimensions for the pulse
sequence. The applicability ranges from simple
1D experiments to advanced multiple-pulse and
multiple-dimensional experiments, series of simu-
lations, parameter scans, complex data manipu-
lation/visualization, and iterative fitting of simu-
lated to experimental spectra. A major effort has
been devoted to optimize the computation speed
using state-of-the-art algorithms for the time-
consuming parts of the calculations implemented
in the core of the program using the C program-
ming language. Modification and maintenance of
the program are facilitated by releasing the pro-
gram as open source software (General Public Li-
cense) currently at http://nmr.imsb.au.dk. The
general features of the program are demonstrated
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by numerical simulations of various aspects for RE-
DOR, rotational resonance, DRAMA, DRAWS,
HORROR, C7, TEDOR, POST-C7, CW decou-
pling, TPPM, FSLG, SLF, SEMA-CP, PISEMA,
RFDR, QCPMG-MAS, and MQ-MAS experi-
ments.

1. INTRODUCTION

During the past decade solid-state NMR spectroscopy
has undergone a tremendous evolution from being based
on relatively simple one-dimensional pulse sequences to
now involve a large repertoire of advanced multiple-pulse
and multiple-dimensional experiments designed to ex-
tract specific information about structure and dynamics
of molecules in the solid phase [1, 2, 3, 4, 5, 6, 7, 8]. In
many respects this evolution resembles the earlier and still
strongly ongoing evolution of multi-dimensional liquid-
state NMR spectroscopy [9, 10, 11]. In both cases state-of-
the-art experiments are constructed in a modular fashion
using pulse sequence building blocks accomplishing certain
coherence transfers or evolution under specific parts of the
internal Hamiltonian. One major difference, however, is
that solid-state NMR is influenced directly by anisotropic
nuclear spin interactions which on one hand complicate the
achievement of high resolution spectra and on the other
hand may provide important information about structure
and dynamics. This dual aspect has motivated the de-
sign of advanced pulse sequence elements which through
decoupling and recoupling tailor the Hamiltonian to cause
evolution under the specific interaction(s) probing the de-
sired structural information while efficiently suppressing
undesired interactions. Based on analytical evaluation of
the perturbed Hamiltonian [1, 2, 4, 6, 12, 13, 14, 15] and
numerical simulations, a large number of experiments have
been constructed which via dipolar coupling, anisotropic
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chemical shielding, and quadrupolar coupling interactions
provide information about local molecular structure and
dynamics in terms of the electronic/nuclear coordination
environment, internuclear distances, bonding angles, and
models for motional processes.

Often, the internal Hamiltonian in solid-state NMR con-
tains several orientation dependent terms with amplitudes
comparable to or larger than the amplitude of the ex-
ternal manipulation by rf irradiation and sample spin-
ning. This may be the case for desired as well as un-
desired terms of the Hamiltonian implying that accurate
determination of structural parameters from the desired
terms as well as evaluation of the multiple-pulse build-
ing blocks providing suppression of undesired terms very
often depend on the ability to numerically simulate the
spin dynamics of the actual NMR experiment. This ap-
plies, for example, to the solid-state NMR experiments
for which dipolar recoupling (e.g, rotational resonance
[16, 17], REDOR [18], DRAMA [19], DRAWS [20], RFDR
[21], RIL [22], HORROR [23], BABA [24], C7 [25, 26], RF-
DRCP [27]), multiple-pulse homo- or heteronuclear decou-
pling (e.g., BR-24 [28], FSLG [29], MSHOT-3 [30], TPPM
[31]), cross-polarization [32, 33], QCPMG-MAS [34], or
MQ-MAS [35] pulse sequences are indispensable building
blocks. Thus, considering the very large number of ad-
vanced experiments already available, the large number
of possible combinations between these, and the rapidly
increasing number of new experimental procedures pre-
sented every year there is a substantial need for a gen-
eral and consistent simulation tool to support experiment
design, user-specific method implementation, and evalua-
tion of spectral data. This need is reinforced by the fact
that most state-of-the-art experiments are simulated us-
ing custom-made programs tailored to the specific pulse
sequences and typically not accessible to or applicable
for the general user. The shortcomings of this currently
prevailing approach are apparent. It requires redundant
work not only for the involved group but also for other
groups implementing the new techniques and does not en-
courage one to create programs usable or understandable
by others. Obviously, a far better solution would be to
have a general purpose program available for simulation
of solid-state NMR experiments. General programs of this
sort, for example ANTIOPE [36] and the more general
GAMMA simulation environment [37], are available to the
NMR community although to the best of our knowledge
so far none of these programs have specialized on time-
efficient simulations within modern solid-state NMR spec-
troscopy. We should note that highly specialized programs
such as STARS [38, 39] and QUASAR [40], allowing simu-
lation and iterative fitting of single-pulse solid-state NMR
spectra for spin-1/2 or half-integer quadrupolar nuclei, are
available as integral parts in commercial NMR software.

In this paper we present a general simulation program
for solid-state NMR spectroscopy (SIMPSON) which is de-

signed to work as a ”computer spectrometer”. The pri-
mary aim has been to design a program which is relatively
easy to use, transparent, and still maintains the flexibil-
ity to allow simulation of virtually all types of NMR ex-
periments. With the major focus being solid-state NMR,
the program has been optimized for fast calculation of
multiple-pulse experiments for rotating powder samples
which generally is considered quite demanding. We note
that the program obviously may be used equally well
for static powders, single crystals, oriented samples, and
liquid-state NMR experiments. The user interface to the
program is the Tcl scripting language [41, 42] being well-
suited to provide the necessary high-level NMR function-
ality in a transparent form. This covers definition and op-
eration of the basic elements of a NMR experiment (e.g.,
the spin system, nuclear spin interactions, rf irradiation,
frequency switching, coherence-order filtering, free preces-
sion, acquisition, etc.) as well as controlling experimen-
tal parameters, processing of the experiment, and func-
tions for the data processing. Encapsulating all mathe-
matical and spin-quantum-mechanical calculations at this
level of abstraction serves to minimize the content of the
input file without sacrificing the functionality of the sim-
ulation. Within the proposed simulation environment, it
is straightforward to scale the functionality from the most
simple simulation of one-dimensional spectra specified by
only a few lines of code to coherence transfer functions for
advanced pulse sequence elements, scans over parameters
describing the internal Hamiltonian or the experimental
manipulations, multi-dimensional simulations, and itera-
tive fitting of experimental spectra. The program struc-
ture encourages the analysis of important, albeit typically
disregarded, effects from small couplings to nearby spins,
finite rf pulse irradiation, rf inhomogeneity, hardware-
induced ”hidden” delays, and phase cycling. Thus, in com-
bination with an extensive function library the program is
geared to be a tool to systematic experiment design, ex-
amination of pulse sequences proposed in the literature,
testing pulse sequences on relevant spin systems prior to
spectrometer implementation, checking the consequences
of experimental imperfections during pulse sequence im-
plementation, and as a tool to extract structural parame-
ters from experimental spectra through least-squares itera-
tive fitting. A major effort has been to devoted to produce
a user-friendly tool which serves all elements of multiple-
pulse solid-state NMR simulations from the initial testing
calculations, pulse sequence implementation, iterative fit-
ting of experimental spectra, advanced data processing, to
interactive viewing and manipulation of data.

2. THEORY

In this section the theory relevant for simulation of solid-
state NMR spectra is briefly reviewed. This provides the
reader with the basic symbols, definitions, and conven-
tions used for the description of the Hamiltonian as well
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as the transformations employed in spin and real space to
define the actual NMR experiment. To ensure general ap-
plicability the theory is described in relation to solid-state
NMR on rotating powders. Other cases, including static
powders, single crystals, uniaxially oriented molecules, and
liquids, are easily handled as special cases to this. To avoid
an unacceptable long description, we defer from going into
details with respect to the numerically important aspects
of powder averaging, time- and spatial symmetry relations,
numerical integration of the spin dynamics etc. but rather
makes extensive reference to already published material on
these aspects.

The simulation of a NMR experiment essentially
amounts to a numerical evaluation of the Liouville-von-
Neumann equation of motion

d

dt
ρ(t) = −i [H(t), ρ(t)] , (1)

where ρ(t) is the reduced density matrix representing the
state of the spin-system and H(t) the time-dependent
Hamiltonian describing the relevant nuclear spin interac-
tions and the external operations. For simplicity we have
presently disregarded effects from relaxation and other dis-
sipative processes in the theory as well as in the simulation
software described in this paper. Thus, the formal solution
to Eq. (1) may be written

ρ(t) = U(t, 0)ρ(0)U†(t, 0), (2)

where ρ(0) is the density operator at thermal equilibrium
(or a density operator resulting from a given preparation
sequence) and U(t, 0) the unitary propagator (i.e., the ex-
ponential operator) responsible for the spin dynamics in
the period from 0 to t. U(t, 0) is related to the Hamilto-
nian according to

U(t, 0) = T̂ exp
{
−i
∫ t

0

H(t′)dt′
}

(3)

with T̂ being the Dyson time-ordering operator relevant
for Hamiltonians containing non-commuting components.
Although a large number of advanced numerical integra-
tion methods [43] in principle may be applied to derive
U(t, 0), it typically proves most efficient numerically to
approximate the integral by a simple time-ordered prod-
uct

U(t, 0) =
n−1∏
j=0

exp {−iH(j∆t)∆t} , (4)

where n is the number of infinitesimal time-intervals ∆t
over each of which the Hamiltonian may be considered
time-independent and which overall span the full period
from 0 to t = n∆t. For each time interval the exponen-
tiation is accomplished by diagonalization of the matrix
representation for the Hamiltonian. To ensure fast conver-
gence and to focus on the interactions of specific interest
these operations are usually performed in an appropriate
interaction frame.

In the most typical cases, the Hamiltonian is described
by the high-field truncated components in the Zeeman in-
teraction frame. For a spin system consisting of n spins I,
being of the same or different spin species, the Hamiltonian
takes the form

H = Hrf +HCS +HJ +HD +HQ (5)

where

Hrf =
∑
i

|ωirf (t)| (Iix cosφi + Iiy sinφi) (6)

HCS =
∑
i

ωiCS,0(t)Iiz (7)

HJ =
∑
i,j

−ωijJiso ,0
(t)

1√
3
Ii · Ij +

ωijJaniso ,0
(t)

1√
6

(3IizIjz − Ii · Ij) (8)

HD =
∑
i,j

ωijD,0(t)
1√
6

(3IizIjz − Ii · Ij) (9)

HQ =
∑
i

ωiQ,0(t)
1√
6

(
3I2
iz − I2

i

)
+

1
2ωi0

{
ωiQ,−2(t)ωiQ,2(t)

(
2I2
i − 2I2

iz − 1
)
Iiz +

ωiQ,−1(t)ωiQ,1(t)
(
4I2
i − 8I2

iz − 1
)
Iiz
}

(10)

with i, j specifying the involved spins. The various terms
represent contributions from φi-phase rf irradiation with
an angular nutation frequency of ωirf = -γiBirf (rf ), chem-
ical shift (CS), indirect spin-spin coupling (J), dipole-
dipole coupling (D), and quadrupolar coupling (Q). We
note that the rf Hamiltonian in Eq. (6) in accord with
common practice employs the magnitude of the rf nuta-
tion frequency with the pulse phases φi adopting potential
dependence on the sign of the gyromagnetic ratio γi [9, 44].
The first and second terms in Eq. (8) describe scalar (Jiso)
and anisotropic (Janiso) J coupling, respectively. Likewise,
the first term in Eq. (10) represents first-order quadrupo-
lar coupling while the last term includes the secular com-
ponents for the second-order quadrupolar coupling. We
note that for a coupling between nuclei of different spin
species the operator product Ii · Ij is truncated to IizIjz.
Finally, it should be clearly stated that the Hamiltonian
by no means is restricted to the elements in Eqs. (6) -
(10). Using the same formalism, it is straightforward to
formulate, for example, second-order cross-terms between
the dipolar and quadrupolar couplings.
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TABLE 1
Constants relevant for the Fourier series parametrization of the
internal part of the nuclear spin Hamiltonian (see text).a

λ Spins ωλiso ωλaniso ηλ

CS i ωi0δ
i
iso − ωref ωi0δ

i
aniso ηiCS

D i, j 0
√

6bij 0

Jiso i, j −2π
√

3Jijiso 0 0

Janiso i, j 0 2π
√

6Jijaniso ηijJ
Q i 0 2π

√
6CiQ/(4Ii(2Ii − 1)) ηiQ

a Given in angular frequency units. The isotropic value, anisotropy,
and asymmetry parameter for the chemical shift interaction are re-
lated to the principal elements of the shift tensor according to δiiso =
1
3

(δixx+δiyy+δizz), δianiso = δizz−δiiso , and ηiCS = (δiyy−δixx)/δianiso ,
respectively, with the principal elements δi11 ≥ δi22 ≥ δi33 labeled
and ordered according to |δizz − δiiso | ≥ |δ

i
xx − δiiso | ≥ |δ

i
yy − δiiso |.

We note that conversion to the chemical shielding convention
simply amounts to replacing all δ’s by σ’s (using the ordering
σi11 ≤ σi22 ≤ σi33) and reverting the sign of σiiso and σianiso . The
i-spin Larmor frequency is defined as ωi0 = −γiB0, where γi is the
gyromagnetic ratio and B0 the flux density of the static magnetic
field. ωref is an optional rotating frame reference frequency. The
dipolar coupling constant is defined as bij = −γiγjµ0h̄/(r3

ij4π),
where rij is the internuclear distance (SI units). The quadrupolar
coupling constant is defined as CiQ = (e2Qq)/h. Ii denotes the
spin-quantum number for spin i.

For the various internal Hamiltonians Hλ with λ = CS,
Jiso , Janiso , D, and Q, the frequency coefficients depend
on some fundamental constants as well as time and spa-
tial (i.e., orientation dependent) functions which in the
present formulation are of rank 0 and 2 for isotropic and
anisotropic parts of the interactions, respectively. Over-
all these dependencies may conveniently be expressed in
terms of a Fourier expansion

ωλ,m′(t) =
2∑

m=−2

ω
(m)
λ,m′e

imωrt (11)

where ωr/2π is the spin-rate and the Fourier coefficients
are

ω
(m)
λ,m′ = ωλisoδm,0 + ωλaniso

{
D

(2)
0,−m(ΩλPR)

− ηλ√
6

[
D

(2)
−2,−m(ΩλPR) +D

(2)
2,−m(ΩλPR)

]}
×

d
(2)
−m,m′(βRL), (12)

where δm,0 is a standard Kronecker delta and the
constants specifying the isotropic (ωλiso) and anisotropic
(ωλaniso , ηλ) contributions to the Fourier coefficients are
listed in Table 1 for the various interactions.

The orientation dependence for the anisotropic interac-
tions is expressed in terms of second-rank Wigner (D(2))
and reduced Wigner (d(2)) rotation matrices [2, 3]. For
a given interaction λ these matrices describe coordinate
transformations from the principal-axis frame (Pλ) to the
laboratory-fixed frame (L) where the experiment is per-
formed. The transformations relevant for rotating pow-
der experiments additionally involve a crystal-fixed frame
(C), representing a common frame of reference in the pres-

ence of several interaction tensors, as well as a rotor-fixed
frame (R). The various frames are illustrated in Fig. 1
with the axes of the ORTEP-type representation desig-
nating the three principal elements for an anisotropic in-
teraction tensor as described by Mehring [2]. The Euler
angles relating two frames X and Y are denoted ΩλXY =
{αλXY , βλXY , γλXY }. Thus, the frames P and R are related
by

D
(2)
m′,m(ΩλPR) =

2∑
m′′=−2

D
(2)
m′,m′′(Ω

λ
PC)D(2)

m′′,m(ΩCR)(13)

while R is related to L by a Wigner rotation using the
Euler angles αRL = ωrt (included in Eq. (11)) and βRL
(often set to the magic angle, βRL = tan−1

√
2), while γRL

may arbitrarily be set to zero within the high-field approx-
imation. The angles ΩCR describe the orientation of the
individual crystallite relative to R.

The spin-parts of the interactions are numerically ma-
nipulated by operation on their matrix representations.
For a single spin I the matrix representation is readily
established using the well-known relations

<m′|I±|m> =
√
I(I + 1)−m(m± 1)δm′,m±1 (14)

<m′|Iz|m> = mδm′,m (15)

with the step operators related to the Cartesian operators
as I± = Ix± iIy, while Iz is related to the polarization op-
erators as Iα/β = 1

2 (1 +/- 2 Iz) with 1 being the unity
operator. The matrix representation for a given operator
Q contains (2I+1)2 elements Qkl = <I−k+1|Q|I−l+1>,
where k and l denote the row and column positions, respec-
tively. For a spin system consisting of n nuclei, the matrix
representation for a given Iiq spin operator for the nucleus
i is described by the direct products of unit operators and
the relevant single-spin operator Iq, i.e.,

Iiq = 11 ⊗ . . .1i−1 ⊗ Iq ⊗ 1i+1 ⊗ . . .1n. (16)

We note that Eq. (16) implies matrix representations for
which the Zeeman product basis functions for, e.g., an
ISR three-spin-1/2 systems are ordered as |ααα>, |ααβ>,
|αβα>, |αββ>, |βαα>,... etc. with |α> = |1/2>, |β> =
| − 1/2>, and the spins ordered I, S, R.

Allowing for the detection of signals corresponding to
hermitian as well as non-hermitian operators (the latter
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FIG. 1. ORTEP-type representation of a spatial second-rank
anisotropic interaction tensor in its principal-axis system (Pλ), a
crystallite-fixed coordinate system (C), the rotor-fixed coordinate
system (R), and the laboratory-fixed coordinate system (L) along
with the Euler angles ΩXY = {αXY , βXY , γXY } describing trans-
formation between the various frames X and Y .
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being relevant for quadrature detection and experiments
using pulsed field gradients), the NMR response signal for
a crystallite characterized by the orientation ΩCR is gener-
ally described by the projection or ”expectation value” for
the transposed and conjugated detection operator (Q†det):

s(t; ΩCR) = <Q†det |ρ(t; ΩCR)> (17)
= Tr {Qdetρ(t; ΩCR)} (18)

typically sampled equidistantly with respect to time, i.e.
t = m∆t, m = 0, 1, ..., n − 1, where n is the number of
sampling points. In the case of a powder sample, the signal
needs to be averaged over all uniformly distributed powder
angles ΩCR according to

s(t) =
1

8π2

∫ 2π

0

dαCR

∫ π

0

dβCR sin(βCR)×∫ 2π

0

dγCR s(t; ΩCR) , (19)

where we for the sake of generality assumed averaging
over the full sphere. We note that in numerous cases the
intrinsic symmetry of the orientation dependence allows
reduction of the averaging to one half or one quarter of the
sphere [39, 45]. For numerical simulations this integral is
conveniently approximated by the discrete sum

s(t) =
N∑
k=1

M∑
l=1

s(t;αkCR, β
k
CR, γ

l
CR)

wk
M

, (20)

where the averaging is split into M angles γlCR with contri-
butions from N pairs of αkCR and βkCR powder angles an-
gles weighted by wk using the normalization

∑N
k=1 wk = 1.

Depending on the actual solid-state NMR experiment to
be simulated, several options exist for the powder averag-
ing. For efficient αCR and βCR averaging, it is generally
recommendable to use averaging schemes providing the
most uniform (and thereby equally weighted) distribution
of crystallite orientations over the unit sphere. This may
be accomplished using angle/weight sets derived using the
method of Zaremba, Conroy, and Wolfsberg [46, 47, 48],
or the more efficient REPULSION [49] or Lebedev [45]
powder averaging schemes. In cases of wide powder pat-
terns, such as static or magic-angle-spinning (MAS) pow-
der patterns induced by first- or second-order quadrupolar
coupling interactions, it may be recommendable to sup-
port this powder averaging by interpolation [39] using the
recipe of Alderman et al. [50]. For non-spinning sam-
ples the signal is invariant to the γCR crystallite angle
which accordingly can be arbitrarily set to zero provided
ΩRL = {0, 0, 0}. For rotating powders, it is often possible
to exploit the symmetric time dependence of the Hamil-
tonian to improve the efficiency of the calculations [51].
In particular for appropriately rotor synchronized pulse-
sequences, it has proven useful to consider these symme-
tries in combination with the time-translation relationship
between γCR and the sample-rotation angle ωrt as recently

described by several authors [52, 53, 54]. We note that un-
der certain circumstances, it may be even more efficient to
systematically reuse other combinations of propagators re-
flecting certain combinations of γCR and ωrt [55]. Finally,
we should briefly address attention to a number of addi-
tional elements used to speed up the simulations: (i) for
diagonal Hamiltonians (i.e., Hamiltonians without mutu-
ally non-commuting elements) the integration in Eq. (3) is
conducted using analytical solutions, (ii) since the internal
Hamiltonian commutes with the Zeeman operator(s) evo-
lution under pulses with phase φi 6= 0 is most efficiently ac-
complished by calculating the propagator for a pulse with
phase φi = 0 (i.e., H is real) followed by the appropriate z
rotation [26], and (iii) a particularly efficient variant of γ-
COMPUTE is applied when the start and detect operators
fulfill the relation ρ(0) = 1

2 (Qdet +Q†det) [54].

SIMULATION ENVIRONMENT

While the Hamiltonians and transformations described
in the previous section through generality allow for the de-
scription of essentially all types of NMR experiments, they
do not offer a simple framework for efficient implementa-
tion and fast simulation of advanced solid-state NMR ex-
periments. For this purpose, it is essential to establish
a user-friendly interface allowing the fundamental defini-
tions and the transformations in spin and real space to be
controlled with a minimum of instructions/commands each
requiring as little information as possible. This should
be accomplished while maintaining the flexibility as al-
lowed at the level of the Hamiltonians. Thus, with the
specific aim of simulating practical solid-state NMR ex-
periments, it is desirable to perform simple operations at
the same level of abstraction as on a flexible computer in-
terface to a NMR spectrometer. In this case all spin and
spatial dependencies for the internal part of the Hamil-
tonian are provided by the sample itself leaving only the
external manipulations to be controlled by the experimen-
tator. Obviously, in numerical simulations it is necessary
to control both parts of the Hamiltonian, but it appears
intuitively that the optimum interface for a simulation pro-
gram should allow for separate control of these. For ex-
ample, this would enable fast implementation of pulse se-
quences and the establishment of pulse sequence libraries.

Considering the practical implementation, the flow of
the calculations, and the data processing we propose an
user interface containing four sections. These include a
section spinsys for definition of the internal Hamiltonian
in terms of spin system and nuclear spin interactions, a
section par for definition of the global experimental pa-
rameters (e.g., crystallite orientations, sample spinning,
operators for the initial spin state and detection), a sec-
tion pulseq for definition of the pulse sequence, and finally
a section main to control processing of the pulse sequence,
storage of data, and data processing. Obviously, this in-
terface is intimately related to the theory given in the
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previous section as well as to supplementary software for
data manipulation, visualization, and analysis. The over-
all structure of the simulation environment is illustrated
schematically in Fig. 2.

With the aim of specifying the necessary information in
a flexible, transparent, and user-friendly manner, the user
interface to the program is based on the Tcl scripting lan-
guage [41, 42]. Tcl is ideally suited for this purpose as it
(i) is easier to learn than C and similar high-level program-
ming languages (no type checking, complex data types, or
variable declarations) and (ii) is an interpreted language as
opposed to a compiled language. The latter feature is con-
venient, for example, in the process of implementing and
modifying pulse sequences and experimental conditions for
the experiment to be simulated. This flexibility is achieved
essentially without cost as the input-file-interpreting over-
head amounts to at maximum a few percent of overall com-
putation time. This is ascribed to the fact that the vast
majority of the calculations, especially the time-consuming
matrix manipulations are performed by efficient routines
implemented in the C language running at native speed.
Tcl is an advanced scripting language that implements all
standard flow control structures (e.g., for, foreach, and
if), data structures (e.g., lists, normal arrays, and asso-
ciative arrays), and contains a large set of library routines
(e.g., for string manipulation, file handling, and regular
expressions). Furthermore, the well-documented behav-
ior and proved correctness of the language implementa-
tion give Tcl an advantage over custom-made interpreters.
Obviously, these features are important for the present
version of the simulation program but even more so for
future versions in the sense that they offer straightforward
capability to expand the functionality by writing separate
commands within the scripting language. Indeed, this is
how several of the commands available in the present ver-
sion of the program were implemented. If a simulation re-
quires a more specialized feature an extension to the core
program may be necessary. In this case the elements of
basic functionality are isolated, implemented in the core
program, and the associated commands used in the in-
put file to describe and control this specific element of the

Process control
mainpulseq

Pulse-sequence

Experimental

par
parameters

SIMPSON

SIMULATION THEORY

RESULTS

Spectrum

Structural parameters

User defined Tcl functions

Core program (C)

Scripting interface (Tcl)

DATA MANIPULATION

SIMDPS

SIMPLOT

SIMFID

Spin system setup
spinsys

Calculation of spin dynamics

Internal Hamiltonian

Pulse sequenceSpin system

FIG. 2. Flow diagram defining the SIMPSON simulation environ-
ment.

simulation. This ensures general usability of the functions
and minimizes the tendency to collect a lot of functionality
in incomprehensible ’black boxes’. The modular construc-
tion of the core program renders it relatively easy to create
such user-accessible commands.

The SIMPSON Tcl input file

All high-level NMR operations required for numeri-
cal simulation of a particular solid-state NMR experi-
ment are implemented via one of the four sections of the
Tcl scripting interface (i.e., user input file) outlined in
Fig. 2. The Hamiltonian as well as the external manipula-
tions/conditions are defined and controlled using a number
of general Tcl commands and parameters applicable for
the spinsys, par, and pulseq sections of the input file.
The most typical commands for these sections are listed
in Table 2 along with a description of their function and
control parameters.

The spinsys section. In the spinsys section, the spin
system is defined in terms of the various nuclear spin
species in play and the interactions associated with these.
The rf channels of the experiment and the nuclei rele-
vant for the spin system are defined via the channels and
nuclei declarations, respectively, using the notation 13C,
15N etc. for the arguments. We note that the channels
definition, although intuitively relating more directly to
the pulseq section, is included in spinsys to ensure di-
rect relation to the nuclear spin species and unambiguous
definition of the number and in particular the assignment
of the rf channels. Furthermore, this prevents the pulse
sequence from being tied to specific nuclei. The various
nuclear spin interactions (shift, dipole, jcoupling, and
quadrupole) are defined using a notation relating directly
to the internal Hamiltonians in Eqs. (7) - (12) with all
coefficients in frequency units (Hz) or ppm and all angles
in degrees. We should note that quadrupole includes the
quadrupolar coupling Hamiltonian up to order one and
two as specified by the argument order.

The par section. In the par section, the spin-
ning (spin rate) and sampling (np, ni, sw, sw1)
conditions are defined along with conditions for the
powder angles/averaging (crystal file, gamma angles,
rotor angle, method), the initial and final opera-
tors (start operator, detect operator), the pulse se-
quence (pulse sequence), the 1H Larmor frequency
(proton frequency, relevant for second-order quadrupole
coupling and shifts expressed in ppm), the informa-
tion flow from the program (verbose), and variables
(variable) to describe, e.g., the applied rf field strength
and rotor synchronization conditions. It should be noted
that parameters in the par section are set independently
of the pulse sequence. This facilitates comparison of the
performance for different pulse sequences and supports the
creation of pulse sequence libraries.
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The pulseq section. A large number of commands are
available for the pulseq section to provide flexibility to
simulate essentially all types of solid-state NMR experi-
ments. In addition to commands such as pulse, pulseid,
delay, offset, and acq describing finite rf pulses, ideal
rf pulses, free precession periods, carrier frequency offsets,
and acquisition of data, this section may contain a number
of commands that have no direct counterpart on the spec-
trometer but serve to optimize the simulations by reusing
propagators, emulating phase cycles, and simulates the ef-
fect of coherence-order filtering pulse sequence elements.
These include the maxdt to adjust the integration inter-
vals, the store command for saving propagators, reset for
resetting, prop for applying a previously saved propaga-
tor, the matrix set and filter commands for coherence-
order filtration, select for restriction of the subsequent
pulses to certain spins, as well as the turnon and turnoff
commands to activate and deactivate parts of the Hamilto-
nian, respectively. In addition to this comes several com-
mands to create and retrieve information about matrices
and interactions throughout the calculations. These and a
similar commands are described in more detail in Table 2.
To offer the highest degree of flexibility, it is relevant to
mention that all commands may be entered chronologically
as they appear in the pulse sequence or may be controlled
by loops to allow for efficient implementation of repeating
events or scanning through various parameters. This is
conveniently accomplished using standard Tcl constructs
among which the most relevant are included in the bottom
of Table 2. For a more complete description we refer to
text-books on the Tcl language [41, 42].

The main section. With the internal Hamiltonian and
the external manipulations defined, the remaining part of
the simulation concerns the experiment processing to con-
duct the calculations and obtain the result in terms of
1D free-induction decays (FID) or spectra for single or
phase-cycled pulse sequences, parameter scans, coherence-
transfer efficiency curves, simultaneous multiple simula-
tions, 2D FID’s or spectra etc. This is accomplished in the
main section of the input file. For example, the simulation
is started using the command fsimpson which returns the
data set resulting from the SIMPSON calculation. The
data set may be saved using the command fsave typically
being combined with fsimpson as

fsave [fsimpson] $par(name).fid (21)

where $par(name) per default contains the name of the
input file. More illustrative examples of this type are
given in the next section. In addition to control of
the pulse sequence processing, it is desirable to have
built-in options for data processing, e.g., fast Fourier
transformation (fft), zero-filling (fzerofill), phasing
and scaling (fphase), apodization (faddlb), baseline cor-
rection (fbc), inter/extra-polation (fnewnp), smoothing
(fsmooth), peakfinding (ffindpeaks), integration of spec-

tral regions (fint) or sideband patterns (fssbint), as
well as the ability to duplicate (fdup, fcopy), add (fadd),
subtract (fsub), reverse (frev), evaluate the root-mean-
square-deviation between two data set (frms), extract re-
gions of a spectrum to a new dataset (fextract), zero
regions of a spectrum (fzero), add peaks to a spectrum
(faddpeaks), or otherwise manipulate (fexpr) the output
of one or more simulations. All of this and several other
things may be accomplished in the main section of the Tcl
input file using a variety of commands with the most typi-
cal listed in Table 2 along with a short specification of their
arguments. For a more complete description of the many
available commands the reader is referred to the examples
in the next sections and Ref. [55]. We note that most of
the data manipulation alternatively may be performed af-
ter the simulation using some of the supplementary tools
described below.

The SIMSON data format and data exchange
Before proceeding to procedures for post processing of

data, it appears relevant to address the data format used
in the SIMPSON package (including the productivity tools
described below). For example, this is relevant for the
import of experimental spectra for simulation and iterative
fitting using SIMPSON or for export of FID’s or spectra
(one- and higher-dimensional) to other software packages
for post processing or plotting.

The SIMPSON data-format has the structure:

SIMP

NP=n
SW=sw
REF=ref
[ NI=ni ]

[ SW1=sw1 ]

[ REF1=ref1 ]

[ FORMAT=format ]

[ PREC=prec ]

TYPE=type
DATA

re1 im1

re2 im2

...

ren imn
END

where n, sw, and ref represent the number of complex data
points, the spectral width (sw/2 is the Nyquist frequency
for the sampling), and a reference frequency in the directly
sampled dimension. For 2D spectra the optional parame-
ters ni, sw1, and ref1 (default values 0) take finite values
describing the number of points, the spectral width, and
a reference frequency for the indirect dimension. In gen-
eral, multi-dimensional data sets are constructed by con-
catenating a series of 1D data sets successively after each
other in the data file. FORMAT is an optional parameter
specifying the data format to normal ASCII text (default)
or binary format among which the latter is convenient for
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large 2D data sets. Likewise, PREC is an optional spec-
ification of the precision of the data being either single
(default) or double for single or double precision floating
point representation, respectively. The binary formatted
numbers are located between the DATA and END keywords.
Finally, TYPE specifies whether the data is represented in
the time (fid) or the frequency (spe) domain.

The output obtained by acq is typically given in the
time domain and the spectra are obtained through Fourier
transformation. Using this notation, the complex intensity
for the i’th time-domain data point corresponds to the time

ti =
i− 1
sw

, i={1,2,...,N}, (22)

while the similar data point in a spectrum corresponds to
a frequency of

frqi = sw

(
i− 1
N
− 0.5

)
+ ref . (23)

For a given frequency the corresponding index of a data
point in a spectrum is found by

i = Floor
[
N

(
frqi − ref

sw
+ 0.5

)
+ 1.5

]
, (24)

where Floor is a function that rounds its argument down
to the nearest integer value.

To maintain consistency with common practice on com-
mercial NMR spectrometers the chemical shift or deshield-
ing (δ) convention is employed consistently all way from
the theory via the SIMPSON input files to the data or
spectra resulting from the simulation. In the spectra this
implies an axis with the chemical shifts increasing from
right to left in opposite direction to the chemical shield-
ing. In this representation the least shielded and thereby
most deshielded tensor element δ11 is located to the left in
the spectrum using the ordering δ11 ≥ δ22 ≥ δ33. Similarly
following common practice, the same direction applies to
the frequency scale obtained upon multiplication of the
ppm value shifts by the absolute value of the Larmor fre-
quency (i.e., |ω0/2π|). This choice (instead of the more
correct scaling by ω0/2π) facilitates comparison of experi-
mental and simulated spectra although it inevitably causes
an unfortunate confusion with respect to the signs of nu-
clear spin interactions and their spectral representation as
discussed in detail by Levitt [44].

To avoid unneccesary contributions to this confusion
and maintain clarity to the inner working of SIMPSON
in this respect, the following conventions apply: (i) Both δ
and frequency scales increases from right to left, (ii) chem-
ical shift parameters should be entered as ppm values or as
frequencies obtained by multiplication of these by |ω0/2π|,
(iii) dipolar and J couplings as well as frequency offsets
should be entered with correct sign under consideration of
potential influence for γ’s, (iv) upon knowledge of the ab-
solute proton (i.e., spectrometer) frequency and the nuclei
in play SIMPSON produces the correctly signed Hamilto-
nian (according to Eqs. (5) - (10)), and (v) SIMPSON

per default complex conjugates the acquired data when
γ > 0 for the detect nucleus to obtain correct represen-
tation on the chosen frequency/ppm scale. To demon-
strate the consequences of this default procedure on the
appearance of the simulated spectra Fig. 3 contains repre-
sentative static powder spectra influenced by anisotropic
chemical shift and second-order quadrupolar coupling. It
is emphasized at this point that the automatic conjuga-
tion, which is practical to avoid confusing reversion of
the spectra for γ < 0 nuclei but may cause phase con-
fusion for parameters scans, may be overruled using the
parameter conjugate fid in the par section of the in-
put file. Furthermore, we note that any kind of axis or
data-ordering reversal alternatively may be invoked us-
ing the frev command prior to plotting with SIMPLOT
or using the Reverse axis and Reverse data options in
SIMPLOT (vide infra). For example, this may be used
to reproduce spectra on the chemical shielding (σ) scale,
which apart from an appropriate reference point is related
to the deshielding scale by a sign reversal, i.e., δiso =
σref - σiso, where σref is a reference value and σiso =
1
3 (σ11 +σ22 +σ33). This reversal leads to a spectrum with
the chemical shielding increasing from left to right, i.e.,
with the most shielded tensor element σ33 to the right us-
ing the conventional ordering σ11 ≤ σ22 ≤ σ33.

Hz

δ ppm
051015ω/2π kHz

-600

0

-400

50

-200

100
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200

(a)

(b)

( )

δ11

δ33

σ11

δ22

σ22σ33σ

FIG. 3. Typical static-powder solid-state NMR spectra (|ω0/2π|
= 100 MHz) for (a) anisotropic chemical shift using δiso = 50 ppm
(δiso|ω0/2π| = 5 kHz), δaniso = 100 ppm (δaniso|ω0/2π| = 10 kHz),
and ηCS = 0.2 corresponding to chemical shift principal elements
δ11 = 150 ppm, δ22 = 10 ppm, and δ33 = -10 ppm, (b) and second-
order quadrupolar coupling characterized by I = 3/2, CQ = 1.0
MHz, ηQ = 0.2. We note that using the conventions described in the
text, the orientation of the spectra (in contrast to the signs of the
chemical shift and second-order quadrupolar coupling terms in the
Hamiltonian) remain independent on the sign of the gyromagnetic
ratio γi.
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The SIMPLOT, SIMFID, and SIMDPS
productivity tools

In order to form a self-standing simulation environment,
the SIMPSON simulation package contains a collection of
productivity tools SIMPLOT, SIMFID, and SIMDPS as
indicated in the flow diagram in Fig. 2. SIMPLOT is a
graphical viewer for display and manipulation of one or
multiple 1D spectra, acquisition data, or output from pa-
rameter scans. This viewer allows for interactive (mouse
controlled) data manipulations such as zooming, phasing,
scaling, and postscript plotting. We note that the present
version of the SIMPSON package does not include an inter-
active viewer for display/manipulation of two- or higher-
dimensional data. However, using an optional program
package VnmrTools, provided along with the SIMPSON
program, 2D data can be retrieved directly into the Var-
ian VNMR software. 1 Alternatively, multidimensional
data can be accessed and converted to other formats (e.g.,
for GNUPLOT [56]) using the fsave and findex com-
mands. SIMFID is a program which gives access to most of
the SIMPSON main section data manipulation commands
through arguments on the command line. This tool is use-
ful for post processing of data resulting from a SIMPSON
simulation. SIMDPS is a pulse sequence viewer allowing
graphical visualization of the pulse sequence implemented
via the scripting language. This tool proves convenient for
testing of pulse sequence timings, phases, and amplitudes.
The various tools will be described in more detail in the
following sections addressing specific simulation examples.

Availability and portability of the SIMPSON
package

Finally, it is relevant to address the availability and
portability of the SIMPSON simulation package in terms
of computer hardware and distribution. The SIMPSON,
SIMPLOT, SIMFID, and SIMDPS programs are released
on the Internet as open source software [55] under the
terms of the GNU General Public License [57]. Among
other things, this implies that any user freely can modify
the source code as long the full code is made available un-
der the GNU General Public License. For example, this
enables the user to create extensions, make ports to new
platforms, find information about the conventions and al-
gorithms used, and correct potential errors. The overall
aim is to make the program owned and maintained by the
users.

Furthermore, precompiled and self-contained (i.e., no
dependencies on special external libraries) binary executa-
bles are freely available for the most common operating
systems (including Linux/i386, Windows/i386, and the
major Unix platforms) and is easy to compile on other
platforms due to the portability of the C language and the
Tcl language interpreter (open source software). We note

that the SIMPLOT program uses the open source GTK
widget set [58] and is currently available only for Linux
and Windows.

ELEMENTS OF THE INPUT FILE:
A TUTORIAL EXAMPLE

It appears from the previous section that SIMPSON
is based on a relatively large number of commands re-
quired to offer the desired compromise between ease of
use, transparency, and flexibility to simulate all types of
NMR experiments. In order to clarify the use of these
commands and to systematically illustrate the simple con-
struction of the Tcl input file, this section demonstrates
and explains the input file for a typical solid-state NMR
experiment. To extend the perspective beyond the specific
example, the discussion additionally addresses alternative
typical options to the various commands. For the present
purpose, we have chosen the Rotational-Echo Double Res-
onance (REDOR) pulse sequence [18] shown in Fig. 4a,
which on one hand is a very important solid-state NMR
experiment and on the other hand contains many typical
pulse sequence elements without being excessively compli-
cated. To maintain appropriate reference to the literature
and to the known behavior of the experiment, we recon-
struct the 13C-detected REDOR experiment as originally
presented by Gullion and Schaefer [18] for measurement of
13C-15N dipolar couplings (and thereby internuclear dis-
tances) under MAS conditions. In REDOR, coherent av-
eraging of the dipolar coupling interaction by MAS is in-
terrupted by inserting a π-pulse on the 15N rf channel for
every half rotor period with the exception that the pulse
exactly in the middle of the evolution period is replaced by
a corresponding π-pulse on the 13C rf channel in order to
refocus undesired effects from 13C chemical shielding. The
difference between this experiment and a corresponding
experiment not using the 15N refocusing pulses provides a
direct measure for the dipolar coupling.

The redor.in input file
With this primer, the first step to a SIMPSON simu-

lations is to implement the the spectrometer rf channels,
the spin system, and the NMR interactions in the spinsys
section of the input file. This amounts to

spinsys {
channels 13C 15N

nuclei 13C 15N

dipole 1 2 895 10 20 30

shift 1 10p 100p 0.5 50 20 10

}

where we for simplicity have disregarded the 1H to 13C
cross-polarization sequence which for sensitivity reasons is
part of the experimental pulse sequence in Fig. 4a. The
channels command establishes the 13C and 15N rf chan-
nels, while the nuclei command line defines the 13C-15N
two-spin system. The affected nuclei are ordered according



10 BAK, RASMUSSEN, AND NIELSEN

13C

15N

- 
50

 µ
s

- 
50

 µ
s

- 
2

 µ
s

X
- 

2
 µ

s
- 

50
 µ

s
- 

50
 µ

s
X

- 
2

 µ
s

- 
2

 µ
s

- 
50

 µ
s

- 
50

 µ
s

- 
2

 µ
s

X
- 

2
 µ

s
- 

50
 µ

s
- 

50
 µ

s
- 

2
 µ

s
Y

- 
2

 µ
s

- 
50

 µ
s

- 
50

 µ
s

- 
2

 µ
s

X
- 

2
 µ

s
- 

50
 µ

s
- 

50
 µ

s
- 

2
 µ

s
Y

- 
2

 µ
s

- 
50

 µ
s

- 
50

 µ
s

- 
2

 µ
s

X
- 

2
 µ

s
- 

50
 µ

s
- 

50
 µ

s
X

- 
2

 µ
s

- 
2

 µ
s

- 
50

 µ
s

- 
50

 µ
s

- 
2

 µ
s

X
- 

2
 µ

s
- 

50
 µ

s
- 

50
 µ

s
- 

2
 µ

s
Y

- 
2

 µ
s

- 
50

 µ
s

- 
50

 µ
s

- 
2

 µ
s

X
- 

2
 µ

s
- 

50
 µ

s
- 

50
 µ

s
- 

2
 µ

s
Y

- 
2

 µ
s

(c)

(b)

(a)

N

C

ROTOR

15

13

1H

π/2

DECOUPLE

2 11

FIG. 4. (a) Timing scheme for the 13C-15N REDOR pulse sequence
as typically implemented on the spectrometer. Shaded and open
rectangles on the 13C and 15N channels denote π pulses of phase x
and y, respectively. (b) Pulse sequences corresponding to the three
first sampling points (black dots) as visualized using SIMDPS with
the REDOR input file given in the text with np changed to 3. We
note that all simulations ignore the 1H channel under the assumption
of ideal cross polarization and perfect 1H decoupling. (c) SIMPLOT
view of dipolar dephasing curves calculated for a powder of 13C-15N
spin pairs with bCN/2π = 895 Hz (rij = 1.51 Å), δCiso = 10 ppm,

δCaniso = 100 ppm, and ηCCS = 0.5 using REDOR with ωr/2π =
10 kHz and ideal rf pulses (upper curve), as well as finite rf pulse
irradiation with amplitudes of ωrf /2π = 150 kHz (middle curve) and
50 kHz (lower curve) on both rf channels.

to their appearance on the nuclei line. We note that a 1H
channel and one or more 1H nuclei (including associated
interactions) may easily be implemented in the spinsys
section to allow for simulation of the effect of cross polar-
ization. The relevant nuclear spin interactions are specified
using the dipole and shift command lines with the ar-
guments referring to the internal Hamiltonians in Eqs. (7)
- (9) according to Table 2. This implies that the dipolar
coupling should be entered under appropriate considera-
tion of the signs of the gyromagnetic ratios in play (e.g.,
the dipolar coupling between spins with positive (13C) and

negative (15N) gyromagnetic ratios should be positive). In
the present example the isotropic chemical shift and the
chemical shift anisotropy are entered in ppm at the δ scale
by appending the character p immediately after the value.
Using this information along with knowledge as to γ (via
nuclei) and the proton frequency (entered in the par
section (vide infra)) SIMPSON automatically calculates
the correct chemical shift frequencies for the Hamiltonian.
We note that the shift parameters alternatively may be en-
tered as Hz values generated by scaling of the ppm values
by the absolute value of the relevant Larmor frequency. In
this context it is relevant to note that SIMPSON provides
a number of simple tools to convert between, e.g., inter-
nuclear distances and dipolar couplings, principal shield-
ing elements and isotropic/anisotropic/asymmetry param-
eters, lists of available isotopes, etc. These commands, be-
ing helpful in setting up the spinsys section of the input
file, may be invoked directly by writing a simple SIMPSON
input file containing exclusively the main section with one
or more of the lines:

proc main {} {
puts [dip2dist 15N 13C 970]

puts [dist2dip 15N 13C 1.5]

puts [csapar 30 60 200]

puts [csaprinc 50 100 0.2]

puts [join [isotopes] \n]
}

where distances are in Angstroems (Å), dipolar couplings
in Hz, and chemical shift principal elements in ppm. Note
that this main example is not part of the proposed REDOR
input file.

Parameters defining general (global) physical conditions
such as sample rotation, crystallite orientations, and sam-
pling conditions are implemented in the par section of the
input file. In the present case this may take the form

par {
proton_frequency 400e6

spin_rate 10000

sw spin_rate/2.0

np 32

crystal_file rep320

gamma_angles 18

start_operator I1x

detect_operator I1p

verbose 1101

variable rf 150000

}

which using the self-explanatory names defines experimen-
tal conditions using a 400 MHz spectrometer (ωH0 /2π =
-400 MHz), 10 kHz sample spinning at the magic an-
gle (the default value for rotor angle is tan−1(

√
2) in

degrees), the spectral width set to a half the rotor fre-
quency corresponding to sampling every second rotor pe-
riod, 32 sampling points, powder averaging using 320 pairs
of αPR, βPR crystallite angles distributed according to the
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REPULSION scheme [49], and 18 equally-spaced γCR an-
gles. Since the requirements to the number of angles in
the powder average may vary significantly for different
experiments (and typically need to be tested for conver-
gence), SIMPSON contains a large number of powder files
that may be straightforwardly invoked as alternatives to
rep320 [55]. Obviously, these includes options for liquid-
state, single-crystal, and uniaxially-oriented molecule con-
ditions. User-defined sets of crystallite angles can be used
by setting the crystal file entry to the path of a text
file containing the number of angle pairs N , followed by
N successive lines each containing αkCR, βkCR, and ωk as
given in Eq. (20).

Three options, controlled by the method command in
the par file, can be chosen for the γCR averaging includ-
ing direct, gammarep, and gcompute corresponding to di-
rect calculation by chronological time integration, reuse
(replication) of propagators for different γCR angles, or γ-
COMPUTE [51, 52, 53, 54, 55]. The default method, used
here by omitting the method parameter in the par section,
is the direct method. The present simulation assumes the
initial (start operator) and final (detect operator) op-
erators to be I1x and I1p, respectively. Using the spec-
ifications in spinsys these correspond to Ix and I+ for
13C. We note that the start operator often is set to the
equilibrium polarization which, when applying to all spins,
may be implemented in short-hand notation as Inz corre-
sponding to

∑n
i=1 Iiz. Specifying the detect operator

as I1p ensures that the 13C magnetization is sampled by
quadrature detection. We should mention that in case of
second-order quadrupolar coupling and chemical shift val-
ues entered in ppm, it is necessary to specify the the abso-
lute 1H Larmor frequency (in Hz) in the par section using
the proton frequency parameter. Finally, a user-declared
variable denoted rf is used to specify the absolute value
of the rf-field strength to 150 kHz. This (and potential
other) variables entered in the par section may be accessed
in the user procedures pulseq and main as elements in the
par array made visible by the global keyword. A param-
eter can be set using an expression containing previously
defined parameters, as is the case with calculation of sw.
For a more complete description we refer to Table 2. Fi-
nally, we should mention the verbose function which is a
set of bits specifying the output returned from the SIMP-
SON simulation. In the present case the output represents
the spin system, progress during the calculation, and var-
ious information concerning the simulation [55].

In general, the pulse sequence is considered the most
crucial part of the simulation, and indeed represents the
most flexible part of the simulation environment (together
with main and other Tcl procedures). The pulse sequence
is defined through the user defined Tcl function pulseq
being called for each crystallite orientation. For the RE-
DOR pulse sequence with finite rf pulses this function may
conveniently be written

proc pulseq {} {
global par

maxdt 1.0

set t180 [expr 0.5e6/$par(rf)]

set tr2 [expr 0.5e6/$par(spin_rate)-$t180]

reset

delay $tr2

pulse $t180 0 x $par(rf) x

delay $tr2

pulse $t180 0 x $par(rf) y

store 1

reset

acq

delay $tr2

pulse $t180 0 x $par(rf) x

delay $tr2

pulse $t180 $par(rf) x 0 x

prop 1

store 2

acq

for {set i 2} {$i < $par(np)} {incr i} {
reset

prop 1

prop 2

prop 1

store 2

acq

}
}

We note that a version corresponding to ideal rf pulse may
be constructed simply by replacing pulse with pulseid
and avoiding substraction of t180 from tr2.

As an extremely important parameter, any pulse se-
quence should contain a definition of the maximum time
step over which the Hamiltonian may be considered time
independent. This parameter, being relevant when the
Hamiltonian contains non-commuting elements, is con-
trolled by maxdt (µs) corresponding to ∆t in Eq. (4). At
the same level as the number of crystallites used for powder
averaging, the value of maxdt may act as a trade-off be-
tween accuracy and speed of the simulation, and therefore
must be considered carefully by running several simula-
tions with different values. In most cases a value of 1 µs
is adequate. To the initialization also belongs setting of
typical timings, which in the present case is the durations
of a half rotor period tr2 and a 180◦ pulse t180 (both µs)
being calculated by accessing parameters from the par sec-
tion. We note that the duration of a π pulse is subtracted
from the half rotor period to ensure rotor synchronization
of the refocusing periods.

In the implementation of any pulse sequence, it is rele-
vant to consider the flow of operations and identify repeat-
ing events. The former topic concerns the inner working
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of the SIMPSON calculations, while the latter addresses
more specifically the actual pulse sequence. Starting out
with the generalities, it applies to any simulation that eval-
uation of the spin dynamics requires three internal vari-
ables to be changed throughout the pulse sequence: the
density matrix, the time, and the propagator. Thus, to
any time up to the end of the experiment, the current
propagator may (under consideration of Dyson time order-
ing) be updated by multiplication with the propagator for
the following time event and the time incremented appro-
priately. This is accomplished using the pulse, pulseid,
and delay commands. To any time the current density
matrix, resulting from operation with the current propaga-
tor on the initial density operator, may be obtained using
the acquisition acq command, which additionally provides
the expectation/projection value with respect to the de-
tection operator (i.e., a data point) and resets the current
propagator. The current time and the propagator are reset
using the reset command. These statements immediately
indicate the hierarchy of operations in SIMPSON: first op-
erations on the propagator level and later on the density
matrix level. This construction allows for efficient reuse of
propagators that to any time can be saved with the store
command and reused the desired number of times using the
prop command. For typical solid-state experiments, sys-
tematic reuse of propagators may speed up the calculations
by several orders of magnitude. For non-spinning samples,
the time-independent Hamiltonian allows all propagators
to be reused without limitations and maxdt is irrelevant.
In the case of sample spinning, the Hamiltonian is periodic
with the rotor period implying that propagators calculated
to a specific time can be reused an integral number of rotor
periods later provided the pulse sequence fulfill the same
periodicity. To allow for sufficient flexibility, the propa-
gator to an arbitrary time within the pulse sequence can
be calculated using the time increment as argument to the
reset command. The same is possible during the data
acquisition period provided the sampling is synchronized
to an integral number or integer fraction (1/R) of the ro-
tor period. In the latter case R propagators starting at
different times need to be pre-calculated. Note that the
acq and filter commands cannot be stored as they mod-
ify the density matrix. The program automatically checks
that the propagators are reused at the correct time.

The REDOR pulse sequence in Fig. 4a may conve-
niently be described in terms of two repeating pulse se-
quence elements. Before these are activated we reset the
propagator and calculate the first point corresponding to
time t=0 using the acq command. The first pulse sequence
element is represented by a rotor period with 15N π pulses
in the middle and at the end (marked 1 in Fig. 4a). The
two pulses alternate with x and y phases which is rel-
evant for the spectrometer implementation since it pre-
vents accumulation of pulse rotation errors (e.g., induced
by rf inhomogeneity) throughout the train of echo pulses

[59, 60]. In fact, the utility of this modification may easily
be tested by slight misadjustment of the pulse flip angles
in the SIMPSON simulation. A more advanced and prac-
tically even more relevant approach would be the XY-8
phase scheme described by Gullion et al. [60]. The prop-
agator for the first element is calculated and saved using
store 1 for later activation using prop 1. The second el-
ement (marked 2 in Fig. 4a) is initially formed by a rotor
period with a 15N π pulse in the middle and a 13C π pulse
in the end, followed by the prop 1 pulse sequence ele-
ment. Thus, prop 2 corresponds to the central part of the
REDOR pulse sequence while prop 1 corresponds to the
bracketing rotor periods with 15N π pulses alone. Using
this setup, the second data point from the REDOR ex-
periment may be calculated using the acq command upon
generation of the propagator prop 1; prop 2; prop 1.
Now it is evident that all points of the REDOR experiment
may be calculated systematically using sequence elements
of the type prop 1; prop 2; prop 1 which upon calcu-
lation of a data point is stored as the new prop 2 using
store 2. Upon subsequent bracketing by prop 1 propa-
gators, we obtain the propagator relevant for calculation
of the next data point and so forth. This enables simple
calculation of the REDOR dephasing curve using a for
loop construction as implemented in the pulseq code of
the present example. We note that the reference spectrum
for the REDOR experiment may straightforwardly be gen-
erated by zeroing the rf amplitude for the 15N refocusing
pulses in prop 1 and prop 2 (not shown).

This simple example illustrates two important points
concerning simulations within the SIMPSON environment.
First, in the setup of multiple-pulse NMR simulations it is
important to disentangle the pulse sequence in repeating
events to ensure a simple and short program structure as
well as the fastest possible calculations in terms of CPU
time. In fact, programming in this manner hardly dif-
fers from the way pulse sequences should be implemented
on the spectrometer. Second, it demonstrates that SIMP-
SON is sufficiently flexible that essentially all program-
ming structures using and reusing pulse sequence building
blocks are feasible.

The main section of the input file, which controls the
progress of the simulation, may take the form

proc main {} {
global par

set f [fsimpson]

fsave $f $par(name).fid

}

The fsimpson command (evaluated by the brackets) per-
forms the simulation based on the information given in the
spinsys, par, and pulseq sections and returns a pointer
f to the resulting acquisition data. Using the fsave com-
mand the data is saved to the file $par(name).fid with
the extension .fid added to the the basename of the input
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file. The resulting time-domain signal may be plotted us-
ing the SIMPLOT program either directly or upon Fourier
transformation using SIMFID. Alternatively, if desired,
the Fourier transformation may be accomplished within
the main section of the input file by appending

fzerofill $f 16384

faddlb $f 100 0

fft $f

fsave $f $par(name).spe -binary

to the main code. Specifically these commands invoke zero
filling of the FID to 16384 points, apodization using 100
Hz Lorentzian line broadening, Fourier transformation of
the resulting FID, and saving the spectrum in a binary file
with the extension .spe.

The SIMPSON REDOR simulation
The four Tcl code elements presented above form the

input file to SIMPSON which conveniently may be called
redor.in. Upon appropriate installation of the SIMPSON
package (which merely involves copying the stand-alone
programs to the desired directory), it is now straightfor-
ward to conduct the simulation including pulse sequence
testing, data manipulation, and plotting. For convenience
the processing is illustrated as commands as one would
type them into a typical UNIX shell or DOS prompt envi-
ronment. The first thing to do is to test the pulse sequence
using the SIMDPS command by typing

simdps redor.in

which by a priori setting the number of sampling points
(np) in the input file to 3 leads to the postscript output
shown in Fig. 4b. The output illustrates the first three
sampling points by solid dots on the 13C channel along
with the preceding pulse sequences. The detailed output
in terms of delay and pulse timings as well as pulse phases
provides a valuable test that the pulse sequence is correctly
implemented. SIMDPS has a number of optional settings
described when the program is run without arguments.

Upon testing the pulse sequence in the input file, the
next step is typically the SIMPSON calculation itself being
invoked as

simpson redor.in

Unless specified otherwise in the main section of the input
file (using the data manipulation commands) the calcu-
lation results in the time-domain output file redor.fid.
The content of this file may be viewed, manipulated, and
plotted using the SIMPLOT program

simplot redor.fid redor-ideal.fid redor-50kHz.fid

where we for the sake of illustration included dephasing
curves corresponding to REDOR pulse sequences with
ideal rf pulses as well as finite rf pulse irradiation with
|ωrf/2π| = 50 kHz on both channels. The screen view

from SIMPLOT (Fig. 4c) may be exported (printed) to
a postscript file (redor.ps) which can be printed or fur-
ther modified. We should mention that, if required, it is
obviously straightforward to simulate the REDOR refer-
ence spectrum using SIMPSON and produce the difference
between this and the REDOR FID using the SIMFID pro-
gram, i.e.

simfid redorref.fid redordiff.fid -sub redor.fid

SIMPSON iterative fitting
Largely the need for numerical simulations in solid-state

NMR spectroscopy may be divided into two classes. The
first concerning experiment design, evaluation, and imple-
mentation. The other concerns extraction of structural pa-
rameters from experimental spectra. The latter not only
requires the capability of numerical simulation but also
calls for efficient procedures for least-squares iterative fit-
ting of experimental spectra to numerical spectra depend-
ing on the relevant structural parameters.

Iterative fitting may be performed in the main sec-
tion of the input file and requires definition of a function
(e.g., fitfunction) which returns the value to be min-
imized, typically the root-mean-square (rms) deviation.
The fit routine performs the minimization by passing
the iteratively changed function parameters given in the
$par(values) list to the fitting function. Each element
in the list contains a name, a starting value, the step size,
and 1 or 0 depending on whether the variable is iteratively
changed or not during the minimization.

Addressing specifically the REDOR example and as-
suming that an experimental REDOR decay exists in a
file redorexp.fid, fitting of the data to the dipolar cou-
pling, the scaling, and the line broadening (exponential
decay) may be accomplished by replacing the main pro-
cedure in the REDOR simulation given above with the
fitting function (fitfunction) and main procedure shown
below. The fitting function extracts the parameters from
the list val (containing elements with the variable name,
e.g., dipole 1 2 aniso and value) and feeds them to the
fsimpson, fphase, faddlb, and frms functions to accom-
plish the simulation, scaling and apodization of the result,
and calculation of the rms deviation between the experi-
mental and simulated data.

proc fitfunction {val} {
global par stop

set scale [lindex [lindex $val 0] 1]

set lb [lindex [lindex $val 1] 1]

set dipole [lindex $val 2]

set sim [fsimpson [list $dipole]]

fphase $sim -scale $scale

faddlb $sim $lb 0

set rms [frms $sim $par(exp)]

if {$rms < $par(bestrms)} {
set par(bestrms) $rms
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fsave $sim $par(name).fid

puts -nonewline "*"

}
funload $sim

puts "$par(iter) $rms $par(bestrms) $val"

if {$stop || $rms < $par(maxrms) ||

$par(iter) > $par(maxiter)} {
exit

}
return $rms

}

proc main {} {
global par

set par(fitmethod) simplex

set par(function) fitfunction

set par(exp) [fload redorexp.fid]

set par(bestrms) 1e6

set par(maxrms) 0.5

set par(maxiter) 1000

set par(values) {
{scale 1 0.1 1}
{lb 40 10 1}
{dipole_1_2_aniso 1200 50 1}

}
fit par

}

The main procedure sets the fitting method to Simplex [43]
(other methods are available: powell [43], hookjeevse,
or subplex), sets the fitting function to be fitfunction,
loads the experimental data and saves the data descriptor
in the variable $par(exp), initializes the best root-means-
square (rms) value to an unrealistic large number, and
sets the initial function parameters for the minimization.
For each parameter the latter includes the name, the ini-
tial value, the initial step size, and a number indicating
whether the parameter is considered for fitting (1) or not
(0). Finally, the iterative fitting is performed by calling
the fit procedure with the array that holds the variables
guiding the minimization as argument. For each iteration
the fitfunction function is called, the function param-
eters are extracted, and the simulation and comparison
with the experimental data are performed. If the current
rms value is less than the best rms value, the latter is up-
dated, the acquisition data saved, and a star is printed
to the output to indicate that this is a better fit. After
use the simulated spectrum is removed from the memory
(funload), the parameters for the current fit is printed,
and the program exits provided maxiter is reached, the
rms value is below maxrms, or the special variable $stop

is one which happens when the keyboard keys Ctrl and C
are pressed simultaneously.

TYPICAL EXAMPLES OF SIMPSON
SIMULATIONS

In this section we provide a series of examples demon-
strating the capability of the SIMPSON environment for
essentially simulating all types of solid-state NMR experi-
ments. The examples, for which the SIMPSON input files
are included in Appendix A, are chosen to illustrate dif-
ferent typical aspects of numerical simulations in state-
of-the-art solid-state NMR. Furthermore, by the selection
of current methods which are well-documented by exper-
imental spectra and numerical simulations in the origi-
nal literature, some of the examples given below addi-
tionally serve to document the validity of the simulation
procedures implemented in SIMPSON and the robustness
of these by applications in different contexts. The ex-
amples include rotational resonance, homonuclear dipolar
recoupling using DRAMA/DRAWS/HORROR/C7, het-
eronuclear dipolar recoupling using TEDOR, dipolar de-
coupling using CW or TPPM irradiation, separated-local-
field (SLF) experiments without or with FSLG/MSHOT-3
homonuclear decoupling, and QCPMG-MAS experiments
for sensitivity-enhanced quadrupolar-echo NMR of half-
integer quadrupolar nuclei. The capability of parame-
ter scans for experiment optimization is demonstrated for
heteronuclear coherence transfer based on POST-C7 13C-
15N dipolar recoupling as well as triple-quantum excita-
tion in MQ-MAS experiments of quadrupolar nuclei. The
potential of using SIMPSON for generation of advanced
”waveforms” (i.e., simulation of rf irradiation with compli-
cated amplitude or phase modulation) is illustrated for a
phase-sweeped variant to the FSLG experiment. Finally,
we exemplify simulation of 2D spectra by calculation of
2D PISEMA and RFDR homonuclear dipolar correlation
spectra for two- and five-spin systems, respectively. For
more examples we refer to Ref. [55].

Example 1: Rotational resonance type spectra for
13C-13C spin pairs.

Although simulation of standard single-pulse experi-
ments represent the most trivial task discussed in this pa-
per, it is worth noting that up to quite recently it has
been considered challenging just to simulate and itera-
tively fit such spectra for homonuclear two- or three-spin
systems. This is ascribed to the presence of ”homoge-
neous” interactions [61] which effectively call for a quite
time-consuming time-ordered integration of the spin dy-
namics during sampling of the FID [17, 62]. Several break-
throughs, among which range efficient powder averaging
[45, 49] and exploitation of time-translational symmetries
[52, 53, 54], have greatly improved the conditions for such
simulations and their combination with iterative fitting
for extraction of accurate structural parameters. To illus-
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trate the straightforward performance of such simulations
within the SIMPSON environment, Fig. 5 shows a series
of rotational resonance type of spectra for a powder of
13C-13C spin pairs calculated for different combinations of
isotropic chemical shifts and sample spinning speeds. The
SIMPSON input file required for this sort of arrayed sim-
ulation and subsequent data processing only amounts to
a few lines of effective code as demonstrated in Appendix
A. We note that the acquisition of data under free pre-
cession conditions conveniently is accomplished implicitly
using γ-COMPUTE which exploits the time-translational
relationship between ωrt and γCR and in the present exam-
ple automatically samples 4096 points equidistantly using
gamma angles = 20 points per rotor period. Using 320
pairs of αCR,βCR REPULSION angles each spectrum re-
quired 6.1 s of CPU time on a Linux-controlled 450 MHz
Pentium III computer, which practically puts no limita-
tions on the combination with powerful iterative fitting
procedures. For comparison, we note that a similar simu-
lation for a three-spin system (accomplished by just chang-
ing the spinsys part of the input file) required 56.5 s of
CPU time.

Example 2: Homonuclear dipolar recoupling
using DRAMA, DRAWS, HORROR, and C7.

The past decade has clearly demonstrated that recou-
pling of homonuclear dipolar coupling interactions by no
means is restricted to the rotational resonance experiment
with its attractive and less attractive features. In the lat-
ter category belongs practical difficulties for small isotropic
chemical shift differences, its intrinsic selectivity, and its
sensitivity to chemical shift anisotropy which may com-
plicate extraction of information about internuclear dis-
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FIG. 5. Rotational resonance type 13C MAS NMR spectra for a
13C-13C two-spin system (powder sample) simulated using bCC/2π

= -1.5 kHz, ωr/2π = 2 kHz, and different ratios n = |ωCS,1iso −
ωCS,2iso |/ωr between the isotropic chemical shift difference and the

spinning frequency. The star (*) indicates the position of ωCS,1iso /2π,

while ωCS,2iso /2π is constant zero.
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FIG. 6. Numerical simulations of various homonuclear dipolar re-
coupling experiments operating on a powder of 13C-13C spin pairs
characterized by a dipolar coupling of bCC/2π = -2 kHz under the
conditions of MAS with ωr/2π = 5 kHz. (a) Generalized pulse
sequence which for the simulations assumes ideal 1H to 13C cross
polarization and 1H decoupling as well as ideal 13C π/2 bracket-
ting pulses (hatched rectangles). The simulations correspond to (b)
DRAMA (ideal, 0, 0), (c) DRAWS (8, 0, 0), (d) HORROR (1/2, 0,
0), and (e) C7 (7, π/2, -π/2) with the parenthesis giving ωrf /2π in
multiples of ωr/2π (infinitely strong pulses are indicated ideal) as
well as the flip-angle θ and phase φ for the bracketting pulses.

tances. These aspects have motivated the design of a large
series of experiments which in addition to manipulations
of the Hamiltonian in real space rely on quenching of the
dipolar averaging by multiple-pulse rf manipulations in
spin space. Although most of these experiments are de-
signed for the same purpose, namely selective recoupling
of homonuclear dipolar couplings, they are associated with
quite different dependencies on ”error terms” such as the
chemical shift parameters for the spin-pair nuclei. Further-
more they have different demands/limitations with respect
to sample spinning speed and rf field performance. To
ensure implementation of the recoupling experiment best
suited for a specific application, it may be quite useful to
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evaluate these aspects numerically prior to the experimen-
tal work. To demonstrate the feasibility of such compar-
ative analysis, Fig. 6 gives a series of dipolar recoupling
spectra using the DRAMA [19], DRAWS [20], HORROR
[23, 63], and C7 [25] pulse sequences. We note that these
pulse sequences, in full analogy to their typical practical
use, straightforwardly are implemented in the SIMPSON
input file as exchangeable pulse sequence building blocks
referring to the general pulse scheme in Fig. 6a. This is
accomplished by extensive use of global parameters and
the Tcl construct lindex in a foreach loop. We note
that most of these recoupling sequences rely on or are de-
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FIG. 7. Simulated TEDOR spectra for the 13C-15N spin pairs
in a powder of L-asparagine obtained using the pulse sequence in
(a) with rotor synchronized sampling, ωr/2π = 3.2 kHz, ωrf/2π =

150 kHz, and bCN/2π = 1230 Hz (rCN = 1.36 Å). The calcula-
tions assumed ideal cross polarization and 1H decoupling, a fixed
rotor-synchronized duration of the preparation sequence prior to the
heteronuclear coherence transfer, and finite rf pulse conditions for
all pulses. (b) to (d) TEDOR spectra obtained by Fourier trans-
formation of the dipolar dephasing starting from the point with the
maximum intensity with the number of preparational rotor-periods
n being 1, 2, and 4, respectively, as specified in the TEDOR.in input
file in Appendix A. All spectra are apodized using a 30 Hz Lorentzian
linebroadening.

pendent on finite rf pulse effects which accordingly are an
integral part in most of the simulations as specified in the
input file in Appendix A. Furthermore, we should note that
these simulations were performed using the Zaremba, Con-
roy, and Wolfsberg type of powder averaging with 232 pairs
of αCR, βCR angles. This averaging scheme is extremely
efficient in cases where the tensors are axially symmetric
around the rotor axis, but less efficient than REPULSION
and Lebedev for all other orientations.
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FIG. 8. Simulation of 13C to 15N coherence transfer for a powder
of 13C-15N spin pairs characterized by a dipolar coupling constant of
bCN/2π = 1.3 kHz (rCN = 1.33 Å) using the heteronuclear variant
of the POST-C7 pulse sequence (a) with ωr/2π = ωrf/14π = 8 kHz
(both channels). The simulations assumed ideal cross polarization,
1H decoupling, and π/2 bracketting pulses. (b) Excitation curve
with the POST-C7 coherence transfer sampled in steps of two rotor
periods (2 τr = ωr/π) under conditions of on-resonance rf irradiation
on the isotropic chemical shifts for both spins. (c) Transfer efficiency
for the POST-C7 pulse sequence using τexc = 12τr as function of the
isotropic chemical shifts for the two spin species.
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Example 3: Heteronuclear dipolar recoupling
using TEDOR.

In the previous section we presented REDOR [18] as
a typical example of heteronuclear dipolar recoupling un-
der MAS conditions. Obviously several alternatives ex-
ists, among which belong the Transfered-Echo-Double-
Resonance (TEDOR) experiment [64, 65] which here
serves as another example illustrating the straightforward
consideration of finite rf pulse irradiation in complex echo-
train experiments in combination with extended reuse of
propagators in two dipolar dephasing periods. The at-
tractive feature of TEDOR as compared to REDOR is the
elimination of background signals due to uncoupled spins.
This facilitates the precise measurement of the heteronu-
clear dipole-dipole coupling and thereby the long-range in-
ternuclear distance, e.g., between 15N and 13C spins in
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FIG. 9. Simulations comparing CW and TPPM 1H decoupling for
a 13C spin dipolar coupled to three mutually coupled protons which
additionally are influenced by anisotropic chemical shift. The spin
system geometry is visualized above the spectra while the dipolar
coupling and chemical shift parameters are given in the SIMPSON
inputfile for this example included in Appendix A. (a) Generalized
pulse sequence which for the simulations assume ideal CP and MAS
with ωr/2π = 5 kHz. (b-e) 13C MAS spectra for a powder sample
subjected to (b,c) CW and (d,e) TPPM (18025180−25 cycles) de-
coupling using decoupling rf field strengths of (b,d) 80 and (c,e) 160
kHz. We note that the vertical scale for the CW spectra is expanded
by a factor 2.5 relative to the TPPM spectra and that all spectra are
apodized using 10 Hz Lorentzian linebroadening.

peptides or proteins. The TEDOR pulse sequence (Fig.
7a) consists of two periods of dipolar dephasing separated
by a pair of π/2 pulses which establish the heteronuclear
coherence transfer. The dipolar dephasing periods con-
tain a series of π refocusing pulses applied synchronously
with the rotor period to recover the dipolar coupling in-
teraction otherwise averaged over a rotor period. Inspired
by Fig. 9 in the paper of Hing et al. [64], Figs. 7b -
7d show a series of Fourier transformed TEDOR dephas-
ing curves corresponding to the 13C-15N spin-pair in L-
asparagine. The corresponding Tcl input file is given in
Appendix A. We note that the Fourier transformation of
the time-domain data is performed as post-processing by
discarding the data points prior to the echo maximum.

Example 4: POST-C7 heteronuclear dipolar
recoupling: excitation curve and 2D parameter

scan.
In the the design and implementation of new pulse se-

quences, it is desirable on the level of numerical simu-
lations to be able to scan the dependencies of the pulse
sequence towards various parameters of the internal and
external Hamiltonian. This is equivalent to the manda-
tory calibrations of external manipulations always preced-
ing experiments on the spectrometer. For example, set-
ting up a dipolar recoupling experiment for heteronuclear
coherence transfer, it is relevant to know the optimum ex-
citation period for the actual spin system (depending on
the internuclear distance, type of nuclei, etc.) and the
sensitivity of this transfer towards other parameters such
as the chemical shifts of the nuclei. In this manner, it
should be possible to avoid disappointments and hours
of ”blind” spectrometer optimization in cases where pulse
techniques designed for one application are transferred to
a completely different context with respect to the internal
interactions.

As an example of looped parameters scans for pulse
sequence optimization and applicability analysis, Fig. 8
investigates 13C to 15N heteronuclear coherence transfer
using a heteronuclear variant of the POST-C7 [26] pulse
sequence as visualized in Fig. 8a and represented by the
SIMPSON input file in Appendix A. With respect to the
latter we should address attention to the very simple con-
struction of the quite advanced POST-C7 pulse sequence
in the pulseq section as a super cycle which through loop-
ing concatenates the cyclically phase-modified three-pulse
building blocks as required to produce the excitation curve
given in Fig. 8b. In Fig. 8c we exemplify 2D parameters
scans by a 3D plot (2D contour plot) giving the excitation
efficiency along the vertical axis and the dependencies on
the 13C and 15N isotropic chemical shifts along the hori-
zontal axes. Such curves are highly relevant for deduction
of the broadband nature of the recoupling pulse sequence
in the given application. For space reasons, the loops re-
quired to produce this 2D scan is given in Ref. [55]. We
note that the present simulations restrict to βCR powder
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averaging (40 angles in the bcr40 file) being justified by
the γCR-encoding [23] properties of C7 and the present
ignoration of effects from chemical shielding anisotropy.
Obviously, at the expense of longer calculation times, it is
straightforward to change the powder averaging to cover
the full semi-sphere just entering another file name.

Example 5: Heteronuclear decoupling in
multiple-spin systems using CW and TPPM

In addition to recoupling techniques recovering parts
of the internal Hamiltonian being coherently averaged by
MAS in attempt to obtain high-resolution spectra, decou-
pling of isotropic or anisotropic J and dipolar coupling in-
teractions represents another important element in tailor-
ing the internal Hamiltonian to the desired shape. So far
the prevailing method for heteronuclear dipolar decoupling
has been ”brute-force” high-power continuous wave (CW)
irradiation on the non-observed spin species [1, 2, 3, 4, 6]
although more efficient schemes such as two-pulse phase
modulation (TPPM) [31], phase alternated 2π pulse irra-
diation [66], frequency- and phase-modulated decoupling
(FMPM) [67], off-resonance decoupling [68], and 12-fold
symmetric C12 decoupling sequences [69] have entered the
scene recently. The more advanced schemes have in partic-
ular proven advantageous in the case of fast sample spin-
ning where dipolar couplings between the protons become
less efficient and thereby less helpful in truncating second-
order cross-terms involving anisotropic chemical shielding
on the directly coupled proton spins [66, 69]. Exactly this
aspect explains why it is very demanding to decouple the
influence from the proton in a simple heteronuclear two-
spin system unless extremely high decoupling fields are ap-
plied. This applies in particular if the proton is influenced
by anisotropic shielding [66]. Furthermore, it explains
why combined heteronuclear decoupling and homonuclear
proton-proton dipolar recoupling may improve this situa-
tion [69]. To assist the analytical evaluation of such effects
and investigate the specific role of the heteronuclear spin
systems, it appears desirable to have straightforward ac-
cess to numerical simulations. This may be accomplished
by SIMPSON as illustrated in Fig. 9 by a series of sim-
ulations illustrating the effect of CW and TPPM decou-
pling for a heteronuclear four-spin system. For purpose
of illustration we examine a methylene carbon which in
addition to the directly bonded protons is influenced by
heteronuclear dipolar coupling to a remote spin and in-
directly influenced by a number of homonuclear 1H-1H
dipolar couplings and 1H chemical shielding anisotropy.
The geometry of the spin system is illustrated by an insert
above the decoupled 13C MAS spectra in Figs. 9 reflecting
experiments using the simple 1D pulse sequence in Fig. 9a
under the assumption of ideal cross-polarization. Specifi-
cally, the simulations reflect a powder sample subjected to
MAS with ωr/2π = 5 kHz along with CW or TPPM de-
coupling using 1H decoupling field strengths of 80 and 160

kHz. From the spectra it is evident that the CW using
the lowest rf field amplitude provides far from sufficient
decoupling of the protons. This situation is improved con-
siderably by increasing the CW rf field strength to 160 kHz
and even more so by applying TPPM decoupling which in
the present case used θφθ−φ cycles with θ = 180◦ and φ
= 25◦. To our knowledge this represent the first numeri-
cal simulations comparing the decoupling performance of
CW and TPPM decoupling despite it has been extensively
demonstrated analytically and experimentally during the
past couple of years. With specific attention to the input
file, we note that the simulations are most efficiently con-
ducted using γ-COMPUTE which requires synchroniza-
tion of the TPPM irradiation, the sample spinning, and
the sampling. To accomplish this the code automatically
adjusts the desired spinning frequency spin-want to the
rotor-synchronized actual frequency spin rate being in-
formed to the user using the Tcl puts command.

Example 6: SLF experiments without and with
MSHOT-3 and FSLG homonuclear decoupling.

One of the most typical applications for homonuclear
dipolar decoupling pulse sequences is as an element in
separated-local-field (SLF) experiments for measurement
of heteronuclear dipolar couplings [70]. For example, this
is of interest for determination of the orientation of N-H
internuclear axes relative to the external magnetic field in
single crystals or uniaxially oriented peptide samples as
described by Opella and coworkers [33]. In this sort of ap-
plications, where the line position is interpreted directly
in terms of orientational angles it is quite important that
the applied decoupling scheme provides reasonable decou-
pling.

Such performance tests may conveniently be conducted
using SIMPSON as demonstrated in Fig. 10 by simu-
lated ω1/2π-dimension SLF spectra for a single crystal of
a 15N-(1H)2 three-spin system using the pulse sequence in
Fig. 10a without and with FSLG [29] and MSHOT-3 [30]
homonuclear decoupling. Using typical N-H internuclear
distances (1.01 Å) and the N-H vectors split by the tetra-
hedral angle this spin system is characterized by dipolar
constants of bHH/2π = -26.7 kHz and bNH/2π = 11.8 kHz
which for the given tensor geometry puts some demands
on the homonuclear decoupling. The influence from the
homonuclear coupling becomes immediately evident from
the spectrum without decoupling (Fig. 10b) which con-
tains six resonances, two weak lines at ca. ±11.8 kHz
(foldings at ±1455) and four lines belonging to the dis-
played spectral window. Apart from the resonances at
±2316 Hz this spectrum differs significantly from the spec-
trum without the homonuclear coupling ideally showing
four resonances at ±2316 Hz and ±3160 Hz for the given
crystallite orientation. As a first attempt to quench the in-
fluence from the homonuclear coupling Fig. 10c shows as a
spectrum using FSLG decoupling with an rf field strength
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of 58 kHz. This spectrum shows a doublet and a quartet,
which by its difference to the expected two-doublet spec-
trum by itself indicates inadequate decoupling. Also the
frequencies of the doublet lines (-1788 and -1315 Hz) and
obviously the quartet lines (1260, 1435, 1657, and 1835
Hz) are shifted relative to the theoretical values (±1824
and ±1336 Hz). Clearly, such distortions and frequency
shifts are unfortunate provided information about the ori-
entation of the internuclear axes are extracted from the
line positions. The MSHOT-3 spectrum (Fig. 10d) us-
ing a decoupling rf field strength of 60 kHz looks more
promising, although characterized by a lower scaling fac-
tor (0.353 as opposed to 0.577 for FSLG), in the sense that
two doublets symmetrically disposed around the center of
the spectrum are obtained. The positions for the doublet
lines (-968 and -765 Hz), however, remain shifted relative
to the theoretical values (-1117 and -819 Hz). Obviously,
this situation may be improved considerably by increasing
the decoupling rf field strength (not shown). Furthermore,
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FIG. 10. Simulated ω1/2π-projections from 1H-15N SLF experi-
ments using different homonuclear decoupling sequences for a single
crystal (ΩCL = {30◦, 65◦, 0}) of a 15N(1H)2 three-spin system. The
spin system is characterized by bH1H2/2π = -26.7 kHz, bNH1/2π =
bNH2/2π = 11.8 kHz, ΩH1H2

PC = {0, 35.2◦, 0}, ΩNH1
PC = {0, 0, 0}, and

ΩNH2
PC = {0, 70.4◦, 0}. (a) General pulse sequence for the constant-

time SLF experiment with the homonuclear decoupling sequence in-
dicated by the hatched rectangle. (b-d) Spectra corresponding to
SLF (b) without homonuclear decoupling. (c) FSLG decoupling us-
ing ωrf/2π = 58 kHz, and (d) MSHOT-3 decoupling with ωrf/2π =

60 kHz all calculated using ωCS,H1
iso /2π = -ωCS,H2

iso /2π = 500 Hz (no
chemical shift anisotropy). (b’-d’) The corresponding spectra calcu-
lated under the assumption of identical isotropic chemical shifts for
the protons.

it is interesting to note that SLF pulse sequences without
decoupling and with FSLG decoupling are quite sensitive
to the chemical shifts of the protons. This becomes evident
by comparison of the two series of spectra in Figs. 10b -10d
and Figs. 10b’-10d’ calculated under the assumption of fi-
nite (± 500 Hz) and vanishing isotropic 1H chemical shifts,
respectively. At the same time these spectra reveal that
MSHOT-3 is relatively insensitive to these effects as dis-
cussed previously [30]. Finally, we should emphasize that
the spectra in Fig. 10, which appearance highly depend on
the selected tensor angles, the decoupling rf field strength,
and the orientation of the crystal, by no means give a
general evaluation of the different types of decoupling se-
quences but rather serves to demonstrate the relevance of
numerical simulations to investigate and potentially com-
pensate for the effects of insufficient decoupling.
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FIG. 11. Simulations of 1H to 15N coherence transfer for a static
powder of typical amide 1H-15N spin systems (bNH/2π = 11.8 kHz,
δNaniso = 100 ppm, ηNCS = 0.5, δHiso = 100 ppm, ηHCS = 0.5) using a
SEMA-type cross-polarization pulse sequence with FSLG irradiation
on the 1H channel and phase-inversion on the 15N channel according
to the pulse sequence in (a). The pulse sequence uses θ = 54.74◦

along with ωHrf/2π =
√

2/3ωNrf/2π = -
√

2ωoff/2π = 60 kHz for the

simulations in (b). ωoff/2π denotes the frequency offsets used for
the conventional FSLG sequence. (b) SEMA CP excitation curves
for sequences using conventional frequency switching (solid line) as
well as phase modulations with different phase steps (208◦ divided
into 8, 13, 16, 26, 52, 104, and 208 steps) (dashed lines).
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Example 7: Heteronuclear cross-polarization
employing FSLG with frequency switching or

phase modulation.

In the past few years there has been an increasing
interest in exploiting advanced phase- and amplitude-
modulated rf pulse sequences as a flexible tool for ma-
nipulation of the internal Hamiltonian. For example, such
schemes has been proposed for hetero- [67] and homonu-
clear [71, 72] decoupling, cross polarization [73], dipolar re-
coupling [74, 75], and multiple-quantum MAS (MQ-MAS)
refocusing of second-order quadrupolar line broadening
[76, 77]. Obviously, the ability to create continuous phase
and amplitude modulation increases the degrees of free-
dom in experiment design but it also extends the needs
for numerical simulations to accurately analyze the per-
formance of the pulse sequences under ideal and non-ideal
conditions. For example, continuous rf modulation is often
implemented as discrete steps on the spectrometers which
inevitably calls for the question: how fine digitalization
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FIG. 12. 2D 15N chemical shift versus 1H-15N dipolar coupling cor-
related spectrum (b) calculated for a static powder of typical amide
1H-15N spin pairs using the 2D PISEMA separated-local-field pulse
sequence in (a) with Larmor frequencies corresponding to a 400 MHz
spectrometer. The spin-pair is characterized by the parameters (non-
zero values only) bNH/2π = 10 kHz, δNiso = 100 ppm, δNaniso =

100 ppm, and ηNCS = 0.25 while the pulse sequence used ωHrf/2π

=
√

2/3ωNrf/2π = -
√

2ωoff/2π = 83 kHz for the SEMA part and

ωHrf/2π = 130 kHz decoupling. The 2D spectrum was sampled using

128 points in both dimensions.

is needed to meet the continuous condition with sufficient
accuracy? Often this question can only be answered by
experimental tests or numerical simulations.

To demonstrate that SIMPSON allows handling of ad-
vanced time-modulated pulse sequences using simple loop
constructs, Fig. 11 shows a series of excitation curves for
1H to 15N coherence transfer using a spin-exchange at the
magic angle (SEMA) type of pulse sequences with FSLG
irradiation at the 1H channel along with a phase-alternated
pulse sequence on the 15N channel [33, 79]. Prior to FSLG
the 1H magnetization is prepared along an axis parallel to
the effective field direction of the Lee-Goldburg (LG) se-
quence using a 1H preparation pulse with flip angle 54.74◦

and phase x.. The basic pulse sequence is shown in Fig.
11a. The FSLG element of this pulse sequence can be exe-
cuted either directly using frequency (i.e., offset) switching
as originally proposed by Bielecki et al. [29] or using phase
modulation as recently discussed by Vinogradov et al. [71]
and Gan [72]. Both approaches have been implemented
in the SIMPSON input file for this example in Appendix
A. Thus, in addition to an excitation curve produced us-
ing SEMA CP with conventional frequency switching, Fig.
11b shows excitation curves for various phase-modulated
realizations of the experiment using 8, 13, 16, 26, 52, 104,
and 208 steps in the 208◦ phase sweeps. By comparison,
these curves allow for strict evaluation of the effect of dis-
cretization of the continuous phase modulation. It appears
that a fairly good reproducibility of the frequency-switched
experiments is achieved even using phase steps as large as
26◦ which timing-wise definitely are less demanding to im-
plement on the spectrometer than the more real continu-
ous phase sweep. We note that for the selected 1H-15N
two-spin system, characterized by dipolar coupling and
chemical shift parameters typical for amide NH spin sys-
tems in peptides and experimental conditions correspond-
ing to a 400 MHz spectrometer, the transfer efficiency for
a static powder sample is about 0.57. Finally, we should
note that FSLG implemented either in the conventional
frequency-switching way or by phase-modulation repre-
sents a very useful building block in a number of multi-
dimensional solid-state NMR correlation experiments in-
cluding, e.g., heteronuclear chemical shift correlation [78]
and heteronuclear chemical shift versus dipolar coupling
correlation among which the latter is addressed in the fol-
lowing example.

Example 8: 2D 1H-15N PISEMA SLF experiment.

Obviously, SIMPSON simulations are not by any
means restricted to one-dimensional spectra or parameter
scans. It may equally well be applied to simulate multi-
dimensional solid-state NMR spectra as demonstrated in
the next couple of examples. The first example is a simu-
lation of a 15N chemical shift versus 1H-15N dipolar cou-
pling correlated spectrum obtained using the PISEMA
[33, 80, 81] pulse sequence in Fig. 12a. The parameters
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for the simulated spectrum shown in Fig. 12b are chosen
to match a typical amide spin-pair in a peptide. Accord-
ing to the pulse sequence in Fig. 12a and assuming ideal
cross-polarization, the 1H part of the initial −I1y (1H)
and I2x (15N) coherence is tilted to a ”magic angle” ori-
entation where it is spin locked by a Lee-Goldburg (LG)
sequence while the 15N coherence is spin locked by CW
irradiation in full analogy to the pulse sequence described
in the previous example. The full 2D scheme is readily im-
plemented in SIMPSON (see Appendix A) by sampling of
the normal t2-dimension FID for each of the t1 values in-
cremented in steps of the FSLG block using a conventional
loop construction. We note in passing that the PISEMA
experiment may be considered a powerful alternative to
the conventional SLF experiment in the sense that it typ-
ically provides a significantly better resolution and has a
better dipolar scaling factor (0.83) than typical SLF exper-
iments using homonuclear multiple-pulse decoupling (0.30
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FIG. 13. Simulation of a 2D 13C, 13C chemical shift correlated
spectrum (c) for a dipolar coupled five-spin system of 13C nuclei
(b) obtained using the 2D pulse sequence in (a) with dipolar mixing
based on the RFDR recoupling sequence with XY-8 phase alternation
[60]. The pulse sequence assumed ideal rf pulses (including CP and
1H decoupling) and a sample spinning speed of ωr/2π = 20 kHz.
Details on the spin system and pulse sequence parameters are given
in the input file in Appendix A.

- 0.58). These features have rendered PISEMA a popular
building block in various 2D and 3D experiment for het-
eronuclear coherence transfer and chemical shift evolution
while simultaneously suppressing the dominant homonu-
clear dipole-dipole couplings among the abundant proton
spins [72, 79, 80, 81, 82].

Example 9: 2D 13C, 13C chemical-shift
correlation in a five-spin-1/2 system using RFDR

dipolar recoupling.

The second example of a 2D SIMPSON simulation ad-
dresses homonuclear 13C chemical shift correlation for a
five-spin system using a radio-frequency driven dipolar re-
coupling (RFDR) [21] pulse sequence in the mixing period
of a 2D MAS experiment. RFDR represents a frequently
used dipolar recoupling experiment, which as a disadvan-
tage is not γ-encoded such as the HORROR [23] and C7
[25, 26] class of recoupling experiments, but benefits from
an attractive experimental robustness and forgiveness with
respect to isotropic and anisotropic chemical shifts (unless
the isotropic shift differences for the involved spin pairs are
very small). These features have rendered the 2D RFDR
pulse sequence shown in Fig. 13a quite popular for ob-
taining 2D 13C, 13C chemical shift correlated spectra for
biological macromolecules in the solid phase [83, 84]. In
the present example we employ SIMPSON to simulate the
2D correlation spectrum for five dipolar coupled 13C nuclei
arranged in a ”zig-zag” coordination as illustrated in Fig.
13b and each exhibiting typical values for the anisotropic
chemical shifts. For the clarity of the illustration we have
arbitrarily assumed a 40 ppm isotropic chemical shift dif-
ference between neighboring spins. Using this setup (spec-
ified in more detail in the SIMPSON input file in Appendix
A) and a mixing period of 2.4 ms, allowing magnetization
to be transferred over distances corresponding at least to
three bonds, we obtain the simulated 2D correlation spec-
trum shown in Fig. 13c. Simulation of this five-spin 2D
MAS powder spectrum, using 30 pairs of αCR, βCR an-
gles, 5 γCR angles, and 32 t1 increments, required approx-
imately 6 h of CPU time on a standard PC 450 MHz Pen-
tium III processor.

Example 10: Sensitivity-enhanced
quadrupolar-echo NMR: The QCPMG-MAS

experiment.

The last two examples serve to demonstrate that
SIMPSON, obviously, may also be used for simulation
of multiple-pulse solid-state NMR experiments involving
quadrupolar nuclei. The first example addresses the ap-
plication of the quadrupolar Carr-Purcell-Meiboom-Gill
(QCPMG) [85, 86] pulse sequence in combination with
MAS to improve the sensitivity of quadrupolar-echo spec-
tra for half-integer quadrupolar nuclei [34]. Calculation
of QCPMG-MAS NMR experiments based on the pulse
sequence in Fig. 14a may be numerically very demand-
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FIG. 14. (a) QCPMG-MAS pulse sequence for sensitivity-enhanced
quadrupolar-echo spectroscopy of half-integer quadrupolar nuclei.
(b) Simulated QCPMG-MAS spectrum for a powder of I = 3/2 nu-

clei characterized by CQ = 10 MHz, ηQ = 0.12, ΩQPC = {0, 0, 0},
δaniso = -150 ppm, ηCS = 0.60, and ΩCSPC = {90◦, 30◦, 90◦}. The
pulse sequence used M = 30, τ1 = 103.25 µs, τ2 = 104.45 µs, τ3 =
22.32 µs, τa = 1 ms, Nsync = 5, a dwell time of 4 µs, ωr/2π = 9.5
kHz, ωrf/2π = 64.1 kHz, and ω0/2π = -130 MHz. For more details
we refer to the input file in Appendix A.

ing when taking into account the quite large quadrupolar
coupling interaction calling for extensive powder averag-
ing, the potential for large matrix dimensions, and the
need for consideration of finite rf pulse effects through-
out a train of rf pulses applied under fast sample spinning
conditions. Typically, and in particular for quadrupolar
nuclei with large I-spin quantum numbers, this invites for
custom-made software heavily optimized for the specific
problem in mind as described previously [34, 87]. Nonethe-
less, although at the expense of slightly longer calculation
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FIG. 15. (a) 2D pulse sequence for MQ-MAS NMR of half-integer
quadrupolar nuclei. (b) Triple-quantum excitation curve calculated
as function of the pulse length P1 using ωrf/2π = 80 kHz for various
values of CQ (ηQ = 0).

times (less than a factor of two), such simulations may
also be conducted within the flexible simulation environ-
ment offered by SIMPSON. This is illustrated in Fig. 14b
by simulation of a typical QCPMG-MAS spectrum for a
powder of spin I = 3/2 nuclei characterized by a large
quadrupolar coupling interaction tensor (CQ = 10 MHz)
and a differently oriented anisotropic chemical shift ten-
sor along with experimental conditions using ωr/2π = 9.5
kHz, ωrf/2π = 64.1 kHz, and ω0/2π = -130 MHz. We
note that the finite rf pulses for the echo train (cf. Ap-
pendix A) were calculated using the approximative repli-
cation scheme described in Ref. [34] and that the spin-echo
sideband intensities were integrated to form the stick-plot
shown in Fig. 14b. The latter was accomplished using
the fssbint integration command in the main section of
the input file. We note that the ”stick-plot” representa-
tion is useful for numerical evaluation and iterative fitting
towards experimental spin-echo sideband intensities to ob-
tain information about the magnitude and relative orien-
tation of quadrupolar coupling and anisotropic chemical
shift tensors.

Example 11: MQ-MAS NMR of half-integer
quadrupolar nuclei.

As a final example, also addressing quadrupolar nuclei,
we consider the MQ-MAS experiment which recently has
found widespread application as a tool to obtain high-
resolution spectra for half-integer quadrupolar nuclei [35].
This experiment relies on combined evolution under triple-
(in the case of spin I = 3/2 nuclei) and single-quantum
coherence, implying that the success of the experiment
heavily relies on the ability to perform efficient transfor-
mations between these states. The transfer efficiency for
a specific application has a complicated dependence on
the quadrupolar coupling constant, the available rf field
strength, and the sample spinning frequency. Thus, it is of
interest to optimize the experiment for given combinations
of rf field strengths and quadrupolar coupling constants.
This is conveniently accomplished numerically as demon-
strated in Fig. 15 by simulated curves for the efficiency of
single-pulse excitation of triple-quantum coherence for a
powder of spin I = 3/2 nuclei as function of the excitation
pulse length for the two-pulse sequence [88] in Fig. 15a us-
ing ωrf/2π = 80 kHz and different quadrupolar coupling
constants (Fig. 15b). The curves were calculated using
the matrix set and filter commands to accomplish de-
tection only through the triple-quantum transitions.

CONCLUSION

In conclusion, we have presented a new and powerful
software package for fast simulation of essentially all solid-
state NMR experiments. The package, consisting of the
simulation tool SIMPSON along with supplementary pro-
grams for processing and visualization, allows easy and
flexible implementation of advanced multiple-pulse exper-
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iments at a level of abstraction closely resembling the op-
eration of a modern solid-state NMR spectrometer. Thus,
acting as a ”computer spectrometer”, it is foreseen that
SIMPSON will form an important platform for spin engi-
neers systematically constructing and evaluating new pulse
techniques as well as for the solid-state NMR spectro-
scopists using SIMPSON along with its iterative fitting
procedures to extract structural parameters from solid-
state NMR spectra resulting from more or less advanced
experimental methods.
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A: SIMPSON INPUT FILES FOR THE
EXAMPLE SIMULATIONS

Example 1: Rotational resonance type spectra for
13C-13C spin pairs.

spinsys {
channels 13C

nuclei 13C 13C

shift 1 0 6000 1 0 0 0

shift 2 0 6000 0 0 0 0

dipole 1 2 -1500 0 0 0

}

par {
method gcompute

spin_rate 2000

gamma_angles 20

sw spin_rate*gamma_angles

np 4096

crystal_file rep320

start_operator Inx

detect_operator Inp

}

proc pulseq {} {
maxdt 5.0

delay 1e6

}

proc main {} {
global par

for {set iso 0} {$iso <= 4000} {incr iso 1000} {
set f [fsimpson [list [list \

shift_2_iso $iso]]]

faddlb $f 50 0

fft $f

fsave $f $par(name)-$iso.spe

funload $f

}

}

Example 2: Homonuclear dipolar recoupling
using DRAMA, DRAWS, HORROR, and C7.

spinsys {
channels 13C

nuclei 13C 13C

dipole 1 2 -2000 0 0 0

}

par {
spin_rate 5000

sw spin_rate

np 256

crystal_file zcw232

}

proc pulseq {} {
global par

maxdt 1.0

set nprop 1

if {$par(type) == "drama"} {
set tr4 [expr 0.25e6/$par(spin_rate)]

set tr2 [expr 0.5e6/$par(spin_rate)]

reset

delay $tr4

pulseid 1 250000 x

delay $tr2

pulseid 1 250000 -x

delay $tr4

store 1

} elseif {$par(type) == "draws"} {
set rf [expr 8*$par(spin_rate)]

set t360 [expr 1.0e6/$rf]

reset

pulse $t360 $rf y

pulse $t360 $rf -y

pulseid 1 250000 x

pulse $t360 $rf y

pulse $t360 $rf -y

pulse $t360 $rf -y

pulse $t360 $rf y

pulseid 1 250000 x

pulse $t360 $rf -y

pulse $t360 $rf y

store 1

} elseif {$par(type) == "horror"} {
set tsw [expr 1.0e6/$par(sw)]

set rf [expr $par(spin_rate)/2.0]

reset

pulse $tsw $rf x

store 1

} elseif {$par(type) == "c7"} {
set nprop 2
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set rf [expr 7*$par(spin_rate)]

set t360 [expr 1.0e6/$rf]

reset

pulse [expr 2*$t360] $rf [expr 360/7.0*0]

pulse [expr 2*$t360] $rf [expr 360/7.0*1]

pulse [expr 2*$t360] $rf [expr 360/7.0*2]

pulse [expr 1*$t360] $rf [expr 360/7.0*3]

store 1

reset [expr 7*$t360]

pulse [expr 1*$t360] $rf [expr 360/7.0*3]

pulse [expr 2*$t360] $rf [expr 360/7.0*4]

pulse [expr 2*$t360] $rf [expr 360/7.0*5]

pulse [expr 2*$t360] $rf [expr 360/7.0*6]

store 2

}

reset

acq

for {set i 1} {$i < $par(np)} {incr i} {
prop [expr (($i-1) % $nprop)+1]

acq

}
}

proc main {} {
global par

foreach p {{drama 100 x} {draws 100 x}
{horror 1 x} {c7 1 z}} {

set par(type) [lindex $p 0]

set par(gamma_angles) [lindex $p 1]

set par(start_operator) In[lindex $p 2]

set par(detect_operator) $par(start_operator)

set f [fsimpson]

faddlb $f 50 0

fzerofill $f 8192

fft $f

fsave $f $par(name)-$par(type).spe -binary

funload $f

}
}

Example 3: Heteronuclear dipolar recoupling
using TEDOR.

spinsys {
channels 15N 13C

nuclei 15N 13C

dipole 1 2 1230 0 0 0

}

par {
spin_rate 3200

sw spin_rate

np 64

crystal_file zcw376

gamma_angles 100

start_operator I1x

detect_operator I2p

variable rf 150000

variable n 3

}

proc pulseq {} {
global par

maxdt 1.0

set rf $par(rf)

set tr [expr 1.0e6/$par(spin_rate)]

set t90 [expr 0.25e6/$rf]

set t180 [expr 2.0*$t90]

reset

delay [expr $tr/4.0-$t180/2.0]

pulse $t180 0 x $rf x

delay [expr $tr/2.0-$t180]

pulse $t180 0 x $rf x

delay [expr $tr/4.0-$t180/2.0]

store 1

reset $t90

delay [expr $tr/4.0-$t180/2.0]

pulse $t180 $rf x 0 x

delay [expr $tr/2.0-$t180]

pulse $t180 $rf x 0 x

delay [expr $tr/4.0-$t180/2.0]

store 2

reset

prop 1 $par(n)

pulse $t90 $rf x $rf x

acq $par(np) 2

}

proc main {} {
global par

fsave [fsimpson] $par(name).fid

}

Example 4: POST-C7 heteronuclear dipolar
recoupling: excitation curve.

spinsys {
channels 13C 15N

nuclei 13C 15N

dipole 1 2 1300 0 0 0

}

par {
spin_rate 8000

sw spin_rate/2.0

np 64

crystal_file bcr40

gamma_angles 40

start_operator I1z

detect_operator -I2z
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}

proc pulseq {} {
global par

maxdt 3.0

set rf [expr 7.0*$par(spin_rate)]

set t90 [expr 0.25e6/$rf]

for {set i 0} {$i < 7} {incr i} {
set ph [expr $i*360.0/7.0]

pulse $t90 $rf $ph $rf $ph

pulse [expr 4.0*$t90] $rf \
[expr $ph+180] $rf [expr $ph+180]

pulse [expr 3.0*$t90] $rf $ph $rf $ph

}
store 1

acq $par(np) 1

}

proc main {} {
global par

fsave [fsimpson] $par(name).fid

}

Example 5: Heteronuclear decoupling in
multiple-spin systems using CW and TPPM

spinsys {
channels 1H 13C

nuclei 13C 1H 1H 1H

shift 2 0 2000 0 0.0 0 0

shift 3 200 2000 0 109.5 0 0

shift 4 500 2000 0 -100.9 0 0

dipole 1 2 -23300 0 0.0 0

dipole 1 3 -23300 0 109.5 0

dipole 1 4 -3040 0 -101.0 0

dipole 2 3 -21300 0 144.7 0

dipole 2 4 -6900 0 -125.3 0

dipole 3 4 -3880 0 -91.0 0

}

par {
method gcompute

np 8192

crystal_file rep168

gamma_angles 16

start_operator I1x

detect_operator I1p

variable rf 160000

variable flip 180

variable tp 1.0e6*flip/(rf*360.0)

variable spin_want 5000

variable n round(0.5e6/(tp*spin_want))

variable cycle (n-1)/gamma_angles+1

sw 0.5e6/(cycle*tp)

spin_rate sw/gamma_angles

}

proc pulseq {} {
global par

maxdt 1

for {set i 1} {$i <= $par(cycle)} {incr i} {
pulse $par(tp) $par(rf) $par(ph) 0 0

pulse $par(tp) $par(rf) -$par(ph) 0 0

}
}

proc main {} {
global par

puts "Actual spin_rate = $par(spin_rate) Hz"

foreach p {{cw 0} {tppm 25}} {
set type [lindex $p 0]

set par(ph) [lindex $p 1]

set f [fsimpson]

faddlb $f 10 0

fzerofill $f 32768

fft $f

fsave $f $par(name)-$type.spe

funload $f

}
}

Example 6: SLF experiments without and with
MSHOT-3 and FSLG homonuclear decoupling.

spinsys {
channels 1H 15N

nuclei 1H 1H 15N

dipole 1 2 -26700 0 35.2 0

dipole 1 3 11800 0 0 0

dipole 2 3 11800 0 70.4 0

shift 1 500 0 0 0 0 0

shift 2 -500 0 0 0 0 0

}

par {
spin_rate 0

np 1024

crystal_file alpha30beta65

gamma_angles 1

start_operator I3x

detect_operator I3p

rotor_angle 0

variable tau 10500

variable rf 60000

variable rfdec 150000

variable mshot_fac 10.125

sw rf/mshot_fac

}

proc pulseq {} {
global par
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set tsw [expr 1.0e6/$par(sw)]

if {$par(type) == "none"} {
set rf 0

reset

delay $tsw

store 1

} elseif {$par(type) == "fslg"} {
set tp [expr 1.0e6*sqrt(2.0/3.0)/$par(rf)]

set n [expr round($tsw/$tp/2.0)]

if {$n == 0} { set n 1 }
set tp [expr $tsw/$n/2.0]

set rf [expr 1.0e6*sqrt(2.0/3.0)/$tp]

set off [expr -$rf*sqrt(0.5)]

reset

for {set i 1} {$i <= $n} {incr i} {
offset $off 0

pulse $tp $rf y 0 0

offset [expr -$off] 0

pulse $tp $rf -y 0 0

offset 0 0

}
store 1

} elseif {$par(type) == "mshot"} {
set rf $par(rf)

set tp [expr $tsw/40.5]

set td [expr 1.75*$tp]

set tp4 [expr 4.0*$tp]

for {set i 1} {$i <= 3} {incr i} {
set ph [expr 120*($i-1)]

delay $td

pulse $tp $rf [expr ( 90+$ph) % 360] 0 0

pulse $tp4 $rf [expr ( 0+$ph) % 360] 0 0

pulse $tp4 $rf [expr (180+$ph) % 360] 0 0

pulse $tp $rf [expr (270+$ph) % 360] 0 0

delay $td

}
store 1

}
puts "rf for $par(type) = $rf Hz"

for {set t1 1} {$t1 <= $par(np)} {incr t1} {
reset

if {$t1 > 1} {
prop 4

prop 1

}
store 4

set tdec [expr $par(tau)-$tsw*($t1-1.0)]

pulse $tdec $par(rfdec) 0 0 0

pulseid 2 0 0 250e3 0

pulse $par(tau) $par(rfdec) 0 0 0

acq

}
}

proc main {} {
global par

puts "sw = $par(sw) Hz"

foreach par(type) {none fslg mshot} {
set f [fsimpson]

faddlb $f 50 0

fzerofill $f 32768

fft $f

fsave $f $par(name)-$par(type).spe -binary

funload $f

}
}

Example 7: Heteronuclear cross-polarization
employing FSLG with frequency switching or

phase modulation.

spinsys {
channels 1H 15N

nuclei 1H 15N

dipole 1 2 11800 0 0 0

shift 1 0 10p 0.5 0 0 0

shift 2 0 100p 0.5 0 0 0

}

par {
spin_rate 0

np 32

crystal_file rep168

proton_frequency 400e6

start_operator I1z

detect_operator I2p

variable rf 60000

sw rf*sqrt(3.0/2.0)/2.0

variable theta 54.7356103172

}

proc pulseq {} {
global par

set rf2 [expr sqrt(3.0/2.0)*$par(rf)]

set off [expr -sqrt(1.0/2.0)*$par(rf)]

reset

if {$par(steps) == "offset"} {
set tp [expr 1.0e6*sqrt(2.0/3.0)/$par(rf)]

offset $off 0

pulse $tp $par(rf) y $rf2 x

offset [expr -$off] 0

pulse $tp $par(rf) -y $rf2 -x

offset 0 0

} else {
set step [expr 208/$par(steps)]

set dmf [expr sqrt(3.0/2.0)* \
$par(steps)*$par(rf)]

set tp [expr 1.0e6/$dmf]

for {set ph $step} \
{$ph <= 208} {incr ph $step} {

pulse $tp $par(rf) \
[expr (90+$ph) % 360] $rf2 X

}
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for {set ph [expr 388-$step]} \
{$ph >= 180} {incr ph -$step} {

pulse $tp $par(rf) \
[expr (90+$ph) % 360] $rf2 -X

}
}
store 1

reset

pulse [expr $par(theta)/90.0* \
0.25e6/$par(rf)] $par(rf) x 0 x

acq $par(np) 1 -x

}

proc main {} {
global par

foreach par(steps) {offset 8 13 16 26 \
52 104 208} {

set f [fsimpson]

fsave $f $par(name)-$par(steps).fid

funload $f

}
}

Example 8: 2D 1H-15N PISEMA SLF experiment.

spinsys {
channels 1H 15N

nuclei 1H 15N

dipole 1 2 10000 0 0 0

shift 2 100p 100p 0.25 0 17 0

}

par {
spin_rate 0

crystal_file zcw4180

start_operator I2x-I1y

detect_operator I2p

proton_frequency 400e6

verbose 1101

np 128

ni 128

variable rf 83000

variable dec 130000

sw 40000

sw1 rf/2.0/sqrt(2.0/3.0)

variable theta 90-54.73561032

}

proc pulseq {} {
global par

set tsw [expr 1e6/$par(sw)]

set tp [expr 1e6*sqrt(2.0/3.0)/$par(rf)]

set tth [expr 1e6*$par(theta)/360/$par(rf)]

set off [expr -sqrt(0.5)*$par(rf)]

set rf2 [expr sqrt(1.5)*$par(rf)]

reset

offset $off 0

pulse $tp $par(rf) y $rf2 x

offset [expr -$off] 0

pulse $tp $par(rf) -y $rf2 -x

offset 0 0

store 1

reset

pulse $tsw $par(dec) x 0 x

store 2

for {set i 1} {$i <= $par(ni)} {incr i} {
reset

if {$i == 1} {
pulse $tth $par(rf) -x 0 x

} else {
prop 3

prop 1

}
store 3

acq $par(np) 2

}
}

proc main {} {
global par

set f [fsimpson]

fsave $f $par(name).fid -binary

fzerofill $f 512 512

faddlb $f 300 1 300 1

fft $f 0 0 0 0

fsave $f $par(name).spe -binary

fplot2d $f $par(name).ppm -ppm

}

Example 9: 2D 13C, 13C chemical-shift
correlation in a five-spin-1/2 system using RFDR

dipolar recoupling.

spinsys {
channels 13C

nuclei 13C 13C 13C 13C 13C

shift 1 -80p 30p 0.1 10 -50 10

shift 2 -40p 20p 0.2 80 20 -30

shift 3 0p 40p 0.7 -80 120 -40

shift 4 40p 30p 0.4 10 50 -30

shift 5 80p 20p 0.5 60 -40 -90

dipole 1 2 -2250 0 0 0

dipole 2 3 -2250 0 72 0

dipole 3 4 -2250 0 0 0

dipole 4 5 -2250 0 72 0

dipole 1 3 -530 0 36 0

dipole 2 4 -530 0 36 0

dipole 3 5 -530 0 36 0

dipole 1 4 -148 0 22 0

dipole 2 5 -148 0 50 0

}

par {
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spin_rate 20000

proton_frequency 400e6

crystal_file rep30

gamma_angles 5

start_operator Inz

detect_operator Inp

ni 64

np 32

sw spin_rate

sw1 spin_rate

variable n 6

verbose 1101

}

proc pulseq {} {
global par

maxdt 1.0

set tr [expr 1.0e6/$par(spin_rate)]

set tr2 [expr $tr/2.0]

reset

delay $tr2

pulseid 2 250000 x

delay $tr2

store 1

reset

delay $tr2

pulseid 2 250000 y

delay $tr2

store 2

reset

foreach i {1 2 1 2 2 1 2 1} {
prop $i

}
store 8

reset

pulseid 1 250000 x

prop 8 $par(n)

pulseid 1 250000 -y

store 8

reset

delay [expr 1.0e6/$par(sw)]

store 6

for {set i 0} {$i < $par(ni)} {incr i 2} {
reset

if {$i > 0} {
prop 1

prop 6

}
store 1

foreach ph {x -y} {
reset

pulseid 1 250000 $ph

prop 1

prop 8

acq $par(np) 6

}
}

}

proc main {} {
global par

set f [fsimpson]

fsave $f $par(name).fid -binary

fzerofill $f 512 512

faddlb $f 20 0 20 0 -phsens

fft $f 0 0 0 0 -phsens

fplot2d $f $par(name).ppm -ppm

fsave $f $par(name).spe -binary

}

Example 10: Sensitivity-enhanced
quadrupolar-echo NMR: The QCPMG-MAS

experiment.

spinsys {
channels 87Rb

nuclei 87Rb

shift 1 0 -150p 0.60 90 30 90

quadrupole 1 2 10e6 0.12 0 0 0

}

par {
spin_rate 9506

sw 26*spin_rate

crystal_file zcw4180

gamma_angles 20

start_operator I1z

detect_operator I1c

proton_frequency 400e6

verbose 1101

variable rf 64102.6

variable n 124

variable r 30

variable nsync 5

variable t2add 1.20

np 2*n*(1+r)+n

variable n2 2*n

variable tsw 1.0e6/sw

variable tr 1.0e6/spin_rate

variable nprop round(tr/tsw)

variable t90 0.25e6/rf/2.0

variable t180 0.5e6/rf/2.0

variable t1 tr-t90

variable t2 t1+t2add

variable ta 2.0*n*tsw

variable t3 (2*nsync*tr-ta-t180)/2.0

}

proc pulseq {} {
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global par

maxdt 0.4

matrix set 1 coherence {1 -1}

pulse $par(t90) $par(rf) x

filter 1

delay $par(t1)

pulse $par(t180) $par(rf) y

filter 1

delay $par(t2)

for {set n 1} {$n <= $par(n)} {incr n} {
acq

if [expr $n > $par(nprop)] {
prop [expr (($n-1) % $par(nprop))+1]

} else {
delay $par(tsw)

store $n

}
}
delay $par(t3)

pulse $par(t180) $par(rf) y

filter 1

delay $par(t3)

for {set n 1} {$n <= $par(n2)} {incr n} {
acq

if [expr $n > $par(nprop)] {
prop [expr (($n-1) % $par(nprop))+1]

} else {
delay $par(tsw)

store $n

}
}

}

proc main {} {
global par

set f [fsimpson]

for {set i 1} {$i <= $par(n2)} {incr i} {
set c [findex $f [expr $i + $par(n)]]

set re [lindex $c 0]

set im [lindex $c 1]

for {set j 1} {$j <= $par(r)} {incr j} {
fsetindex $f \

[expr $i+$j*$par(n2)+$par(n)] $re $im

}
}
fsave $f $par(name).fid

fzerofill $f 32768

faddlb $f 20 0

fft $f

fphase $f -rp 90

fsave $f $par(name).spe -binary

fsave [fssbint $f 1000 0 1000] $par(name)-int.spe

}

Example 11: MQ-MAS NMR of half-integer
quadrupolar nuclei.

spinsys {
channels 23Na

nuclei 23Na

quadrupole 1 2 1.2e6 0.6 0 0 0

}

par {
spin_rate 8000

variable tsw 0.5

sw 1.0e6/tsw

np 81

crystal_file rep320

gamma_angles 20

start_operator I1z

proton_frequency 400e6

variable rf 80000

}

proc pulseq {} {
global par

maxdt 0.5

matrix set detect coherence {-3}

acq

for {set i 1} {$i < $par(np)} {incr i} {
pulse $par(tsw) $par(rf) -y

acq

}
}

proc main {} {
global par

fsave [fsimpson] $par(name).fid

}



30 BAK, RASMUSSEN, AND NIELSEN

TABLE 2
Elements of and scripting commands for the SIMPSON input file.a

Elements of the SIMPSON input file

spinsys {...} Spin system and interactions.
par {...} Global experiment parameters.
proc pulseq {} {...} Pulse sequence.
proc main {} {...} Processing control.

Declarations for the spinsys section.

channels N1 N2 ... Nn
nuclei N1 N2 ... Nn
shift i δiiso|ω

i
0/2π|

b δianiso|ω
i
0/2π|

b ηCS αPC βPC γPC
dipole i j bij/2π αPC βPC γPC
jcoupling i j Jijiso Jijaniso ηJ αPC βPC γPC
quadrupole i orderc CQ/2π ηQ αPC βPC γPC

Parameters/commands for the par section.

spin rate Sample spinning frequency, ωr/2π
np Number of sampling points.
ni Number of sampling points in the indirect

dimension of 2D experiments.
sw Spectral width.
sw1 Spectral width for the indirect dimension.
crystal file Name of the powder averaging file contain-

ing the numberN of orientations and αkCR,

βkCR, ωk values on succesive lines.
gamma angles Number M of γCR angles. Set to 1 if

spin rate is zero. Defines the number
of sampling points per rotor period when
method equals gcompute.

gamma zero Constant value added to all γCR values in
the powder averaging. Specifies the γCR
angle if only a single crystallite is used.

rotor angle Angle between the rotor axis and the B0

direction. If spin rate is zero the default
angle is zero, otherwise the magic angle.

method Chooses between direct, gammarep, and
gcompute methods for the simulation.

start operator ρ(0) defined as an expression using opera-
tors Iiα where α is x, y, z, p (+) or m (−),
and i is the nucleus number or n to denote
the sum over all nuclei.d

detect operator Detection operator Qdet.
d

pulse sequence Sets another name than pulseq for the
pulse sequence.

proton frequency Absolute 1H Larmor frequency |ωH0 /2π| in
Hz. Used for ppm to Hz convertion and for
the second-order quadrupolar coupling.

verbose A row of flags that sets the level of informa-
tion printed when running the simulation.

variable name Sets a user specific variable with a value
that can be retrieved throughout the input
file by declaring: $par(name).

Commands for the pulseq section.

pulse δt |ω1
rf /2π| φ1 |ω2

rf /2π| φ2 ..

Extends the current propagator to include a pulse of dura-
tion δt, rf-field amplitude of ωirf/2π, and phase φi on the

channels numbered successively. Alternatively the phase
can be specified as x, y, -x or -y corresponding to phases
of 0, 90, 180 or 270 degrees, respectively.

pulseid δt |ω1
rf /2π| φ1 |ω2

rf /2π| φ2 ..

Same as pulse but performs an ideal (i.e., infinitely strong
and infinitely short) pulse. δt and ωirf/2π has no physical

meaning other than to specify the flip-angle of the pulse.
The internal time remains unchanged.

delay δt
Extends the current propagator to include a free precession
period of duration δt. If the hamiltonian is diagonal (i.e.,
no homonuclear spin-spin couplings) the delay is calculated
by analytical integration of the Hamiltonian.

offset ω1
off /2π ω

2
off /2π ..

Invokes an offset of ωioff /2π Hz to the channels numbered

successively. The offset for a channel is defined by the
Hamiltionian ωioff

∑
j
Ijz , where j is summed over the nu-

clei in the spin-system affected by pulses on the channel.
The offset applies until reset using offset with zero-value
arguments or the pulse sequence is called again.

acq [ n prop ] [ φ ]

Propagates ρ(t) using the current propagator, collects a
data point corresponding to Qdet, and resets the propaga-
tor to unity. The optional arguments n and prop specifies
the number of data points n to collect while evolving with
propagator number prop. The optional argument φ speci-
fies the receiver phase (syntax as for pulse).

maxdt ∆t
Maximum time step (∆t in Eq. 4) over which the Hamil-
tonian may be considered time independent. The compu-
tation time/accuracy of the simulation is significantly af-
fected by the choice of value for this parameter. Defaults
to 1 µs in case of sample spinning, and infinity in the static
case.

store n
Stores the current propagator in memory slot number n.
The current propagator is not reset.

reset [ δt ]

Resets ρ(t) to the initial operator ρ(0) and the current
propagator to the unity operator. Resets the current time
and adds δt µs if specified.

prop n [ times ]

Propagates ρ(t) with the propagator saved in memory slot
number n. Repeated multiple times if times is specified,
skipped if times is zero, or propagated once if times is omit-
ted.

filter n
Propagates ρ(t) with the current propagator, after which
the propagator is reset and elements in the density ma-
trix are set to zero if the corresponding element in matrix
number n (defined using matrix set) is zero.

select n ...
Renders the next pulse (pulse or pulseid) selective to-
wards the spins which numbers are given as argument.

turnoff int ...
Disables the effect of the specified interactions until the
end of the pulse sequence or until they are reactivated
by turnon. Interactions are named int n or int n m us-
ing names and numbers given in the spinsys section, or
all if all interactions should be disabled.

turnon int ...
Enables the specified interactions or all interactions if all

is specified.

a All values are in Hz, µs, and degrees if not specified otherwise. Arguments in square brackets are optional. b The parameter
can be given in ppm (δ value) by appending a p to the value. c The order parameter for the quadrupolar interaction can
be 1 or 2 corresponding first and second order, respectively, according to Eq. (10). d For half-integer quadrupolar nuclei
Iic may be applied to excite and detect only the {1/2,-1/2} central transition.
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TABLE 2

(continued)

int getinteractions

Returns a list of lists each containing an interaction name
(see turnon) and 1 or 0 depending on whether it is enabled
or disabled.

putmatrix matrix ?format?
Prints out a matrix returned by matrix get optionally in
a format different from the standard format "%9.3g".

matrix set to from
Sets a matrix to to the contents of a matrix created using
the argument from described below. to can either be an
index in the internal array of matrices, the start (start) or
the detect (detect) operator.

matrix matrix get from
Returns a matrix (printed with putmatrix) based on the
argument from which can be either the same as to described
above or the Hamiltonian (hamiltonian), current propaga-
tor (propagator), current density operator (density), an
operator expression (operator expr) or for the purpose of
filtering (undesired elements set to zero) the specific to-
tal coherence orders (totalcoherence {..} with the list
containing coherences), coherence orders (coherence {{..}
..} with each sublist containing coherence orders for each
nuclei), the full matrix (list {row row ..} where each
row is a list of elements being either re or {re im}), specific
matrix elements (elements {{i j} ..}), or all elements ex-
cluding specific matrix elements (notelements {{i j} ..}).

Commands for the main section

d fsimpson [ {{int n nam v} ...} ]

Starts a simulation and returns a data set d, option-
ally overriding specific values of the interactions given
in the spinsys section. A value is named int n nam
or int n m nam, where int is the interaction name from
spinsys, n and/or m the numbers of the involved nuclei,
and nam is iso, aniso, eta, alpha, beta, or gamma.

fsave d file [ -format -binary -double ]

Saves the (possibly 2D) data-set d to a file file using the
SIMPSON data format in text, binary (-binary) single
or double (-double) precision format, or optionally in an-
other format (-format) being 1) -xreim with rows of fre-
quency/time, real and imaginary part of data, 2) -xyreim

(2D data) with rows of frequency/time (indirect dimen-
sion), frequency/time (direct dimension), real and imagi-
nary part of data, with an empty line separating succeeding
fids, or 3) -gnu2d -binary in the binary 2D Gnuplot for-
mat [56].

fft d [ -inv ]

fft d rp lp rp1 lp1 [ -phsens ]

The first form performs a direct or inverse fast Fourier
transformation of the data-set d, while the second form
performs a 2D transformation using constant (rp) and lin-
ear (lp) phase correction in the direct and indirect (rp1
and lp1) dimensions. The optional argument -phsens as-
sumes phase-sensitive 2D data with succeeding pairs of fids
corresponding to equal t1 and 90◦ different phase.

fzerofill d npz [ niz ]

Zerofills the data-set d up to a total of npz points, option-
ally zerofills the 2D data-set up to a total of niz points in
the indirect dimension.

fphase d [ -rp v -lp v -scale v -offset v]
Performs one or more of first- and second-order phasing,
vertical scaling, and offset on the data-set d.

faddlb d lb r [ lb1 r1 [ -phsens ] ]

Apodizes the data-set d with a Gaussian/Lorentzian (ratio
r) weighting function causing an extra linebroadening of lb
Hz, or optionally the 2D data set with lb1 and r1 speci-
fying the values for the indirect dimension. The optional
argument -phsens assumes phase-sensitive 2D data.

fbc d order {{from to} ...} [ skip ]

Baseline corrects the data-set d by fitting every skip (de-
fault 1) data point of the baseline in the defined frequency
ranges to a polynomial of order order.

fnewnp d points
Changes the number of data points in the data-set d. In-
termediate points are interpolated using a cubic spline.

fsmooth d points order
Savitzky-Golay smoothing of the data-set d with points

and order values suggested to be 16 and 14, respectively.
peaks ffindpeaks d th sens [ from to ]

Finds all peaks in the data-set d that are higher than th
and spans at least sens data points (optionally restricted
to searching inside a specific frequency range) and returns
a list of frequencies and peak heights.

areas fint d {{from1 to1} {from2 to2}..}
Returns a list of integrated intensities (by summation) for
the specified spectral regions in the data-set d.

areas fssbint d dny shift width
Returns a list of integrated intensities (by summation) for
equidistant spectral regions (separated by dny Hz, centred
around shift Hz, and each having a width of width) in the
data-set d.

d fdup s
Copies the data-set s to a new dataset d.

fcopy d s
Copies the data-set s into an existing data-set d.

fadd d s
Adds the data-sets s and d and saves the result in d.

fsub d s
Subtracts the data-set s from d and saves the result in d.

frev d
Reverses the order of all data points in the data-set d.

rms frms d1 d2 [ -re | -im ] [ {{from to}...} ]

Returns the normalized root-means-square deviation be-
tween the complex, real, or imaginary part of two data-sets
d1 and d2, optionally within specific frequency ranges.

fextract d from to
Shrinks the data-set d to the specified frequency range.

d fzero [ {{from to} ...} ]

Attributes zero intensity to frequency regions (or the full
region) of the data-set d.

areas faddpeaks d cutoff {{frq int lb r} ... }
Adds a series of peaks to the data-set d each of which spec-
ified by a frequency, intensity, additional linebroadening,
and Gauss/Lorentz ratio. The areas of the peaks are re-
turned as a list. The cutoff parameter defines the minimum
intensity calculated before it is truncated to zero.

fexpr d reexpr imexpr
Applies Tcl expressions to the real and imaginary part of
each data point in the data-set d. Valid variables are the
real part of the complex data point $re, the imaginary
part $im, and the point index $i starting from one. These
variables must be preceeded with a backslash if a local
variable (fac) is used, e.g., fexpr $f [list \$re*$fac]
{$im+$i*1.23}.

v findex d i [ -re | -im ]

Returns the real and/or the imaginary part of the i’th com-
plex data point in a data set d.

fsetindex d i re im
Sets the real and imaginary part of the i’th complex data
point in the data set d.

v fx d i
Returns the frequency or time of a data point i depending
on the type of the data-set d.

d fload file
Loads the data-set d from a file and returns a data descrip-
tor.
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TABLE 2(continued)

funload [ d ]

Removes all or a specific data-set d from the memory.
d fcreate -np v -sw v [ -ref v

-ni v -sw1 v -ref1 v -type v ]

Creates and returns a descriptor to the new data-set d with
zero points and with specifications corresponding the argu-
ments of which -np and -sw are required and v for -type

is either fid or spe.
v fget d [ -ref | -ref1 |

-sw | -sw1 | -np | -ni | -type ]

Returns either the reference line, spectral width, number
of complex data points, or type of data (fid or spe) from
the data-set d depending on the argument.

fset d [ -ref v -ref1 v -sw v -sw1 v -type v ]

Changes the specifications for the data-set d following the
syntax from fcreate.

fit array
Performs iterative fitting using parameters given in the ar-
ray array as described in the text.

fplot2d d name ( -ppm | -ps ) [ scale ]

Creates a Postscript (-ps) or portable pixmap (-ppm)
bitmap plot of a 2D data-set d using conventional 2D plot-
ting conventions, i.e., shift increasing left and down, op-
tionally vertically scaled with scale.

r12 dip2dist N1 N2 bij/2π
Calculates the distance (in Å) between the nuclei N1 and
N2 based on the dipolar coupling constant bij/2π.

bij/2π dist2dip N1 N2 r12

Analogous to dip2dist but calculates the dipolar coupling
constant in Hz from the distance r12 (in Å).

list csapar δ11 δ22 δ33

Returns the isotropic shift, chemical shift anisotropy, and
the asymmetry parameter assuming unordered principal el-
ements (in Hz or ppm) as arguments.

list csaprinc δiso δaniso η
Returns the ordered principal elements δxx, δyy , and δzz
given the isotropic shift, chemical shift anisotropy, and the
asymmetry parameter (in Hz or ppm) as arguments.

isotopes

Returns a list with data for the spin isotopes available.
gamma N

Returns the magnetogyric ratio of a nucleus N given in the
unit 107rad/(Ts).

resfreq N [ |ω0/2π| ]
Returns the value of the absolute resonance frequency in
Hz for at nucleus N assuming an absolute proton resonance
frequency of 106 Hz (default) or optionally |ω0/2π| Hz.

Tcl language constructs.

name arg arg .. Function call with arguments.
set var value Sets a variable to a value.
array(var) A variable in an associative array.
{ ... } Begin and end of a command block.
\ Continuation of a line.
$var Gets a value of a variable.
[expr expression] Evaluates a mathematical expression.
proc name {args} {body}

Definition of a user procedure.
global var var .. Make variables visible outside the current

block.
for {start} {test} {incr} {body}

A for loop.
if {test} {body} elseif {test} {body} else {test} {body}

An if construct.
[list e1 e2 ... ] Creates a list with elements ei.
[lindex $list i] Returns element i from a list (counting

from zero).
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NOTES

1. The present version contains no conversion tools for Bruker and
Jeol data formats.
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