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Abstract

Recent indirect experimental evidence suggests that synaptic plas-
ticity changes along the dendrites of a neuron. Here we present a
synaptic plasticity rule which is controlled by the properties of the
pre- and post-synaptic signals. Using recorded membrane traces of
back-propagating and dendritic spikes we demonstrate that LTP and
LTD will depend specifically on the shape of the post-synaptic depo-
larization at a given dendritic site. We find that asymmetrical spike-
timing dependent plasticity (STDP) can be replaced by temporally
symmetrical plasticity within physiologically relevant time-windows if
the post-synaptic depolarization rises shallow. Pre-synaptically the
rule depends on the NMDA channel characteristic and the model pre-
dicts that an increase in Mg2+ will attenuate the STDP curve without
changing its shape. Furthermore, the model suggests that the profile
of LTD should be governed by the post-synaptic signal while that of
LTP mainly depends on the pre-synaptic signal shape.
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1 Introduction

The electrical properties of dendrites vary depending on cell-type, dendritic
location as well as on the state of developmental maturation of a neu-
ron (Stuart and Spruston, 1998; Golding et al., 1999; Schiller et al., 2000;
Williams et al., 1993; Monyer et al., 1994). In addition, dendritic compart-
ments are often to a large degree decoupled from each other such that local,
site-specific interactions can take place in independence making each single
dendrite functionally similar to a whole computational network (Mel, 1994;
Poirazi et al., 2003). As a consequence it is by now widely accepted that
the different parts of a neuronal dendrite may serve different computational
purposes. Recent experimental evidence implies that this feature does not
only apply to the moment-to-moment computations taking place at a neuron
but in a similar, site-specific way also to synaptic plasticity (Froemke and
Dan, 2003). This is suggested by the fact that the electrical and chemical
signals which drive synaptic change can be very different at different sites
(Häusser and Mel, 2003; Golding et al., 2002).

Two types of long-lasting synaptic changes are in general observed, long
term potentiation (LTP) and long term depression (LTD) (Bliss and Lomo,
1970; Bliss and Gardner-Edwin, 1973; Bliss and Lomo, 1973). More recently
it has been found that synaptic weights can grow and shrink at the same
synapse depending on the temporal order of the pre-synaptic and the post-
synaptic signal: If the pre-synaptic signal occurs before the post-synaptic
signal (denoted by T > 0), weights will grow, while they will shrink if the
temporal order is reversed (T < 0, called spike-timing dependent plastic-
ity, STDP (Magee and Johnston, 1997; Markram et al., 1997). To induce
STDP a strong depolarization is necessary presumably for the unblocking of
NMDA-channels (Debanne et al., 1998; Chen et al., 1999; Nishiyama et al.,
2000; Sjöström et al., 2001; Kovalchuk et al., 2000; Bi, 2002). Close to the
soma such a depolarization is achieved by back-propagating (BP) somatic
action potentials, which become longer in duration and smaller in amplitude
while propagating into the dendritic tree (Magee and Johnston, 1997; Lin-
den, 1999). In distal dendritic parts, where BP spikes are highly attenuated
(Stuart and Spruston, 1998; Häusser and Mel, 2003) synaptic plasticity may
be triggered by local dendritic Na+- and Ca2+ channel dependent spikes
(Golding et al., 2002; Larkum et al., 2001), which are initiated by strong
cooperative synaptic inputs and/or BP spikes.

The effects discussed above indicate that the different shapes of BP- and
dendritic-spikes, which change along the dendrite, should lead to different
post-synaptic influences on plasticity depending on the dendritic site. This
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study sets out to test this hypothesis by means of a model. Based on the as-
sumption that differential Hebbian learning rules (Sutton and Barto, 1981;
Kosco, 1986; Klopf, 1986; Porr and Wörgötter, 2003) can capture STDP
(Roberts, 1999; Xie and Seung, 2000; Wörgötter and Porr, 2004), we will
develop an analytically treatable rule. This rule uses the membrane poten-
tial of the post-synaptic cell as the only variable control parameter. Several
predictions arise from this model which should be experimentally testable.
Such local, site-specific plasticity may be important because at a single neu-
ron different rules for synaptic plasticity can coexist this way. Networks,
which can implement such “local learning properties”, will certainly demon-
strate substantially enriched computational properties.

Numerical results from a simpler model are published in Saudargiene et
al. (2004).

2 The Model

Conventionally, low Ca2+ concentration is associated to LTD and high to
LTP (Hansel et al., 1997; Yang et al., 1999). A purely concentration de-
pendent plasticity rule, however, creates a problem. Several authors have
discussed that, as a consequence of a purely concentration dependent plas-
ticity rule, a second LTD window should exist for long temporal intervals
between pre- and post-synaptic activity (Bi, 2002; Karmarkar and Buono-
mano, 2002; Shouval et al., 2002; Abarbanel et al., 2003). Only one study
seems to support this so far (Nishiyama et al., 2000). Thus, we propose
to use a rule that is gradient dependent instead (Bi, 2002). This rule will
model in an abstract way both, increase and decrease, of the Calcium con-
centration through gating and elimination which follows a sequence of pre-
and post-synaptic activity. The goal is to arrive at a closed form description
of both processes in order to keep the rule analytically treatable.

To this end, it is necessary to analyse the different processes that happen
during a pre- and a post-synaptic event to some degree first.

It is generally accepted that NMDA channels are instrumental for the
induction of LTP (Malenka and Nicoll, 1999) but they seem to be also in-
volved in LTD in many cases (Kombian and Malenka, 1994; Sawtell et al.,
1999; Hrabetova et al., 2000; Kourrich and Chapman, 2003). Accordingly, it
seems that it is mainly that part of the Calcium that enters through NMDA
channels which is involved in inducing plasticity. Alternative hypotheses for
the generation of STDP shall be discussed below. For the model we will
thus assume that pre-synaptically, or rather at the membrane of the post-
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synaptic cell, the time course of NMDA-channel opening and the Calcium
flux through these channels is crucial. To simulate this we use the textbook
definition of an NMDA channel function as usual (Jahr and Stevens, 1990;
Koch, 1999):

gN (t) = ĝ cN = ĝ
e−b1t − e−a1t

1 + κe−γVm(t)
(1)

For simpler notation, in general we use inverse time-constants a1 = τ−1
a , b1 =

τ−1
b . Parameters were: the peak conductance ĝ = 4 nS, a1 = 3.0/ms,b1 =

0.025/ms, γ = 0.06/mV . Since we will not vary the Mg2+ concentration we
have already abbreviated: κ = η[Mg2+], η = 0.33/mM , [Mg2+] = 1 mM .

In our formalism we only need the normalized conductance function cN ,
which represents the temporal channel characteristics. This time-course
of the NMDA-channel opening can mainly be associated with pre-synaptic
influences taking place at the cell-membrane (Kampa and Stuart, 2003a).

Post-synaptically the model must capture the transient nature of the Cal-
cium concentration changes. In our model we assume that Calcium influx
but also Calcium elimination depend directly (influx) or indirectly (elimi-
nation) on the post-synaptic membrane potential1. This allows us to design
a closed form approximation of the relevant post-synaptic processed which
keeps the model analytic. To this end we use the derivative of the membrane
potential Vm, which creates the required bi-phasic time course (positive part:
influx, negative part: elimination) after a BP- or a dendritic spike. To cap-
ture the prolonged time courses of the Calcium gradients (Koester and Sak-
mann, 1998; Wessel et al., 1999; Koester and Sakmann, 2000; Sabatini et al.,
2002), we filter the derivative with an appropriate (non-standard) low-pass
filter h, designed to emulate the time course of Calcium influx. (There is
currently no quantitative data on the time course of the elimination.) Thus,
as the post-synaptic influence we use:

F (t) =
d[Vm(t) ∗ h(t)]

dt
(2)

where h(t) is the mentioned low-pass filter with which Vm is convolved (de-
noted by the asterisk). The same filter has been used throughout this study:

h(t) = σ (e−bht − e−aht), (3)

with parameters: ah = 1/1ms, bh = 1/40ms. The shape of this special
filter models the steep rise but long tail of the observed Calcium transients

1For influx this assumption is straight-forward. For elimination one should consider
that this process is mainly driven by Calcium itself, hence it follows from the strength of
the preceding influx
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(Koester and Sakmann, 1998; Wessel et al., 1999; Koester and Sakmann,
2000; Sabatini et al., 2002).

The correlative nature of pre- and post-synaptic events is captured as
usual by a correlation integral which defines our plasticity rule after one
pulse pairing T :

∆ρ(T ) = µ

∫ ∞
0

cN (t, T ) F (t, T )dt (4)

where ρ is the synaptic weight. Note, this is a causal correlation, where the
dependence on T is spelt out in Eq. 14,15 in the Appendix.

Note that this formalism in a physiological situation is only dependent
on the membrane potential, which is, thus, the only free control parameter
in our model. In an experiment, the Magnesium concentration can also be
varied and we will discuss this below.

The remainder of this article is structured as follows. In the next section
we will calculate the integral (Eq 4). Readers not interested in the details
of the mathematical solution may want to skip this part. The section that
follows will discuss the properties of the obtained solution. In spite of their
complicated looking structure (which comes mainly from a nasty mix of co-
efficients) several interesting results can be extracted. Most notably three
observation will be derived: 1) We will demonstrate that differential Heb-
bian plasticity with conventionally shaped STDP curves (LTD and LTP)
can turn into a more symmetrical, plain Hebbian plasticity dominated by
LTP as a function of the post-synaptic depolarization. 2) Furthermore, we
will show how plasticity gets attenuated by increasing the concentration of
Mg2+. 3) Finally the solution predicts that the LTP part of STDP should be
dominated mainly by the NMDA-characteristic, while the LTD part should
be governed by the post-synaptic potential. We will then use a numerical fit
of real membrane potential traces recorded at different locations of a den-
driteto show how plasticity would change in a site-dependent way. Finally
we will discuss our results.

A rule similar to this, but without the low-pass filter, was investigated
by Saudargiene et al. (2004) without obtaining an analytical solution, with
artificial input signals only and without assessing the influence of the Mag-
nesium.
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3 Results

3.1 Solution

We define:
Vm(t) ∗ h(t) = ϕ · tβ

(
e−b2t − e−a2t

)
, (5)

with β = 0, 1, 2 . . .. This way we have absorbed the filtering process into a
closed form description. This is permitted, because convolving with a filter
and taking a derivative when computing F (Eq 2) are commutative.

The function Vm(t) ∗ h(t) takes the shape of an temporally prolonged
alpha-function, where τr = 1/a2 determines the rising and τf = 1/b2 the
falling flank. Note, we need τf > τr to get an alpha-function shape. Its
amplitude can be adjusted by the constant ϕ. The parameter β allows
generating convex (e.g., β ≥ 2) or concave (β = 0) initial rising shapes.
Specific parameters for Eq. 5 were determined by fitting the numerically
obtained traces of F (see e.g. Fig. 4).

We need to calculate the integral Eq. 4. This is done in the Laplace
domain, because causal correlations can be more easily treated there as
compared to the time domain. We find for F :

F (s) = ϕ ·
(

s · β!
(s + b2)β+1

− s · β!
(s + a2)β+1

)
(6)

The dependence of the NMDA channel function on the membrane potential
can be approximated using a Taylor expansion around Vm = 0 mV .

cN (t) = (e−b1t − e−a1t) ·
(

1
κ + 1

+
γκVm(t)
(κ + 1)2

+ . . .

)
(7)

We will now only take the part of the Taylor expansion which is not depen-
dent on Vm (first term) and use its Laplace transform:

cN (s) ≈ 1
κ + 1

(
a1 − b1

(s + a1)(s + b1)

)
(8)

This gives us an error of ≈ 0.75%/mV . Note the error is zero at Vm = 0,
when most of the NMDA channels are open. Thus, this approximation
becomes the true solution for the steady state Vm = 0, which justifies this
procedure.

The integral Eq. 4 is in the Laplace domain given by:

∆ρ = µ
1
2π

∫ +∞

−∞
cN (−ıω)e−ıωT F (ıω)dω (9)
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where e−ıωT is the temporal shift operator. This equation can be solved by
Plancherel’s theorem using the methods of residuals for all different values
of β. Solutions are plotted for β = 0 and β = 2 in Fig. 1 B,D.

Below we present the resulting terms for β = 0 and β = 2.

3.1.1 Case: β = 0, concave growing spike shapes

Absorbing ϕ into µ, we find for T ≥ 0:

∆ρ =
µ

κ + 1

[(
1

(b1+b2) −
1

(b1+a2)

)
b1 e−b1T

−
(

1
(a1+b2) −

1
(a1+a2)

)
a1 e−a1T

]
(10)

and for T < 0:

∆ρ =
µ(a1 − b1)

κ + 1

[
b2e

b2T

(b2 + a1)(b2 + b1)
− a2e

a2T

(a2 + a1)(a2 + b1)

]
(11)

3.1.2 Case: β = 2, convex growing spike shapes

For T ≥ 0:

∆ρ =
µ

κ + 1

[(
2b1

(b1+b2)3
− 2b1

(b1+a2)3

)
e−b1T

−
(

2a1
(a1+b2)3

− 2a1
(a1+a2)3

)
e−a1T

]
(12)

and for T < 0:

∆ρ =
µ(a1 − b1)

κ + 1

[(
a2(b21+2b1a2+a2

2)(a2
1+2a1a2+a2

2)T 2

(a1+a2)3(b1+a2)3

+2(b1+a2)(a1b1−a2
2)(a1+a2)T

(a1+a2)3(b1+a2)3

−2(a2
1b1+a1b1(b1+3a2)−a3

2)
(a1+a2)3(b1+a2)3

)
ea2T

−
(

b2(b21+2b1b2+b22)(a2
1+2a1b2+b22)T 2

(a1+b2)3(b1+b2)3

+2(b1+b2)(a1b1−b22)(a1+b2)T
(a1+b2)3(b1+b2)3

−2(a2
1b1+a1b1(b1+3b2)−b32)
(a1+b2)3(b1+b2)3

)
eb2T

]
(13)

These results show that Vm, which determines the shape of the post-
synaptic potential also determines the characteristics of plasticity as dis-
cussed with a different rule by Rao and Sejnowski (2001).
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Figure 1: Analytically calculated functions F (A,C) and the resulting STDP
curves (B,D). A,C) F is calculated using Eqs. 2,5. Insets in A,C show the
functions Vm ? h (Eq. 5) at a magnified time scale, which matches that in
panels B,D. Parameters: (A) β = 0, a2 = 1/10ms, b2 = 1/15ms, ϕ = 0.2;
(C) β = 0, a2 = 1/40ms, b2 = 1/60ms, ϕ = 0.2. B,D) STDP curves
calculated analytically using Eqs. 10, 11. The inset in D shows the tem-
poral characteristics of the NMDA channel function cN . E) Analytically
calculated STDP curves as a function of the shape of F . Parameter a2 in
Eqs. 10, 11 varied from 1/100ms to 1/10ms, b2 = 0.666a2, β = 0. Solid line
indicates the zero crossing. Dotted lines at τr = 1/a2 = 40ms and 10ms
correspond to the cases presented in A, B and C, D, respectively. A differ-
ential Hebbian plasticity characteristics turns into Hebbian-type plasticity
when the depolarization has a slow rising phase (decreased a2 in Eq. 5).

3.2 Properties of the Solution

3.2.1 Influence of the membrane potential

One interesting aspect of this formalism is revealed when looking at the
zero-crossing where the LTP part (positive) is separated from the LTD part
(negative). The zero crossing shifts towards negative values of T with in-
creasingly shallow rising flanks of the post-synaptic signal. The color panel
in Fig. 1 demonstrates how the analytical solutions develop for different
shapes of Vm. The solid line depicts their zero crossing. This shows that a
differential Hebbian characteristic, where the STDP curves contain an LTD
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and an LTP part, turns more and more into a Hebbian characteristic (only
LTP), when the time constant τr = 1/a2 from Vm gets larger. This, how-
ever, is the case for a prolonged, slowly rising depolarization as shown by the
membrane potentials in Fig. 1 A,B. The top two panels (A,B) correspond
to a time-constant τr = 1/a2 of 40 ms; the bottom ones (C,D) to 10 ms.
The second time-constant τf = 1/b2 was always adjusted to 1.5τr.

In an experimental situation the exact point in time of a post-synaptic
spike cannot be determined at the location of the synapse. Thus, values of
T can only be given relative to the time-point of the stimulation pulse or
relative to the crossing of a threshold by the elicited spike. This will shift
the STDP curves but will leave the above discussed effects unaffected.
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Figure 2: Influence of the Magnesium concentration on the amplitude of the
STDP curve. Curves for different depolarization levels are shown.

3.2.2 Influence of the Magnesium concentration

Fig. 2 shows how the Magnesium concentration will attenuate plasticity at
different levels of the post-synaptic membrane potential. First we observe
from Eq. 10-13, that these attenuation characteristics should only affect the
amplitude of an STDP curve leaving its shape as it is (in contrast to the
prediction from the model by Abarbanel et al. (2003)). Even when we take
the full model (going beyond the first term of the Taylor series) this assum-
tions still essentially holds, because, depending on Vm, the contriutions of
the higher order terms are one or two orders of magnitude less than that of
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the first order term. The top curve assumes a post-synaptic depolarization
to the zero millivolt level and follows the hyperbolic function 1

1+κ . If depo-
larization is less, attenuation will be stronger, and the hyperbolic charac-
teristic will turn more and more into that of a sharply decaying exponential

1
1+κe−γVm , shown by the other curves. Even for the strongest depolarization,
we observe that more than 60% attenuation is to be expected at a concentra-
tion of 5 mM Magnesium. To measure these curves it would be required to
vary [Mg2+] and to generate a controlled, rather rectangular post-synaptic
depolarization to the desired level. This should be possible when studying
STDP at a synapse close to the soma, where low-pass filtering due to the
space and time constants of the membrane would be still limited.

A strong deviation from the functional characteristics shown in Fig. 2
would indicate that also other than NMDA-dependent influences are impor-
tant. This test is especially interesting for the LTD part of the STDP curves
where mechanisms that involve voltage gated Calcium channels and mGlu
receptors have been suggested (Oliet et al., 1997; Normann et al., 2000).

3.2.3 Split of Terms

As a third observation we find that the last four equations (Eq. 10-13) exhibit
a split of terms. This can be seen by looking at the exponential functions in
Eq. 10,12 valid for T > 0, which only depend on constants a1 and b1, which
came from the NMDA channel function. On the other hand the exponential
functions in Eq. 11,13, which are responsible for T < 0, depend on a2 and
b2, which came from F .

This property is interesting and slightly paradoxical. First we note that
Eq. 4 is given as closed form for all positive and negative values of T . In spite
of this, the solution splits at T = 0 in a negative part which covers LTD and
a positive part for LTP. Such a property is indeed required, because from
biophysically studies it is known that the mechanisms which lead to LTP and
LTD are substantially different (Bi, 2002; Lisman, 1994; Otmakhov et al.,
1997). Hence both sides of an STDP curve really represent two distinctively
different conditions arguing for two different coincidence detector mecha-
nisms (Karmarkar and Buonomano, 2002). This requirement, however, is
captured in a natural way by our formalism because of the mathematical
properties of the correlation integral. This leads to a split of the curve at
T = 0 where the LTD part of the curve turns to the LTP part. Thus, we
note that the right parts of the curves in Fig. 1 B,D are very similar to the
time course of the NMDA channel function (compare to inset in D). Looking
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Figure 3: Depolarising potentials ; (A) BP-spikes and (B,C) dendritic
spikes adopted from Larkum et al. (2001) and the resulting STDP curves
(D-E). A) Back-propagating spikes, measured at different distances from
the soma (1: 170µm, 2: 420µm, 3: 630µm). B) Forward-propagating den-
dritic spikes, measured 1: 700µm, 2: 500µm , 3: 250µm from the soma
and at the soma (4). Spikes were elicited by current injection at 700µm
from the soma; C) Dendritic spikes, measured 860µm from the soma. Cur-
rent injections of the different duration with peak times of 1: 50ms, 2:
10ms, 3: 5ms, 4: 2ms were made at 930µm from the soma to elicit these
spikes. D-F) Numerically calculated STDP curves. The recorded mem-
brane potentials were filtered with the filter h and the derivatives of the
resulting signals were determined to arrive at F . Filter parameters as in
Eq. 3. Scale factors σ to maintain amplitude relations between the dif-
ferent spikes were set to: D) curves 1-3 in A: σ = 0.1021, 0.0381, 0.0416;
E) curves 1-4 in B: σ = 0.0131, 0.0173, 0.0256, 0.0610; F) curves 1-4 in C:
σ = 0.0126, 0.0136, 0.0120, 0.0213. The obtained trace F and the NMDA
channel function cN (Eq. 1) were substituted in Eqs. 14,15 to calculate the
STDP curves.
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at the insets in Fig. 1 A,D, plotted with a magnified time scale, one finds
that the left part of the STDP curves corresponds to the mirror image of
the function Vm ∗ h (of which F is the derivative).

Hence we conclude that the LTP part of STDP should in the first in-
stance be dominated mainly by the NMDA-characteristic, while the LTD
part should be governed by the post-synaptic potential. Only when consid-
ering higher order terms from the Taylor expansion in Eq. 9, mixed terms
are found, too, in the final results. The error estimation given in conjunction
with Eq. 9, however, shows that their influence may remain limited.

Note, this property is not directly coupled to the functions which deter-
mine the plasticity rule as such. Instead it derives from the properties of
causal correlation. Thus, a split of terms should always be observed even if
the functions F and cN should have to be replaced by other more complex
terms in a more advanced version of this model.

3.3 Numerical results using real potential traces

The left panels in Fig. 3 adopted from Larkum et al. (2001) show how
the shapes of BP-spikes and dendritic spikes change with distance from
the soma. The right panels display the corresponding STDP weight change
curves calculated numerically with the plasticity rule introduced above. Spe-
cific details concerning the way to calculate the numerical results are given
in the Appendix.

In general we observe that the asymmetrical characteristic of the STDP
curve is reproduced in all cases. The left part of the curve, representing LTD,
is more pronounced than the right part, which also corresponds to physi-
ological observations (Debanne et al., 1998; Bi and Poo, 2001; Feldmann,
2000). Amplitude differences in the STDP curves correspond to amplitude
differences of the membrane potential signals. Within the limitations of our
state variable model, this may reflect the fact that weaker membrane poten-
tial changes will probably also lead to a less pronounced plasticity (Golding
et al., 2002). As expected from the analytical results, we observe that the
STDP curves that belong to broader, temporally prolonged membrane po-
tentials are shifted to the left as compared to those which arise from sharp,
short spikes. This effect arises from the slope of the rising flank of the spike
and not from its temporal duration. Thus, the dendritic location should
have a major influence on the shape of synaptic plasticity, because it de-
termines the shape of the membrane potential following a BP- or dendritic
spike.

The effect that shallow slopes lead to negative zero-crossings in the STDP
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Figure 4: Comparison between numerical and analytical results. A,C) Func-
tion F derived from the measured membrane potentials (solid) and their
analytical fits (dotted). Insets in (A,C) show the corresponding BP-spike,
measured 170µm from the soma (A), and the forward-propagating dendritic
spike (C), measured at the soma. Adopted from Larkum et al. (2001). B,D)
Numerical and analytical STDP curves. Results are shown for a short steep
BP-spike (A,B) and a prolonged dendritic spike (C,D). Curve fitting:
The recorded membrane potentials were filtered with the filter h (Eq. 3; A:
σ = 0.1021, B: σ = 0.0126) and derivatives taken to yield F . These curves
were fitted with the analytical form of F (Eqs. 2,5). Parameters were: A)
β = 0, a2 = 1/2ms, b2 = 1/38.5ms, ϕ = 0.089; C) β = 2, a2 = 1/0.1ms,
b2 = 1/10ms, ϕ = 118.222. B,D) STDP curves calculated numerically
(solid) using Eqs. 14,15 and analytically (dotted) using Eqs. 10-13 with the
same parameters as in A,C. Note in A,B we use β = 0 and in C,D β = 2.

curves can be seen best in panels C and F of Fig. 3. The steepest dendritic
spike leads to an STDP curve with a zero-crossing very close to the origin,
while spikes with more shallow-rising flanks lead to leftward shifted curves.
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A similar leftward shift of the STDP curve has been observed recently by
Kampa and Stuart (2003b) using triplets of weak post-synaptic potentials
to elicit plasticity. These studies suggest that this leads either to a delayed
dendritic spike, which will shift the STDP curve as discussed above, or a
slowly rising dendritic spike. In both cases their findings can be directly
related to the effects observed here.

Fig. 4 shows how analytical and numerical results compare for one BP-
(A,B) and one dendritic spike (C,D). The left panels show the original signals
(insets), and the functions F , numerically calculated from the spikes (solid
lines) or fitted by means of the analytical function for F given in Eq. 2,5
(dotted lines). Numerical and analytical STDP curves are shown to the
right. The LTD part of the analytical curves is slightly bigger, but otherwise
numerical and analytical curves match nicely. Such excellent fits cannot be
obtained for all individual BP- or dendritic spikes, because they are often
noisier and less smooth (e.g. Fig. 3 B,C). If one considers average potentials,
however, the necessary smoothness is re-obtained. Signal averaging would
essentially capture the situation that most physiological experiments use
multiple pulse-pairings to induce plasticity.

4 Discussion

In this study we have introduced a gradient dependent synaptic plasticity
rule similar to rules discussed in the context of differential Hebbian learning.
The goal was to test the idea of site-specific plasticity. The model makes
three testable predictions:

1. The shape of the post-synaptic membrane potential should play a ma-
jor role in determining the actual characteristic of STDP. More specif-
ically the results suggest that synaptic plasticity in the central window
of T± ≈ 50 ms can change from STDP to LTP if the membrane po-
tential rises slowly. This effect could be measured at synapses close
to the soma by controlled post-synaptic depolarization while blocking
the spike. Different rising phases of the depolarization should lead to
a curve for the zero-crossing similar to that in Fig. 1 E.

2. A change in the Magnesium concentration should only affect the am-
plitude but not the shape of STDP. This effect could be measured by
applying different concentrations of Mg2+ to the slice. A curve should
be obtained similar to those shown in Fig. 2.
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3. Finally the model suggests that during STDP the profile of LTD should
be governed by the characteristic of the post-synaptic signals while
that of LTP mainly depends on the pre-synaptic signal shape. Phys-
iologically this is supported by results that the order of the pre- and
post-synaptic signals does indeed directly lead to an asymmetry of
the triggered second messenger processes (Bi, 2002; Lisman, 1994; Ot-
makhov et al., 1997). This effect, which originates from the “split of
terms”, can be tested by by manipulating either the response prop-
erties of the NMDA channel (e.g. pharmacologically using APV) or
the shape of the post-synaptic membrane depolarization (e.g. using
specific depolarization pulses while blocking the spike). The first type
of manipulations should mainly affect the shape of the LTP part of the
curve, while the second would change mainly the LTD characteristic.

4.1 Motivation

The notion that site specific plasticity can exist in real neural networks is
currently indirectly supported by findings that show that the membrane
properties of real neurons strongly change along its dendrites (Häusser et
al., 2000). In addition, different timing properties have been reported at
proximal and distal regions of apical dendrites in layer 2/3 pyramidal cells
for eliciting STDP (Froemke and Dan, 2003). This has been interpreted as a
spatial effect possibly influencing synaptic development (Froemke and Dan,
2003). Site-specific plasticity would make individual neurons much more
flexible in their computational properties, because different rules would exist
at the same neuron, ideally controlled by means of only one parameter (here
Vm).

Apart from the biological consequences, this property should also be
of direct relevance also to artificial neural network design. With such rules
local network learning can be implemented and ANNs can be sub-structured.
This, however, makes it necessary to design the rule in a way which makes it
mathematically accessible and which limits the parameter space. Thus, this
study was guided by two objectives; (1) design a rule which is at an abstract
level compatible with the biophysics of synaptic plasticity and (2) keep it
simple to allow transfer into ANN design as well. We believe that the second
aspect, which seems rather technical, is also important for the understanding
of real synaptic plasticity, because at the moment there is still a wide gap
between biological models of animal learning/memory and those for STDP
and only a few attempts exist to model the one by means of the other (Sato
and Yamaguchi, 2003; Melamed et al., 2004). Rules, like the one presented
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here, may offer the advantage of still being downward compatible with basic
biophysical aspects while at the same time being upward compatible with
models for learning and behavioral control (Porr and Wörgötter, 2003). We
will start the discussion with a suggestion of how to use local plasticity rules
in a functional context focusing on a semi-realistic neuronal implementation
that we are currently pursuing (Tamosiunaite et al, in preparation) before
trying to embed our approach into the literature.
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Figure 5: Implementation of different, parallel operating local learning mech-
anism at a neuron. For explanation see text.

4.2 Possible functional implications of local learning

Two very generic goals can be formulated for networks: 1) Networks need
to select the “right” stimuli and 2) they should react early. Hence to the
first appropriate stimulus. Fig. 5 shows a possible neuronal structure where
local learning rules would be beneficial for achieving these two goals. Note,
this example is clearly “engineered”, but at this stage it is supposed to only
show the potential of such mechanism, without treating details.

Let us assume that a neuron receives serveral (sensory) input-groups
called PS1,2,3. Early in development these inputs may well be weak but some
of them are fairy synchronous, truly representing their associated stimulus.
Since they are weak, they will not drive the soma, but one can assume that
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local processes between these synapses will take place. For example, the sub-
group of synchronous inputs might elicit a small dendritic spike (DS) or at
least a somewhat stronger, prololonged post-synaptic depolarization as com-
pared to their non-synchronous peers. As shown in this study, such broad,
long postsynaptic signals should essentially lead to hebbian learning (LTP).
Hence all weights will grow, but predominantly those of the synchronous
subgroup as long as ±T falls in the learning window. This may well happen
independently at different parts of the dendrite selecting several subgroups.
In this example one which responds early (PS1), one in the middle (PS2)
and one late (PS3). After some learning each PS subgroup might be able
to drive the soma on its own, whereas the non-synchronous inputs remain
behind. Hence local hebbian learnig has lead to input selection, which was
the first goal specified above.

Let us furthermore assume that there is an independent, but strong input
called FS which is able to drive (F=fire) the soma on its own. For the sake
of simplicity the synaptic weight of this input is supposed to be constant.

All of the above introduiced stimuli might have the potential to be pre-
dictive of FS. That was the reason why they were called PS. However, the
example is drawn in a way that only PS1 comes before FS, hence PS1 is
the only “predictor” of FS, while PS2,3 come too late.

Back-propagating spikes are often only elicited when the soma bursts
(Kampa and Stuart, 2003a), i.e.; when more than one spike is elicited at the
soma in a short temporal interval. This will in our example occur as soon
as PS1 and then FS fire the soma twice in rapid succession. A sharp BP
spike will then travel retrogradely and interact with the PS clusters. Our
study has shown that STDP is the consequence, where LTD occurs mainly
for clusters ‘PS2,3 and LTP for PS1. Hence, after some learning only PS1

(and FS) will still be able to drive the cell and it will respond earlier than in
the beginning of the whole learning process. Hence, the system has achived
the second goal, which can be interpreted as some kind of temporal sequence
learning (Wörgötter and Porr, 2004).

In any true network implementation with its statistical properties this
example operates in a much more complex way and we are currently in-
vestigating its properties. Here it shall suffice as an example of a possible
network with interesting and useful local learning properties.
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4.3 Downward compatibility: Limitations of our approach
in comparison to biophysical models

Several models of intermediate biophysical realism exist which rely on a
Ca2+ concentration dependent mechanisms involving NMDA-channels (Kar-
markar and Buonomano, 2002; Senn et al., 2000; Castellani et al., 2001;
Karmarkar et al., 2002; Shouval et al., 2002; Abarbanel et al., 2002, 2003).
Essentially all of these models implement a Hebbian plasticity rule and a
Ca2+ concentration dependent mechanism. Most of these models are faced
with the problem that LTD should also occur for large positive values of T ,
where the Ca2+-level will be as low as for negative T . Currently there is
only one study which supports this (Nishiyama et al., 2000) and experimen-
tal evidence exist that the gradient of Ca2+ plays a major role, too (Mizuno
et al., 2001). Thus, normally this effect is assumed to be undesirable and
eliminated by including a temporal asymmetry around T = 0 in the plastic-
ity rule (Karmarkar and Buonomano, 2002) and this argues for two different
model mechanisms for LTP and LTD. Note, the split of terms observed in
our study can to some degree implicitly accommodate also such an assump-
tion by replacing the functions F and cN as discussed in the results section
above.

The central limitation of our model is that it is only at a rather abstract
level capturing parts of the biophysical complexity of synaptic plasticity.
The complexity of the different chemical reactions involved in generating
STDP is indeed extremely high and only a few models have recently been
described which try to capture some of its aspects in more detail. The
kinetic model of (D’Alcantara et al., 2003) is based on the cascade of Ca2+-
induced chain reactions of calmodulin, CaMKII, calcineurin, phosphatase
PP1, I-1 inhibitor, DARP-32 protein, protein kinase A (PKA) which leads to
phoshorylation (increased activity, LTP) and dephosphorylation (decreased
activity, LTD) of AMPA receptors. The model was tested by these authors
with artificial step-like Ca2+ signals. In our hands, however, it did not
reproduce the typical STDP curves (pilot study). Models of Holmes (2000)
and Zhabotinsky (2000) investigate the interactions of calmodulin, CaMKII
and calcineurin depending on the Ca2+ level but do not model LTP/LTD
explicitly.

All the models discussed so far share the property that they cannot be
treated analytically anymore and many times their behavior is heavily de-
pendent on their (partly unknown) parameters. This can lead to problems in
view of the fact that several aspects of STDP, particularly those concerning
LTD, are either unknown or heavily debated. Our approach, on the other
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hand, simplifies this complexity to the level of a state-variable description
using very few assumptions. This reduces the parameter space to a man-
ageable level, makes the rule calculable, but carries the danger that some
important aspects might have been missed.

However, basic compatibility with biophysics can in our situation be
assessed by the predictions of the model. The three effects summarized
above are at least semi-quantitative and should allow testing the model
with some confidence.

4.4 Upward compatibility and comparison to more abstract
STDP models

A central question that so far remains unanswered is: How can STDP be
used to control learning? For example, some experimental and theoretical
results suggest that STDP could be involved in temporal sequence learning
(Yao and Dan, 2001; Mehta et al., 2002; Melamed et al., 2004) and in the
control of place cell formation or memory encoding by theta phase precession
in neurons of the Hippocampus (Gerstner and Abbott, 1997; Mehta et al.,
2000; Sato and Yamaguchi, 2003).

Most older models for STDP assume a certain weight change curve which
does not depend on the local properties of the cell (Gerstner et al., 1996;
Abbott and Blum, 1996; Song et al., 2000; Rubin et al., 2001; Kempter et
al., 2001). These models have mainly been used to model collective network
properties, like weight and activity distributions (Song et al., 2000; Kempter
et al., 2001). Others have been designed to generate map structures (Song
and Abbott, 2001; Leibold et al., 2001; Kempter et al., 2001; Leibold and
van Hemmen, 2002), direction selectivity (Buchs and Senn, 2002; Senn and
Buchs, 2003) or temporal receptive fields (Leibold and van Hemmen, 2001).
In addition, it was found that such networks can store patterns (Abbott
and Blum, 1996; Seung, 1998; Abbott and Song, 1999; Fusi, 2002). Thus,
so far the existing models do not make clear suggestions which would help
addressing the problem of behavioral control by means of sequence learning.

In a recent study we were indeed able to show that essentially the same
rule can be used to control temporal sequence learning in a robot (Porr
and Wörgötter, 2003; Porr et al., 2003). However, the time-scales still do
not match and “STDP-rule” had to be stretched to cover approximately
±200ms, which was the reaction time of sensor-motor coupling in the robot.
This is due to the fact that we used only a single synapse between input
and output, whereas in reality higher (non-reflexive) sensor-motor coupling
needs normally many more stages. This requires linking neurons either in a
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chain like- (Abeles, 1991; Aviel et al., 2003) or recurrent loop architecture to
cover the long temporal intervals between sensor and motor events. Chains
of temporal low-pass filters like recently discussed by Abbott (2003) could
be employed to this purpose. Rather intriguingly there is a recent result
by Di Paolo. (2003) that shows that behavioral control in a robot can be
improved using a network trained by STDP. In this study a genetic algo-
rithm was used to select the best network from a set of networks all trained
by STDP on a certain behavioral task. Genetic selection was performed
over many generations. Finally a network was obtained, which was able to
learn and control the behavioral task of positive and negative phototaxis in
response to attractive and aversive stimuli. In this task the sensor motor
loop would take sometimes more than 10 seconds. Unfortunately, due to the
use of genetic programming, this study does not provide explicit knowledge
about which properties are required in an STDP-network to successfully
perform such sensor-motor coupling.

5 Appendix - Numerical Methods

Numerically, STDP curves were obtained by the following steps.

1. The recorded membrane traces (Vm) were scanned, semi-automatically
digitized and convolved with the filter h (Eq. 3). F was numerically
calculated from Eq. 2 and then correlated with the NMDA channel
function cN (Eq. 1. As required, correlation was performed in a tem-
porally causal way by applying the shift operation to either F (T ≥ 0)
or to the NMDA channel function (T < 0). Thus,

∆ρ(T ) = µ

∫ ∞
T

F (t− T )cN (t)dt, T ≥ 0 (14)

∆ρ(T ) = µ

∫ ∞
T

F (t)cN (t + T )dt, T < 0 (15)

numerically calculating these integrals. Note, the integration starts at T
and not at zero, to avoid having to include a Heaviside function into the
definition of cN or F .
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