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Abstract

We present results of electromyographic (EMG) speech recognition on a small vocabulary of
15 English words. EMG speech recognition holds promise for mitigating the effects of high
acoustic noise on speech intelligibility in communication systems, including those used by first
responders (a focus of this work). We collected 150 examples per word of single-channel
EMG data from a male subject, speaking normally while wearing a firefighter’s self-contained
breathing apparatus. The signal processing consisted of an activity detector, a feature extractor,
and a neural network classifier. Testing produced an overall average correct classification rate on
the 15words of 74%with a 95% confidence interval of (71%, 77%). Once trained, the subject used
a classifier as part of a real-time system to communicate to a cellular phone and to control a
robotic device. These tasks were performed under an ambient noise level of approximately 95
decibels. We also describe ongoing work on phoneme-level EMG speech recognition.
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1. Introduction

People have long had an interest in communicating in acoustically noisy environ-
ments. Research and development in this area has largely been driven by military
needs. Significant research was done before and during the Second World War on
techniques to allow pilot voice communication in airplanes. This resulted in the
development of devices such as throat microphones, interest in which continues to
this day, particularly when used as part of a multi-modality speech recognition sys-
tem (Graciarena et al., 2003; Shahina and Yegnanarayana, 2005; Jou et al., 2005).
Military research in the area continues, focusing on sensors and techniques appropri-
ate for communicating in noisy environments (Brady et al., 2004; Ng et al., 2000).
Increasingly, researchers are experimenting with the measurement and analysis of
bioelectric signals associated with speech in an effort to further minimize – or even
completely eliminate – the degrading effects of acoustic noise. Such techniques, either
on their own or fused with other modalities, hold promise for improving human
communication and human–computer interaction.

First responders are an example of a class of users that stand to benefit from reli-
able communication in acoustically harsh environments. For example, sirens,
engines, and saws all add noise to a typical firefighting scene, as does the breathing
apparatus a firefighter wears. Moreover, the breathing apparatus distorts and muffles
the firefighter’s speech, further affecting communication. This work was motivated in
part by a desire to see whether electromyographic (EMG) speech recognition could
alleviate these effects. Electromyography is the study of muscle function through its
electrical properties. Electrical activity emanating from muscles associated with
speech can be detected by non-invasive surface sensors mounted in the region of
the face and neck. Sensing of this type is not directly interfered with by acoustic
noise, although indirect effects, such as the propensity of speakers to modify their
vocal effort in the presence of noise (Junqua, 1993; Junqua et al., 1999), require fur-
ther study.

Unfortunately, in many cases first responders have yet to benefit from
advanced techniques designed to counteract acoustic noise. For example, in many
fire departments, voice communication is still done by shouting through the mask
of a self-contained breathing apparatus (SCBA) into a shoulder-mounted or
hand-carried radio. Some alternatives have been developed and targeted at first
responders (e.g., bone conduction microphones and in-mask boom microphones)
but have yet to receive wide deployment. Our study suggests that bioelectric tech-
niques, either on their own or fused with other modalities, hold promise for this
community.

In addition to noisy environments, EMG-based speech has potential in environ-
ments where sound does not carry well or at all (e.g., underwater), where discreet or
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secure communications are necessary or desirable (e.g., military applications, off-line
comments during meetings), and for users with speech-related disabilities (e.g., vocal
cord damage). EMG-based speech has the interesting property that it can be detected
even when a subject emits little or no acoustical energy during speech, a fact first not-
ed by the researcher Faaborg-Andersen (1957). That is, EMG activity is detectable
when a subject speaks normally, whispers, moves the mouth without emitting sound,
and even when making virtually no facial movement at all (but consciously activat-
ing speech muscles, akin to saying a phrase silently to oneself). While the EMG sig-
nal characteristics most definitely change during these different types of activity, the
signal is detectable.

NASA is interested in multi-modal interfaces as a way of increasing communica-
tion robustness and reducing information overload in human–human and human–
agent systems. Imagine an astronaut exploring the surface of Mars, in collaboration
with other human astronauts, a variety of robotic rovers, intelligent shipboard sys-
tems, and a mixed human–agent team back on Earth. In a space suit, input and out-
put modalities are severely limited; audible speech is by far the most convenient
communications channel. However, audible speech interfaces cannot support many
parallel interactions and, in the case of human–agent communication, are not very
robust in the presence of noise, speaker stress, changes in gas mixture, etc. By adding
subvocal speech to the repertoire of space suit interface designers, we hope to
increase the robustness of audible speech by providing redundancy and by providing
an alternate means of communication when appropriate (e.g., discreet communica-
tions) or necessary (e.g., a physiological problem renders the audible speech interface
unusable).

As suggested by the exploration scenario above, effective communication is
essential to symbiotic performance, whether between humans or between humans
and agents. Skilled humans in a complex situation typically have many channels
of communication (speech, gesture, facial expression, etc.) at their disposal, and
direct human–human communication is very robust under noise and other dis-
ruptors. We hope that our research will help to make human–agent communi-
cation as effective, by increasing robustness and providing alternate channels,
so as to enable the kind of complex collaboration required to achieve NASAs
exploration goals. We also imagine a future in which first responders are as well
supported technologically as astronauts are, one in which first-responder teams
consist of humans, robots, and software agents working together to deal with
crises. Robust, multi-channel communication will be essential for these teams
to collaborate effectively.

For our purposes, EMG-based speech recognition is the decoding of natural lan-
guage speech, whether vocalized or sub-vocalized, based solely on the EMG signal
from sensors placed on the neck and/or face of the speaker. In the case of sub-
vocal speech recognition, the speaker makes no audible sound, but instead lets
his or her tongue and throat move as if trying to produce audible speech. In the
work reported here, sensor placement was the same for vocalized as for sub-
vocalized speech.
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We collected EMG data from a single male subject wearing an SCBA under lab-
oratory conditions. Data samples consisting of isolated words chosen from a small
English vocabulary were used to train a neural network classifier. The trained net-
work was then inserted into a real-time communication and control system while
the subject was exposed to approximately 95 dB of acoustic noise. Isolated phrases
recognized from the EMG signal in real time were both communicated to a cellular
phone and used to control a robotic platform. In some ongoing work, preliminary
results from two female subjects sub-vocalizing phonemes of the English language,
but without SCBA equipment, are presented.

The remainder of this paper is organized as follows. First, we give a brief back-
ground on the history and physiology of EMG. Then, we survey other research
efforts that have examined EMG speech recognition. Finally, methods and results
are followed by a discussion, conclusions, and avenues for future work.

2. Background and related research

Electromyography is the study of muscle function via its electrical properties (i.e.,
the electrical signal emanating from the muscle during muscle activation) (Basmajian
and De Luca, 1985; De Luca, 1979; Gerdle et al., 1999; Bronzino, 1995). As detailed
by Basmajian and De Luca (1985), electromyography has a long and interesting his-
tory. In 1848, DuBois–Reymond was the first to report the detection of electrical sig-
nals voluntarily elicited from human muscles. By placing his fingers in a saline
solution and contracting his hand and forearm, he produced a measurable deflection
in a galvanometer. His dedication to his work is beyond question – correctly surmis-
ing that the skin presented a high impedance to the flow of current, on at least two
separate occasions he deliberately blistered his forearm, removed the skin, and
exposed the open wound to the saline, thereby producing a substantially greater
deflection in the galvanometer during muscle contraction.

Electromyography has continued to develop since the time of DuBois–Reymond.
Substantial research interest was generated during the 1960s in the use of electromy-
ography as a mechanism for the control of prostheses (Scott, 1968; Sherman, 1964;
Taylor, 1966). The arrival of inexpensive digital computing in the 1980s furthered
development, with many research groups investigating digital techniques for control
and communication, including groups focused on EMG speech recognition. There is
a rich body of literature on the use of EMG for control of prostheses and for gesture
recognition not described here [(Chan and Englehart, 2005; Wheeler and Jorgensen,
2003; Trejo et al., 2003; Hudgins et al., 1993) are but a few of the many examples].

Chapters 19 and 20 of Basmajian and De Luca (1985) describe electromyography
research done before 1985 related to the muscles of the mouth, pharynx, larynx, face,
and neck. As it pertains to speech, the goal of research during that period was largely
the understanding of muscle processes associated with phonation in normal subjects
and subjects with disabilities. Investigations were carried out predominantly through
fine-needle indwelling electrodes on animals and humans. Although no explicit ref-
erences have been found prior to 1985 to attempts at EMG speech recognition,
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the concept almost surely occurred to earlier researchers – the state of digital com-
puting and non-invasive sensing may have been the limiting factors (there are two
principal sensing techniques used in electromyography: invasive indwelling sensing
and non-invasive surface sensing; this paper focuses on the use of surface sensors
(Gerdle et al., 1999 and De Luca, 2005)).

The first efforts in EMG speech recognition occurred independently and in paral-
lel in Japan and the United States around 1985–86. In Japan, Sugie and Tsunoda
(1985) used three channels of silver silver-chloride (Ag–AgCl) surface sensors with
a sampling rate of 1250 samples/channel/s. A threshold-and-counting scheme was
used to produce a three-bit number every 10 ms and a finite automaton was used
for vowel discrimination. Three subjects were asked to say aloud 50 Japanese mono-
syllables. The overall correct classification rate was reported as 64%. It is interesting
to note that the researchers developed a pilot real-time system as part of this effort.

Simultaneously in the United States, Morse (1985; with O’Brien, 1986) used four
channels of stainless steel surface electrodes (with a light coating of electrode gel) and
a sampling rate of 5120 samples/channel/s. Analog filtering was used to restrict the
bandwidth of the EMG signal to the 100–1000 Hz range. An average magnitude
technique reduced the signal dimensionality to 20 points/channel/s. Two subjects
were studied with several different word sets, one of which was the English words
‘‘zero’’ to ‘‘nine.’’ Subjects were asked to say aloud each word twenty times and a
maximum likelihood technique was used for classification. A correct classification
rate exceeding 60% was observed. In later work in 1991, Morse et al. applied a neural
network to a similar data set and achieved roughly the same correct classification
rate of 60%. Other papers from this group include (Morse et al., 1989, 1990).

In 2001, Chan et al. (2001) reported EMG speech recognition results that were
motivated by the need to communicate in acoustically harsh environments (in this
case the cockpit of a fighter aircraft). Five channels of surface Ag–AgCl sensors were
used with each channel bandlimited to 100–500 Hz and sampled at a rate of 1000
samples/channel/s. A variety of transforms (including a wavelet transform) and prin-
cipal component analysis were used to reduce the data to thirty features per word on
a normally spoken 10-word vocabulary (the 10 English digits). Classification was
performed using linear discriminant analysis (LDA). Recognition rates as high as
93% were achieved in an experiment where words were randomly presented to two
subjects. In later work, a hidden Markov model (HMM) was used as the classifica-
tion engine and achieved results similar to the LDA technique (Chan et al., 2001). In
2002, Chan et al. used evidence theory to combine results from a conventional auto-
matic speech recognition system and an EMG-based one, dramatically maintaining a
high overall correct classification rate in the presence of ambient acoustic noise
(Chan et al., 2002).

In 2003, Manabe et al. (2003) used a novel surface sensor mounting configuration
for EMG speech recognition. Three channels of sensors were mounted on the sub-
ject’s hand, then the hand was held to the face during speech. Analog filtering
restricted the EMG signal to the range 20–450 Hz with a sampling rate of 1000 sam-
ples/channel/s. Recognition was performed using a three-layer neural network,
where the inputs to the network were the root-mean-squared EMG values during
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pronunciation of a vowel. Over three subjects, each using a vocabulary of five Jap-
anese vowels spoken aloud, the average correct classification rate exceeded 90%. In
later work, Manabe and Zhang (2004) made use of HMMs to classify the 10 Japa-
nese digits collected from 10 subjects; accuracies as high as 64% were achieved.

In 2004, Kumar et al. used three EMG channels for speech recognition. Channels
were sampled at 250 samples/channel/s, with RMS EMG values used as feature
inputs to a neural network classifier. An average recognition rate of up to 88%
was achieved using three subjects and five English vowels spoken aloud.

Prior EMG speech recognition has been performed by our group, including the
first work we are aware of investigating sub-vocalized (i.e., non-audible) EMG
speech. Jorgensen et al. (2003, 2005) collected six sub-vocalized words from three
subjects using surface Ag–AgCl sensors and a single EMG channel. Data were col-
lected at the rate of 2000 samples/channel/s. A variety of techniques were tested for
feature extraction, including short-time Fourier transforms, linear predictive coding,
and several different wavelet transforms. An average correct recognition rate of 92%
was achieved using a neural network classifier.

3. Methods

3.1. Procedure

We collected training data from a single 33-year-old male subject qualified in the
use of SCBA equipment. The subject was seated and remained stationary during
data collection. The subject wore a standard-issue firefighting turnout jacket, a
fire-retardant hood, and a Survivair Panther SCBA unit as shown in Fig. 1. The
SCBA was pressurized per normal SCBA usage. The subject was instructed to

Fig. 1. Photo showing data collection station and subject in SCBA equipment.
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breathe normally during data collection sessions (i.e., as he would while wearing
SCBA equipment). We paused collection sessions as necessary to replace empty
air tanks.

One differentially amplified channel of EMG data was collected under quiet
laboratory conditions. Surface Ag–AgCl sensors (Soft-E H69P; Kendall-LTP;
Chicopee, MA) were positioned on the subject’s neck as shown in Fig. 2. A third
Ag–AgCl sensor, used as a ground, was attached either behind the subject’s right
ear or on the subject’s wrist. The subject’s skin was prepared by wiping it with an
alcohol pad in an effort to reduce skin impedance by removing surface oils and dead
skin cells. Sensor leads were connected to a headbox which was in turn connected to
a programmable amplifier (SynAmps Model 5083; Neuroscan; El Paso, TX). The
amplification gain was set at 1000. The signal was bandlimited to the range 10–
2000 Hz and sampled at 104 samples/s with 16-bit precision. A 60 Hz digital notch
filter was used to reduce main power frequency interference.

The rationale for using such a high sampling rate for surface electromyography
deserves mention. Given the logistical difficulty associated with collecting data from
subjects, the ease with which data can be digitally downsampled after collection, and
the desire to minimize aliasing effects, we decided to use a high sampling rate. The
price of so doing was increased data storage and increased computational demands
on the real-time implementation, but the benefit was that it allowed us to study the
EMG speech signal over a wider frequency range. That is, if a signal was sampled at,
say, 1 kHz, signal energy higher than half this amount would be aliased into the
resulting samples. Of course, if there was no signal energy at frequencies higher than
500 Hz, aliasing would be eliminated. In this case, sampling at 1 kHz would be called
sampling at the Nyquist rate and would allow for perfect reconstruction of the signal

Fig. 2. Photo showing EMG sensor placement. The subject has peeled his hood back to reveal the sensors.
A third sensor, placed behind the subject’s right ear (or alternatively placed on the wrist) was used as a
ground.
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from its samples. Our anti-aliasing filter restricted the signal bandwidth to 2 kHz.
However, since such filters are not perfect (meaning signal energy beyond the fre-
quency cutoff does in fact pass through the filter), a rule-of-thumb is to sample at
five times the cut frequency, leading to our 10 kHz rate. In a useful recent article,
Durkin and Callaghan (2005) examine sampling rate issues associated with surface
electromyography.

Fifteen isolated words were collected 150 times each, for a total of 2250 word
samples. The words, shown in Table 1, were chosen from a list compiled by firefight-
ers at the Moffett Field Fire Department as representative of the tactical vocabulary
they use. Some of the vocabulary elements are in fact two-word phrases; we nonethe-
less use the term ‘‘word’’ for consistency with other published accounts.

The subject was prompted via software to say the vocabulary words in a fully ran-
domized order. Randomization was used to minimize learning and anticipatory
effects. The subject had a fixed amount of time in which to say a word, with a pause
between words of 2.5 s. Since firefighters have no obvious use for covert communi-
cation, the subject was instructed to speak at a normal conversational level (as
opposed to whispering or emitting no acoustical energy, a mode of operation that
might be more suited to certain police and military units). Data were collected during
four separate sessions over a 3-week span. The subject was photographed during the
first recording session to establish where the sensors were located on the neck. In
subsequent data collection sessions, an assistant placed the sensors in the same loca-
tion with the aid of the photograph.

As will be described in greater depth, a portion of the subject’s collected data was
used to train a classifier. This classifier was then inserted into a real-time system.
The subject was reconnected to the system, once again using photographs to repli-
cate the senor locations used during training data collection. Instead of collecting
word samples, EMG words were now recognized in real-time, this time in the pres-
ence of approximately 95 dB of ambient acoustic noise (generated using speakers
and consisting of sounds common to firefighting scenes, including sirens, saws,
engines, and SCBA breathing sounds). The subject was instructed to speak in a nor-
mal audible fashion, as during training data collection. The combination of SCBA
mask plus ambient noise meant the subject’s words were completely inaudible to
observers. The output of the real-time system was manifested in several different
ways. One such was mapping classification results to actions for a robotic device
(e.g., a vocabulary word was mapped to the action to move the robot forward
by 1 m). This meant that the subject could use the trained classifier to navigate a
robot along a desired course, hoping of course to make as few course deviations
as possible.

3.2. Hardware and software architecture

A goal of this study was to assess the feasibility of using EMG speech recognition
for first responders. Focus was placed on recognition results and assessing the impact
of SCBA equipment. No effort was made to miniaturize equipment. At the time of
writing, the developed system is not portable and not hardened for field use.
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We used Neuroscan’s Acquire software for collecting training data, and Mat-
lab to perform training and analysis. There is no question that the difficult part
of this research effort involved EMG word recognition. Once recognized, using
the words for communication and control was relatively trivial. We constructed
two such paths, purely to provide concrete examples of real-time EMG speech
recognition in an acoustically harsh environment. One involved sending recog-
nized words to Smartphones (i.e., programmable cellular phones) running Win-
dows Mobile 2003 Second Edition over GPRS wireless links. A small amount
of custom client code, written using Microsoft’s .NET Compact Framework,
was loaded onto the Smartphones. Recognized words would be displayed on
the phone’s screen and pre-recorded audio clips corresponding to the word would
be played on the device. The second output path, already described, focused on
the control of a device, in this case a Personal Exploration Rover (PER) built by
Carnegie Mellon University Robotics (Carnegie Mellon University Robotics,
2005). Communication was via an 802.11b wireless link and made use of the Java
API supplied with the PER. Fig. 3 gives an overview of the real-time system
architecture.

Fig. 3. Overview of real-time system architecture.
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3.3. Signal processing

The signal processing activity has two distinct phases. In the first, a training set is
used to produce a classifier. In the second, the trained classifier is presented with pre-
viously unseen samples, either for the purpose of testing the classifier or for produc-
ing some end effect. Three stages are common to both phases:

1. Signal acquisition.
2. Activity detection.
3. Feature extraction.

The signal acquisition process has already been described. The other two common
blocks – activity detection and feature extraction – are described next. The signal
processing pipeline developed for this work is speaker-dependent, meaning that train-
ing samples must be collected from each user.

Activity detection refers to the process of segmenting an isolated word out of the
continuous EMG stream (other names used in the literature include utterance detec-
tion and end-point detection). In this work, only a single EMG channel needed to be
monitored for activity. The technique used was a simple one and involved partition-
ing the EMG data stream into 20 ms packets, then labeling each as either signal or
noise. The signal-versus-noise determination was made by comparing the RMS value
of the packet to a noise threshold dynamically set at the beginning of a recording
session (by assuming the first 10 s of data were noise, then holding the threshold fixed
for the remainder of the session). A second level of logic then examined the resulting
bit sequence to make sure that spurious 0 s (i.e., noise) were not inserted into contig-
uous activity blocks and that the activity blocks had a certain enforced minimum
time separation. The final logic level ensured that an activity block was placed in
the center of a 1.5 s window, buffered on either side as necessary by the surrounding
EMG activity. At the set sampling rate of 10 kHz, this resulted in a fixed block of
1.5 · 104 samples being sent downstream for feature extraction. The fixed block size
made feature extraction easier at the price of including some noise samples with the
word. While substantially more sophisticated activity detection techniques can be
found in the literature (e.g., Davis et al., in print; Li et al., 2005; Ramirez et al.,
2005a,b; Ning et al., 2002; Junqua et al., 1994) and are candidates for inclusion in
future work, the technique described proved sufficient for both the off-line and
real-time systems.

Feature extraction is the process of reducing the dimensionality of the data to
facilitate subsequent classification. In this project, the 1.5 · 104 dimensional activity
block was reduced to a feature vector of dimension 20 by a process of full-wave rec-
tification, wavelet transformation, and low-pass filtering of the resulting level-1
approximation band. The particular wavelet transform chosen was Kingsbury’s
dual-tree complex wavelet transform, selected because of its shift-invariant proper-
ties (Kingsbury, 2001). Many wavelet transforms suffer from the property that minor
shifts in the input signal can cause significant redistribution of energy in the various
subbands. Kingsbury’s transform alleviates this, thereby reducing sensitivity to the
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exact positioning of the signal within the activity window. We and others have also
used HMMs in the past to ease temporal alignment issues (Jorgensen et al., 2003;
Chan et al., 2001). Fig. 4 shows the output of the feature extractor on two word sam-
ples, ‘‘man-trap’’ and ‘‘evacuate’’. The left portion for each word shows the EMG
activity regions. The right portion plots the feature dimensions on the abscissa
and their magnitudes on the ordinate.

After activity detection and feature extraction, features from the training set were
used to train a neural network classifier. We used a conjugate gradient network
(Haykin, 1999). The network was configured with 20 input nodes, one hidden layer
of 41 nodes, 15 output nodes, and was run with 400 training epochs (or until the per-
formance goal was met, meaning training had converged). All of these values, includ-
ing the number of dimensions in the feature vector, were arrived at by an ad hoc
process of optimization. While we believe these values to produce a good overall
classifier for this particular data set, future work will look to make the parameter
tuning process more automatic. As will be discussed in more depth in Section 4,
70% of the collected samples were used for training. The remaining 30% were set
aside for testing. The decision to use a neural network instead of some other classifier
type (e.g., HMMs, a popular choice in the automatic speech recognition community)
was in part motivated by the desire to have a fast classifier appropriate for use in our
Matlab-based real-time EMG speech recognition system.

4. Results

Table 1 gives the confusion matrix that resulted from an analysis of the collected
data samples. Each entry is an average classification percentage, computed using
bootstrapping (Efron and Tibshirani, 1993) in a manner that we now explain. Note
that although bootstrapping is expensive computationally, it was done offline (i.e.,
not in real-time) and so did not pose a problem. Its principal benefit is that it allows

Fig. 4. Raw signal and feature examples for the words ‘‘man-trap’’ and ‘‘evacuate’’.
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for a straightforward way to estimate the standard error in the classification
percentage.

In forming the bootstrap-based statistics, collected samples of each word were
randomly assigned to either a training set or a testing set, with 70% of the samples
going into the training set. A neural network was then trained, using only elements
from the training set, and tested on the testing elements. The result was a 15 times 15
confusion matrix, where the row labels indicate what the word truly is and the
column labels the classification result. Perfect classification would have all
off-diagonal entries equal to zero. The entire process was then repeated 500 times,
beginning with a completely new random assignment of samples to training and
testing sets. The elements shown in Table 1 are the average values across the 500
confusion matrices.

This same bootstrapping technique was used to compute the overall average cor-
rect classification rate and 95% confidence intervals, where here ‘‘average’’ means
‘‘average across all words in the vocabulary’’. The average correct classification rate
was 74% with a 95% confidence interval of [71%, 77%]. That is, if more data samples
were collected from the subject and applied to the trained network, we would expect
the system to correctly classify vocabulary words at least 71% of the time 19 times
out of 20.

At the time of writing, no quantitative results are available for the real-time sys-
tem. Qualitative results are shared instead. Recognition rates for the real-time system
seemed consistent with the off-line analysis but remain to be accurately determined.
The subject was able to transmit vocabulary words both to a cell phone and to the
robotic device while wearing SCBA equipment, in the face of ambient noise levels
that made understanding the subject’s acoustic speech essentially impossible for
unaided observers (even lip reading is not an option as the SCBA occludes the
mouth). The subject was able to navigate the robotic device while wearing SCBA
equipment, for example moving the robot around a table-top without having it fall
to the floor.

5. Discussion

The overall average correct classification rate of 74% is similar to other EMG-
based speech recognition reports using vocabularies of similar size (Chan et al.,
2001, 2002; Jorgensen et al., 2003, 2005; Kumar et al., 2004; Manabe et al., 2003).
The rate is an order of magnitude greater than the a priori rate of 6.7% (i.e., the rate
that would be achieved by a system that simply guessed at the word, which would be
correct one-fifteenth of the time for a 15-word vocabulary). Those more familiar with
conventional speech recognition systems may find the rate low, but it is important to
note that this is a raw recognition rate. No higher-level processing, such as using con-
text or forcing user repetition, has been done. Such efforts will only serve to increase
the correct classification rate of a production system. For example, swallowing is
well known to produce significant EMG activity in the region of the neck. The cur-
rent real-time implementation recognizes swallowing (and coughing) as activity and
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then makes a forced vocabulary choice, reducing the real-time recognition rate. One
simple fix for this problem would be to allow the system to categorize an item as ‘‘un-
recognized’’ if the classification activation is below some threshold.

An obvious limitation of the study was the recruitment of only a single subject.
This was due in part to the difficulty of finding subjects trained in the use of SCBA
equipment and able to devote enough time to data collection. Although our previous
work with non-SCBA EMG speech recognition suggests the results reported here
will generalize to other subjects, this remains to be demonstrated for SCBA use.

Importantly, we observed no noticeable impact on the EMG signal from positive-
pressure breathing via the SCBA. In other work, we have done, as yet unpublished,
we have similarly noticed no impact while breathing off open-circuit SCUBA equip-
ment (in a dry laboratory setting).

This work has several substantial differences from other research done in the field,
the two principal ones being the use of SCBA equipment and the use of a single
EMG channel. SCBA equipment is an everyday fact of life for firefighters; a commu-
nication scheme that cannot coexist with this equipment is unusable. Demonstrating
the feasibility of detecting EMG speech signals while wearing this gear is an impor-
tant result. The use of a single channel of EMG data is another important result
compared to other EMG speech efforts. The number of channels dictates the number
of required sensor locations in and around the face. This has important practical
ramifications for first responders; fewer required sensors are unquestionably more
practical for in-field use as they decrease system complexity. In this work, sensors
were mounted on the neck, in part because the SCBA mask would have posed chal-
lenges for facial muscle sensing.

The issue of sensor placement sensitivity was not addressed in this study. An initial
sensor placement was made by experimenting with different locations and finding one
that particularly suited the subject (gauged by a strong EMG response during phona-
tion). Subsequent sessions used the same sensor location, to within the accuracy affor-
ded by a digital photograph of the initial location. This study also did not tackle
several practical problems with the use of EMG sensors in the field. Sweat can affect
EMG signals, and keeping the sensors attached under exertion is challenging. That
said, the design of EMG sensors has advanced considerably in recent years, and we
expect that newer sensors will alleviate these problems, including allowing for
EMG sensing without requiring the sensors to be in direct contact with the skin.

The signal processing pipeline developed for this work was speaker-dependent,
meaning that training samples were required from each system user. These training
samples were then used to train a neural network specifically for a given user. This
requirement for user-specific training limits the usefulness of a recognition technology.
For example, a firefighter using a production system would want to be able to easily
switch to another system in the event of a failure. One obvious work-around would
be to encode user-specific classifier components on something like a flashmemory stick,
allowing it to be easily moved from one system to another. An even better solution
would make the signal processing pipeline speaker independent (while perhaps allow-
ing for optional per-user tuning). It is our belief that developing a robust speaker-inde-
pendent EMG speech recognition system would be worthwhile, possible, and difficult.
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Although a small vocabulary recognition system is sufficient for some applica-
tions, others need to recognize continuous, broad-vocabulary speech. Also, some
applications (such as those providing covert communication) need to recognize
sub-vocalized speech (some of these issues are discussed in (Jorgensen and Binsted,
2005). We have conducted preliminary work in this area, collecting data from two
female subjects wearing no special equipment (aside from the EMG sensors) in a lab-
oratory environment. Instead of discrete words, subjects were asked to sub-vocalize
English language phonemes as shown in Table 2. Each subject was asked to sub-vo-
calize each phoneme, while thinking of the target word for that phoneme. For exam-
ple, while sub-vocalizing the phoneme ao, the subject would focus on the central
vowel sound of the word ‘‘dog’’ as shown in Table 2. While this work is of a more
preliminary nature at the time of writing, we believe it is an important stepping stone
towards continuous EMG speech recognition. It has helped us establish a baseline
for sub-vocal EMG speech recognition. Also, it seems that features of spoken speech
that are relevant to auditory speech recognition are also relevant to sub-vocal EMG
speech recognition. This suggests that techniques which have proven useful in
processing spoken speech, such as diphone or triphone recognition, would also be
useful in processing sub-vocal EMG speech, a direction we intend to continue
investigating.

Table 2
English language phonemes and key words

Phonemes

Vowels Words Consonants Words

ax ago b big
ay bite ch chin
uh book k cut
aa car d dig
ah cut f fork
ey day zh genre
ao dog g gut
iy feel hh help
aw foul jh joy
ae gas l lid
ow go m mat
ih hit n no
axr percent p put
eh pet r red
ix sick sh she
uw tool sh sit
oy toy t talk
er turn dh then

th thin
v vat
w with
y yacht
z zap
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6. Conclusions and future work

Our study provides preliminary evidence that a small tactical vocabulary can be
communicated via EMG recognition alone, while wearing SCBA equipment and
in an acoustically harsh environment, with an average correct classification rate of
at least 74%.

We believe EMG-based speech recognition, even in isolated-word form, and even
if it has to be trained for individual users, holds promise as a communication modal-
ity for first responders and others. However, before a prototype system can be field
tested, many significant obstacles will have to be overcome:

1. We must test the system with more subjects to permit generalization.
2. A comfortable and realistic method must be found for reliably fitting a user with

sensors. The sensors need to interoperate with other equipment the user requires
(e.g., an SCBA). The sensors have to remain in place during severe physical exer-
tion and be resistant or immune to perspiration.

3. Equipment must be miniaturized and hardened for field use.
4. The signal processing core must deal with swallowing and coughing, Lombard-

like effects in the presence of acoustical noise, and movement artifacts such as
twisting of the neck.

5. Computational requirements must be made consistent with those typically found
in wearable environments.

There are several avenues for future work. We need to quantify the effect of SCBA
equipment on audible speech, so that we can accurately assess the added value of the
EMG system. For the system we have developed, improved activity detection would
be beneficial. The real-time system performance needs to be quantified. We have
begun preliminary work on adaptively canceling the EMG noise before feature
extraction and believe this line of work will increase the recognition rate. We are
interested in potential applications of EMG speech recognition to people with dis-
abilities. Finally, there is substantial research yet to be done to produce a real-time
EMG continuous speech recognition system.
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