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Introduction

Mathematics, as taught to students, is continually the subjecirofiny

to see if it isappropriate for its task. In particular, thalculus,for so

long conceived as the essential foundation of college mathematics, is
being questioned as to its value in the wider realmsadfanced
education. Students seem to find much of it so difficult, and now, in the
new era of information technology, symbolic manipulators aa&lable
which can do much of the algorithmic work of the calculus, so the
guestion becomes : if a computer can do the work, why force students to
do it? If the computer is available, why not forge a rgavtnership
between student and computer in which each contribilieis special
abilities to produce a greater whole?

This article will consider the nature of human thinking processes to see
how symbolism is utilised in mathematical thinking and to consider how
technology is best integrated into the education process. In particular it
will look at what kind of thinking a good mathematicigerforms
which seems to make the mathematics so much easier than that faced by
the average, or below average, student. We dedlthat the child
growing into the adult faces problems at evetgge which relate to the
divergence between the thinking of teaccessful mathematicians and
those who eventually fail. Regrettably so many of the latter persist into
college level mathematics with a way of thinking that makesir
method of doing mathematics so mublarder for them than the
mathematics performed by their professors.

The Growth of Mathematical Ideas

The human mind is the product of five million years (and more) of
evolution. Yet the growth in mathematical knowledge is exponential
with more new ideas being developed each year than haveexared
before. The foremost renaissance thinkers could hope to be poets,
philosophers, musicians, mathematicians and many other thesgses.
Today knowledge grows at such a rate that the expert mathematician can
no longer hope toencompass the whole of mathematics, gaining
expertise instead in a relatively small part of the total.



On the other hand, there is no reasosuppose thathere is anything
dramatically different about the fundamental human apparatus of
thinking than wagresent say two thousand years ago at the height of
Greek mathematics, or ten thousand years ago with prehistoric man. Yet
we expect our average student to cope with a knowledge beyond

that available in totality to any previous generation. What is it that
enables thigrowth in knowledge to bencompassed in the minds of
ordinary mortals oftoday’s generation? First it is through these of
language that enables the communication of thought, ahcbugh
written symbolisnthat enables thessence othis thought to begpassed

on from generation to generation. But what is more important still is
the manner in which the underlyirgpncepts develop and the way in
which the symbolism is used to assist the development of these concepts.

An analysis of the evolution of mathematical ideas showsdifigrent

parts of mathematics involvdifferent kinds of thinking processes.
ClassicalGreek geometry arises from observations of properties of
specific kinds of objects which are idealised as mathematcalels:
points, lines, triangles, circles. These properties @escribedin a
general manner which allows constructions to daried out in a
specified way,for instance, drawing the three angle bisectors of a
triangle and observing that they are concurrent. Then arises the desire
to show that this will always be so, resulting in the concept of geometric
proof. The descriptionsof geometric objects need to be refocussed as
definitionsthat prescribe the mental objeftsm which deductions can

be made. There is a desire to refine the theory to make the definitions
minimal (it is not necessary to say that a square has equal sidésuand
right-angles — with equal sidesne right angle will do). But the
symbolism used here: letters for points, two letters for a line, three for
a triangle, and so on, all stand for a mental idealisation of objects which
exist in reality. The detachmeritom reality is more a matter of
philosophy than fact: demonstrated at the end of the nineteentary

by the realisation that there remaineddapendence orgeometric
actuality because concepts such as “between” or “inside” had yet to be
formally defined, but were an implicit part of the theory.

Number and algebra are different. These invgivecessesvhich are
eventuallysymbolisedn such a way that the symbols act duddly both
the process and the resultingconcept. This sequence of process
becoming concept has becomenajor focus ofmathematics education
research in recent years (Beth & Piaget, 1966; Greeno, 1%&B8,
1991; Harel & Kaput, 1991; Dubinsky, 1991; Gray & Tall, 1991). It
underlies the fundamental growth of modern areasmathematics:



arithmetic, algebragalculus and analysis. It will play a cruciale in
the successful use of symbolic manipulators in education.

Symbols representing both process and concept

Processes arecarried out and represented bgymbols which
subsequently take on a dual role, evoking either the process itself or the
product of the process, depending on the context. Thus it is that:

 5+3 represents both the process of addition and the
concept of sum,

» 5x3 represents both the process of multiplica(hmough
repeated addition 5+5+5) and the concept of product,

 The symbol 3/4 standfr both the process aflivision
and the concept of fraction,

 The symbol +4 standsr both the process ¢add four”
or shift four units along the number line, and toacept
of the positive number +4,

» 3+5xrepresents both the process “add 3 to the product of
5 andx” and the concept of the algebraic expression,

 The function notation ®)=x3-27 simultaneouslytells
both how to calculate the value of the functifor a
particular value of x and encapsulates the complete
concept of the function for generalvalue ofx,

* An “infinite” decimal representatiom=3.14159... is both
a process of approximating by calculating evemore
decimal places and the specificmerical limit of that
process,

e Various limit notations, such as:

b
n
lim f(x), lim sy, lim > a AI)i(rﬁn0 Z f(x) Ax , etc,

k=1 x=a

represent both the process wnding to alimit and the
concept of thevalue of the limit

What makes mathematical thinkingowerful is the flexible way in
which this conceptuastructure is used. By using the symbolism to
evoke a process, it can be used to compute a result, and by thinking of it
as an object, it can be used @t of higher level manipulation. This
results in a tremendowmpressibilityof mathematical conceptions. A
compact symbolism can represent a complex concept which may also be
mentally manipulated as a single entity. This proves to peveerful



tool for the mathematician, though it mapause abarrier for the
learner who lacks the flexibility of meaning.

One finally masters an activity so perfectly that the question of how and why
students don’t understand them is not asked anymore, cannot be asked
anymore and is not even understood anymore as a meaningful and relevant
guestion. Freudenthal (1983; p. 469)
So it is beholden to us as educators, if not as mathematiciamsalise
this process of compressibility to formulatays in which it might be

made available to a wider range of student ability.

The amalgam of process and concept as “procept”

The flexible use of a symbolism agher process or concept, eely
available to the professional mathematicieayseggreat difficulty for
many students. It is well-recognised (e.g. Harel & Kaput, 1991,
Dubinsky, 1991) that the composite of two functions f, g, can be
conceived process-wise in the notatipfi(x)): first calculate f§) and

then calculate g of the result. But if the composite functidnsgto be
considered as a mathematical object in its oight, given in terms of

the mathematical objects f, g, then a good deal of mental movement
from concept to process and back again becomes important.

Initially, functions are processes and so the subject must have performed an
encapsulation in order to consider them as objects. It is important, for
example in composition of functions, for the subject to alternate between
thinking about the same mathematical entity as a process and as an object.

(Dubinsky, 1991)

The question we should ask ourselves is “do mathematic@msciously
think always that they are alternating between thinking of a function as a
process and an object?” | think ndHaving compressed thaleas
(through using symbols), we simply use the symbol to denote whichever
mental representation is appropriate, often without realisomgciously
what we are doing.

In the minds of successful mathematicians a symbol evekber
process or concept, whichever is appropriate, and this is done so
subconsciously that we may be unaware that it is happening. To allow
this idea to be a focus of attention, my colleague Eddie Gray and |
formulated the term “procept” to mean:

... the amalgam of process and concept in which process and product is

represented by the same symbolism (Gray & Tall, 1991)
This is intended to allow us to focus on the fact that good
mathematicians think of a procept in a way which exhibitality (as
process or conceptjlexibility (using whichever is appropriate at the
time) andambiguity(not always making it explicit which we are using).



The ambiguous use of symbolism is seemingly anathema in
mathematical formalism, where definitions are made which quite clearly
formulate a concept in one specific form (“a function isetof ordered

pairs such that.”). Yet, havingdefineda function as a set ardered
pairs, as dhing, we then blithely go on to useas a proces®r as an
objectwhichever suits us at the time. The question to be atlerdfore

Is: by making this flexibility explicit, can we help students develmse
kinds of thinking processes? Before responding to this, let us consider
the different kinds of thinking process that occur in practice.

Procedural and proceptual thinking

Our research withstudents ofdifferent ages,from kindergarten to
college, shows aurprising similarity of difficulty at all levels. In
traditional mathematics it is necessdmgt to acquire the ability to
carry out a procedure, and then, after long practice, tluengpressed
mentally into a more compact mental object, often throughusigeof
appropriate symbolism, to enable the mental object to become the focus
of attention at a more abstract level. Studé¢imtsm an earlyschool age
up) initially seethe task as conquering tpeocedure. The morable
soon encapsulate throcedure byuse of appropriate symbolism and
develop a flexibility with the notions that enable them to derive new
ideas from old. A child may ndnowthe value of 47, but might think

of it as “four sevens” and know that “twaevensare fourteen” sdfour
sevensre fourteen plus fourteen, which is twenty eight”. This method
of deriving new knowledgdrom old is a naturalconsequence of
proceptual thinking. I claim that theroceptual thinkerhas abuilt-in
knowledge generator It is not necessarfor such an individual to
work hard to get resultshese result@re an automatic product of the
knowledgestructure. | conjecture that this flexible proceptual mode of
thought is a major factor in the ability of the more able to do
mathematics seemingly with littleffort. Such astructure is organic.
With a little fertilization it grows naturally almost of its own accord.

The lessable, on the other hand, are more likely to focus on the
currently required procedure as the main aim of the t8skcess for
them is being able toarry outthe procedure and produce tlegjuired
answer. Gray (1991) observed that children respondingsingple
arithmetic tasks seek thesecurity of being able tocarry out the
procedure, rather than thikexibility of being able to derive factsom
other known facts. Procedurally oriented children are often quite
creative in developing their own methofits carrying out procedures
which lead to short-ternsuccessBut this can also lead ttobng-term
failure as the personal method may fail to cope with more conmadis



that requireencapsulation of thg@rocedure as an objedor higher
order manipulation.

These earlysteps in mathematics lead patterns of thinking that can
cause problems in college mathematics. It is my belief, for example, that
the difficulties that average college student has with algeweur
because ofprevious rule-bound approaches to the subjétthen
students do not understand what someths)gat least they can get
temporary success bybecoming secure with procedures do things

with it. In the earlysteps ofalgebra they meet an algebraic notation
which generalises arithmetic. But whereas the arithmetic symbolism of
operations such as additi@me linked to a procedure twarry out the
process and get the answer, the algebraic symbaddsems more
obscure. The symbdlO-5« represents the process of taking 5 ties
from 10, but it is a procedurerhich cannot be carried out untilis
known and, ifx is known, why use algebra anyway when arithmetic will
suffice? Algebraic symbolism violates many individual's innate
understanding of mathematical symbolism which in arithmetic tells them
what to do and signals how to do it. The syntax is strange: why s 2+3
not computedrom left to right as 3+2which is 5, timesx ? When
students begin to feel uneasy, they ofsseksecurity in manipulating
symbols to get the right answers. Each new topic is solved by learning a
new and often seeminglarbitrary rule, “do multiplication before
addition”, “do operations in brackets first”, “do tkame thing to both
sides”, “cross-multiply”, “put over a common denominatofthange
sides, change signs”, etc, etc, (Tall & Thomas, 1991).

We believe that these difficulties with algelwary through tocollege
students, and that the ne&at immediate procedurasuccess, if not
complemented by meaningful use of notation ind¢hdy stages, can so
easily lead to meaningless symbol-pushing guided by thesgrary
rules. In Britain the fluency in algebraic manipulation at 16 years old is
diminishing, although problem-solving abilities with numbeeem to

be improving. The initial introduction of differentiation using the
symbolic calculation of limits, evefor a simple function likex3, is
severely compromisedbecause it cannot be assumibet the whole
population taking the subject can simplify the expressigfh)¢—x3)/h.

We believe that this will lead to serious problems at college and
university which may not be helped by the use of symbolic
manipulators, unless this is part of a concerted effort to give proceptual
flexibility to the meaning of the symbolism.

At higher levels thesame proceptual difficultieecur again and again.
Consider, for example, the product of two matrices. phecedural
thinker will seethe product as a calculation of each entry of rébgult



through looking along a row of the first matrix and down a column of
the secondnatrix, multiplying together corresponding pairs of entries,
and adding together the results. The procedural product of two matrices
involves a great deal of process. The proceptual thinker will see that this
can be represented symbolically as the product AB of matrices A and B
and, by thinking of the matrices as single objects and the product AB as
an object, can begin to conceive of higher level structsiesh as
(AB)C=A(BC), A(B+C)=AB+AC, or that, usually, ABBC, and so on.

For the procedural thinkerthese relationshipsoccur not at the
manipulable object level, but at the procedural level, involving far
greater detail, far greater cognitive strain, and far greater difficulty for
a lesspowerfully structured mind. No wonder the more abileceed
almost trivially, whilst the less able are faced with catastrophic failure.

Once again, if student&re procedural in their thinking, then they are
faced with greater difficulties than if they develop proceptual flexibility.
The same phenomenon occurs ather topics, forinstance, in the
understanding of limits, where students initially thinkngfwlim as a

processof approaching a limiting value. They are faced with new
problems here. To calculate the limit of, say

an+3

2n+1’

they may conceive this as “what happens to the calculation when n
grows large?”. A common suggestion is that “the 3 and tlhecbme

small, so the answer is rougr%E, which is 2”. They may develop a

genuine intuition which helps them solve problems in a persoaainer
unrelated to the formal definition, but it may be an idiosyncratic method
which fails in another context.

The proceptual structure of the limit definition is quite differémm
that of, say, arithmetic, where new derived facts may be obt&ined
old by using the samarithmetic operations. In the formal handling of
limit, the student must cope with a difficult definition with several
guantifiers. It is an awkward calculation, givensa® to find anN such

that
>N impli 3 %<
n>N imp ms%ml - €.

Instead a new and initially unintuitive method is adopted. Fskgw

that the definition applies to the convergence of simple sequences, for
instance whers, = ¢ (a constant), thes, - ¢, and when s, = 1/,
thens, —» 0. (The proof ofthese eminently self-evident results often



raises an eyebrow of suspicidtom students who fail to understand
them.) Next a general theorem is proved, to say that if ces&mjnences
tend to certain limits, then the sum, difference, product and quotients of
the same tend to the obviogsrresponding limits. (This theorem is
“obvious”, but itsproof, in terms ofunencapsulated—N processes,
Imposes enormous cognitive strdor very little apparent gain.) Then
this is quoted to show that

4n+3 4+3h 440
2n+l ~ 2+1h T~ 2+0

Thus it is that the new types of procedwausegreat difficulties. The
idea thatnﬂg\ S, is both a number, and a process, and thatatoulate

= 2.

the number requires transition to process, thence manipulasiog
known facts and a general theorem to getrdwiired result, is @ype

of proceptual thinking that once again shuts outghecedural thinker

who cannot encapsulate the limit definition as a concept through the dual
meaning of notation.

It is in fact, far worse, as any teachercatlege level will know. The
full-blown formalism of definitions of limits and axiom®r the real
numbers (including completenessgquires the learner to construct the
properties ofthese defined objects by logical steps. This construction
must beperformed in a mindvhich already contains images tfese
properties, linked not to the definition, but to tetdentsprevious
experiences. The subtlety pérforming such constructions when many
of the results, as exemplified by tlstudent's mental imageseem
already to be knowngcausesgreat confusion to the majority. It is
actually made worse by teaching which acknowledges this difficulty and
tries to be “more informal” with the mathematider the division
betweenformal necessity andnformal knowledge then beconeven
more blurred.

In the case ofthe limit concept, students have an intuitive dynamic
imagery which is in somevays in conflict with theformal definition

(Tall & Vinner, 1981; Cornu 1983). (Fonstance, they may believe
that the sequence “getdoser” to the limit but “never reachat’.)
Compounding this difficulty is the immense problem of manipulating
several quantifiers in the formal definition. The procedural thinker who
attempts to handle the definition of a sequence in a procedural manner is
faced with so much detail that, once again, failure, if not inevitable, is
highly likely.



Thus there is a qualitative difference between different kinds of thinking
processes. In school, the proceptual thinker developsatural
knowledge structure that, of its nature, generates new knowledge with
little effort, the procedural thinkeseeks insteathe security of being
able todo the processes of the mathematics, which often remains the
sole focus of theireffort. At college there are additional layers of
sophistication which make the division betwestrtcessand failure an
even greater chasm.

Traditional teachingechniques usually focus on thpeocedural side,
with the short-term aim of being able do the mathematics. Once the
procedures are sufficiently routinized to be ablectwry them out
almost subconsciously, they become the possible focuseftéctive
thinking and encapsulation as manipulable objects. Itpassible
therefore for a moreable procedural thinker eventually to begin to
compress procedural knowledge and to be able to reflect omibve
towards the requiredgncapsulation. But the large cognitig&ructure
required to carry outhe procedure as a process in timatigates
against thissuccesdor many students. It may be ease of‘not being
able to sedghe wood for the trees”, the cognitive complexity of the
process completely overwhelming the conceptual simplicity of the (as
yet unencapsulated) concept.

Using the computer to develop proceptual thinking

How then, given the divergence between mauecesfulproceptual
thinking and procedural thinking that is likely to fail, can we begin to
address the growing divide? Though one might formulate a policy of
making explicit the very things that the more able do implicitly (using
the symbolism flexibly as both process and concept, linkoggether
different aspects othe concepts in flexible ways)here is an inherent
difficulty. If the processes are not encapsulated, then coordinating
processes occurs in time, it involves more low level detail, and it
Imposesgreater cognitive strain on an already stressed individual.
Failure seems inevitable.

However, the new technology gives a new and powerful facility. If the
procedure can be automated as a computer algorithm, and virtually all
of them can, then it may be possilide the computer tearry out the
procedure, relieving the individual of the cognitive stress of
coordinating the detail, and allowing the individual to concentrate on the
relationships between the mathematical objects produced by the process.
At one time the individual may concentrate on the procedurewduad



that entails, without thinking about higher level relationships involving
the product of the procedure. At another time the individual useya
computer to carry out the procedure and concentrate on the relationship
between the concepts. | term this ghrvenciple of selective construction
(Tall, in press).

Whilst the traditional approach dictates that familiarity with the
procedure must come before reflection on its product, using the
computer there is sometimes a choice as to which may be fdshe
Sometimes theproduct of the procedure, if meaningful, may be
explored before the procedure is practiced and interiorized by the
individual, sometimes therocedure may be practiced before the
product is studied in detail. Thihiereforegives new possibilities for
curriculum sequencing.

For instance, in Tall & Thomas (1991) vettacked the problem of
giving meaning to algebraic notation by a combinatiopraigramming

in BASIC to calculatethe values of algebraic expressiofts given
values of the variables, tsee how the symbolism had aertain
consistency and thalifferent looking expressions (such as2*y) and
2*x+2*y) always gave the sanmimerical resultBecausdhe computer
was carrying out the process of calculation, tlstudent could
concentrate on the products aseethat 2*(k+y) and 2%+2*y are
equivalent expressions although as processes of computation they are
different. Weused a simple piece of software thatceptsstandard
algebraic notation (with implicit multiplication and powers given by
superscripts) to allow the students deethat 2k+y) and X+2y are
likewise equivalent (figure 1).

UARIABLES

X y z
COHSTRAHTS
FUHCTIOHS

2x+2i 2(x+i)

Choose from:

M: Make Maths. Machine
V:Change wvariables
I:Inpu variable values E:End

Figure 1 : the equivalent outputs of different processes
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In Tall (1986) a similar experiment was done with the visual beginnings
of the calculus in the English sixtbrm (SeniorHigh School, ages 16-
18), and showed a great improvement in the meaning ofiehgative
concept. By visualising the gradient of a graph as the gradient of a
highly magnified (locally straight) small part of the graph, #tedent
learned to look along a graph t&ee the changing gradient. The
computer could draw an accurate representation of the numerical
gradient (fk+h)—f(x))/h — carrying out a process that thiident could

not do with such precision — and the student could look agjridngh of

the gradientseehow it stabilized a$h becomes reasonably small, and
conjecture what the gradient curve might be approximating to. At
college level,Heid (1984) has shown that a combination of conceptual
learning at onestage using a symbol manipulator ¢arry out the
routines of differentiation and later practice at the procedures of
differentiation produced far more flexible and versatile learning.

The new calculus curriculum in the UK desigrfed 16 to 19 yeawlds

by the School Mathematics Projectsessoftware to visualise gradients
and toguessthe formulae of gradients of graphs befaliscussing the
symbolic procedure of calculating limits. It alssessoftware toenable

the learner tgohysically construct an approximate solution ofirst

order differential equation as the reverse process of knowing the
gradient of a graph and using software to build up a curve which has the
required gradient. This is donieefore considering considering any
numerical or symbolic method of solution.

The differentials d, dy are visualized as coordinates of the tangent
vector to the curvg=f(x) in thex-y plane and in three dimensions the
tangent to the curvg=y(t), x=x(t) has components {(ddx, dy) (figure

2). This allows a differential equation in several variables to be given a
physical meaning (as specifying the direction of the tangentpbmas
formula such as

dy _dy gdx
dx “dt/ ot

to be given a meaning as ratios of the components of the tareot.
Figure 2 shows the tangentvector (calculated as a numerical
approximation) drawn by thiearametric Analyse(Tall 1991).
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Figure 2 : The numerical tangent to the curve x=sint, y=costin 3D
and the projections onto the coordinate planes

In these experiments waee visualizatiorplaying an increasing role in
conceptual learning. In addition to the symbols representing both
process and concept, they are also linked to other representatichs,

as graphical representations which expand the flexibility of
conceptualization. The good mathematician evokes whichever
representation is appropriate for a particular purpose, used that
representation as long as it proves successful, switchingntther
representation when it proves more useful. This flexitwen of
thinking is often termed “versatile thinking” (Tall & Thomas, 1989).
Robert & Boschet(1984) show consistently that the masiccessful
students in advanced mathematies those with the flexibility tavork

in more than one representation (graphic, numeric or symbdhose
who are limited to one representation (usually numeric or symbolic) are
less likely to solve a wide range of problems.

For example, if astudent consistently relies on symbolic manipulation
without other representations, how will that student respond to a symbol
manipulator which gives the response:

11 pgartt
J_’]_ deX—DXD_l ——2.

The Achilles Heel of a Symbolic Manipulator in Education

Symbol manipulators were originally designed to solve the problem of
programming the computer to do many algorithms ddvanced
mathematics. Initially it wasfar more a problem of getting the
computer to jump through the appropriate hoops thavad of thinking

of the eventual educational use of tlseftware. Now symbolic
manipulators are increasingly flexible and stable software environments,
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they are becoming more appropridte teaching and learning as well
as for research.

Initially manipulators werebased on the teletypaterface in which a

line of symbols is typed and a response is given by the terminal. At the
present time most remain environments where lines of symbols are
input and evaluated, though the output may now include graphs as well
as symbols (which may be printed in standard mathematical notation).
Thus a line of symbols, conceived either as an expression to be
evaluated or a process to barried out, is given to the computer for
processing. Essentially the software accepts a procept whpcbcesses
internally, performing a construction for the user and giving a response
for the user tointerpret. It performs one aspect ofselective
construction: that of carrying out the internal procedure.

More flexible interfaces are being developed offering other forms of
communication. For instancklathematicaallows a graph of a surface
(initially input symbolically) to be pulled around, using a mouse to
select the viewing point rather than requiring the coordinates explicitly.
But the basic mode of communication remains symbolic inptgrnal
processing and symbolic or graphical output.

What must be apparefitom the discussion in thgrevious sections is

that the use of manipulators demands a proceptual understanding of the
symbolism involved. Thus, in education, the questionwisether
procedural thinkers can benefiom theuse of symboliananipulators,

and whether the manipulator can be used wider educational context

to promote more flexible proceptual thinking. The Achilles heel of the
symbolic manipulator in education is the nefed the individual to
construct a meaninfpr the symbolism as flexible process apdoduct

and the fact that symbolic manipulators process input internally in a
manner which may not be transparent to the user. The mere surface
manipulation of symbols is not enough.

Given the worsening ability of students with algebraic manipulation
(certainly in Britain where there is now moemphasis omumerical
problem-solving than on algebra) the need to gmweaningto the
symbolism becomes evemore important. In the UK teachers are
finding that beginning calculus students &sslikely to be able to find

the local maxima and minima of cubics because, although they can
differentiate the expressions, they cannot factorize the resulting
quadratic. The latter could, of course, be performed trivially by a
symbolic manipulator, but if the symbolism has little meaning, what use
will this be?
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If the studentsare able to give some meaning to the symbolism, then
manipulators can be of definissistanceFor instance, in a course at
college calculus levelor student teachers at Warwick University, the
accent was placed on visualizing the concéipgs. The students knew

the meaning of differentialsxdand d/ as components of the tangent
vector. They could see, in a three dimensional picture, the meaning of
partial derivatives through taking cross-sections of a surface and
looking at the gradient of each. They could do simple differentiation
and integration in a meaningful way. But when it came to finding the
maxima and minima on a surfaaf(x,y), the sheer drudgery of
working out second derivatives in certain examples defeated tHera.

the use of a symbol manipulatdDdrive and Mathematicawere both
used) proved to be greatly illuminating. The initial calculations are
shown in figure 3. It proved a simple matter to get the software to
calculate the secondpartial derivatives and check theequired
conditions.

The use of notebooks iMathematica which give electronic texwvhose
symbols may be selected, evaluated, modified and investigated, promises
greater flexibility for the active learner, although this still mustibee

within the syntax and facilities allowed by the software, with the
internal procedures hidden from sight. Butshiould beremembered

that the relationships generated by such manipulatank only in
certain ways,for instance,from symbolic input to graphical output.
Other directions, forinstance, using graphical concepts fooduce
related symbolic notions, still need to be done by the human mind.

Using the principle oBelective construction, one may hypothesise that
the manipulator must be used@at of a wider educational context in
which active learning is encouraged to develop flexide of symbols

as procepts and to link these symbolsaother representations. This
needs to beperformed within a widereducationalframework that
encourages the student to develop a flexible understanding of the
symbolism.
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z=(a X + b ¥y +¢c)*27{(x"2+¥"2+1)

2
(c+a x+Dbvy)

Figure 3 : The initial calculations of a max/min problem with Mathematica

The need for versatile learning

Symbols alone canngirovide a total environment fomathematical
thinking. They must represent something, and are more powerful if
they do so in a flexible proceptual way. The powelurther enhanced

if there are alternative representations available which increase the
flexibility of thinking.

Tall (1990) analyses the content of the calculus syllalbtam a
cognitive viewpoint, concentrating on the processes of differential and
integral calculus. To my surprise, | found that thasic cognitive
concepts were not differentiation and integration. Instead, | found that |
needed to start with themore fundamental notion athangeand see
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differentiation and integration as the symbolic partgaté of change
andcumulative growth

The notion of change is represented byftiection concept, which may

now be seen as a flexibpgocept. It can bearried out as a process of
assignment, it can be reversed as an inverse function, or as a solving of
equations. It has severallifferent representations, of which |
concentrated on three: the symbolic, the numeric and the graphic. The
symbolic and the numeric are both proceptual. They are procedures for
calculating values of the function, which can also be conceived as objects
(as expressions or as named computer procedures). gidehic
representation (a function as a graph) occurs in a symbolic manipulator
only as the output of a numerical procedure (which mighspeified
symbolically). As we sawearlier in our analysis of thedifference
between geometry and algebra, the visual concept tends to be seen as an
object — a curve in space — rather than a process (take the vadumnof
the x axis, move up to the curwe=f(x) and across to thgaxis to find

the corresponding function output). This is known to beeakness of

the graphical representation. But the graph also gives a large amount of
gualitative information thaenables theuser to conceptualize global
concepts thaare often hard to imagine purely from tegmbols or
numbers. It therefore occupies a worthy place alongside symbolism and
numeric procedures as representations of the fundamental notion of
change

Differentiation occurs as the symbolic part @dte of change and
integration as the symbolic part otimulativegrowth. Each ofthese
notions occurs as a process which can be done, and undone. The doing
in each cases, of course, a procept, and the undoing is the reversal of
the process part, whichas a complementary proceptusfucture. An
interesting facet of this conceptual analysis is that the undoing of
differentiation isnot integration. It is the solving of alifferential
equation In visual terms the qualitative idea of the derivative is the
gradient of a graph, which may keen by looking at thgraph under

high magnification so that is looks “locally straight”. It is possible at a
primitive level toseethe gradient of (the graph of) a function simply by
casting ones eye along and estimating the changing slope. Once this is
established and one can seeumber of standard formulae (such as the
derivative ofx2, x3, xn, sinx, cosx, Irx, e, etc), the qualitativeicture
becomes an encumberance and one devetape powerfulways of
calculating the gradient through rules of symbolic manipulation. Thus it
Is that the process of enaction of the gradient to be later replaced by the
use of symbolic manipulation resemble=arlier encounters with
procepts. First it is necessary to give the concept a meaningful
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representation. Then aspects of the representation itself start to take on a
life of their own (in thiscasethe symbolic process of calculating a
derivative) and the learneneed only build on the meaningfully
encapsulategrocept (symbolically calculating the derivativegther

than stepping all the way back to first principles. Haene istrue of

young children counting. At first thiseeds physical objects tperate

on, but when the symbols have meaning, it is only necessatgpend

on the meaningfulness of the symbols.

Solving a differential equation is the reverse of the process of finding
the gradient: in primitive terms it is a matter of knowing the gradient
everywhere and trying to build up the graphany pieces ofsoftware

are available to draw direction diagrams and to draw numerical
solutions automatically. Th8olution SketchefTall, 1991) allows the

user to experience the physical act of building up a solution with the
computer using the (symbolic) firsbrder differential equation to
calculate and draw a small line segment of &ppropriate gradient
through aselected point in the planéjgure 4). Although thispicture
seemsfairly innocuous, it is a potenenactive environment which
enables the user to point anywhere in the plane and deposit a small line
segment whose gradient is given by the differential equation. By putting
such segments end to end and leaviricgaee on the screen, tistudent

can build up a solution curve. | see this enactive process of building up a
solution curve as a fundamental physical action which givasnaitive
meaning to the differential equation. Yet it forms the cognitive
foundation of more formal conceptsuch as the uniqueness of a
solution through a given point (provided that the gradiergragperly
defined). Once the student has internalised the meaning of a solution of
a differential equation in this way, it is soon apparent that the solution is

dy~dt=8.5y

4

lz - t=1.5008
y=2.08808
dysdt=

1.6088
-4 -2 z 4
-2
-4

figure 4 : The Solution Sketcher
ready to build up the solution of a differential equation
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found moreeasily either by using various numerigadocedures, or
through attempting to reverse the methods of symbolic manipulation.

Integration, as the area under a graph, or Riemann integration, may be
classified as a cognitivelgtifferent structurecumulativegrowth It has

its own symbolic, numeric and graphic interpretatior&/mbolic
integration as a theory proves to be of great intelbesbuse of the
fundamental theorem of calculus, which shows that it cacabeed out

by anti-differentiation. In practice the graphic andumeric
interpretations of undoing cumulative growth are little studiedause

of the overwhelming power of the fundamental theorem.

This analysis of the structure of the calculus is given in figure &isn
picture, the traditional part of calculus, the symbolic part, is but part of
a much larger picture. This part is most valudbteits ability tocarry

out the procedures so successfully, where a picture might only give a
gualitative idea and a numerical procedure only an approximation. But
the symbolic undoing of differentiation, differential equatiansplves
many problems fowhich symbolic methods do not give a solution (in
terms of elementary functions). Thus the wider picture, in terms of the
practicality of solving problems and the visualisation the qualitative
concepts, takes on an important overall role.

It should be very strongly emphasized that the existence o$tthisture
does not mean that all the parts of the diagram need to be epueth
weight, but that they should be uded their appropriate purposeFor
instance, pictures should be usddr conceptual insight, whilst
numerical calculations or symbolic manipulation aresed for
productive calculation. The good mathematiciaalects whichever
representation is appropriate for a givsetage of a giverproblem,
moving flexibly between representations where tesomes expedient.

It is the versatility to move between representations and choose the most
appropriate that gives the good mathematician great po@weh an
approach does nabverburden short-term memory by working on
several different representations simultaneously. The desire to
coordinate several different representations angse®processaesarried

out simultaneously in all of them can easily overstretch viioeking
mental capacity. If it strains the good mathematician, it is exene
likely to overburden the average student. What is more important is to
allow the student to perform more in the mode of a good mathematician
by allowing them to selectively construgtart of the conceptual
structure that is the currerfocus of attention whilst theomputer
carries out other parts of the constructive process.
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Representations:

Graphic Numeric Symbolic
Qualitative Quantitative Manipulative
Visualizing Estimating Formalizing
Conceptualizing| Approximating Limiting
|| Concepts:
|| Change II
doing: graphs numeric values algebraic
symbolism
undoing: graphical numerical solutions| inverse functions
solutions of of equations — (solving equations)
equations — sequences of symbolic
intersection numerical solutions
of graphs approximations
Rate of
[change 7
doing: local numerical derivative
straightness gradient of graph
undoing: build graph | numerical solutions solutions of
knowing its of differential differential equations|
gradient equations —antiderivative
Cumulative
Growth:
, ,
doing: area under numerical area integral
under graph
undoing: know area know area — find FUNDAMENTAL
—find curve numerical function THEOREM
Figure 5: The conceptual structure of the calculus
Summary

Symbolism is used flexibly by the good mathematician. Symidltsvs
mathematical thinking to be compressible, so that the same symbol can
represent a process, or even a wide complex of related ideas, yet be
conceived also as a single manipulable mental object. This flexibility is
stock-in-trade for the mathematician. But it is not for the average
student, who seeks a shorter-term goal: to be alde toathematics by
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carrying out thenecessary processes. It is this relationsbgiween
procedures talo mathematics and the encapsulation of these concepts as
single objects represented by manipulable symbols that is at the heart of
mathematicalsuccessand it is its absence which is raot cause of
failure.

We thereforeseethat the use of symbols in wider sense, dually
representing processes or concepts, linked with other representations
including visualisations, gives a flexible view of mathematics thates

the subject easieior the more able. Thé&ess successfuknd to cling

more to a single representation, often a procedurally drsyenbolic
approach, which is inherently less flexible and imposes greater cognitive
strain on the user. The short term gain of showing a student the
procedure to be able tdo a piece of mathematics mafor these
students, lead to a cul-de-sac in which security in the procedure prevents
the flexible use of symbolism as both process (to obtasalt) and
object (to be able to manipulate as part of higher level thinking). Now
that computer environments are available carry out algorithmic
processes in a predictable manner, it maypbssible to encourage a
wider range ofstudents to gain flexible insights into tingher level
concepts, integrating them in a more proceptual manner, linking to
other representations.

Symbolic manipulators, taking a proceptual input amdernally
carrying out procedures which are usually invisible to the user, may be
used to complement the skills of the student, but teguires some
insight into the meaning of the symbolisithereforethe manipulators

are better used as part of a richer environmdnth helps thestudents
develop supportive linkages between concepts. They can provide an
environment for manipulation acduch symbolism, byarrying out the
process and enabling the user to focus on the concept. This principle of
selective constructionffers a method of reducing cognitive strain and
increasing thestudent's chances of developimgore flexible thinking
processes.
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