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Abstract: An analytical calculation of the magnetic field of a cylindrical permanent magnet linear generator is
presented. The generator utilises a discrete Halbach permanent magnet array as magnetic field source. The
array is constructed of permanent magnets that have a non-uniform length. To solve the governing equations,
a direct solution method is used. The flux distributions in the air gap, inside the permanent magnet and in
the shaft are calculated. Solutions that are derived using this method are compared with that obtained from
the finite element analysis simulation method. Another method is also used in the field calculation, and the
result is presented for comparison.
T
i

1 Introduction
A linear generator is a compact machine that has a minimal
number of components. Its simple construction stems from
the fact that the linear electrical generator is directly
connected to the prime mover without any transmission
means. Since it has fewer moving components than its
rotary counterpart, losses are expected to be lower and
therefore the overall machine efficiency should be higher.

The machine may be driven by any linear prime mover
such as a free piston internal combustion engine or a
Stirling engine. The power output varies from a few
milliwatts generated by a torch light up to several
megawatts generated by a tidal wave power generator. A
linear generator can be utilised as a stand-alone electrical
power supply or an integrated part of a power generation
system.

Unlike rotary machines, limited publications on linear
generator indicate that there are still a lot of areas related to
linear generators that can be explored for further research
and development. A typical analysis of the field distribution
of the linear machine is presented in [1, 2]. Analyses may
also be adapted from the rotary machine methods
presented in [3–5] after they are converted to linear systems.
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This paper presents a calculation of the flux distribution in a
linear permanent magnet generator. Maxwell’s equations are
used to compute magnetic field quantities in all parts of the
machine. The existence of permanent magnet as a free
magnetic source is represented by the Poisson’s equation. Two
general methods are commonly used to solve this equation,
that is, it can either be solved directly, which is based on the
equation pattern, or by the help of the surface integral form of
the permanent magnets to represent the magnetic field source.
One of the direct solutions uses an exponential function [6].
The examples of analysis that are adopted in this paper are
presented in [1, 2, 7–10]. One of the advantages of using the
direct solution is that it does not require the surface integral
form to represent the magnetic source which may has a
complicated shape, and therefore the Poisson’s equation is
solved while treating the magnets in whole.

Instead of using the exponential form combined with
hyperbolic sine function as presented in [6], this paper
employs the Struve function to solve the Poisson’s
equation. Similar in usage to the Bessel function, the
Struve function is used to solve governing equations of the
system which has free magnetic sources.

A finite element method simulation is performed to
validate results obtained by the proposed method. Taking
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advantage of the machine shape, a 2D axisymmetry finite
element analysis (FEA) model is set up to simplify the
simulation.

2 Machine construction
The linear generator prototype is shown in Fig. 1. The
machine is constructed of a stator and a translator, as
shown in Fig. 2. Six windings are placed in the slotted
stator core. Seven pieces of permanent magnets are
mounted on a non-permeable translator shaft to produce
the magnetic field. Those permanent magnets are arranged
in a discrete Halbach array, that is, radially magnetised
permanent magnets (RMPMs) and axially magnetised
permanent magnets (AMPMs) are stacked alternately.

A discrete Halbach permanent magnet construction
offers some advantages over the conventional Halbach
magnet. It is considered due to the fact that local
manufacturers do not have the capability to produce the
conventional Halbach array in a single piece. On the other
hand, the discrete Halbach permanent magnet also offers a
lower cost besides it is easy to manufacture.

Figure 1 Linear generator prototype

Figure 2 Linear generator construction
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The machine runs in a reciprocating linear motion. The
system produces a linear three-phase output voltage. It is
not a real three-phase output like in the rotary machine,
since the machine runs forward and then moves backward
after it reaches the end of the motion. A long-translator
machine is the type selected for better overall performance.

3 Modelling and analysis
The 2D cross-section of the upper half of the machine is
shown in Fig. 3. It is divided into three regions where
region 1 consists of the air gap and windings, region 2
includes the permanent magnet set and region 3 represents
the shaft. The division is based on the permeability of the
component material. The region numbers are noted as a
subscript in all equations. The machine specification is
listed in Table 1. The machine dimension is provided from
the actual optimised construction and is intended for the
simulation and the analysis only. The optimisation to
obtain the machine dimension is not presented.

Figure 3 Cross-section of the upper half of the linear
generator

Table 1 Generator specification

Parameter Value

speed 3000 stroke per
minute

stroke 69 mm

shaft radius, R0 12.5 mm

magnet height, hm 12 mm

winding height, hw 102 mm

AMPM length 12 mm

RMPM length 22.5 mm

air gap 1 mm

slot width 17 mm

teeth width 6 mm

remanent magnetisation, Brem 1.12 T

relative permeability of shaft
material, mr,shaft

1

permeability of core material mr,core infinity
IET Electr. Power Appl., 2010, Vol. 4, Iss. 8, pp. 629–636
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The governing equations are built with the following
assumptions for simplification. First, the machine is
analysed without the stator slot. In the flux linkage
calculation, the slots effect is usually incorporated by
applying the Carter coefficient. Second, the machine is
assumed to be infinitively long and has a periodic
construction. Third, the permeability of the stator core is
assumed to be infinite whereas the relative permeability of
the winding, air gap and permanent magnet as well as the
shaft is assumed to be one.

Maxwell’s and Poisson’s equations for zones 1, 2 and 3 are,
respectively, given as

∇2Ai = 0 for i = 1, 3 (1)

∇2A2 = −m0∇× M (2)

The vector potential A has only one component, Au, which is
independent of u in the cylindrical system. Therefore (1) and
(2) can be written as
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The remanent magnetisation vector can be written in the
form of its components M ¼Mrer + Mzez, where Mrer

represents the contribution of RMPM and Mzez represents
the contribution of AMPM. The flux density B obtained
from A is given by Bz ¼ 1/r.∂/∂r (rAu) and Br ¼ ∂Au/∂z.

In the Fourier series form, the magnetisation vector M is
decomposed into harmonics

Mr =
∑1

h=1,2,...

Mrh sin(mhz)

Mz =
∑1

h=1,2,...
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and tp is the permanent magnet pole pitch, tmr and tmz

are the length of RMPM and AMPM, respectively.
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Therefore (3) and (4) can be written as
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Boundary conditions are selected to solve the simultaneous
field equations, as shown in (10)

Bz1|r = Rs = 0

Br1|r = Rm = Br2|r = Rm

Br2|r = R0 = Br3|r = R0

Hz1|r = Rm = Hz2|r = Rm

Hz2|r = R0 = Hz3|r = R0

(10)

Solving (7) and (8) using boundary conditions in (10) and
rearranging them in terms of the vector potential yields

Aui =
∑1
h=1

(Chi Bessel I1(mhr)

+ Dhi Bessel K1(mhr)) cos(mhz) for i = 1, 3

(11)

Au2 =
∑1
h=1

((Ch2 Bessel I1(mhr)

+ Dh2 Bessel K1(mhr)) cos(mhz) + S(r, z)) (12)

where Bessel I1 is the modified Bessel function of the first
kind of order 1 and Bessel K1 is the modified Bessel
function of the second kind of order 1. C and D are constants.

Equation (12) is the general solution of (8), which is a
non-homogeneous Bessel’s differential equation. Therefore
(12) contains Struve functions [11] that exists in the
unknown term S(r, z). Solving (8) for S(r, z) yields

S(r, z) = 1

2

p Struve L1(mhr)Ph cos(mhz)

m2
h

(13)

where Struve L1 is the modified Struve function of order 1.
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The flux distributions in all the three regions are derived
from (11) and (12), which yield
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Equations (14) to (17) represent the field density of the whole
machine.

The induced voltage generated in the winding is computed
by adding Carter coefficient to represent the existence of the
stator slot to the above slotless machine model. This
coefficient is given by [1]

KC =
tsp

tsp − gg′
(18)

where tsp is the stator slot pitch, and g ’ ¼ g + hm/mr. The
slotting factor g is given by

g = 4
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where b0 is the width of the stator slot openings.

The air gap distance should be modified to include the
stator slotting effect. The effective air gap is given by

ge = g + (KC − 1)g′ (20)

Therefore the stator bore radius should also be recalculated
with the effect of slotting incorporated. The equivalent
stator bore radius Rse is given by

Rse = Rm + ge (21)

where Rm is the outer radius of the magnets.
2
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The flux linkage of a stator winding is obtained by
integrating the vector potential in region 1 over the
winding pitch. The total flux linkage of a phase winding is
the sum of the flux linkages in all the windings that are
connected in series. In this machine, two windings are
connected as one phase. Therefore the flux linkage will be

Cw = Nw

tw(Rs − Ri)

∫z+(tw/2)

z−(tw/2)

∫Rse

Ri

2prAu1(r, z) dr dz (22)

Finally, the induced EMF in each phase winding is
calculated by

ew = − dCw(z)

dt
= − dCw(z)

dz
v(t) (23)

where v(t) is the velocity of the translator as a function of
time.

4 Results and discussion
Samples of flux distributions in the three regions are plotted
in the subsequent graphs. The respective locations chosen for
the regions are as follows:

† Air gap, r ¼ Rm + g/2

† Permanent magnets, r ¼ Ro + hm/2

† Shaft, r ¼ Ro/2

The equations for the flux density are solved using the
direct method with the application of Struve function. The
tangential component of the flux density Bz and the radial

Figure 4 Radial component of the flux density Br in the
air gap
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component Br in the air gap, permanent magnet and shaft are
plotted in Fig. 4, until Fig. 9. The result is potted against the
flux density obtained from the FEA simulation. Another
calculation is performed using the equation presented in [1,
2], or other similar papers written by the same author. The
result is then plotted in the graph for the comparison of
results and labelled by ‘Wang’. In these samples, the
equation’s series is limited to six orders.

Figure 5 Axial component of the flux density Bz in the
air gap

Figure 6 Radial component of the flux density Br in the
permanent magnet
T Electr. Power Appl., 2010, Vol. 4, Iss. 8, pp. 629–636
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The flux linkages in the windings are calculated using
the proposed method. The Wang method is also used to
calculate quantity, and the results are presented for
comparison. The flux linkage and the emf obtained are
compared to that computed using the FEA method.

The FEA simulations are performed using Ansoftw

Maxwell software [12]. The machine is modelled into the

Figure 7 Axial component of the flux density Bz the
permanent magnet

Figure 8 Radial component of the flux density Br in the
shaft
633
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simulation object. Taking advantage of the symmetrical
construction, the machine is modelled with 2D object as
shown in Fig. 3. Object properties are provided in Table 1.
A circular simulated infinity boundary is drawn to cover
the objects. The size is approximately 5 times bigger than
the object. A high-density meshing is applied to the
components, especially to the air gap. It offers an accurate
calculation during the simulation. The parametric
simulations are performed to compute the flux distribution
in the machine. This simulation method is also used to

Figure 9 Axial component of the flux density Bz in the shaft

Figure 10 Three-phase flux linkages calculated with the
Struve method
4
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calculate the induced voltage, since the existing software
does not offer the transient simulation feature.

In Figs. 4 and 5, it is noted that the calculated flux
densities in the air gap produced by Struve and Wang
method are very similar to the one generated by the FEA
simulation. Figs. 6 and 7 show the flux densities in the
permanent magnets, as produced by the Struve, Wang and
FEA methods. It can be seen that the flux densities of the
proposed method is much closer to that of the FEA than
the one generated by Wang method.

Figure 11 Three-phase flux linkages calculated with the
Wang method

Figure 12 Three-phase flux linkages calculated with the FEA
method
IET Electr. Power Appl., 2010, Vol. 4, Iss. 8, pp. 629–636
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In the shaft, as shown in Figs. 8 and 9, the flux densities
calculated by the proposed method is shown to be superior
to the result of Wang method; both are relative to the
result produced by the FEA method.

The flux linkages are separately plotted in Figs. 10–12 and
the induced voltages are shown in Figs. 13–15. In Fig. 12 the
flux linkage is plotted for all windings. The flux linkage
profiles calculated using the proposed method match the
one generated by FEA. It appears that results from the
proposed method and Wang method are very close to each
other.

The induced voltage waveforms calculated by the proposed
method also bode well with the one calculated using the

Figure 14 Three-phase induced voltage calculated with the
Wang method

Figure 13 Three-phase induced voltage calculated with the
Struve method
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FEA. This is also true for one calculated by the Wang
method.

In conclusion, the close agreement of the results of the
direct method and the FEA simulation vindicates the
validity of this approach. It has been shown that the method
presented in this paper can be used as a tool for field
estimation and design optimisation in the machine design.

5 Conclusions
The analytical calculation of the open circuit magnetic field of
a cylindrical permanent magnet linear generator equipped
with a discrete Halbach permanent magnet array is
presented in this paper. A direct solution to the governing
equation for the machine is outlined. The Poisson’s
equation derived has a non-homogenous Bessel’s
differential equation pattern, which can be solved directly
using Struve function. The method offers an exact solution
to the field density equation in the machine.

Plots of the results show that the solutions match those
produced by the FEA simulation very closely.
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