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Abstract: This article presents a vision-based method for mobile robot localization
in partially known environments. Simple, unobtrusive artificial landmarks are used
as external localization aids. The landmarks are labelled with unique code patterns,
what enables unambiguous global localization. The analysis is presented which
enables prediction of the uncertainty of the position and orientation of the robot
relative to the landmark. Experimental evidence is provided, demonstrating that
the proposed method can be reliably used over a wide range of relative positions
between the camera and the landmark. Copyright c© 2003 IFAC
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1. INTRODUCTION

To navigate successfully in a large-scale environ-
ment, mobile robot should know where it is within
this environment, i.e. it must localize itself. The
pose of a wheeled robot (position and orientation
in the global frame XR = [xr yr θr]T ) is usually es-
timated by means of odometry. This method alone
is insufficient, and the pose has to be corrected us-
ing measurements from external sensors. A num-
ber of approaches to the sensor-based localization
are known from the literature. Many successful
robotic systems utilize landmarks, which are dis-
tinct features that a robot can recognize from
sensory data (Feng et al., 1996). Landmarks can be
either natural or artificial. Natural landmarks are
the features extracted from the sensory data with-
out any changes being made in the environment.
Artificial landmarks are the objects purposefully
placed in the environment, such as visual patterns
or reflecting tapes. In practice, recognition of natu-
ral landmarks by means of range sensors is limited
to structured, office-like environments, which con-
tain sufficient number of naturally occurring fea-
tures (Skrzypczyński, 1998). The ability to detect
natural landmarks by computer vision methods is
limited because of problems related to changing

illumination, occlusions, shadows, etc. However,
the use of artificial landmarks as visual cues can
improve operational characteristics of vision-based
methods compared to the recognition of natural
environment features (Yoon and Kweon, 2001).
The disadvantage is, that the environment has
to be engineered, what in turn limits the flexibil-
ity and adaptability to different operational sites.
This problem can be avoided by using simple,
cheap and unobtrusive landmarks, which can be
easily attached to walls and furniture in virtually
any environment.

This article presents a mobile robot localization
system which uses passive visual landmarks to
enhance the recognition capabilities of the on-
board camera. The focus is on the evaluation of the
spatial localization uncertainty. Both theoretical
analysis and presentation of experimental results
are given.

2. LANDMARK RECOGNITION

2.1 Landmark design

Landmark-based navigation relies on fast finding
of landmarks, which are currently visible in the



field of view of the camera. This is done by seg-
mentation of the available image. The segmen-
tation criteria must be sufficiently reliable and
independent on the geometrical deformation of the
landmark appearance, due to the random position
of the camera w.r.t. robot surrounding. On the
other hand, precise determination of the landmark
reference points on the image is critical for obtain-
ing accurate enough coordinates, determining the
pose of the camera fixed to the mobile robot.

As there is a number of perceptually similar land-
marks placed in the workspace of the robot, in
order to determine robot position in unambiguous
way, each landmark must carry its proper code.
This is to enable the identification of particular
landmarks, whose location in world-coordinates is
a priori known. Mobile robot moves on the floor,
so the following assumptions are justified: camera
optical axis is parallel to the floor, center of the
landmark is at its height (on contrary to (Kasiński
and Ba̧czyk, 2001)). As the camera moves in hor-
izontal plane it is worth building the landmark
patterns of vertical and horizontal features.

To meet the above requirements landmarks have
been designed as paper sheets (210 × 297 mm)
printed in appropriate way. Within strong black
orthogonal frame, filled with fluorescent green,
there is a chessboard placed, made of 9 fields.
Particular fields of chessboard are black or green
according to the unique code, proper to the given
landmark. Central field is always black. In this
way one can place up to 256 unique landmarks
in the workspace of the robot. Primary detection
of landmarks on the current image is based on
the segmentation in color-space. Landmark frame
gives a strong luminance gradient with respect
to its green filling. After thresholding one gets a
quadrangle pattern on the output image, whose
properties are a secondary criterion for the de-
tection of the landmark. Internal corners of the
black frame are treated as reference points and
are used for pose evaluation. The particular lay-
out of landmark-code area does not influence the
positioning accuracy because this area is separated
from reference points.

2.2 Image processing

Robot vision system works on true-color images
of 640x480 pixels. Landmark recognition pro-
cess consists of two steps: (i) detection of ROIs
(Regions Of Interest) on the available image, (ii)
recognition of the landmark in particular ROI
and determination of image-coordinates of their
reference points.

After Gaussian smoothing of the RGB image, it is
transformed into the HSI-color space, in order to
enable the following segmentation procedure.

Fig. 1. Acquired image a), ROIs b), domains
of edgels c), frame-corners determined by
straight lines and landmark-code extracted d)

We are looking for pixels satisfying the predicate
I(x, y) > ϑI & H(x, y) > ϑHmin & H(x, y) <
ϑHmax. The resulting binary image is subject
to connectivity analysis. Each N4-connected set
of pixels is potentially an image of the land-
mark green-filling. Two additional conditions are
checked: compactness of such a set and its cardi-
nality. As a measure of compactness normalized,
central, second-order moments are used. This test
enables elimination of green artefacts. Moreover,
the cardinality of the set representing green land-
mark must reach a given value, as maximal dis-
tance of the camera to the landmark is limited.
In this way, problems with the texture having
strong green component are eliminated. For each
segment, satisfying compactness and cardinality
criteria, ROIs are determined, having a form of
rectangular windows (Fig. 1). Further processing
steps are with respect to the G-component of the
original RGB-image and their scope is restricted
only to ROIs.

The internal edges of the landmark frame are
searched. To that goal, gradient images are cal-
culated, getting potential edgels. The information
on the polarity of particular edgels is kept. After
thresholding of the gradient image, one obtains
domains of edgels. Some of them potentially sup-
port the hypothesis on the existence of the line-
segments, making pattern of the landmark. Line-
segments extraction is based on the following se-
lection criteria: (i) the cardinality of each domain
of edgels (small clusters are ignored); (ii) appro-
priate polarity of edgels (edgels making left or
upper edges of the frame should have a positive
polarity, negative - in the case of lower or right
frame edge); (iii) sufficient slimness (measured
with normalized, central, second-order moments of



binary domains); (iv) relative size (line-segments
too short w.r.t. the ROI dimensions are ignored).
The extracted segments are linked into quadran-
gle. The distances between ends of the segments
should be smaller than given value. For all edgels
supporting thus assembled landmark frame a pre-
cise location of gradient maxima is performed.
Straight lines are fitted to those maxima. Their
crossections determine with subpixel accuracy the
picture-location of potential frame-corners. Hav-
ing determined the image coordinates of the land-
mark frame corners, one can establish centers of
chessboard fields. It is checked whether its center is
black, if so (hypothesis verification) the landmark
code determination follows (values of pixels in the
centers of particular chessboard fields are read).
All values of thresholds in the described procedure
have been experimentally established.

2.3 Robot pose computation

Pin-hole camera model is used. Camera is inter-
nally calibrated (its focal length is exactly known)
(Heikkilä, 2000). The image-coordinates frame is
fixed in center of the image. Image coordinates are
expressed in [mm] by taking into account the phys-
ical dimensions and vertical/horizontal resolu-
tion of CCD-matrix of the camera. X-coordinates
(x1[mm] and x2[mm]) of the centers of left and
right frame edge are determined. Half the lengths
(y1[mm] and y2[mm]) of the vertical left and right
landmark frame-edge are calculated. Those data,
obtained from the image, are used to evaluate
vector L = [l2 ϕ1 ϕ2]T determining robot (camera)
pose on the plane (Fig. 2).
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3. UNCERTAINTY EVALUATION

3.1 Problem statement

This section describes how inaccuracies in the
recognition of a landmark pattern in the camera
image propagate to the uncertainty of the robot
pose. The uncertainty analysis uses first order
covariance propagation (Smith and Cheeseman,
1987). The robot pose is a random variable, being

a subject to an additive, zero-mean Gaussian
noise. The pose uncertainty is described by a
covariance matrix:

CR =

 σx σyx σθx

σxy σy σθy

σxθ σyθ σθ

 . (4)

There are many sources of the uncertainty in the
vision-based recognition of objects and patterns
(Jain et al., 1995). In this study, we focus on the
evaluation of the sensitivity of the obtained pose
estimate to the relative position between the robot
and the observed landmark. The optical center of
the camera is assumed to be in the center of the
robot. Moreover, it is assumed that the landmark
coordinates in the global frame are certain (this
assumption is justified for artificial landmarks).
Errors due to signal interference and other elec-
tronic noises in the image are not taken into ac-
count in the uncertainty prediction procedure, as
they do not depend on the spatial configuration of
the camera w.r.t. the landmark. All other sources
of noise are assumed to be Gaussian. The input
data for the computation of the predicted uncer-
tainty are: l2, ϕ1, and ϕ2 (Fig. 2). These three
values are predicted on the basis of the current
robot pose estimate and the knowledge of the
position and orientation of the chosen landmark.
The same triple L = [l2 ϕ1 ϕ2]T is then computed
from the actual image of the landmark pattern,
after taking an image. The prediction procedure
enables: (i) computation of the covariance matrix
CR, which is necessary if the robot computes the
pose estimate by means of the multi-sensor fusion
(Crowley, 1996); (ii) rough estimation of the robot
pose uncertainty before an image has been taken
and processed, what in turn enables the robot
to decide which landmark should be used for the
localization, and how to plan a path/movement to
minimize pose uncertainty (Madsen et al., 1997);
(iii) theoretical evaluation of the uncertainty as a
function of the robot pose w.r.t. the landmark, in
order to find the best and worst configurations, to
be preferred or avoided by the robot, respectively.

Fig. 2. Image coordinates a), geometric relations
between the landmark and the robot b).



3.2 Location uncertainty of the landmark points

The distances and angles between the camera and
the landmark are computed from the relations
between the known dimensions of the landmark
pattern, and the dimensions of the image of this
pattern appearing on the CCD matrix. The cam-
era is a tool to measure dimensions of the image.
The resolution of measurement is bounded by the
CCD matrix pixel size. Although positions of the
landmark reference points are computed with sub-
pixel resolution, the standard deviation of this
measurement equals the size of a pixel. This is
the primary uncertainty, introduced by the limited
resolution of the camera, and it is then propagated
to the uncertainty of the L parameters, and then
to the uncertainty of the robot pose XRland

. It
has been assumed, that the primary uncertainty
depends on the errors in computation of the coor-
dinates [x1 x2] and lengths [y1 y2] in the image:[

∆x1 ∆y1 ∆x2 ∆y2

]
. (5)

Thus, the primary uncertainty is represented by a
4 × 4 matrix :

CP =


σ2

x1 0 0 0
0 σ2

y1 0 0
0 0 σ2

x2 0
0 0 0 σ2

y2

 . (6)

The standard deviation σy in the y coordinate is
defined as the vertical discretization error:

σy =
hm

Rh
, (7)

where Rh is the vertical resolution of the CCD
matrix, and hm is it’s height (here Rh=480,
hm=3.6mm). Similarly, the standard deviation σx

in the x coordinate is defined as:

σx =
wm

Rw
, (8)

where Rw is the horizontal resolution of the CCD
matrix, and wm is it’s width (here Rw=640,
wm=4.8mm). For the case under study, σx=σy,
and thus all the primary uncertainties are equiva-
lent.

3.3 Uncertainty of the distances and angles to the
landmark

The uncertainty of L is described by the covari-
ance matrix CL:

CL =

 σl2 σϕ1l2 σϕ2l2

σl2ϕ1 σϕ1 σϕ2ϕ1

σl2ϕ2 σϕ1ϕ2 σϕ2

 . (9)

This matrix is computed from the primary uncer-
tainty matrix CP of the vector P = [x1 y1 x2 y2]T .

The parameters of this vector constitute the in-
put data for the procedures calculating L. As a
transformation from P to L the equations (1),
(2), (3) are used. They contain only the param-
eters of P and constants being the parameters
of the landmark and the camera. Because the
transformation between P and L is nonlinear, the
covariance matrix CL is computed as a first order
approximation:

CL = JP CP JT
P , (10)

where JP is the Jacobian of this transformation
w.r.t. P:

JP =


∂l2
∂x1

∂l2
∂y1

∂l2
∂x2

∂l2
∂y2

∂ϕ1

∂x1

∂ϕ1

∂y1

∂ϕ1

∂x2

∂ϕ1

∂y2
∂ϕ2

∂x1

∂ϕ2

∂y1

∂ϕ2

∂x2

∂ϕ2

∂y2

 . (11)

3.4 Robot pose uncertainty in the global frame

The last step in the pose uncertainty evaluation
is to show how the uncertain distance and an-
gles to the landmark influence the position and
orientation of the robot in the global frame. For
notational simplicity, it is assumed here that the
observed landmark is located in the origin of the
global coordinate system. Position of the camera
(and thus the robot) in the global frame is de-
scribed by the vector XR = [xr yr θr]T , and
computed from the formula:

xr = l2 ∗ cos(ϕ2 − ϕ1), (12)

yr = l2 ∗ sin(ϕ1 − ϕ2), (13)

θr =−ϕ2. (14)

The uncertainty of XR is described by the co-
variance matrix CRland

(4), which is a result of
the uncertainty propagation from the vector L
described by CL. Because the relation between L
and XR described by (12), (13), (14) is nonlinear,
the covariance matrix CRland

is computed from a
first order approximation:

CRland
= JLCLJT

L, (15)

where JL is the Jacobian of (12), (13), (14) w.r.t.
L :

JL =


∂xr

∂l2

∂xr

∂ϕ1

∂xr

∂ϕ2
∂yr

∂l2

∂yr

∂ϕ1

∂yr

∂ϕ2
∂θr

∂l2

∂θr

∂ϕ1

∂θr

∂ϕ2

 . (16)

Beside the monocular vision system, the robot
uses odometry, and updates it’s pose from time



Fig. 3. Influence of the robot position w.r.t. the
landmark on the position uncertainty.

to time if a landmark is available. The robot uses
a Kalman filter to fuse both pose estimates. In
this fusion procedure, pose vectors are weighted
by their uncertainties, CRland

and CRodo
, respec-

tively, which have been obtained from the above
described procedure and from the model of the
robot odometry (Crowley, 1996).

The graphical representation of the positional un-
certainty of the robot is an equiprobability ellipse
(Smith and Cheeseman, 1987). In Fig. 3 the pre-
dicted uncertainty ellipses in three different rela-
tive positions of the robot are shown, for the 95%
probability threshold. The landmark is shown as a
black mark in the top of the images. The grey areas
on the images contain the predicted shape of the
landmark frame, as it is seen by the virtual robot
camera. The small white areas on those figures
indicate primary uncertainty.

4. EXPERIMENTS AND RESULTS

A series of experiments has been undertaken to
evaluate the accuracy of the presented localiza-
tion method in practice. The robot was equipped
with a Panasonic WV-CP230/GE colour camera,

Fig. 4. Camera configurations examined in the
experiment.

Fig. 5. Mean errors in l2 (in mm).

Fig. 6. Mean errors in ϕ2 (in deg.).

connected to a low-cost AverMedia BT8x8 chip-
based frame grabber. The lenses used had the focal
length λ=6mm.

The aim of the experiments was to obtain a map
of the positioning accuracy as a function of the
relative spatial configuration between the robot
and the landmark. Figure 4 illustrates the spatial
layout of the points, in which the positioning
accuracy has been surveyed, and the number of
experiments performed for the particular point.
Initial experiments have shown that the error map
is symmetrical, thus only a half of the area has
been surveyed thoroughly. The experiments have
been performed in varying lighting conditions.

The results from the localization program have
been compared against the ground truth obtained



Fig. 7. Mean pose errors in x (in mm).

Fig. 8. Mean pose errors in y (in mm).

by measurements performed with an ordinary me-
ter and a coarse grid (cell size 0.5m) painted on the
floor. Figures 5 and 6 show the maps of average
values of errors for the parameters computed by
the localization procedure, i.e. for l2 and ϕ2. Fig-
ures 7 and 8 show the errors in the robot position,
along the x and y coordinate, respectively.

The experiments have demonstrated, that the po-
sitioning errors depend on the distance between
the camera and the landmark, and on the angle
between the camera optical axis and the landmark
plane. According to the experimental results, the
robot can made the best use of a landmark which
is in front of it, and within a distance of about 2
meters. In such a case the positioning accuracy of
5 cm is achievable in both x and y coordinates,
with an orientation error smaller than 2o. The
obtained error maps show some outliers, what can
be attributed to errors in the surveyed ground
truth and/or to the large image distortions, which
have been occasionally observed in the pictures
taken with the AverMedia frame-grabber. A large
number of experiments has to be undertaken in
order to explain and eliminate such outliers by
statistical methods.

5. CONCLUSIONS

This article presents a novel method for recogni-
tion of passive visual landmarks. Owing to this
method, a robot can use it’s on-board camera for
global localization, achieving both high accuracy
and robustness against problems typical to the

passive vision-based methods. Although the pre-
sented landmark recognition method is quite com-
plicated, the experiments have shown that it’s lo-
calization accuracy outperforms methods based on
simple processing of grey-level images (Hallmann
and Siemia̧tkowska, 2001).

Moreover, a theoretical analysis of the image pro-
cessing error propagation to robot pose has been
given. The role of this theoretical model is twofold:
it enables computation of the covariance matrix
from the actual measurements, and permits pre-
diction of robot pose uncertainty before image
processing takes place. The localization accuracy
has been evaluated experimentally, confirming the
presented error propagation model.
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