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Abstract—In this paper, we present a novel probabilistic com-
pact representation of the on-road environment, i.e., the dynamic
probabilistic drivability map (DPDM), and demonstrate its utility
for predictive lane change and merge (LCM) driver assistance dur-
ing highway and urban driving. The DPDM is a flexible represen-
tation and readily accepts data from a variety of sensor modalities
to represent the on-road environment as a spatially coded data
structure, encapsulating spatial, dynamic, and legal information.
Using the DPDM, we develop a general predictive system for
LCMs. We formulate the LCM assistance system to solve for
the minimum-cost solution to merge or change lanes, which is
solved efficiently using dynamic programming over the DPDM.
Based on the DPDM, the LCM system recommends the required
acceleration and timing to safely merge or change lanes with
minimum cost. System performance has been extensively validated
using real-world on-road data, including urban driving, on-ramp
merges, and both dense and free-flow highway conditions.

Index Terms—Dynamic programming, lane change, merge,
predictive driver assistance, probabilistic modeling.

I. INTRODUCTION

HE National Highway Transportation Safety Adminis-

tration reports that 49% of fatal crashes feature a lane
or roadway departure and that a majority of crashes feature
more than one vehicle [1]. Of particular concern are complex
maneuvers such as lane changes and merges (LCMs), which
require the driver to maintain awareness of the vehicles and
dynamics in multiple lanes. According to the NHTSA, lane-
change crashes account for some 500000 crashes per year
in the United States [2]. Merge maneuvers at highway ramps
account for far more crashes per mile driven than other highway
segments [3].

Lane changes are a common driving maneuver, during which
the ego-vehicle transitions from its current lane to an adjacent
lane, either on the right or left side. A driver may execute a
lane change for a variety of reasons, including traffic flow or
congestion, navigation, or preference. Lane changes commonly
take place in highway driving, as shown in Fig. 1(b), and
in urban driving, as shown in Fig. 1(a). Merges take place
during the transition from urban to highway driving, during
which a temporary merge lane exists for the vehicles to rapidly
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accelerate up to highway speeds. A typical merge scenario is
shown in Fig. 1(c).

In recent years, there has been great progress in sensing
and computation for intelligent vehicles. Sensors have become
higher in fidelity and cheaper over time. Computation has
become cheaper and faster, whereas the advent of multicore
architectures and graphical processing units (GPUs) allows
for parallel processing. Research efforts that utilize intelligent
vehicles, equipped with advanced sensing and computing tech-
nology, have proliferated in recent years, resulting in robust
environmental perception using computer vision [4]-[6], radar
[7], and lidar [8]. Using the perception modules available, re-
searchers have begun to address decision-making and assistance
for complex maneuvers, while keeping the driver in the loop.

Until recently, decision-making for driver assistance lane
changes has fit a binary decision paradigm, the systems based
on fundamental on-road perception answering a yes/no ques-
tion. Many decision systems for lane changes have focused on
when a lane change is infeasible, with sensors monitoring the
vehicle’s blind spots [9], [10]. When a driver is being assisted,
the feedback is delivered as negative human-machine interface
(HMI), communicating that the maneuver is not feasible. Com-
mercially available active safety systems such as lane departure
warning (LDW) or side warning assist (SWA) typically feature
negative HMI warnings.

In this paper, we develop predictive driver assistance for
LCMs, with an eye toward positive HMI. The system in-
troduced in this paper is intended to communicate that the
maneuver is feasible, as well as when and how to execute the
LCM. The vehicle maintains full awareness, standing ready and
available to help the driver navigate the on-road environment,
when the driver requests it.

Fig. 2 illustrates the full spectrum of maneuver-based deci-
sion systems in intelligent vehicles. At one end, we have fully
manual driving. Cooperative driving will integrate predictive
driver assistance systems and autonomous driving, allowing for
seamless transfers of control between the driver and the vehicle.
At the far end of the spectrum is fully autonomous driving,
which remains an active research area [11].

In this paper, we introduce a novel compact representation of
the on-road environment, i.e., the dynamic probabilistic driv-
ability map (DPDM), and demonstrate its utility in predictive
driver assistance for LCMs. The DPDM is a data structure
that contains spatial information, dynamics, and probabilities
of drivability, readily integrating measurements from a variety
of sensors. In this paper, we develop a general predictive LCM
assistance system, which efficiently solves for the minimum-
cost maneuver, using dynamic programming over the DPDM.
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Fig. 2. Full spectrum of maneuver-based decision systems in intelligent ve-
hicles, with implications for driving. At one end, there is fully manual driving.
Active safety systems, such as LDW and SWA, are already becoming more
commercially available. Predictive driver assistance remains an open area of
research. Cooperative driving will integrate predictive systems and seamlessly
allow handoffs of control between the driver and autonomous driving. At the far
end of the spectrum is fully autonomous driving, with no input from the driver.

The full system provides timing and acceleration recommenda-
tions, which are designed to advise the driver when and how to
merge and change lanes. The LCM system has been extensively
tested using real-world on-road data from urban driving, dense
highway traffic, free-flow highway traffic, and merge scenarios.
Fig. 3(a) shows the DPDM from a typical highway segment,
whereas Fig. 3(b) shows the HMI concept, which communi-
cates recommendations to the driver via head-up display. The
full system has been fully implemented in C++ and runs in
real time on the road, in the AUIA Audi A8 instrumented
automotive testbed. The remainder of this paper is structured
as follows: Section II provides a brief review of related work
in the research literature. Section III details the theoretical
formulation for the DPDM. Section IV details LCM assistance
based on the DPDM. Section V features experimental results.
Finally, Section VI offers concluding remarks and discussion.

II. RELATED RESEARCH

Here, we discuss related work in the research literature. In
particular, the work presented in this paper relates to compact
representations of the on-road environment and to decision-
making and assistance during LCM maneuvers. In the follow-
ing subsections, we discuss these areas.

A. Compact Representations

Compact representations of the on-road environment have
been widely used in the literature. Mainly used for processing
raw sensor data, compact representations often comprise the
lowest level of data representation and have been widely used
for data coming from stereo vision [12], radar [13], and lidar
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Lane changes commonly take place in both (a) urban driving and (b) highway driving. Merges take place in the (c) transition from urban to highway

Fig. 3. (a) DPDM. (Left) Lane-change recommendations. The probability of
drivability is indicated by the color of the map cell, with green areas carrying a
high probability and red areas carrying a low probability of drivability. The
DPDM integrates information from lidar, radar, and vision-based systems,
including lane estimation and vehicle tracking. Recommendations for lane
changes are made using this information. (Right) Camera view of the road.
(b) HMI concept is displayed to the driver via head-up display, during merge
and lane-change maneuvers.

[14]. The most common compact representations are variations
of Bayesian occupancy filters [15], which are often simply
referred to as occupancy grids. The Bayesian occupancy filter
is a grid-based representation of sensor data, initially proposed
for processing lidar data, in which cells of fixed dimensions
comprise a grid structure, each cell carrying a probability of
being occupied. Raw data points from lidar scans are placed
within the grid, and probabilities are propagated over time using
recursive Bayesian filtering [15].

Occupancy grids in the tradition of Bayesian occupancy filter
have been used in various studies in the intelligent vehicles
domain. In [13], GPU processing was used to implement ef-
ficient occupancy grid computations on lidar and radar data,
with applications to road boundary detection. In [16], a pyramid
subsampling scheme was used to increase the efficiency of
occupancy grid computations using lidar data. In [14], a 3-D
occupancy structure was used to interpret raw lidar data. In [17],
sequential likelihood ratios were computed for stereo-vision
occupancy grids. In [8], occupancy grid methods were used to
detect pedestrians using lidar. In [18], a three-state model for
cells included representation as occupied, hidden, or free. In
[19], a weighted sum of lidar and stereo-vision observations
was used, the weight based on the confidence in the sensor’s
measurement.

A second major approach to occupancy grid computation
has been based on Dempster—Shafer belief mass theory. Instead
of computing the occupancy of a cell using probabilities, the
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occupancy of a cell is represented by a belief mass, often
a weighted sum of historical and currently observed data.
The belief mass approach is used in [12] for occupancy grid
computation using stereo-vision data and in [20] for lidar data.
In [21], lidar and geo-referenced mapping data were fused for
generating and refining the occupancy grid.

In [5], the stereo-vision data are represented in an occupancy
grid composed of particles. Each cell is a particle, in the
tradition of particle filtering, and carries a probability as well as
a velocity. This representation enables low-level tracking from
the raw occupancy data itself. In [22], stereo-vision data are
represented as an elevation map, which is a compact represen-
tation that models the ground surface and surrounding obstacles
more explicitly.

In this paper, we use a compact representation for high-
level reasoning and decision-making. Rather than populate
our compact representation with raw sensor data, we use a
compact representation to efficiently interpret and access high-
level information from on-board perception systems.

B. Decision-Making During Maneuvers

Early work in intelligent vehicles focused on fundamental
perception problems and straightforward safety applications.
Lane estimation research [23] has been applied to LDW ap-
plications. Blind-spot detection of vehicles using radar [7] and
vision [10], [24] has been used for SWA applications. In recent
years, there has been movement toward more sophisticated
applications for negotiating on-road maneuvers.

Lane-change maneuvering has been a topic of great research
interest. In [25], vision was used for detection of lanes and
drivable area, and automatic lane changes were executed using
a fuzzy controller on a scaled-down model test track. There
has been also interest in automatic control of vehicles in a
manner that approximates driver maneuvering [26]. In [27],
statistics were collected on real-world driver maneuvering and
dynamics during lane changes. These statistics were used to
generate realistic lane-change trajectories. In [28], a general
criticality criterion was defined, and lane-change maneuvering
was suggested using simulators, but specific dynamics were
not suggested. In [29], a set of lane-change trajectories was
generated and evaluated, with a controller actuating a safe lane
change trajectory.

In [9] and [30], a decision for whether to change lanes was
made using Bayesian decision graphs, which are a variant on
dynamic Bayesian networks. The Bayesian network served to
propagate measurement uncertainty into the decision-making
process. In [31], this work was augmented by computing the
expected utility, which is a measurement derived from Shannon
entropy, of changing lanes. In [32], collisions were mitigated by
computing TTC times and planning evasive maneuvering.

Lane-change research has also focused on the driver. In [33],
development of HMI for lane change was explored, using four
predefined open-loop maneuvers, including constant-velocity
“lane change,” “lane change with acceleration,” “lane change
with deceleration,” and “no lane change.” Identifying and pre-
dicting the driver’s intent to change lanes on highways has been
also an area of research interest [34].

Urban Intelligent Assist
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Fig. 4. (a) Audi automotive testbed used in this study. (b) Depiction of the
sensing capabilities of the instrumented testbed.

Most prior work dedicated to merge maneuvers has included
infrastructure-based system integration. In [35], the oncoming
and merging vehicles have a communication channel via local
infrastructure, i.e., the vehicle-to-infrastructure (V2I) commu-
nication node allowing the vehicles to share dynamics informa-
tion to help time the merge, with a fuzzy controller actuating
the maneuver. In [36], V2I channels are also used to share
dynamics between vehicles. It is shown that this approach
increases throughput in simulation.

III. DPDMs

In this paper, we introduce the DPDM, a compact repre-
sentation for the on-road environment. The DPDM represents
the ego-vehicle’s surround in terms of drivability in accor-
dance with spatial, dynamic, and legal constraints. Unlike many
compact representations, which are used to represent raw low-
level sensor data, the DPDM is used for high-level interpreted
data. Instead of serving as a tool to facilitate object detection
and tracking, the DPDM readily integrates data from on-road
tracking modules, sensors, and maps, in order to compute
the drivability of the ego-vehicle’s surround. Here, we detail
the DPDM, including theoretical basis, assumptions, and the
observation sensor modules used in this study. First, we briefly
describe the instrumented automotive testbed and its sensing
capabilities, as shown in Fig. 4(a) and (b).

1) External Vision: For looking out at the road, the AUIA
experimental testbed features a single forward-looking camera,
captured at 25 Hz. This camera is capable of object detection
and tracking both as a standalone unit [4] and as part of sensor-
fusion setups [37]. In this paper, we use the camera for lane
marker detection and lane tracking. The right half of Fig. 3
shows the camera view from the forward-looking camera’s field
of view.
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2) Radar: For tracking vehicles on the sides of the ego-
vehicle, we employ two medium-range radars, which have
been installed behind the rear-side panels on either side of the
vehicle. The radars are able to detect and track vehicles as they
overtake the ego-vehicle on either side.

3) Lidar: The AUIA testbed features two lidar sensors, i.e.,
one facing forward and one facing backward. We use these
sensors for detecting and tracking vehicles, as well as detecting
obstacles such as guardrails and curbs. The lidars provide high-
fidelity sensor information and are able to estimate parameters
such as vehicle length, width, and orientation, as well as posi-
tion and velocity.

A. Drivability Cell Geometry

The DPDM is comprised of an array of cells that characterize
the drivability of a defined geometric region. Physically, the
drivability cells are convex quadrilaterals, adapting their geom-
etry to that of the lanes. The length of a drivability cell is fixed to
5.0 m, chosen to spatially represent drivability in terms of “car
lengths.” The choice of a fixed length for a drivability cell pro-
vides an intuitive measure for drivers and implies that a drivable
cell should fully accommodate the ego-vehicle. Partitioning the
drivable space also allows us to discretize the computation for
LCMs. We parametrize a drivability cell using the four points
that serve as vertices for the convex quadrilateral and, dually,
the four line segments that connect them.

We use video from the vehicle’s forward-looking camera to
perform lane estimation via an embedded system, including de-
tection of up to four lane boundaries, corresponding to the ego
lane, left adjacent lane, and right adjacent lane. The drivability
cell’s geometry is derived from a piecewise-linear approxima-
tion to the road geometry. We model the lane geometry using a
clothoid model [38], as shown in

1 1
LZ(Z) = ECI’iZ?) + ECQ’Z‘Z2 +tan(1/))Z =+ LO,i7
1 E {1,...7N}. (1)

We parametrize the lane boundaries as a function of longitu-
dinal distance Z, curvature (Y, derivative of curvature C7, the
ego-vehicle’s angle with respect to the lane boundaries @, and
the lateral position of each lane marking L, for lane markings
i€ {l1,..., N}. We use the clothoid model for up to 25 m from
the ego-vehicle, beyond which we use a linear approximation
based on the Taylor series expansion of the clothoid model, as
given in

Zo = +25
m; = tan(y) + Co i Zo + %CMZ(%

Fig. 5 shows an example of the DPDM adapting its geometry
to that of the road. We note the curvature of the DPDM, as
estimated by the lane tracker module, in accordance with (1)
and (2).
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Fig. 5. Drivability cells are physically modeled as convex quadrilaterals,
which adapt their geometry to the geometry of the roads and lanes. Their width
adapts to the lane width, and they also adapt to accommodate lane curvature.

B. Drivability Cell Probabilities

Beyond geometry, drivability cells carry a probability of
drivability. Lane information comes from the lane estimation
module, which tracks the lanes using the on-board forward-
looking camera. Vehicles and obstacles are detected and tracked
using a sensor fusion system based on lidar and radar sensors.

For vehicle tracking, we use a constant-velocity motion
model. Each tracked vehicle’s state V), at time instant k is
represented by a normal distribution, i.e., p(V;) = N (ug, Xk),
where p; and Y;; represent the expected value and covariance,
respectively. For a tracked vehicle, the motion estimates consist
of the vehicle’s lateral Xj, and longitudinal Z;, position, its
width W}, and length Ly, its lateral A X}, and longitudinal A Z},
velocities, orientation 1), and yaw rate Av. We also predict
the state of tracked vehicles At ahead of time using a linearized
motion model, where w is a noise parameter, i.e.,

EVi|=[Xy AXy Zp AZy Wi Li ¥ Ayy)”
EViyat] =AE[Vi] + wiy At
Ek+At:AEkAT+E[wk+Atw£+At]- 3)

Ego-motion is compensated to solve for absolute motion
using (4). We model the motion of the ego-vehicle using
measurements from the inertial sensors, accessed via the CAN
bus. Given current velocity veg, and yaw rate ¥, the ego-vehicle
moves as follows during time interval At. The Z-direction
represents longitudinal distance, and the X -direction represents
lateral distance, as shown in Fig. 4(b) [39]. Thus

v B e B

Vehicle tracking information influences drivability of a given
cell, as the presence of a vehicle within the cell’s bound-
aries yields a low probability of drivability. In addition to
the presence of any vehicles or obstacles within the cells, the
drivability cells store their positions, dimensions, velocities,
and orientations.

Lane estimation influences the drivability of a given cell for
both physical and legal reasons. The physical dimensions of
a drivability cell are adapted to the estimated lane geometry.
The recognized lane markings indicate the legality of crossing
a given lane boundary. The lane estimation module can detect
solid boundaries, dashed lines, and Bott’s dots. Using local
traffic laws, we model the drivability probability cells that lie
beyond the lane boundaries.

We define the space of sensor observations Y into tracked
vehicles and objects V' and lane marker information L.

The observation due to lane markings is integrated geomet-
rically in the dimensions and spacing of the drivability cells
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and probabilistically using the detected lane markings of the TABLE 1
boundary. We define the observation based on lane markings as DRIVABILITY CELL ATTRIBUTES
I — 0, if marker type is solid or not detected 5) Attribute |_Units/Equations | De.SCfiPtion ‘
1, if marker type is dashed or Bott’s dot. pl, p2, p3, | (X, Z), meters Points that parametrize the convex
p4 quadrilateral

We interpret the lane observation probabilistically, attaching 11, 12,13, 14 ?n):t;: Zre=0. L‘;ﬁgﬁ;ﬁiﬁﬂamemze the convex
observation probabilities to the observed Ly, given the current Position (X, Z), meters Position of vehicles/objects within
state of the cell’s probability of drivability. We use the obser- ) cell ) ) o
vation probabilities P(Ly|Dy) to compute the cell’s drivability Velocity t(?rsié?onzd)’ e Z:lllocny of vehicles/objects within
based on lanes. Size (W, L), meters Width and length of

We define the observation based on vehicles based on the o vehicles/objects within cell
placement of the vehicle, testing whether the vehicle lies within gxnlt{a ;gn’ ](;f;grAeg;) Sﬂgﬁa’iﬁ? of - vehiclefobjects
the boundaries of the drivability cell by testing each corner of degrees/second
the vehicle. Testing whether a given point lies within a convex P(D) Probability Probability that the cell is drivable

polygon can be efficiently computed by taking the inner product
of the point with each of the line segments that define the
polygon, as shown in Algorithm 1. The observation is based on
any of the four corners of a tracked vehicle or detected object
lying within the boundaries of a drivability cell, as shown in (6).

Ve — { 0, if vehicle/object observed partially inside cell
=11, otherwise.
(6)
Algorithm 1 Test Whether a Point Lies Within a Convex
Quadrilateral
result =1
Cell={ly,...,l4} ©Line segments that parametrize the
cell
P=[x z 11T
fori=1—4do
li=la b T
dot = PTl; 1 Dot product of point and line segment
if dot < 0 then
result =0
break
end if
end for

return result

We interpret this observation probabilistically, attaching ob-
servation probabilities to the observed Vj, given the cell’s
current probability of drivability. We use the observation prob-
ability P(Vy|Dy) to compute the cell’s drivability based on
vehicles and obstacles.

At time k, we compute the probability of drivability for a
given cell P(Dy|Y};), given the observations, using (7). We note
that this step is equivalent to evaluating the forward algorithm
[40]. We compute P(Dy|Y}) separately given V' and given L
and take the minimum probability of drivability, i.e.,

Vi=[Vi Li]"
P(Di|Vi) = W
Py = FE

We maintain the probability of drivability by representing
the time series as a two-state Markov chain, shown in (8).
We assume each cell’s probability of drivability to be spa-
tially independent, allowing the observations in Y to implicitly
encode dependence values. The state transition probability II
determines the probability of drivability in the next time instant
k + 1, given the probability in the current time instant k [41];
W41 is a martingale increment process, i.e.,

P(Dk+1|Dk) =1II
D1 =1IDy + Wi1. (®)

Table I summarizes the attributes of the drivability cell. The
drivability cell is implemented as an abstract data class and
contains a drivability probability, geometric parameters, and
the estimated parameters of tracked objects that lie within their
boundaries.

IV. LCM RECOMMENDATIONS

In this paper, we make recommendations for LCM maneu-
vers. The recommendations consist of recommended acceler-
ations and timings to execute the maneuver, specifying how
and when to change lanes or merge into traffic, which is a
problem that features a high number of variables. There are
myriad combinations of surround vehicles, lane configurations,
obstacles, and dynamics to consider. The DPDM allows us to
compactly encode spatial, dynamic, and legal constraints into
one probabilistic representation, which we use to compute the
timing and accelerations necessary to execute a maneuver.

As shown in Table I, each cell of the DPDM carries a proba-
bility of drivability P(D), as well as the position, dimensions,
and dynamics of any tracked vehicles or obstacles that lie within
the cell’s boundaries. We display each cell’s current probability
of drivability encoded in color, with high-probability regions
shown in green and low-probability regions shown in red, as
shown in Fig. 3. We use a total of 100 cells in a 20 x 5 map, for
a 50-m longitudinal and five-lane-width range.

We solve for the lowest cost recommendation to get into
the adjacent lane, by formulating the problem as a dynamic
programming solution over the DPDM. Dynamic programming
breaks down a large problem into a series of interdependent
smaller problems [42]. Using dynamic programming over the
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DPDM serves two key roles. First, the DPDM decomposes
and discretizes the search space, providing computational con-
venience while enabling an intuitive representation for the
driver’s understanding. Second, the use of dynamic program-
ming assures that the algorithm’s solutions preserve direction-
ality in both space and dynamics, while enhancing efficiency by
caching the calculations from spatially dependent cells.

A. Cost Function

We formulate the cost of a given maneuver, decomposing the
cost into spatial, distance, and dynamic components. The spa-
tial component of the cost is based on a given cell’s probability
of drivability. The distance cost is based on the acceleration
necessary to arrive at a given cell location after a given time
period. The dynamic cost is based on the necessary acceleration
to safely execute the maneuver, given the other vehicles in the
surround.

1) Spatial Cost: Integrating a spatial cost into the merge
and lane-change recommendation system addresses two main
concerns. The spatial cost ensures that recommended merge
and lane-change maneuvers do not result in collisions with
vehicles and obstacles in adjacent lanes. It also ensures that
recommended maneuvers are not illegal, the spatial cost often
indicating when and where a given maneuver is valid, i.e.,

Spatial Cost; ; = K (1 — P(D; ;)) . )

We derive the spatial cost from the probability of drivability,
which is stored in the DPDM. For a given cell, the spatial cost is
proportional to the probability that the cell is not drivable. We
set K = 100. Cells with a low probability of drivability carry
a high spatial cost. This formulation allows us to seamlessly
integrate the DPDM into the recommendation computation.

2) Distance Cost: In addition to the spatial cost, each ma-
neuver carries a dynamic cost, based on its necessary accel-
eration and timing for successful execution. We probe each
DPDM cell location in the adjacent lane, within 25 m of the
ego-vehicle. We make use of the fact that it takes a typical
driver 4-6 s to change lanes and base the initial timing of the
maneuver on this fact [43]. The acceleration necessary for a
vehicle to end up at distance D; after time ¢ can be derived
from Newtonian kinematics, i.e.,

1
Dj = fath

> (10)

where j denotes the index of a given DPDM cell, and D;
denotes its longitudinal position in the DPDM’s moving frame-
of-reference. Thus, we compute the acceleration and distance
relative to keeping the current velocity constant, i.e.,

Dist. COStiJ' = (Zij. (11D
We compute the distance cost, deriving it from the Newto-
nian expression for work, i.e., ma - D. We exclude the mass of
the ego-vehicle, instead setting it to identically 1, as in (11).
3) Dynamics Cost: The above expression computes the nec-
essary acceleration for the ego-vehicle to travel a distance in
a given time. However, additional computation is required to
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TABLE II
MERGE DATA, 50 MERGES

Merge Attribute | Measurement

Segment Length, Mean 12.6 seconds
Segment Length, Std. Dev 4.5 seconds
Ego-vehicle Speed, Mean 250 =
Ego-vehicle Speed, Std. Dev 47 =
Ego-vehicle Acceleration, Mean 32 Sﬂz
Ego-vehicle Acceleration, Std. Dev .85 Sﬂz
Recommended Deceleration 20.5%
Recommended Acceleration 51.9%
Recommend Maintain Current Velocity 27.6%

accommodate the dynamics of the surround vehicles. We ini-
tially filter the surround vehicles, based on the current 77'C' or
time-to-collision, computed from a given vehicle’s longitudinal
position x,, and velocity v,, i.e.,

X
T7C = —°>—
Uego — Vo
3 (Uo_Uegu)2 N
o — { glotensl S TTC < 7
0.0, otherwise

e FTTC < 71
tsafc - a .
0.0, otherwise

itTTC <1

1 2
Dsafe _ §asafetsafev '
otherwise

0.0,

Dyn. COStZ‘J‘ = ai7lj,safeDi,.j,safe- (12)

We only take into account vehicles with a T7TC lower
than a threshold 7, which we have set to 5.0 s. For these
vehicles, we solve for the minimum safe acceleration ag,fe,
timing, and distance [9]. We then compute the dynamic cost
from these parameters. Filtering surround vehicles’ based on
the T7T'C' allows the system to compute the dynamics, based
on the surround vehicles that are most pertinent. While all
vehicles feature spatially in the DPDM and consequent spatial
cost computation, only vehicles with appropriate dynamics and
spacing are considered for dynamic cost computation.

Algorithm 2 Min-Cost Maneuver Recommendations

COSt(O, 0) = aO,O,safeDO,O,safe
COSt(l, 0) = al,O,safeDl,O,safe
fori =0— 1do
for j = 0 — 5[25 m ahead] do
A = cost(i,j — 1) > Cost of staying in lane
B = cost(i—1,j) > Costof switching lanes here

cost(i,j) = min(A B)

cost(i, j)+ = a; ;D; ; > Distance Cost

cost(i, j)+ = a; jsateDi jsate > Dynamics cost

cost(i,j)+ = K(1 — P(D;;)) > Spatial cost
end for

end for

min _cost = min; cost(1, j)

Amin = @i jrins bmin = i jrin
return min _cost, Gmin, tmin
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Fig. 6. Histograms of recommended accelerations during maneuvers. (a) Merges. Most of the recommendations require the ego-vehicle to accelerate, which is to
be expected during merge maneuvers. (b) Free-flow highway lane changes. Most of the recommendations involve constant-velocity lane changes or decelerating
to safely accommodate slower vehicles. (c) Dense highway lane changes. Most of the recommendations require a positive acceleration. This is due to the fact
that there is often lane-specific congestion in dense traffic, which results in high relative velocities between adjacent lanes. (d) Urban lane changes. Urban driving
features a roughly equal proportion of acceleration, deceleration, and constant-velocity lane changes.

B. Min-Cost Solution via Dynamic Programming

At each possible DPDM cell location within 25 m of the
ego-vehicle, we compute a cost derived from the spatial cost,
distance cost, and dynamics cost, as detailed in the previous
subsection. The system then recommends the maneuver that
carries the lowest cost to merge or change lanes into the
adjacent lane. We efficiently solve for the lowest cost solution
via dynamic programming over the DPDM.

Algorithm 2 details the dynamic programming steps to com-
pute the cost of merging and the recommended accelerations. We
compute the spatial, distance, and dynamics costs at each cell lo-
cation in the ego and adjacent lanes. We perform the cost com-
putation in the forward and rearward directions and recommend
the maneuver with lower cost for acceleration/deceleration.

Using dynamic programming allows us to efficiently and
correctly identify the lowest cost path into the adjacent lane,
allowing the system to identify overtaking and undertaking
paths around a vehicle in the adjacent lane. The returned rec-
ommendation consists of the minimum cost, the recommended
acceleration, and recommended timing for the maneuver. If the
cost exceeds a threshold, we term the recommendation invalid,
and no recommendation is returned by the system.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the LCM system using real-
world data, captured on roads and highways in San Diego. We
test the system performance during four classes of maneuver:
merge, free-flow highway lane changes, dense highway lane
changes, and urban lane changes.

In each of the scenarios, we provide the following perfor-
mance metrics. We provide statistics that describe the ego-
vehicle’s dynamic state during the sequence and the proportion
of recommendations that require acceleration, deceleration, or
constant-velocity maneuvering. We include histogram plots of
the recommended accelerations. We highlight data from select
sequences, providing time-series plots of recommendations’
accelerations, costs, and plots of the DPDM and camera footage
during the sequences.

A. Merges

We evaluate the system over 50 separate merge events,
captured on San Diego area highways. Merges occur during

the transition from urban to highway driving and take place as
the ego-vehicle enters highway traffic. The sequences are taken
from a number of separate data capture drives and take place
at various times of the day and during various months of the
year. We annotate the merge sequence to include roughly 10 s
of captured data prior to the merge itself.

Table II features statistics on the merges sequences used
in this study. During merge maneuvers, most of the recom-
mendations entail acceleration. This makes sense, as vehicles
typically need to accelerate up to highway speeds as they enter
highway traffic. As shown in Fig. 6(a), while most of the
merge recommendations feature acceleration, there is a peak at
0 (m/s?), which comprises merge scenarios where the system
recommends constant velocity.

We highlight a merge sequence in Fig. 7, during which there
are no pertinent vehicles in the surround, as described by (12).
As such, the only contributions to the cost evaluation come
from the spatial cost of the DPDM, in this case, exclusively
from the solid lane boundary. As shown in Fig. 7(b), at the
beginning of the sequence, the solid lane boundaries render the
DPDM drivability probabilities quite low in the left cells, which
correspondingly contributes high cost to the computation, as
shown in Fig. 7(a). Once the left-lane boundary changes from
solid to dashed, the DPDM probabilities become high in the
left-lane cells, and the spatial cost significantly reduces. At this
point, the system recommends a constant-velocity merge.

In Fig. 8, we highlight a merge in which the system rec-
ommends an acceleration. The top image in Fig. 8 shows the
cost, recommended acceleration, and actual vehicle velocity
over time, whereas Fig. 8(b) and (c) shows the DPDM early and
later in the maneuver, respectively. Early in the maneuver, the
system recommends an acceleration, due to a vehicle in the left
lane. The ego-vehicle accelerates, whereas the surround vehicle
decelerates, and the cost and recommended acceleration reduce
to 0.

B. Highway Lane Changes: Free-Flow Traffic

We evaluate the system for assistance during lane changes
using 25 sequences captured in free-flowing highway traffic.
We distinguish free-flow from dense highway traffic based
on the speed of the ego-vehicle during the segment and on
the number of surround vehicles within a 50-m longitudinal
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Fig.7. We demonstrate the system recommendations in a merge scenario with
no pertinent vehicles in the surround. (a) We plot the cost of merging to left
versus time and the system’s recommended acceleration during the sequence.
Given the lack of surround vehicles, the only on-road constraints to consider
are the lane markings. (b) At the beginning of the merge sequence, the DPDM
cells to the left of the ego-vehicle have a low probability of drivability, because
of the solid lane boundary. This coincides with a very high cost and a null
recommendation to merge. (c) After the lane boundary has transitioned to
dashed markings, the system recommends a constant-velocity merge, with very
low cost.

distance from the ego-vehicle. In free-flow traffic, the ego-
vehicle typically travels at the driver’s preferred speed, uncon-
strained by congestion.

Fig. 6(b) shows a histogram of the recommended acceler-
ations for free-flow highway lane changes, whereas Table III
presents statistics on the same data set. A large portion of rec-
ommendations involve deceleration in free-flow traffic, mainly
to change lanes behind slower-moving vehicles. We note that the
average speed during free-flow highway segments is 29 (m/s),
or roughly 65 mi/h, which is the speed limit on southern
California highways. There is also a peak in the histogram of
recommended accelerations at 0 (m/s?), for constant-velocity
lane changes.

Fig. 9 examines a sequence during which the system recom-
mends a deceleration in order to change into the right lane.
Early in the sequence, there is a slower vehicle in the right
lane, ahead of the ego-vehicle. The lowest cost maneuver to
change into the right lane is a deceleration, as shown early
in Fig. 9(a). As the ego-vehicle passes the slower vehicle, the
lowest cost maneuver becomes a constant-velocity lane change.
The slower-moving vehicle exits the freeway and does not show
up in the DPDM in Fig. 9(b).

C. Highway Lane Changes: Dense Traffic

We evaluate the lane-change recommendations using 25
segments captured in dense highway traffic. Fig. 6(c) plots the
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Fig. 8. 'We demonstrate the system recommendations during a merge scenario
that requires acceleration. (a) We plot the cost, recommended acceleration, and
vehicle velocity versus time during the merge sequence. (b) At the beginning of
the sequence, the DPDM cells to the left carry a low probability of drivability,
as there is a vehicle in the left blind spot. (c) As the sequence progresses, the
system recommends an acceleration in order to create a safe distance between
the ego-vehicle and vehicle to the left. (d) Once the ego-vehicle has adequately
accelerated, the recommended acceleration drops to 0.

TABLE 1II

FREE-FLOW HIGHWAY LANE CHANGES, N = 25
Lane-Change Attribute | Measurement
Segment Length, Mean 11.5 seconds
Segment Length, Std. Dev 8.9 seconds
Ego-vehicle Speed, Mean 29.0 =
Ego-vehicle Speed, Std. Dev 2.1 %
Ego-vehicle Acceleration, Mean .06 Sﬂz
Ego-vehicle Acceleration, Std. Dev .56 Sﬂz
Left Lane Changes 52%
Right Lane Changes 48%
Recommended Deceleration 40.3%
Recommended Acceleration 29.7%
Recommend Maintain Current Velocity 30.0%

histogram of accelerations for changing lanes in dense traffic,
whereas Table IV provides statistics. The average vehicle speed
in dense traffic is slower than in free-flow traffic. A large portion
of lane change recommendations include acceleration, due to
the high relative velocities found in dense traffic, due to lane-
specific congestion.

We examine a segment from the dense traffic data set, during
which the system makes recommendations to change into the
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Fig. 9. Lane-change recommendations as the (right) ego-vehicle overtakes a
slower vehicle in free-flowing traffic. (a) At the beginning of the sequence, the
right-lane recommendation involves deceleration with some cost. As the ego-
vehicle overtakes the slower vehicle, the cost and required acceleration both go
to zero, and a constant-velocity lane change is possible. (b) The slower vehicle
is in front of the ego-vehicle in the right lane. (c) The ego-vehicle has overtaken
the slower vehicle, which has subsequently exited from the highway.

TABLE 1V
DENSE HIGHWAY LANE CHANGES, N = 25
Lane-Change Attribute | Measurement
Segment Length, Mean 6.2 seconds
Segment Length, Std. Dev 3.2 seconds

Ego-vehicle Speed, Mean 259

Ego-vehicle Speed, Std. Dev 2.6 %b
Ego-vehicle Acceleration, Mean -.03 Sﬂz
Ego-vehicle Acceleration, Std. Dev .67 Sﬂz

Left Lane Changes 58.3%
Right Lane Changes 41.7%
Recommended Deceleration 30.3%
Recommended Acceleration 43.1%
Recommend Maintain Current Velocity 26.7%

left lane. Fig. 10 plots the cost, recommended acceleration,
and DPDM plots from this sequence. At the beginning of the
segment, the system recommends a deceleration, in order to
fit behind a slower vehicle in the left lane. We note that the
ego-vehicle’s velocity stays roughly constant for the first 3 s
of the segment. As the ego-vehicle passes the slower vehicle,
the recommendation becomes a constant-velocity maneuver to
change into the left lane.

D. Urban Lane Changes

We evaluate the performance of the lane-change recommen-
dations using 50 instances captured in urban driving scenarios.
Fig. 6(d) plots the histogram of lane-change recommendations,
whereas Table V provides statistics on the data set. In urban
driving, recommendations for deceleration, acceleration, and

Cost, Recommended Acceleration, and Vehicle Velocity vs. Time
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Fig. 10. Dense highway segment. (a) Cost, recommended acceleration, and
velocity versus time. (b) DPDM from the beginning of the segment. (c¢) DPDM
from the end of the segment.

TABLE V
URBAN LANE CHANGES, N = 50

Lane-Change Attribute \ Measurement
Segment Length, Mean 7.9 seconds
Segment Length, Std. Dev 5.3 seconds
Ego-vehicle Speed, Mean 16.5 =
Ego-vehicle Speed, Std. Dev 45 72
Ego-vehicle Acceleration, Mean -1 Sﬂz
Ego-vehicle Acceleration, Std. Dev 9 Sﬂz
Left Lane Changes 56%
Right Lane Changes 44%
Recommended Deceleration 34.5%
Recommended Acceleration 35.5%
Recommend Maintain Current Velocity 30.0%

constant-velocity lane changes all occur with roughly equal
frequency. This is due to the fact that overall, urban speeds are
slower, and urban driving features a greater range of vehicle
speeds, as shown in Table V. Urban driving also features
discrete-like stoplights, intersections, and driveways.

Fig. 11 shows an urban sequence, during which the LCM
system recommends acceleration to change into the left lane.
At the beginning of the sequence, the system recommends a
constant-velocity change to the left lane. As the ego-vehicle
slows, we see the cost contribution increase due to required dy-
namics, and the required acceleration to change lanes increases.
As the ego-vehicle’s speed increases, the required acceleration
and cost both fall to 0, and the system recommends a constant-
velocity lane change.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have introduced a novel compact repre-
sentation for the on-road environment, i.e., the DPDM, and
demonstrated its utility in driver assistance during LCMs. The
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Fig. 11.  Urban sequence during which the system recommends acceleration
to change into the left lane. (a) We plot cost, recommended acceleration, and
velocity versus time. (b) A vehicle approaches the ego-vehicle with positive
relative velocity in the left lane. As the ego-vehicle speeds up, the recommended
acceleration and cost go to 0.

DPDM interprets the vehicle’s surround as a map of probabili-
ties and geometrically adapts to the lane geometry. The DPDM
compactly encodes spatial, dynamic, and legal information
from a variety of sensing modalities. We efficiently compute
minimum-cost maneuvers by formulating maneuver assistance
as a dynamic programming problem over the DPDM. In this
paper, we have demonstrated the utility of the DPDM for
driver assistance during merges and lane changes in highway
and urban driving. The full system has been implemented in
C++ and runs in real time. An HMI concept for relaying the
maneuver recommendations to the driver via head-up display,
as shown in Fig. 3, has been also developed. It uses simplified
iconography and intuitive colors to assist the driver during
merge and lane change maneuvers. On-road user interactivity
studies are under way.
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