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The chronological history of the important discoveries leading
to our present understanding of the essential clinical, biologi-
cal, biochemical, and molecular features of chronic myelogen-
ous leukemia (CML) are first reviewed, focusing in particular on
abnormalities that are responsible for the massive myeloid
expansion. CML is an excellent target for the development of
selective treatment because of its highly consistent genetic
abnormality and qualitatively different fusion gene product,
p210bcr-abl. It is likely that the multiple signaling pathways
dysregulated by p210bcr-abl are sufficient to explain all the initial
manifestations of the chronic phase of the disease, although
understanding of the circuitry is still very incomplete. Evidence
is presented that the signaling pathways that are constitutively
activated in CML stem cells and primitive progenitors cooperate
with cytokines to increase the proportion of stem cells that are
activated and thereby increase recruitment into the committed
progenitor cell pool, and that this increased activation is
probably the primary cause of the massive myeloid expansion
in CML. The cooperative interactions between Bcr-Abl and
cytokine-activated pathways interfere with the synergistic
interactions between multiple cytokines that are normally
required for the activation of stem cells, while at the same time
causing numerous subtle biochemical and functional abnorm-
alities in the later progenitors and precursor cells. The
committed CML progenitors have discordant maturation and
reduced proliferative capacity compared to normal committed
progenitors, and like them, are destined to die after a limited
number of divisions. Thus, the primary goal of any curative
strategy must be to eliminate all Philadelphia positive (Ph+)
primitive cells that are capable of symmetric division and
thereby able to expand the Ph+ stem cell pool and recreate the
disease. Several highly potent and moderately selective
inhibitors of Bcr-Abl kinase have recently been discovered that
are capable of killing the majority of actively proliferating early
CML progenitors with minimal effects on normal progenitors.
However, like their normal counterparts, most of the CML
primitive stem cells are quiescent at any given time and are
relatively invulnerable to the Bcr-Abl kinase inhibitors as well
as other drugs. We propose that survival of dormant Ph+ stem
cells may be the most important reason for the inability to cure
the disease during initial treatment, while resistance to the
inhibitors and other drugs becomes increasingly important
later. An outline of a possible curative strategy is presented that
attempts to take advantage of the subtle differences in the
proliferative behavior of normal and Ph+ stem cells and the
newly discovered selective inhibitors of Bcr-Abl.
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Introduction

The present treatment of chronic myelogenous leukemia (CML)
is unsatisfactory and the majority of patients are still dying of the
disease. Various treatment protocols with cytotoxic drugs and
interferon have prolonged life by about a year, but more
intensive treatment protocols have not resulted in significant
further improvement. The only curative treatment is by intensive
chemotherapy and/or irradiation followed by rescue with
allogeneic bone marrow transplantation. The donor of the
marrow is usually an HLA-histocompatible (ie tissue-matched)
close relative, but sometimes an unrelated-matched donor. Only
a minority of patients with CML have suitable matched donors
and are eligible for transplantation; elderly patients, many of
whom have other diseases, are unable to tolerate the intensive
therapy required to cure the disease.

In this review, we will first review briefly the essential
characteristics of the disease, especially what is known about
the proliferative abnormalities of the leukemic cells, as a good
understanding of the behavioral differences between the
leukemic and normal hematopoietic cells is essential to the
proper design of effective treatment. We will then propose a
possible curative strategy that attempts to take optimal
advantage of the highly potent and selective inhibitors of Bcr-
Abl that have recently been developed.

History and discovery of Philadelphia chromosome

CML was the first type of leukemia to be described. The original
case reports from Edinburgh in 1845 were entitled: ‘Case of
hypertrophy of the spleen and liver in which death took place
from suppuration of the blood’,1 and ‘Case of disease of the
spleen in which death took place in consequence of the
presence of purulent matter in the Blood’.2 About the same time
in Berlin, Virchow,3,4 then an intern, published his classic
papers entitled, ‘Weisses Blut’ and ‘Weisses Blut and Milztu-
moren’, in which he recognized that the ‘white blood’ and
splenic enlargement did not represent a suppurative process, but
rather represented a distinct disease entity, thereafter called
leukemia. He later distinguished between a predominantly
splenic form of leukemia (CML) and one in which lymphadeno-
pathy was more prominent (chronic lymphocytic leukemia,
CLL). A decade later, Friedreich5 first described acute leukemia,
but it was not until the turn of the century that further conceptual
advances and development of new staining techniques per-
mitted a definitive distinction between the acute and chronic
forms of myelogenous leukemia6,7 and between the myelogen-
ous leukemias and the lymphocytic leukemias and lympho-
mas.8–10Received 13 January 2003; accepted 21 January 2003
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In the ensuing years, CML was gradually distinguished from
myelofibrosis and other myeloproliferative diseases on the basis
of differing clinical and pathological features, but the first real
clue as to its pathogenesis was the landmark discovery in 1960
of an abnormally small chromosome in the leukemic cells,
thereafter designated the Philadelphia (Ph) chromosome.11–14 It
soon became apparent that about 90% of patients who
presented with clinical features of CML had the Ph chromosome
in most of their bone marrow cells during metaphase, but about
10% with similar clinical manifestations did not; the subsequent
literature has customarily referred to Ph+ and Ph� CML. A
decade after it was first described, the Ph chromosome was
identified as a modified 22 chromosome,15 and a few years later
it was shown to not be because of a simple deletion, but rather
to translocation of the distal segment of the long arm of
chromosome 22 to the distal portion of the long arm of
chromosome 9 [t(9;22) (q34; q11)].16 It was generally assumed
that the translocation was reciprocal, and this was confirmed a
decade later when it was demonstrated that the c-abl oncogene
was transposed from its normal position (q34) on chromosome
9 to a breakpoint cluster region (Bcr) on chromosome
22 (q11);17–19 the new fusion Bcr-Abl gene transcribes a novel
chimeric 8.5 kb mRNA20 which in turn encodes a hybrid
210 kDa phosphoprotein p210bcr-abl.21,22

Some patients with supposedly Ph� CML can be shown by
molecular analysis to have a so-called ‘masked’ Ph chromo-
some; the clinical features and molecular changes of such
patients are indistinguishable from those of Ph+ CML pa-
tients.23–28 Other Ph� patients are simply misdiagnosed and
have other myeloproliferative disorders such as chronic
myelomonocytic leukemia, refractory anemia with excess
blasts, idiopathic myelofibrosis, or essential thrombocythemia.
There still remain rare patients who are truly Ph�, but they
comprise only a few percent of the total patients initially
suspected of having CML; they generally respond less well to
treatment, have a shorter survival, a different pattern of tyrosine
protein phosphorylation,29 and appear to have a different
disease than Ph+ patients. About 5% of Ph+ patients have
variant translocations involving other chromosomes, but almost
all the variants also result in a fused Bcr-Abl gene, and their
clinical cause appears to be the same as those with the standard
9;22 translocation.30,31,33

Clonal origin and malignant progression

The Ph chromosome was the first example of a specific
cytogenetic abnormality consistently associated with a human
neoplasm, and for more than a decade after it was discovered, it
remained the only one. Even its consistency as the causative
genetic mutation was initially challenged, partly because of the
limited resolution of karyotypic analytical methods then
available, partly because mitogen-stimulated lymphocytes
usually lack the Ph0 chromosome, and partly because of
confusion with other myeloproliferative disorders. However,
rather than being unique as many investigators proposed at the
time, CML pointed the way to general verification of the somatic
mutation theory of cancer, originally proposed by Boveri32 in
1914. Following development of improved cell culture and
high-resolution banding methods, numerous additional tumor-
specific cytogenetic abnormalities were subsequently de-
scribed,33–37 and the evidence is of course now compelling
that all human cancers result from one or more specific genetic
defects. As the studies progressed, it was recognized that some
of the chromosomal changes are primary tumor-specific

abnormalities that are responsible for the initiation of the
tumors, while other, less specific, secondary changes are
associated with their malignant progression.

Many primary abnormalities, including t(9;22), predispose to
genetic instability and further malignant (ie ‘blastic’) transforma-
tion,38–42 and, experimentally, induction of p210bcr-abl expres-
sion is also associated with genetic instability, clonal evolution,
and phenotypic alterations.43 The leukemic cells in chronic-
phase CML have a striking propensity for further transformation.
After a variable duration of the chronic phase, averaging about
3–4 years, the disease enters an accelerated or blastic phase.
Such malignant progression occurs in about 80% of patients and
probably would eventually occur in all of them if they did not
die of other complications of the disease or of unrelated causes.
No single mutation has been identified that is responsible for
disease progression but rather a number of additional genetic
events have been implicated, most commonly an additional
22q�, isochromosome 17, +8, +19, +21, �Y or +Y.44–47 The Ph
chromosome is almost always preserved in the blastic phase,
and only rare cases of blastic transformation have been reported
with loss of the Ph chromosome and/or deletion of Bcr-Abl
sequences.48–50 Numerous other chromosome changes have
been observed during transition from the chronic to the blastic
phase, at least some of which have been correlated with the
transformed lineage that becomes dominant.40,45,46,49,51–59

Inactivating mutations of p53 are found in 25–30% of patients
undergoing blastic transformation,60,61 and p53 may also be
functionally inactivated by upregulation of MDM2, its negative
regulator.62 Less frequently, there is loss of the retinoblastoma
gene,63 activation of c-myc or N-ras,60,64,65 or deletion of the
p16 tumor suppressor gene.66 Other changes include over-
expression of EV11 and generation of other fusion genes
resulting from other additional translocations, t(3;21): acute
myeloblastic leukamia (AML) 1/MDS1/EV11; t(8;21):AML/
erythropoietin (ETO); and t(7;11):NUP98/HOXA9.67–69 There
appear to be multiple mechanisms whereby Bcr-Abl contributes
to induction of DNA damage and impairment of repair.70–72

Thus, unlike the highly consistent finding of the p210bcr-abl in the
chronic phase of CML, different additional mutations occur as
well as other abnormalities caused by Bcr-Abl that are
associated with the partial or complete arrest of maturation that
is characteristic of the progenitor cells in the accelerated and
blastic phases of the disease. The direction of differentiation is
variable in the accelerated and blastic phases, and transitional
forms may occur between the chronic, accelerated, and blastic
phases.73–78

In most solid tumors, as well as in some hematopoietic
tumors, a cascade of genetic alterations occur as the tumors
progress from their earliest benign stages to become highly
malignant tumors.33,79–85 In some cases, the cells may be highly
malignant almost at the onset whereas in others the transition
may take place gradually over months or years. The secondary
genetic changes are often associated with the acquisition of
additional properties such as the ability to invade underlying
tissues and blood or lymphatic vessels, the capacity to form
metastatic foci, and the production of angiogenic molecules to
promote neovascularization.81,84,86,87 In contrast, leukemic
cells do not necessarily need to acquire such additional
properties since they are distributed naturally throughout the
entire hematopoietic system and lethality generally results from
complications associated with suppression of normal hemato-
poiesis, rather than from infiltration of vital organs, although the
latter can also take place. Thus, especially in the acute
leukemias and blastic phase of CML, although additional
mutations often occur with disease progression, fewer genetic
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changes may be necessary for leukemia to exert a lethal effect
than in the case of slowly evolving solid tumors.88,89 Rather than
merely reflecting the more traditional clonal evolution theory90

with stepwise activation of growth-promoting oncogenes and
inactivation of tumor suppressor genes, Weinstein91,92 has
recently proposed that at least some of the secondary mutations
may instead represent an adaptive response of the tumor cells in
order to maintain a homeostatic balance favoring viability and
growth.

Based on the occurrence of CML in patients with chromo-
some mosaicism and in those heterozygous for glucose-6-
phosphate dehydrogenase (G6PD), there is good evidence that
the leukemic population arises from a single cell because the Ph
anomaly has been found to be restricted to just one of their dual
cell lines,45,46,59,93–97 and the clonal origin of CML has been
amply confirmed using X-chromosome gene probes98,99 and
other molecular techniques.19,100–103 The presence of the Ph
chromosome in erythrocyte, granulocyte, monocyte, and
megakaryocyte precursors indicates that the original transforma-
tion occurred in an ancestral stem cell common to these cell
types; it is absent in the majority of mature lymphocytes,
although in about 20–25% of patients in chronic phase some of
the B cells contain the Ph marker and early B-cell progenitors
predominate in about 25% of patients in blastic transforma-
tion.73,74,78,104 However, the level of expression of p210bcr-abl in
Epstein–Barr virus transformed B-cell lines that retain Bcr-Abl is
lower and more variable than in myeloid cell lines derived from
patients in blastic phase105 T-lymphocytes have only rarely been
found to be Ph+ either during the chronic or blastic phases of the
disease,106,107 but bilineal (T lymphoid/myeloid) Ph+ progeni-
tors may be involved in some cases of blastic transformation,108

and quadralineal involvement was reported in one patient with
Ph+ ALL.109

It was recently reported that variable proportions of endothe-
lial cells in CML patients contain the Bcr-Abl fusion gene,
suggesting that they may be derived from a common hemangio-
blastic progenitor cell110. However, detection of the Bcr-Abl
fusion gene relied entirely on fluorescence in situ hybridization
(FISH), and only two patients displayed colocalization signals
that were well above the background level of false-positive
results.111 Other recent studies have also supported the concept
that multipotent stem or progenitor cells exist in the bone
marrow, brain, and other organs that exhibit considerable
‘plasticity’,112–114 but further work is needed to better define the
true nature of these multipotent stem cells and their relation to
stem cells that are restricted to hematopoiesis, at least under
normal physiological conditions.

Is Bcr-Abl the primary and sole cause of CML?

A critical question is whether the 9;22 translocation is the
primary event in the causation of CML, or whether there may
have been a pre-existent abnormality in the original clonally
transformed (Ph+) stem cell, as well as perhaps in other Ph�
stem cells. There are a few case reports in which patients with
CML have developed the Ph chromosome later in the course of
the disease or in whom the Ph chromosome was initially present
but later disappeared,49,50,115–121 but these reports are infre-
quent. Fialkow et al96 proposed a multistep pathogenesis model
for CML,122 suggesting that at least some of the Phnegative
progenitor cells are clonal and represent an earlier stage in the
evolution of the Ph+ leukemic clone. The evidence cited was
that in a limited number of women with CML who were
heterozygous for G6PD, a preponderance of a single enzyme

was found in their Ph� B-lymphocytes. However, there are
alternative possible explanations for this observation such as
pseudoclonality,75,123 and no confirmatory evidence for a pre-
existent abnormality has yet been found. Numerous studies have
shown that the Ph� progenitors that repopulate the bone
marrow after intensive chemotherapy, interferon, or Imatinib
Mesylate, are polyclonal,93,94,97,124–132 and it has also been
shown that Ph� hematopoietic progenitors are polyclonal in
long-term culture.133 There are several recent reports that
patients in remission after treatment with Gleevect, and
especially after prior treatment with cytarabine or idarubicin,
have a significantly increased incidence of clonal cytogenetic
abnormalities in Ph� cells.124,134 These observations might
indicate there was a pre-existent underlying hematopoietic
disorder in some CML patients, but alternatively might suggest
that Ph+ targeted treatment with Gleevect favored the
outgrowth of minor abnormal Ph� clones with cytogenetic
lesions caused by Gleevect and/or by prior exposure to other
cytotoxic drugs.

A related question is whether a second event may be required
before the stem cell bearing the Bcr-Abl translocation,
presumably acquired by chance, becomes fully activated or
escapes from some as yet unidentified negative control
mechanism to cause overt disease. Studies on monozygotic
twins with concordant leukemia135,136 and retrospective scru-
tiny of neonatal blood spots of patients with leukemia137–139

have shown that common leukemia fusion genes in infants and
children with acute leukemia may arise in utero and are present
in the blood before and after birth. However, the modest
concordance rate in monozygotic twins and the occasional
protracted postnatal latency of up to 14 years suggest that
additional postnatal exposure and/or second genetic promo-
tional events may sometimes be required for the development of
clinically evident leukemia. Using highly sensitive techniques, it
was found that cord bloods of healthy newborns contain
common leukemia fusion genes at a frequency 100-fold greater
than the true incidence of the corresponding leukemia, and,
moreover, that the frequency of cells harboring these genes
indicates that a substantial clonal expansion of a (preleukemic)
progenitor population had taken place.140 These observations
reinforce the concepts that a second event may sometimes be
required for the development of overt leukemia and that there
may be ‘a sustained, benign preleukemic phase in which the
proliferation of the clone is more or less balanced by negative
control mechanisms such as cell death’ (Greaves, personal
communication).

Unexpectedly, using sensitive detection methods, Bcr-Abl-
containing cells were found in the blood of 22/73 and 12/16
normal, healthy adults and 1/22 children, but not in 22 samples
of cord blood.141,142 It seems most likely that these Bcr-Abl-
containing cells are later committed progenitors and precursors
whose progeny are destined to die after a limited number of
divisions. Whereas this view has been challenged on the basis of
numerical and kinetic considerations,143 it still remains quite
possible that there are primitive Bcr-Abl-containing progenitors
with fairly extensive, but still limited self-renewal capacity, that
could continue to produce sufficient Ph+ precursors to be
detectable by the methods used for many years, but without ever
progressing to cause overt leukemia. The methods used to detect
Bcr-Abl in normal blood were not sensitive enough to definitely
exclude detection of (highly enriched) rare Ph+ stem cells
potentially capable of infinite expansion. Thus, whereas there is
still no positive conclusive evidence, the possible requirement
for a second event to fully activate stem cells that have perhaps
accidentally acquired Bcr-Abl cannot definitely be excluded.
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The strongest evidence that the 9;22 translocation may be the
primary and sole cause of chronic-phase CML lies in the results
of cell transfection experiments using retroviral p210bcr-abl

constructs in vitro and in transgenic mice, although it should
be noted that overexpression of Bcr-Abl oncoproteins in animal
models may not exactly mimic the clinical disease. Various
murine models have been used, either introducing Bcr-Abl in
the mouse genome, or engrafting human CML or normal stem
cells retrovirally transduced with Bcr-Abl in immunodeficient
mice. Depending on the model, a variable incidence of some
type of acute leukemia or of a CML-like syndrome has been
produced in the mice.50,117,144–153 In some of the mice,
secondary chromosomal changes were observed, analogous to
progression from chronic to blastic phases in the human
disease,154 while in other studies cooperation of Bcr-Abl with
other oncogenes was required for the development of acute
leukemia.155 Employing tetracycline-regulated expression of
Bcr- Abl from a promoter engineered for expression in primitive
stem cells, it was shown that Bcr-Abl expression alone is
sufficient to increase the number of multipotent and myeloid
lineage committed progenitors in a dose-dependent
manner while suppressing development of erythroid progeni-
tors, and moreover that these effects are reversible upon
extinguishing Bcr-Abl expression.156 Based on the evidence
currently available, it seems reasonable to conclude that
whether or not some additional promotional event may be
necessary for the development of overt leukemia, Bcr-Abl is
probably the primary causal event in the chronic phase, and that
additional but much less consistent alterations are required for
blastic transformation.

Bcr-Abl oncogenes and leukemogenesis

Bcr-Abl is a large, complex fusion oncogene with multiple
functional sites that may contribute to the transformed
phenotype. Unlike normal c-abl that can shuttle between the
nucleus and cytoplasm, p210bcr-abl is localized to the cytoplasm
where it is in an excellent position to disrupt multiple membrane
and cytosolic signaling pathways. There are several recent
comprehensive reviews of the normal c-Abl and the closely
related Arg (Abl2) gene,157 Bcr,158–163 and the Bcr-Abl tyrosine
kinases164–169 that describe in considerable detail how altered
signaling may be related to the pathogenesis of leukemias as
well as of other diseases including Alzheimer’s and other
neurodegenerative diseases.157,170–173 The oncogenic Bcr-Abl
proteins have been implicated in altering numerous pathways
affecting cell proliferation, survival, cell adhesion, migration,
stress responses, and DNA repair, but in this review we will
focus attention on Bcr-Abl’s essential role in disruption of
signaling pathways that lead to the massive myeloid expansion
that is the hallmark of CML.

c-abl is expressed throughout murine gestation and ubiqui-
tously in adult mouse tissues, with highest levels in thymus,
spleen and testes, and is involved in regulating numerous
essential cell functions.157,161,174,175 Mice homozygous for
mutated c-abl became runted and died within a few weeks
after birth, and many had thymic and splenic atrophy and
lymphopenia.176

c-abl was first identified as a proto-oncogene in the genome of
the Abelson murine leukemia virus, which specifically targets
early B cells.177 The v-abl gene is derived by recombination of
c-abl with the viral Gag gene that replaces the SH3 domain, a
negative regulatory domain, creating a fusion protein with
unregulated high kinase activity. The viral Gag sequence also

provides a myristoylation signal causing v-abl to localize
predominantly at the plasma membrane.178 The protein tyrosine
kinase (PTK) activity of c-abl is normally tightly regulated,179

and both the deregulation of kinase activity and abnormal
cellular localization of v-abl and Bcr-Abl are important elements
governing the transforming potency of these fusion proteins,
although other domains of the fusion protein including SH2 and
SH3 may also contribute.165,180 The normal p140c-abl protein is
localized both to the cytoplasm and the nucleus,181 and c-abl
binds specifically to DNA, suggesting that this may be critical to
its normal biological function.174,182 In contrast, the chimeric
p210bcr-abl and other Abl transforming proteins are only present
in the cytoplasm,145,146 and lack the ability to bind DNA.182

McWhirter and Wang183 found that Bcr sequences not only
deregulate Abl tyrosine kinase, but also activate an actin
filament-binding function associated with c-abl. Based on
observations in fibroblasts, they proposed that the normal
function of Bcr is related to maintenance of the cytoskeleton,
and that the chimerization of Bcr and Abl permits Abl to bind to
actin microfilaments. Other studies have also shown that
a-ab1 is important in cytoskeletal regulation and mainte-
nance.171,180,184,185 Since actin fibers are vital elements
involved in maintaining cell shape and in regulating many
cellular functions and interactions, dysregulation of actin could
have a critical role in altering cell growth and maturation.
The c-abl F-actin binding domain has been mapped and
while F-actin-binding has been reported to contribute to the
transforming ability of Bcr-Abl,161,183 recent studies suggest
that although F-actin localization may have a pivotal role
in modulating adhesion, it is dispensable for murine CML
development.186

Domain 1 of Bcr consisting of 63 amino acids is a coiled-coil
oligomerization domain that forms a homotetramer, and
tetramerization of Bcr-Abl through this first Bcr domain was
found to be correlated both with activation of tyrosine kinase
and with the F-actin-binding function of Abl.162 It has also been
reported that Bcr encodes a GAP protein for the ras-related GTP-
binding protein p21rac, suggesting that Bcr may be a target for
regulation by rac.187 Arlinghaus158 has proposed that Bcr and
Abl may interact together with other proteins in normal
hematopoietic cells and that when the activated Bcr-Abl protein
is inserted in the normal multiprotein complexes it perturbs and
uncouples these complexes from ligand-induced activation.159

Bcr can function as an inhibitor of Bcr-Abl providing there is an
elevated level of Bcr expression relative to Bcr-Abl.188

The reciprocal Abl-Bcr fusion gene is expressed in about two-
thirds of CML patients,164 but although all the junctions in the
Bcr-Abl transcripts are in-frame and should allow for functional
Abl-Bcr fusion proteins to be translated, their presence could not
be detected in cells from CML patients.189

Numerous interactions of c-abl and Bcr-Abl with other
kinases have been reported. In one study, it was shown that a
membrane pool of c-abl in fibroblasts can be activated both by
PDGF and EGF, that cells expressing oncogenic Src proteins
increased c-abl kinase activity 10- to 20-fold, and that Src and
fyn kinases directly phosphorylate c-abl in vitro.190 In another
study both Bcr-Abl and v-src oncoproteins were found to
support normal erythroid development in fetal liver erythroid
progenitors from EpoR�/� mice; these embryos die around
13–15 days of embryogenesis as a result of severe anemia
attributable to absence of red cell maturation.191 It thus appears
that c-abl may serve as a downstream target for both activated
receptor tyrosine kinases and Src kinases, and moreover that
terminal differentiation in at least the erythroid lineage may not
require a signal unique to a specific cytokine receptor, but may
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respond to a generic signal by other activated PTKs such as Bcr-
Abl.

The Abl sequences of the Bcr-Abl genes are unchanged
except for loss of the first exon, and this loss alone does not
endow c-abl with the ability to transform cells.192,193 Bcr first-
exon sequences potentiate tyrosine kinase activation and
transforming ability when fused to c-abl, presumably by
interfering with negative regulation of abl-encoded tyrosine
kinase.183,194 It was recently reported that the Nterminal ‘cap’
and myristoyl group of Abl have autoinhibitory activity in the
intact molecule;195 since the cap myristoyl group are absent in
all Bcr-Abl oncogenes, their loss may contribute to the
deregulation of Bcr-Abl and the increased kinase activity of
the fusion protein. Bcr has been reported to have a novel type of
kinase activity which is confined to a segment encoded by the
first exon.160,196 The Abl-binding domain is localized in the first
exon of Bcr, and Bcr sequences bind specifically to the Src
homology region 2 (SH2) regulatory domain of Abl in a
nonphosphotyrosine-dependent manner. The protein fragments
fold back on each other to form a second link at the SH2
regions, and this binding appears to be essential for Bcr-Abl-
mediated transformation.163 Bap-1, a member of the 14-3-3
family of proteins, interacts with c-bcr and Bcr-Abl and may
function in the regulation of c-bcr and contribute to Bcr-Abl’s
transforming activity.197

In the t(9,22) translocation, the c-abl oncogene is transposed
from its normal position on chromosome 9 (q34) to a 5.8 kb
major Bcr (M-bcr) on chromosome 22q11, forming a fusion Bcr-
Abl gene.17–20,198 Although the precise point of breakage within
Bcr in CML patients may vary and atypical Bcr-Abl transcripts
have been noted,33,164 the majority of breakpoints in the M-bcr
region occur between exons b2 and b3 or between b3 and b4 so
that the chimeric Bcr-Abl gene may or may not include Bcr exon
b3. About 10% of patients have dual expression of b2a2 and
b3a2 transcripts and rare patients have been reported with b2/a3
or b3/a3 transcripts.199 There have been numerous attempts to
correlate the exact site of the Mbcr breakpoint with prognosis
and the duration of the chronic phase, but the results have been
conflicting and overall no clear cut or consistent difference in
survival has been observed.25,200–203

Human leukemias caused by Bcr-Abl oncogenes

Since the tyrosine kinase activity of the Abelson murine
leukemia virus product, p160v-abl, was known to be neces-
sary for cellular transformation,177 it was proposed soon
after its discovery that the constitutive tyrosine kinase activity
of p210bcr-abl may have a crucial role in the pathogenesis of
CML,22,204–206 and there is now abundant evidence confirm-
ing the pivotal role of tyrosine phosphorylation in leuke-
mogenesis.145–147,149,153,156,159,160,196,207

The breakpoints for the related Bcr-Abl gene encoding the
p190bcr-abl protein (also referred to as p185bcr-abl), found in Ph+
acute leukemias are located in a 20 kb region (known as minor
bcr) at the 30 end of the first Bcr intron so that the first exon of the
Bcr gene (e1) is joined directly to the second Abl exon, resulting
in an e1a2 fusion in p190bcr-abl.208–211 The p210bcr-abl protein
contains either 902 or 927 Bcr amino acids depending on the
breakpoint in M-bcr (including sequences from the first 11 or 12
exons of Bcr), whereas the p190bcr-abl protein contains only 426
or 436 Bcr amino acids.162,192,211,212 The p190bcr-abl protein
has about five-fold higher tyrosine kinase activity than
p210bcr-abl,149 and this correlates with the former’s much more
frequent association with an acute rather than a chronic form of

leukemia,23,201,213 and with its greater transforming potency
both in in vitro149,214–216 and in animal experimental sys-
tems.144–148,217–219 Several of the Abl transforming proteins
(p210bcr-abl, p185/p190bcr-abl, and murine p160gag-abl) have
different substrate specificities than normal p140c-abl, and,
moreover, certain low molecular weight tyrosine kinase
inhibitors have different inhibitory activities for the normal
and transforming Abl proteins.220

Chronic neutrophilic leukemia is a rare myeloproliferative
disorder first described over 80 years ago221 characterized by a
moderate nonprogressive neutrophilic leukocytosis with infre-
quent circulating immature myeloid cells, an excess of mature
myeloid cells in the marrow, a normal or elevated neutrophile
alkaline phosphatase (NAP) score, absent or minimal spleno-
megaly, and absence of any underlying infection or other
condition capable of provoking a leukemoid reaction.222 CML-
N has a more indolent course than classical CML, and blastic
transformation usually occurs much later or not at all. At least
six patients with CML-N have been reported who had a t(9,22)
chromosome translocation and a rare Bcr-Abl rearrangement
with a 30 Bcr breakpoint between exons e19 and e20. This
breakpoint, named m-bcr, is located distally to the M breakpoint
of classical CML, and encodes a 230 kDa fusion protein
that has an additional 180 amino acids compared to
p210bcr-abl.212,223,224

Thus three major forms of Bcr-Abl fusion proteins are now
recognized, and it appears that the inclusion or exclusion of Bcr
exons is largely responsible for determining the disease
phenotypes caused by these proteins.148,202,212 The smallest
protein, p190bcr-abl (m-bcr breakpoint), predominantly causes
acute lymphoblastic leukemia (ALL) and is only rarely asso-
ciated with CML, AML or other diseases such as multiple
myeloma or B-cell lymphomas. It has been suggested that the
lack of Bcr domains encoded by sequences downstream of Bcr
exon e1 may be irrelevant to the mechanism by which signal
transduction is deregulated by p190bcr-abl in lymphoid pre-
cursors, but may be more restrictive or inefficient in CML
progenitors.202 p210bcr-abl (M-bcr) is the commonest fusion
protein and most frequently causes classical CML but can also
be associated with ALL, AML (usually FAB M4 or M5) or rarely
other diseases such as essential thrombocythemia. The largest
Bcr-Abl fusion protein, p230bcr-abl (m-bcr), includes over 90% of
Bcr amino acids, lacking only the C-terminal two-thirds of the
GAPrac domain. It has been proposed that the reason p230bcr-abl

causes only a relatively benign myeloproliferative disorder with
the affected granulocytes maturing almost normally is because
both copies of their Bcr gene encode proteins that have a normal
GAP function for rac, a protein that displays relative myeloid
specificity.164,225

In a recent study comparing the leukemogenic activity of
p190bcr-abl, p210bcr-abl, and p230bcr-abl in vitro and in vivo in
mice, p230bcr-abl exhibited the lowest intrinsic tyrosine kinase
activity, p210bcr-abl was intermediate, and p190bcr-abl had the
highest activity (ie. 3.7-fold, 5.4-fold, and seven-fold increase,
respectively, relative to c-abl).148 In this study, the three forms of
Bcr-Abl were equally potent in inducing a similar type of a
polyclonal CML-like myeloproliferative syndrome in mice when
5-fluorouracil (5FU)-treated donors were used, leading to the
authors’ contention that the more benign clinical course
observed in patients with CML-N might be because of other
variables than p230bcr-abl. However, because less than a dozen
CML-N patients have been reported and most had a very
indolent disease, it may well be that murine transduction/
transplantation models in which p230bcr-abl is overexpressed in
stem cells or early progenitor cells surviving 5FU do not
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accurately mimic the clinical disease.155,226 In other studies
using primary bone marrow cells as targets, p185/p190bcr-abl

was the most potent in inducing lymphoid tumors in SCID mice,
while p230-expressing cells differentiated into the myeloid
lineage and did not form tumors.227

Protein phosphorylation and regulation of
hematopoiesis

The SH3 domain of c-abl suppresses its intrinsic transforming
activity while the SH2 domain is required for transformation;
point mutations in the Abl SH2 domain have been shown to
coordinately impair phosphotyrosine binding and transforming
activity.228,229 The tertiary structure of the SH2 domain of c-abl
has been determined;230 it is a compact domain with an obvious
putative phosphotyrosine-binding site, and while comparison
with other SH2 sequences show a common mode of binding,
subtle differences in structure allow sufficient latitude to control
the specificity of binding of different peptides. A phosphopep-
tide library has been used to determine the sequence specificity
of the peptide-binding sites of SH2 domains.231 SH2 and SH3
domains serve as recognition modules that target proteins to
specific sites containing phosphotyrosine residues or Pro-x-x-Pro
motifs, respectively.232–235 Phosphorylation of different tyro-
sines within tyrosine kinases control kinase activity in opposing
ways. For example, phosphorylation of Tyr-527 in the C-
terminal tail region of the Src kinases suppresses kinase activity
whereas phosphorylation of Tyr-416, which is in the centrally
located ‘activation segment,’ releases blockage of the peptide-
substrate- binding site and enhances catalytic activity.236–238

The SH2 and SH3 domains of the Src kinases regulate kinase
activity at least in part by influencing the rate at which
autophosphorylation of Tyr-416 occurs; the control mechanisms
are complicated and involve multiple conformational changes
in different sites of the proteins.239,240 Similarly, phosphoryla-
tion of Tyr-412 of c-Abl is necessary both for its activation and
regulation by stabilizing the active conformation.241 The
transforming potential of Abl oncoproteins appears to be related
not only to increased tyrosine kinase activity but also to
localization to the cell membrane where the protein may more
readily interact with critical membrane-associated substrates
such as growth factor receptors and phosphoinositides.

Phosphorylation and dephosphorylation of regulatory proteins
have pivotal roles in signal transduction in eucaryotic organ-
isms. Saccharamyces cerevisiae has 114 conventional protein
kinase genes out of 6217 genes (1.8%) but no bona fide
PTKs,242,243 while the Caenorhabditis elegans genome encodes
400 protein kinase catalytic domains out of 19 099 genes (2.1%)
of which 92 are PTKs (23%).244 Assuming the human genome
encodes 80 000 genes, Hunter245 predicted it would encode
41100 protein kinases with B150 PTKs; since more recent data
suggest there may be less than half this number of genes, the
estimate would drop accordingly. He points out that the lack of
bona fide PTKs in the yeasts and their presence in one of the
simplest multicellular eucaryotes strongly suggest that protein–
tyrosine phosphorylation evolved hand in hand with multi-
cellularity in response to a need for intercellular communica-
tion, and that in keeping with this idea, the majority of PTKs
have a role in transmembrane signaling in response to ligands
that bind to surface receptors. Activation of cytokine receptors
initiate a cascade of intracellular phosphorylations by tyrosine
and serine/threonine kinases, and acting in concert with docking
and adapter proteins and transcription factors, their activation
ultimately results in a wide range of cellular responses in many
types of cells, including hematopoietic cells.245–254

Protein tyrosine phosphatases (PTPs) interact with the tyrosine
kinases in a complex fashion, probably acting in concert to
regulate enzymatic activity.245,255 Several phosphatases have
been shown to have important roles in regulating hematopoi-
esis. For example, defective expression of SHP-1 (PTPIC), a
negative regulator of growth factor-mediated signaling in
hematopoietic cells,256 is common in P. vera and may
contribute to the pathogenesis of this disease.257 SHP-1 also
modulates other types of hematopoietic cells; SHP-1-deficient
(motheaten) mice have a severe myeloproliferative disorder
with massive pulmonary infiltration of granulocytes and
macrophages.258 p62dok-1 is a GAP-associated protein that is
conspicuously constitutively tyrosine phosphorylated in fresh
CML progenitor cells and cell lines expressing Bcr-Abl.29,247 It
was recently found that p62dok-1 is a major substrate of SHP 1
and that SHP-1-deficient macrophages also manifest constitutive
tyrosine phosphorylation of p62dok-1, which is correlated with
their growth factor-independent survival.259

Abnormalities of protein phosphorylation and altered
signaling in CML cells

While other functional domains of Bcr-Abl undoubtedly
contribute to the transformed phenotype of CML cells, it is
likely that at least a major component of the proliferative
abnormalities are because of Bcr-Abl’s constitutively increased
kinase activity because specific inhibitors of Bcr-Abl kinase
largely reverse the proliferative abnormalities.260–262 The
signaling pathways are highly complex,245,246,263–265 and it
has been difficult not only to identify the most important
immediate target proteins that are constitutively phosphorylated
by p210bcr-abl, but also to unravel the ensuing protein interac-
tions and cascade of pleiotropic signals that are activated. Early
studies using antiphosphotyrosine antibodies detected several
putative substrates of p210bcr-abl, but these were not well
characterized.266–269 More recently, a large number of proteins
have been reported to be tyrosine phosphorylated in cells
expressing p210bcr-abl, including p190,270 p160bcr,271

p125FAK,272 p120Cbl,273,274 p95Vav,275 p93Fes,276 p68paxil-
lin and other focal adhesion proteins,185,277 p67Syp,278,279

p52Shc and p46Shc,280–283 p38Crkl,284–287 and p30Bap-1,197

and SHIP and SHP-2.288 Most of these studies were conducted
in rodent, simian, or human cell lines transfected with Bcr-Abl
or in established cell lines derived from CML patients that have
multiple other chromosomal abnormalities in addition to t(9,22)
(eg K562 and RWLeu4), and their physiological significance
with regard to the pathogenesis of chronic-phase CML is
uncertain. There have been relatively few studies using primary
CML or Ph+ ALL blasts247,252–254,270,273,274,276,289–291 or CML
peripheral blood granulocytes.284,287

Alteration in gene expression has also been studied in various
animal and human cell lines expressing Bcr-Abl proteins. A
large number of genes, both known (ie MYC, BCL-2, GRAME,
integrin a6, Cyclin D2, CSCP, OSMRb, DD9, Ras, GRAME, KIR,
MPPI, BCL-6, R-PTPm, DDM, DDI, DD221, and DDW) and
unknown have been reported to be overexpressed or under-
expressed, but the results differ greatly in different cells.292–296

Differences have been noted in the expression of interferon-
inducible genes in murine bone marrow cells expressing
p185bcr-abl vs p210bcr-abl.297 The Bcr-Abl kinase inhibitor,
STI571, has been used to inhibit Bcr-Abl kinase activity: 12
differentially regulated mRNAs were identified (seven corre-
sponding to known and five to unknown genes) that were
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attributed to Bcr-Abl PTK activity; but, again significant
differences were noted among the cell lines examined.294

The control of hematopoiesis and the signaling pathways
involved are highly complex, and the information is still far too
incomplete to be able to design an accurate, comprehensive and
coherent model of all the protein–protein, protein–lipid, and
other interactions in normal hematopoiesis or CML. However,
there is good evidence that the increased tyrosine kinase activity
of p210bcr-abl has an essential role in causing untimely and
inappropriate constitutive tyrosine phosphorylation of a number
of proteins involved in critical regulatory circuits in CML
progenitor cells.247,248,254,289–291,298

We have demonstrated a highly consistent pattern of proteins
constitutively phosphorylated on tyrosine in primary CML
progenitor cells that is not readily detected in comparable
normal progenitors.29,252–254 10 nM PD173955, a potent in-
hibitor of Bcr-Abl kinase,262 markedly inhibits autopho-
sphorylation of p210bcr-abl as well as globally inhibiting
phosphorylation of numerous substrates, including
SHIP1, SHIP2, Cbl, and p62dok-1. However, it is still uncertain
whether the phosphorylation of these and other proteins is
directly or indirectly caused by bcr-abl, and whether the
phosphorylation involves pathways leading to increased
proliferation, or, more likely, may instead be part of a
compensatory or antagonistic response to the primary
perturbations caused by p210bcr-abl. Weinstein, in taking note
of the often confused, even bizarre, intracellular circuitry of
cancer cells, has proposed that the cells may become addicted
to the originally mutated oncogene (eg bcr-abl), and, in order to
adapt to the signaling distortions caused by this mutation and
maintain a homeostatic balance favoring growth and viability,
compensate by expressing high levels of other (suppressor)
proteins to counteract or buffer the effects of the original
mutation.91,92 It is quite possible, indeed probable, that at least
some of the proteins constitutively phosphorylated in CML
progenitors may represent similar compensatory or negative
feedback responses.

In CML, it appears that the stem cells and primitive
progenitors are at a particularly susceptible stage of develop-
ment that renders them especially responsive to constitutive,
sustained Bcr-Abl-induced downstream hyperactivation of
components of the critical signaling pathways that are ordinarily
activated by low-level, transient extracellular stimulation by kit
ligand and other cytokines. The affected short-circuited path-
ways control and coordinate multiple diverse cell processes
including proliferation, differentiation, maturation, and pro-
grammed cell death, processes that are normally tightly
regulated and highly integrated. Perturbation of these key
pathways in stem cells and primitive progenitor cells would
be expected to seriously disrupt orderly hematopoiesis and
could also explain all of the subsequent subtle, pleiotropic
biological abnormalities characteristically observed in later
maturing cell compartments that have collectively been
designated discordant maturation or discordant develop-
ment.248,299 While it seems reasonable to assume that such a
general unifying hypothesis can explain all of the manifestations
of the chronic phase of CML, there are still innumerable
questions and uncertainties concerning normal signaling
networks and the specific aberrations induced by Bcr-Abl.
Many laboratories including our own are now engaged in
trying to understand the highly complex normal molecular
circuitry, the interactions between different signaling path-
ways, and the specific aberrations caused by Bcr-Abl,
and within the next few years a clearer picture should
emerge.157,168,247,254,289–291,298,300–304

Etiology and clinical and pathological features of CML

There are numerous recent comprehensive reviews of CML,
including descriptions of the natural course of the disease,
the clinical and laboratory features, and the results of different
forms of treatment.305–308 Here we will just summarize the
salient features that are relevant to the predominant myeloid
expansion.

CML comprises 15–20% of all leukemias with a constant
worldwide incidence of approximately one per 100 000
population. It occurs in all age groups, but the incidence
increases with age, peaking in the sixth decade. Only rare
instances of familial occurrence of CML have been noted and no
common etiologic factor(s) has yet been identified.127 The
majority of patients with CML have no history of excessive
exposure to ionizing radiation or chemical leukemogens, but the
incidence rises progressively with exposure to increasing doses
of radiation.309–312 After acute or subacute exposure to large
radiation doses there is a variable latent period of about 4–11
years, after which the incidence of both AML and CML increases
in an approximately linear relation to the radiation dose. In
survivors of the atomic bomb explosions in Japan, the peak
incidence of CML occurred about 10 years after the explosion
and was about 50 times that of nonexposed subjects; younger
individuals (o15 years of age) developed leukemia earlier than
older ones (430 years). The rate then declined, but still
exceeded the national average 15 years later.

At diagnosis, the leukemic population has usually reached
several trillion cells and almost completely replaced the normal
hematopoietic cells in the bone marrow. Normal stem cells
survive, at least during the chronic phase of the disease, but are
suppressed by the leukemic cells and thus produce very few
normal mature cells.76,127,130,313,314 In the chronic stage of the
disease the leukemic cells retain the capacity to differentiate
almost normally, and the biochemical and functional defects
exhibited by the leukemic cells are not of sufficient severity to
prevent them from carrying out their essential functions
necessary to support life largely in the absence of normal cells
such as transporting oxygen, killing invading microorganisms,
and maintaining hemostasis.299,315,316 Symptoms occur when
the spleen becomes grossly enlarged, the white blood cells
(WBC) becomes sufficiently elevated to cause leukostasis,
significant anemia or hyperbasophilia develops, or abnormal-
ities of the platelets result in thrombotic or hemorrhagic
complications.

The most consistent clinical laboratory feature is an otherwise
unexplained leukocytosis. If the disease is detected early, the
WBC may be only minimally elevated, but as the disease
progresses, it may rise to 100� 109/l or even higher than
1000� 109/l. The marrow is characteristically hypercellular and
in the chronic phase the differential counts of both marrow and
blood show a spectrum of mature and immature granulocytes
similar to those found in normal marrow. In most cases
neutrophilic granulocytes predominate, but increased numbers
of eosinophils and/or basophils are common, and occasionally
monocytosis also occurs. About half of the patients have some
degree of thrombocytosis at diagnosis, accompanied by
increased numbers of megakaryocytes in the marrow and often
with fragments of megakaryocytic nuclei in the blood. There
may be no anemia at diagnosis in early-stage disease, but
progressively severe anemia is common as the disease
advances, usually accompanied by extreme degrees of leuko-
cytosis if uncontrolled by therapy. Unless there are complicating
features such as bleeding and development of iron deficiency,
the anemia is normochromic and normocytic. Shortened red
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cell survival may occur in patients with massive splenomegaly
and/or hepatomegaly, but autoimmune hemolysis is not seen in
uncomplicated CML. Some patients, especially those with
enlarged spleens may have circulating nucleated erythrocyte
precursors in the blood, but this finding is usually not prominent.
The ratio of myeloid/erythroid cells is usually greatly increased
from the normal ratio of B3:1 in newly diagnosed patients with
CML, but may return toward normal after treatment. The
percentages of lymphocytes in both marrow and blood are also
decreased in comparison to normal subjects, but the absolute
lymphocyte count is usually close to normal with normal
proportions of B and T cells.

To appreciate the magnitude of the increased cell production
in CML, it is worthwhile to consider some basic parameters of
hematopoiesis. The bone marrow of a normal 70 kg adult
contains approximately 1012 hematopoietic cells of which about
one-half are granulocyte precursors, one-third to two-fifths are
erythroblasts, and the remainder are other cells including
megakaryocytes and lymphocytes.317–320 The total volume of
marrow in a 70 kg adult is about 3700 ml, but only about one-
fourth of this marrow space consists of ‘red’ marrow occupied
by hematopoietic tissue, mainly located in the central skeleton,
while the other three-fourths is composed of yellow, fatty
marrow. Since even the ‘red’ marrow is comprised of one-half to
two-thirds adipose tissue, the actual volume of marrow
occupied by hematopoietic cells is only about 500–600 ml.

With greatly increased demand as in severe, uncompensated
hemolytic anemia, the red marrow may expand enormously,
displacing the fatty marrow and filling almost the entire skeletal
marrow space; in extreme cases red cell production may be
increased to its maximum limit of about 10–12� normal.321 In
advanced, uncontrolled chronic-phase CML, a comparable or
even greater expansion of granulopoiesis can occur because
extramedullary hematopoiesis is a regular feature of the
disease.248,322–324 In untreated patients, depending on how
advanced the disease is at diagnosis, the cellularity of the
marrow is usually increased three to more than five-fold
compared to normal, with the cells in the most crowded
marrows almost completely replacing the normal fatty compo-
nent and cramming the available marrow space. Not only is the
cell density increased several fold, but hematopoiesis expands
into the long bones and other parts of the skeleton normally
occupied by fatty marrow as in the hemolytic anemias. In
addition, extramedullary hematopoiesis is common and in
uncontrolled disease may become extreme with massive
enlargement of the spleen and sometimes the liver and other
organs. If one considers the total expansion of granulopoiesis
involving the skeletal marrow, blood, and extramedullary sites,
it should hardly be surprising that a five- to 10-fold expansion of
the normal myeloid mass commonly occurs in untreated CML,
and an even greater expansion can occur in patients with very
advanced disease who have massive splenomegaly and some-
times also extensive involvement of the liver, lymph nodes, and
other organs.

The main reason for the huge myeloid expansion is because
the leukemic stem cells and progenitor cells continue to
proliferate after exceeding the homeostatic cell density limit in
the marrow at which normal cells curtail production, but the
specific alterations in the regulatory networks that are respon-
sible for this dysregulation are not yet well defined.180,248,325,326

There are several recent reports implicating cell cycle regulatory
proteins in CML. Reversible downregulation of p27kip1 expres-
sion and upregulation of cyclin D2 expression has been
demonstrated in Bcr-Abl-expressing cell lines.300,301,303 The
decreased expression of p27kip1 is sometimes accompanied by

discordant higher expression of p21cip1, and treatment with
STI571 rapidly increased p27kip1 levels.302 Recent work suggests
Bcr-Abl causes a shift of nuclear p27 to the cytoplasm where it is
targeted for degradation.327 Further work will be required to
show how the signaling alterations involving c-kit and other
cytokine pathways in CML may be connected with dysregula-
tion of the proteins controlling entry into S phase.254,298 As
noted earlier, regulation of normal hematopoiesis is very
complex, and while knowledge is increasing as to how
cytokines, chemokines, cyclins and cellular interactions func-
tion in controlling the growth and differentiation of stem cells
and progenitor cells at different stages of development, under-
standing of how the controls operate and interact is still
incomplete.248,328–333

Morphologic, biochemical and functional abnormalities of
CML cells

Morphologic abnormalities

It is frequently stated that maturation of CML hematopoietic
cells is normal, but this statement disregards the careful
observations of many previous investigators. Numerous subtle
morphological abnormalities have been observed by light
microscopy in CML granulocytes, erythrocyte precursors and
megakaryocytes. These include hypersegmentation, hyposeg-
mentation, abnormal lobulation and ring-shaped nuclei of the
polymorphonuclear leukocytes, Pelger-like leukocytes, binucle-
ate myelocytes, multinuclearity and karyorrhexis of the erythro-
blasts, and large mononuclear forms, multiple small separated
nuclei and microforms of the megakaryocytes.334–337 The
dysplastic changes occur in the chronic phase of CML more
frequently than in normal subjects and become more prominent
as the disease evolves into an accelerated or blastic phase; in
particular, the appearance of hyposegmented neutrophils and
micromegakaryocytes appears to herald blastic transforma-
tion.336,338 Another abnormality occurring in CML is the
presence of both eosinophilic and basophilic granules in the
same cell.339,340 Such hybridoid cells with dual granulation
were found with varying frequency in all cases of CML
examined and occurred in both mature segmented cells and
immature nonsegmented cells; these bigranulated cells are not
found in normal subjects and are thought to demonstrate lineage
infidelity in CML.

Electron microscopic studies have also revealed that matura-
tion is faulty in developing CML cells. Especially significant is
the observation that there is asynchrony in maturation of the
cytoplasm and the nucleus, with the cytoplasm generally
maturing more rapidly.341–347 CML promyelocytes, myelocytes,
and Pelger–Hüet-like granulocytes may show well-developed
cytoplasmic organelles and granules, while the nucleus remains
immature compared to a normal cell at the same stage of
development.335,341,342,346 Similar nuclear/cytoplasmic asyn-
chrony with lagging nuclear maturation is also commonly
observed in developing CML megakaryocytes.346,347

Ultrastructural investigation of the stromal component of the
marrow microenvironment in chronic-phase CML has shown
that the venous sinuses are well preserved, but that the sinus
endothelium has significantly more pores than normal with
some pores of larger than normal diameter.348,349 A decrease in
the percentage of the endothelial cell layer covered by the
advential cell layer (advential cell cover rate) was also noted.
These changes could facilitate the passage of immature CML
cells through the marrow–blood barrier350 that normally
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prevents immature cells from passing into the circulation,
although other factors such as overcrowding, impaired adhesion
or faulty interaction with stromal cells undoubtedly also
contribute.

Biochemical and functional abnormalities

Numerous biochemical and functional abnormalities have been
reported in CML granulocytes, at least most of which appear to
be mutually linked.299,315,316 The abnormalities are usually
quantitative rather than qualitative and represent mean values of
the total mature granulocyte population. The biochemical
abnormalities include low NAP activities,351–354 subnormal
contents of lactoferrin355 and lysozyme,356 hypersialylation of
the membrane protein because of increased activity of a specific
sialyltransferase,357 reduced total gangliosides and neutral
glycosphingolipid content of the cell membrane compared to
normal neutrophils,358 and quantitative changes in many of the
cellular proteins including granule proteins and plasma mem-
brane protein constituents.359–362

Functional defects of CML neutrophils include delayed
emigration to extravascular sites,353,363,364 impaired phagocytic
and bacteriocidal activities,361,365–374 reduced motility, defec-
tive chemotaxis and abnormal electrophoretic mobility,375

impaired internalization of certain proteins such as Concana-
valin A,376–378 and subnormal adhesiveness to glass, nylon and
other surfaces.370,371,379,380 CML progenitors also adhere less
well to bone marrow stroma and are less responsive to stromal-
derived regulatory signals than normal progenitors,381–383 and
their decreased adhesion to stromal elements may well
contribute to their premature release into the blood stream. It
has been proposed that interferon (IFN-a) may overcome the
defective adherence of CML progenitors to stromal cells by
altering the neuraminic acid composition of the stromal layer384

or perhaps by other mechanisms.385,386 The marrow stroma
provides a microenvironment which is clearly essential for
maintaining hematopoiesis,387–389 but its structure and the
factors controlling the production and release of cells and the
homing and circulation of stem cells are very complex and are
beyond the scope of this review. Shortly after the Ph0

chromosome was first described, it was observed that the
stromal cells are not part of the transformed clone,390 and this
observation has been repeatedly confirmed. Various abnormal-
ities of stromal elements in CML have been described,391–393 but
it is not yet clear whether they are merely secondary phenomena
associated with the predominant myeloid expansion or how
important they are in the overall evolution of the disease. As
noted earlier, it was recently reported that variable proportions
of endothelial cells in CML patients contain the Bcr-Abl fusion
gene, suggesting that hematopoietic stem cells may exhibit
‘plasticity’ and that endothelial cells may be derived from a
common hemangioblastic progenitor cell,110 but confirmation
of these studies and further work is needed to better define these
multipotent stem cells and how they may be related to the stem
cells restricted to hematopoiesis.

The biochemical and functional abnormalities of the CML
leukocytes described above tend to return towards normal when
the disease is brought into hematologic remission by treat-
ment.316 Moreover some of the abnormalities can be modulated
in vitro. For example, maturation of CML granulocytes induced
by retinoic acid can curtail hypersialylation,394 and the aberrant
sialylation of membrane glycoproteins in CML granulocytes
appears to be at least partly responsible for their decreased
adhesion to nylon wool and decreased binding to the

chemotactic peptide, N-formyl-methionyl-leucylphenylalanine
(fMLP).357,395 Normal granulocytes show a rapid transient rise in
intracellular-free cytosolic calcium [Ca2+] after stimulation with
fMLP, whereas untreated chronic-phase CML granulocytes have
a decrease in [Ca2+].396 This abnormality is reversible since
neuraminidase-treated CML granulocytes or CML granulocytes
from patients treated with chemotherapy show an increase in
[Ca2+] after fMLP stimulation similar to that seen in normal
granulocytes.396 Another example of a reversible defect is the
decreased NAP activity. NAP activity is uniformly low in
patients with CML at diagnosis, but increases during infections
or when the leukocyte count is reduced with chemo-
therapy.316,353,354 CML granulocytes have been shown to
recover NAP activity in vitro by treatment with exogenous
granulocyte growth factors (eg rhG-CSF)397 or in the presence of
monocytes which produce soluble growth factors.351

Pedersen316 and other investigators132,398 have emphasized
that most of the biochemical and functional abnormalities of
CML leukocytes, including impaired adhesiveness, extravascu-
lar emigration, phagocytic and bacteriocidal activities, NAP
activities, hypersialylation, and reduced lactoferrin and lyso-
zyme contents, are mutually linked characteristics related to the
degree of neutrophil maturation. For example, band forms have
lower NAP activities and are less capable of adhering,
emigrating and phagocytizing than segmented forms, marrow
segmented cells phagocytize less actively than circulating
segmented cells, and the density of sialoproteins decrease and
adhesiveness increases as the neutrophil matures.316,375,394–396

Thus, even among morphologically indistinguishable normal
polymorphonuclear cells, there is heterogeneity in degree of
maturation. The asynchronous nuclear/cytoplasmic maturation
of CML cells coupled with their premature release from the
marrow can result in a proportion of circulating polymorpho-
nuclear cells that appear morphologically mature and to closely
resemble normal mature neutrophils but that are not strictly
comparable. This can lead to false conclusions by investigators
seeking to find differences in survival, apoptosis, or various
biochemical or functional parameters between CML and normal
cells that are assumed to be comparable, but that actually differ
significantly in their state of maturation.248

Proliferative abnormalities in CML responsible for massive
myeloid expansion

Most investigators agree that the primary expansion of the CML
population in chronic-phase disease begins either at the stem
cell level or in a very early progenitor cell compartment, and
that once the progenitors become fully committed to matura-
tion, both normal and CML progenitors and their progeny have
only limited proliferative potential and are incapable of
reproducing the disease.76,248,260,324,381,399,400

Controllable parameters governing blood cell
production

Regulation of stem cell activation and symmetric vs
asymmetric division: Figure 1 shows the possible control-
lable parameters that regulate blood cell production. To cause
the disease, the initial clonal Bcr-Abl-containing stem cell must
at some point become activated, and it and its progeny must
thereafter continue to undergo a number of symmetric divisions
in order to expand the Ph+ stem cell pool since there is
abundant clinical evidence that at the time of diagnosis there are
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numerous multipotent Ph+ stem cells capable of reproducing
the disease. It has proven almost impossible to cure the disease
even with very intensive therapy with combinations of cytotoxic
drugs that are highly effective in killing all proliferating cells,
and, moreover, even after near-complete marrow ablation in
bone marrow transplant (BMT) protocols, there is a significant
incidence of relapse. On the other hand, repeated exclusive
symmetric divisions of stem cells or of early progenitors with
restricted lineage commitment but extensive selfrenewal capa-
city would result in a stem cell leukemia or another type of acute
leukemia as in fact occurs in the blastic phase of CML or Ph+
ALL.248 Thus, just as in normal embryonic development or in
regenerating normal marrow after partial ablation, the Ph+ stem
cells must maintain a balance between symmetric and asym-
metric cell divisions in order to cause chronic-phase CML.
Normal hematopoietic stem cells presumably reside in specia-
lized cellular niches in the bone marrow where their frequency
of symmetric or asymmetric divisions is controlled at least in
part by extrinsic stromal cell signals as has been shown so
elegantly in the regulation of spermatogenesis in the Drosophila
testis.401–403 The signaling pathways’ regulating stem cell self-
renewal or differentiation in the testis are not yet fully
understood, but JAK-STAT signaling appears to specify self-
renewal401,403 as is also true in embryonic stem cells,404

whereas MAP kinase activation is required for differentiation,
although the specific differentiation signal is unknown.

The location and anatomy of the cellular niches regulating
hematopoietic stem cell divisions are much less well defined
than in the anatomically discrete and circumscribed fly testis,
but similar controls must exist to maintain an appropriate
balance between self-renewal and differentiation.248,405–407 The
primitive hematopoietic progenitors appear to be concentrated
adjacent to the endosteal surface of the marrow cavity, while the
later progenitors move progressively towards the point of release
at the central venous sinus as they differentiate and undergo
maturation; moreover, the primitive and maturing progenitors in
these locations respond preferentially to early- and late-acting
growth factors.408 The anatomical details of the spatial distribu-
tions of the progenitors and their presumed intimate relations
with regulatory stromal cells are still poorly defined, but such an
arrangement would seem eminently logical and workable: The
stem cell pool at the bone surface could be maintained or

replenished as necessary if depleted by self-renewal, while
decisions of the committed progenitors to undergo additional
division or maturation would be regulated by other sets of
cytokines or stromal cell interactions as in Drosophila sperma-
togenesis.401,403

Ph+ stem cells have presumably at least partially escaped the
normal requirement for close association with specialized
marrow regulatory stromal cells, probably in part because of
defective adhesion, and hence are able to divide outside the
niches, not only in other marrow sites but in the spleen and
other extramedullary sites where regulation of the proper
balance between symmetric and asymmetric division is lacking
or defective.

Owing to their rarity and the difficulties in isolating pure stem
cells, there is no definitive evidence as to whether the progenitor
cell expansion is primarily because of an increased number of
divisions of early progenitor cells, to reduced apoptosis, to more
frequent activation of stem cells or to a combination of these
factors. However, as will be discussed later, instead of an
increased number of progenitor cell divisions as we and others
formerly proposed,323,409,410 we now favor the view that the
primary cause of the myeloid expansion is increased frequency
of activation of Ph+ stem cells or primitive progenitor cells,
which in the untransformed state would normally remain
quiescent for longer periods. It is still unresolved whether the
Ph+ stem cells are truly equivalent to normal stem cells or
whether Bcr-Abl can endow slightly later, more limited stem
cells or primitive progenitors with the capacity for near-infinite
expansion. Since the transition of stem cells to primitive
multipotent progenitors is undoubtedly a continuum, from a
practical therapeutic viewpoint the distinction is largely
semantic since all cells capable of reproducing the disease
must be eradicated to effect a cure.

Cell cycle and other kinetic parameters

There do not appear to be any important differences in cell cycle
or other kinetic parameters between normal and CML cells once
they are fully committed to differentiation and maturation
except that the maturing cells grow more slowly at high cell
densities in the marrow and have reduced rather than greater

Figure 1 .
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proliferative potential.248 Although there is considerable varia-
bility among patients, cytokinetic measurements performed
during the chronic-phase of CML have shown that while the
DNA synthesis time of both blood and marrow myelocytes in
CML is about the same as that of normal myelocytes,411,412 the
earlier leukemic precursors (ie blasts and promyelocytes) have
lower mitotic indices, a lower fraction of cells in DNA synthesis,
longer generation times, and the mature granulocytes have
longer transit times in the blood than do comparable normal
cells.322–324,411–423 Stryckmans et al422,424,425 found an inverse
relation between the WBC count and the 3H-thymidine labeling
index (LI) in chronic-phase CML. When the WBC was elevated,
the mean myeloblast LI was about 20%, whereas after treatment
when the WBC was lower, the mean myeloblast LI was 46% or
in the same range as that in normal subjects. When treatment
was discontinued and the disease relapsed, the LI of the CML
myeloblasts again decreased. Stryckman et al424,425 also
observed that unlike the myeloblasts and CFU-c,419 the LI of
CML myelocytes was not influenced by the leukocyte count,
and he suggested that both CML and normal myelocytes may no
longer be under regulatory control. Our recent observations
have lent support to this conclusion, namely that maturing cells
are much less responsive to the effects of Bcr-Abl than the earlier
progenitors.261 The slower proliferation of the CML intermediate
level precursors (ie CFUc, blasts, and promyelocytes, but not
myelocytes) are thus closely related to the high cell density in
the marrow because the proliferative parameters return to
normal when the density is reduced by therapy.323,414,425 The
general tendency of Ph+ populations is to undergo progressive
expansion, but CML patients often show stabilization of their
leukocyte counts and spleen size for many months without
treatment, although the levels at which these parameters
stabilize may vary considerably among patients. CML cells are
thus still subject to feedback regulation, although curtailment of
cell production occurs at higher than normal cell densi-
ties.76,123,125,248,299,323–325,426–429

Although many immature cells are usually present in the
blood they usually must return to the marrow or spleen in order
to divide.324,422,424,425 The rates of cell production are similar in
the marrow and spleen, and in patients with massive splenic
involvement, the majority of circulating immature granulo-
cytes may originate in the spleen.324,430 Leukocyte kinetic
studies431–435 have shown that the size of the total blood
granulocyte pool in CML patients may be 10–100 times greater
than normal; both the circulating granulocyte pool (CGP) and
marginated granulocyte pool are grossly expanded.

Cyclic oscillations of blood cells in CML: Blood
granulocyte levels have sometimes been observed to undergo
cyclical fluctuations in normal individuals,436,437 although most
normal people do not have obvious oscillations, probably
because of the damping action of granulocyte reserves in the
marrow.438 Pronounced cyclic oscillations have been observed
following injury to the marrow by cytotoxic drugs,439 in cyclic
neutropenia,440 and in idiopathic neutropenia during prolonged
treatment with a constant low dose of granulocyte stimulating
factor (G-CSF);441 in some patients with cyclic neutropenia, G-
CSF may either induce or abolish cycling.442 Cyclic oscillations
of the blood granulocytes have also been observed in CML,
occurring both spontaneously.440,443–447 and during treatment
with hydroxyurea (HU) administered at a constant dose.448 The
amplitude and length of the individual cycles in CML are
considerably greater than in normal subjects or in patients with
cyclic neutropenia.444–447 The periodic oscillations of the

neutrophils in CML, as well as in cyclic neutropenia in both
humans and gray collies, are usually accompanied by similar
oscillations in the cells of other lineages (ie platelets, reticulo-
cytes, and monocytes). Moreover, the cell density waves also
extend back to involve precursor cells in multiple
lineages,443,449,450 thus providing additional evidence that the
oscillations, both in cyclic neutropenia and in CML, originate in
stem cells. The greater amplitude and length of the oscillations
in CML could be interpreted to indicate that an increased
number of divisions took place between the stem cells and the
appearance of nondividing mature cells,76,248,322,323,410 but
alternative explanations are possible, such as different timing of
the fluctuations because of deranged signaling in the pathways
regulating stem cell activation.

Contribution of reduced apoptosis and increased life-
span to myeloid expansion: Using a variety of isotopic
labeling procedures, it has been consistently observed that the
circulating granulocytes in chronic-phase CML have a markedly
slower rate of disappearance from the blood than do normal
mature granulocytes.324,431–434,451–454 It has often been pre-
sumed that this indicates that they have a longer lifespan, but
interpretation of the slow granulocyte disappearance rate in
CML is confounded by the presence of many circulating
immature granulocytes and by the abnormal granulocyte traffic
and distribution patterns in CML.324,423,430,451,455,456 By irra-
diating the immature cells to minimize their contribution, the
blood transit time of the CML polymorphonuclear cells was still
two to four times longer than normal, and the granulocyte
turnover rate was also usually found to be substantially
increased in CML (up to 14� normal).431,433,434 Crosstransfu-
sion experiments also showed that normal mature granulocytes
transfused into CML patients disappear normally, and that CML
mature granulocytes transfused into cancer patients disappear
more slowly than normal. The explanation for these observa-
tions may be at least partly because of the fact that many CML
circulating granulocytes are not fully mature.

Once fully committed to differentiation, all hematopoietic
cells have finite lifespans and normally undergo programmed
cell death at prescribed times depending on the lineage and
environmental factors.457–460 There are numerous reports
demonstrating that apoptosis is inhibited under a variety of
conditions in cell lines expressing p210bcrabl,461–471 in v-abl-
transfected cells with activated tyrosine kinase activity,472 as
well as in progenitors and granulocytes obtained directly from
CML patients.473–479 In several studies antisense Bcr-Abl
oligonucleotides were shown to be capable of reversing the
suppression of apoptosis and enhancing survival,467,471,473

while others477,478 have suggested that the therapeutic effects
of IFN may at least in part be because of amplification of Fas
receptor (Fas-R; CD95; Apo-1)-mediated induction of apoptosis
in CML cells. Still other studies have suggested that the
antiapoptotic effect of Bcr-Abl may contribute to the resistance
of Bcr-Abl-expressing cells to various other chemotherapeutic
agents used in the treatment of CML and other leukemias,
including Ara-C, etoposide, and STI571.467,476,480–482

Conflicting results have been reported with regard to the
susceptibility of CML cell lines and primary progenitors
compared to normal progenitors to apoptosis induced by
irradiation or serum deprivation.473,483–485 Bedi et al473 sug-
gested that the decreased rate of programmed cell death may be
the primary mechanism responsible for expansion of the
leukemic clone in CML, but this claim has not been generally
accepted, and the effects of Abl and Bcr-Abl in promoting or
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inhibiting apoptosis appear to be quite compli-
cated.156,248,474,476,486–488 Roger et al486 found that Bcr-Abl
failed to prevent apoptotic death induced by natural killer or
lymphokineactivated killer cells, and Amos et al484 found that
the survival of normal and CML myeloid progenitors was the
same after in vitro incubation in deprived conditions or after
treatment with X-irradiation or glucocorticoids, and also that the
survival of mature cells in colonies produced by CML and
normal CFUGM progenitors did not differ. Some investigators474

found no change in the susceptibility of either Bcr-Abl-contain-
ing cell lines or CD34+ cells from CML patients to Fas-R-
mediated cell death after exposure to STI571, while others have
reported that STI571 inhibits activation of STAT5, thereby
downregulating expression of bcl-XL and inducing an apoptotic
response.476 Using concentrations of Bcr-Abl inhibitors similar
to those attainable in CML patients, recent studies in our
laboratory261 and in other laboratories260,489 suggest that their
main effect is to inhibit increased proliferation and that
apoptosis only becomes evident at higher concentrations.
Wang488 has shown that c-Abl contributes to the activation of
apoptosis, whereas Bcr-Abl inhibits apoptosis; however, when
Bcr-Abl is entrapped in the nucleus by mutation or treatment
with STI571 and leptomycin B, the nuclear Bcr-Abl may activate
rather than suppress apoptosis.487

In appraising the often contradictory or conflicting reports
concerning the importance of the role of reduced apoptosis in
causing the myeloid expansion, it should be kept in mind that
cell lines hyperexpressing Bcr-Abl and having many additional
genetic abnormalities are often imperfect models for fresh
human CML cells. Some, but not all, studies have shown that
CML CD34+ cells and granulocytes are more resistant to
apoptosis than comparable normal cells, and this conclusion
is in keeping with the older cytokinetic measurements con-
ducted in patients and summarized above that showed that at
least CML mature neutrophils have a longer lifespan than
normal. However, the cell kinetic measurements included
incompletely mature neutrophils prematurely released into the
blood, so one would expect them to have a longer lifespan than
more fully mature normal bands and polymorphonuclear cells.
Even if one assumes the CML cells do survive longer than
normal, the in vivo cytokinetic labeling studies carried out in
patients with CML have concluded that prolonged lifespan
alone cannot possibly account for the enormous progressive
expansion of the CML population, and that the expansion must
therefore be primarily because of greatly increased cell

production (reviewed in Clarkson75 and Strife et al490,491).
Moreover, because impaired apoptosis alone cannot explain all
the other abnormal features that have been observed in CML
such as the aberrant lineage distribution, asynchronous matura-
tion of the nucleus and cytoplasm, and such unique dysplastic
changes as dual granulation, a more comprehensive, unifying
explanation is called for as suggested earlier.132,248,315

CML committed progenitors and precursors have less
proliferative potential than normal: It has been shown
repeatedly that once they are fully committed, CML progenitors
have earlier cytoplasmic maturation than comparable normal
progenitors. The manifestations of more rapid maturation
include: higher proportions of Type II blasts with nonspecific
granules; increased expression of CD33 and more rapid loss of
CD34 antigen; higher expression of EPO receptors; and a
heightened response to EPO, KL, GM-CSF as single cytokines
coupled with a reduced requirement for synergistic activation by
multiple cytokines.76,123,125,130,132,261,315,490–492 In accord with
their more advanced stage of maturation, the ratio of more
mature progenitors with limited proliferative potential to
primitive progenitors with high proliferative potential is sub-
stantially increased in chronic-phase CML compared to normal
progenitors; this results in the majority of CML cells being
generated by more mature progenitors.76,490,492

To illustrate the magnitude of the differences in the
proliferative behavior of normal and CML committed granulo-
cyte progenitors, one representative clinical cytokinetic study
will be shown. Table 1 shows the major hematologic parameters
in four newly diagnosed, previously untreated, patients with
CML in chronic-phase; Patient #1 had the least and Patient #4
the most advanced disease, while the other two patients were
intermediate. All marrow metaphases examined were Ph+ and
no additional cytogenetic abnormalities were noted. We
compared the clonogenic data in these four patients with those
of six healthy, normal volunteers who had entirely normal
hematologic parameters; the cell counts of the six normal
marrows were similar (mean¼ 74� 109/l), so that the cellularity
of the CML marrows ranged from 2.9� normal in Patient #2 to
5.6� normal in Patient #4.76,123

Figure 2 shows the 3- and 14-day cloning results in these six
normal subjects and four CML patients for the granulocyte/
monocyte (GM) progenitors per 106 marrow buffy coat cells.
The light density fraction of both normal and CML marrow buffy

Table 1 Hematologic parameters of four newly diagnosed, untreated patients with chronic-phase CML and number of cells produced
compared to normal

Patient
number

Age/sex WBC
count

(�109/l )

Platelet count
(�109/l )

Hgb
(g/l)

Hct
(%)

Spleen size
(cm below

costal margin)

Marrow
cell count
(� 109/l)

Marrow
blasts

(%)

Total # GM
progenitors
per ml of
marrow

CML/normal

Total # of cells
produced by

GM progenitors
CML/normal

Total # of
erythrocyte
progenitors

per ml of marrow
CML/normal

1 42/M 26 229 14.4 45 0 255 1.3 14� 2� 2�
2 28/F 54 423 13.2 39 1 217 3.0 20� 5� 3�
3 41/M 80 243 13.0 40 0 228 2.6 42� 8� 3�
4 24/M 496 521 8.2 32 Huge,k

pelvic brim
411 1.2 90� 14� 16�

The total number of GM progenitors present per milliliter of marrow and the total number of cells generated by these progenitors were determined
individually in each of the four patients by cell counts and clonogenic assays as previously described and compared to the corresponding mean
values found in six normal, healthy volunteers to obtain the CML:normal ratios.76 Patients 2 and 3 required 4–5� and patients 1 and 4, 6–7� the
number of CML progenitors to produce even a normal number of cells.
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coats contains essentially all of the progenitors and precursors
capable of forming CFU-GM and BFU-E colonies of any size.
The CML marrows produced on average 10.3� more 3-day
colonies than the normal marrows per million light density buffy
coat cells, but only 2.3� as many 14-day colonies. If one
considers the number of colonies per milliliter of marrow based
on the marrow cell counts of the individual CML patients and
normal subjects, because of the greater cell densities of the CML
marrows the 3- and 14-day CML/normal ratios are 43� and
10� , respectively. Comparison of the sizes of the GM colonies
produced by normal and CML progenitors provides additional
information on their respective proliferative potentials. Since
none of the 3-day GM colonies, either normal or CML,
contained more than 20 cells, the mean number of 7- and 14-
day colonies were measured according to size. While the CML
progenitors produced 5.3� and 2.3� , the total number of GM
colonies per 106 buffy coat cells as the normal progenitors at 7

and 14 days respectively, the number of normal and CML
colonies containing over 100 cells at both time points were
almost identical (not shown).76,123 Assuming that all 14-day
colonies arose from 3- day colonies that continued growing, we
calculated that 21.4% of the normal 3-day colonies grew to
4100 cells at 14 days, whereas only 1.8% of the CML 3-day
colonies did so.

The enriched lineage-negative (lin�) blast populations in both
normal and CML marrows usually comprise about 0.1–1.0% of
the initial marrow buffy coat cells and consist almost entirely of
Type I blasts (primitive) plus a few Type II blasts (showing early
morphologic evidence of maturation) or very early promyelo-
cytes.76,123,130 Identical cloning experiments using enriched
normal and CML primitive progenitors were carried out
simultaneously for comparison with those of the total progeni-
tors. We calculated that on an average, the CML marrows
contained 1.8� more Type I blasts and 3.6� more Type II

Figure 2 Comparison of the number of normal and CML 3- and 4-day GM colonies derived from the total GM progenitors from six normal,
healthy donors and four newly diagnosed, untreated CML patients shown in Table 1. (a) Per 106 marrow buffy coat cells and (b) per milliliter of
marrow.
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blasts per 106 buffy coat cells than normal marrow; however,
because the CML marrows contained on average 4� more cells
per ml than the normal marrows, the total number of blasts was
of course greatly increased even though the percentages of
blasts and promyelocytes were similar (ie 1–3%). The mean
cloning efficiencies (CE) of the enriched primitive normal and
CML GM progenitors were 5.0 and 12.1% (CML/normal-
¼ 2.4� ), respectively, compared to mean CEs of 0.526% and
3.99 (CML/normal¼ 7.6� ), respectively, for the total normal
and CML GM progenitors present in the light density fraction of
the marrow buffy coat. The higher CEs (2.4� normal) of the
primitive CML progenitors is of course consistent with the view
that there is increased activation of the CML stem cells or
primitive progenitors compared to normal, while the even
higher CEs (7.6� normal) of the total CML progenitors is
consistent with their more rapid maturation.

As in the case of the total progenitors, the maximum CE values
for both normal and CML-enriched progenitors occurred at 3
days. On average, the enriched CML progenitors produced 4�
as many 3-day colonies as the normal progenitors (not shown)
compared to 10.3� for total progenitors.76,123 The reason for
this difference is that the CML total progenitor population
contains many more later committed progenitors and precursors
with limited proliferative potential than the normal total
progenitor population, and the majority of these late progenitors
and precursors are missing in the enriched populations.
The average fold increase in 14-day CML/normal colonies
was the same (2.3� ) for the enriched progenitors as for the
total progenitors, indicating that, as expected, most of the
relatively large 14-day colonies shown in Figure 2 were
derived from these same progenitors. The data on the size of
7- and 14-day colonies produced by enriched normal and CML-
enriched GM progenitors were similar to that of the total
progenitors, again demonstrating that a lower proportion of CML
progenitors are capable of producing large colonies compared
to normal.

In terms of the total number of cells generated by the normal
and CML progenitors, we calculated that high proliferative
progenitors (ie arbitrarily defined in this study as those
generating 4100 cells per colony) comprise 24% of the total
normal GM progenitors and these produce 85% of the GM cells
in normal marrow.76,248 In contrast, high proliferative progeni-
tors comprise only 2% of the total CML progenitors and these
produce only 50% of the CML GM cells. Of the normal enriched
progenitor population, 35% is comprised of high proliferative
progenitors and these produce 90% of the normal GM cells,
whereas only 10% of the enriched CML progenitors are high
proliferative progenitors and they produce 68% of the CML
cells. Since many more of the CML progenitors and precursors
with low proliferative potential have been removed by the cell
separation procedures, the differences are less marked when
comparing highly enriched normal and CML progenitors than
when comparing normal and CML total progenitors. These
results emphasize the need to consider the total GM progenitor
populations in comparing normal and CML cell production in
order to obtain an accurate picture of the cytokinetic
abnormalities in CML. Table 1 shows the CML: normal-fold
increase in the total number of GM progenitors present per
milliliter of marrow in each of the four patients and the total
number of cells generated by these progenitors (eg Patients #1
and #2, respectively, required 7� and 4� the number of
CML GM progenitors to produce even a normal number of
cells). If differences in size of the largest colonies are
considered, the CML: normal ratios would be even greater
since the largest normal CFU-GM contained, on an average,

over twice the number of cells as did the CML CFU-GM (see
below).

In other experiments, we have used a linear Ficoll gradient,
which separates cells mainly on the basis of size as previously
described.132,490–493 to further fractionate the enriched lin�
blast populations in order to compare the characteristics and
proliferative potential of the most primitive and more mature
normal and CML lin� blast subpopulations. The smallest, most
primitive blasts are concentrated in the earlier fractions
(fractions 8–10, designated F� 8); intermediate blasts are
contained in fractions 11–12 (F� 11); and the largest, more
mature blasts are concentrated in the later fractions 13–15 (F�
13). The crude cell cycle parameters of the CML and normal
total enriched lin� blast populations prior to separation on the
gradient were similar (mean % in S+G2/M¼ 21 and 26%,
respectively),490,491 and these values are also similar to those
found in other experiments with total enriched blast popula-
tions. As we have consistently found in previous autoradio-
graphic studies in which blast cell size and 3H-thymidine
labeling frequency and intensity were measured simulta-
neously,494–498 cell cycle analysis of both the normal and
CML fractions showed that the percentage of cells in S+G2/M
increases with increasing size of blasts as would be ex-
pected.499,500 While there were no differences between normal
and CML in the percentages of cells in S+G2/M in fractions 11
and 13, two of three normal subjects had no cells in S+G2/M in
F� 8, while all three CML patients had 8–19% of S+G2/M cells
in this fraction containing the most primitive cells.490 The higher
than normal percentage of primitive CML cycling cells is of
course consistent with their higher CEs noted above and with
our observations that CML CD34+ highly enriched progenitors
consistently incorporate over twice as much 3H-thymidine when
stimulated in vitro by a variety of cytokines than the same
number of normal CD34+ cells under identical conditions
(mean of 30 CML CD34+ cells¼ 71 138 CPM vs 14 normal
CD34+ cells¼ 29 169 CPM; all adjusted to 4� 104 cells and
1mCi of 3H-thymidine per well for 66 h). Other investigators
have also found that primitive CML progenitors have a greater
proportion of cycling cells compared to normal progeni-
tors.260,325,381,399,400,429,501

PCR analysis was performed on representative individual GM
colonies from CML patients to determine how many might be
derived from normal progenitors, and consistent with our
previous experience,76,502 chimeric Bcr-Abl mRNA was de-
tected in the great majority of colonies derived from CML
patients (ie overall 94% of GM colonies were Ph+; only rare
Ph� colonies were found in all three fractions).490,491 More
recent studies in our laboratory as well as those of other
investigators261 employing fluorescent in situ hybridization
(FISH) analysis have confirmed that the great majority of
colonies derived from both primitive progenitors and later
precursors are Bcr-Abl positive.

In examining the cellular composition of the three pooled
fractions obtained from linear Ficoll gradients, we found that all
of the CML fractions contained higher proportions of more
mature Type II blasts. A higher percentage of the total enriched
CML blasts was present in the small (primitive) cell F� 8
compared to normal (57 vs 32%), and this fraction contained
24� more Type II blasts per 106 marrow buffy coat cells than
the normal F� 8 subpopulation of primitive progenitors. The
percentages of normal and CML F� 8 blasts expressing CD34,
CD38, H25/H366, and DR were similar, but consistent with the
morphological evidence that they are more mature, higher
percentages of the CML blasts in both F� 8 and F� 11
expressed CD33 than the comparable normal blasts (mean
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values¼ F� 8 CML 41 vs normal 8%; F� 11 CML 41 vs normal
11%) and the CML blasts also lost expression of CD34 antigen
much more rapidly than normal blasts in fractions 11 and 13.490

Differences in the response of normal and CML
progenitors to kit ligand and other cytokines

GM progenitors: No consistent differences in expression of
c-kit were observed between the small, intermediate and large
blast fractions, nor between the normal and CML blasts in any of
these fractions; 25% or fewer of the blasts in any of the fractions
expressed detectable c-kit.490 Kit ligand (KL) by itself has little
effect in stimulating growth of normal GM or erythroid colonies,
but acts synergistically with other cytokines.489,503–505 KL in
combination with G-CSF, GM-CSF or both had the greatest
stimulatory effect in increasing both the number and size of
colonies derived from normal primitive and intermediate Lin�
blasts in F� 8 and F� 11, but less stimulatory effect on the
large mature blasts in F� 13; the latter showed some increase in
the size but not the number of colonies.

However, in contrast to its major synergistic stimulatory effect
on primitive normal GM progenitors, KL had very little effect in
enhancing the growth of comparable CML progenitors. The
comparative results of normal and CML F� 8 blasts are shown
in Figure 3. Generation of the majority of large (4500 cells) GM
colonies, both normal and CML, required the presence of both
G-CSF+GM-CSF which together had a synergistic effect.
However, normal progenitors had a greater requirement than
CML for KL plus additional growth factors in order to generate
the maximum numbers of these large GM colonies. G-CSF alone
was sufficient to initiate proliferation of the maximum total
number of small, primitive (F� 8) CML progenitors and a mean
of 76% of the maximum number of small blast progenitors
capable of generating colonies 4100 cells. In contrast,
comparable normal small, primitive blasts in F� 8 required
multiple growth factors (ie KL+GCSF+GM-CSF) for stimulation
of the maximum number and size of colonies. Cell counts on

pooled large GM colonies (4500 cells) showed that normal
colonies contained a greater number of cells (mean 20 000;
range 14 000–30 000) than CML colonies (mean 8 500; range
4 000–14 000).490 In sum, these observations demonstrate that a
greater proportion of the CML primitive GM progenitor
subpopulation is more mature, has less proliferative potential,
and is less dependent on the synergistic interaction of KL with
G-CSF and/or GM-CSF than the comparable normal primitive
progenitor subpopulation.

Erythrocyte progenitors: Experiments similar to those con-
ducted for GM progenitors were also carried out to compare the
proliferative capacities of normal and CML primitive erythrocyte
progenitors (BFU-E) using the same enriched progenitor
populations.76,123,491 To quantify their proliferative capacities
as accurately as practical, the BFU-E colonies were divided into
four categories (XL¼ extra large, L¼ large, M¼medium and
S¼ small). Representative colonies were aspirated and cell
counts performed on individual XL BFU-E or pooled BFU-E from
each of the smaller categories. The approximate mean numbers
of cells per BFU-E in different size categories at 14 days were:
XL¼ 105 to 44� 105, L¼ 5� 104–105, M¼ 5� 103–5� 104,
and S¼ approximately 103–5� 103. The progenitor populations
were grown in 1.3% methyl cellulose instead of the more
commonly used 0.8%; under the former conditions the BFU-E
remain more compact, thus facilitating sizing of colonies since
they only break up into multiple subunits at later culture times.

Like the GM progenitors, the ratio of more mature erythrocyte
progenitors with low proliferative potential to primitive pro-
genitors with high proliferative potential is also increased in
CML, and, moreover, the mean sizes of the CML BFUE in the
different size categories are smaller than normal. However,
unlike granulopoiesis, there is no comparable expansion of the
erythrocyte population in CML. The normal BFU-E populations
were comprised of 21.3% (16–24%) high proliferative BFU-E
(XL+L), whereas CML BFU-E populations had only 4.7% (4–5%)
high proliferative BFU-E (L only; no XL CML BFU-E were

Figure 3 Normal and CML Lin� highly enriched blasts were separated on the basis of size on a linear Ficol gradient as previously
described.491 The charts show the plating efficiencies and growth of CFU-GM colonies of different sizes at 14 days derived from the smallest, most
primitive cells found in fractions 8–10 after stimulation with the cytokines indicated.
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observed) (Figure 4). As a result of this difference, 67% of
normal erythroblasts were generated by high proliferative BFU-E
(L+XL,) whereas CML high proliferative BFU-E (L only)
generated only 17% of CML erythroblasts.491

The CML and normal marrows had similar numbers of BFU-E
per 106 buffy coat cells (mean values 338 and 282, respec-
tively), but because the majority of CML BFU-E (ie 83%) were
only capable of generating small- or medium-sized colonies,
they only generated about 1/3 as many erythroblasts as normal.
However, because of the increased cell densities in the CML
marrows, the numbers of cells generated on the average per ml
of normal or CML marrow are almost equal. These findings are
consistent with the clinical observation that at the time of
diagnosis the majority of CML patients have either normal
erythrocyte counts or are only slightly anemic, except for
patients presenting with very elevated leukocyte counts and
more advanced disease.315

Thus, like CML GM progenitors, the majority of CML
erythrocyte progenitors are also more mature and incapable of
as extensive proliferation as comparable normal erythrocyte
progenitors. This conclusion is in accord with the findings of
several other investigators,506–508 except for one study using
quite different methodology for estimating proliferative potential
in which it was reported that CML BFU-E do not have reduced
proliferative capacity.509 However, the latter study is not
comparable to ours since KL and other purified cytokines were
not used to maximally stimulate the normal cells, and one
would not expect to find the same difference that we observed
with suboptimal stimulation.

The studies summarized above provide evidence that the
primary expansion of the granulocytic lineage in CML occurs in
a very early progenitor compartment and that the secondary,
amplified expansion in the later maturing cells is a direct result
of greater input of these primitive cells. In accord with their
more advanced state of maturation, the ratio of more mature
committed progenitors with limited proliferative potential to
earlier committed progenitors with high proliferative potential is

substantially increased in chronic-phase CML compared to
normal progenitors, resulting in the majority of CML cells being
generated by more mature progenitors. Like normal progenitors,
primary CML progenitor cells are dependent on hematopoietic
cytokines for survival, proliferation, differentiation and matura-
tion, but, as discussed below, there are certain subtle differences
in the response of normal and CML progenitors to cytokine
stimulation that may be important in understanding their
abnormal behavior and may be relevant to the design of
treatment protocols.

Interaction of Bcr-Abl and cytokine signaling pathways
and differences in response of normal and CML
progenitors to Bcr-Abl inhibitors

A number of highly potent inhibitors of Bcr-Abl tyrosine kinase
have recently become available.261,262,510–512 As will be
described later in more detail, PD173955 and PD166326 are
pyrido[2,3-d] pyrimidines.513 that are approximately 20- and
100-fold, respectively, more inhibitory to both Bcr-Abl-expres-
sing cell lines and to primary CML progenitors than
STI571.261,262,512 The approximate average IC50 values of
multiple experiments comparing these three drugs in inhibiting
the growth of the R10-negative subclone of M07e/p210bcr-abl,514

are summarized in Figure 5. The pyridopyrimidine compounds
are also more inhibitory than STI571 to M07e cells growing in
kit ligand, but the ratios of c-kit: Bcr-Abl inhibition are
considerably greater.

As shown in Figure 6, normal CD34+ GM progenitors can be
grown in up to 25 nM of either STI571 or PD173955 with no
detectable inhibitory effects.261 In contrast, 25 nM PD173955
had a pronounced inhibition (B70%) of 3H-TdR uptake in CML
CD34+ GM progenitor cells grown in GM-CSF+G-CSF, and
even as little as 10 nM of PD173955 caused near maximal
selective inhibition of CML GM progenitor cell growth. Cell
cycle analysis of CML GM progenitors grown in G-CSF+GM-

Figure 4 The distribution of normal and CML early erythrocyte progenitors (BFU-E) contained in highly enriched Lin� blast populations with
different proliferative potentials are shown in the left panel, and the percentages of total erythroblasts produced that are generated by these BFU-E
of different proliferative potential are shown in the right panel. The approximate mean numbers of cells contained in normal CML BFU-E of
different sizes are also shown. The BFU-E were stimulated with IL3+GMCSF+KL+EPO.491
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CSF showed that 10 nM of PD173955 reduced the percentage of
cycling cells (ie S/G2/M: control 26% vs PD17 15%) while
increasing the percentage of cells in G1 (control 74% vs PD17
85%)261 (not shown). A concentration of B250 nM of STI571 is
required to cause an equivalent level of inhibition of CML
progenitors to that obtained with B10 nM of PD173955.
PD166326 is about four-fold more inhibitory to Bcr-Abl than
PD173955 in in vitro kinase assays, Bcr-Abl-expressing cell
lines, primary CD34+ progenitors from chronic-phase CML
patients,262 and also in blast cells obtained from CML patients in
blastic phase as shown in Figure 7.

Unlike normal progenitors, some early CML progenitors can
undergo limited proliferation in serum-free media in the absence
of exogenous cytokines, but appropriate cytokines are required
for sustained growth and differentiation of CML as well as
normal progenitors.299,490,491 Moore et al515,516 reported that
some CD34+ and CD34+CD38- CML cells, but not comparable
normal progenitors, can be induced to proliferate in serum-free
media with KL alone, although the response of CML progenitors
to KL in the presence of other cytokines is no different than that
of normal progenitors. As shown in Figure 8, we have also
observed that primary normal CD34+ GM progenitors die

Figure 5 Approximate mean IC50 values (nM) of multiple experiments comparing three Bcr-Abl kinase inhibitors, STI571, PD173955, and
PD166326, in inhibiting cell growth and 3H-thymidine uptake by M07e/p210bcr-abl R10-negative cells514 compared to IC50 values for M07e cells
growing in KL. The approximate ratios of M07/KL: R10-negative values are also shown.262

Figure 6 Average inhibition of uptake of 3H-thymidine by STI571 and PD173955 in normal (n¼ 3) and CML (n¼5) highly enriched
CD34+GM progenitors stimulated with G-CSF and GM-CSF (10 ng/ml each) as a percent of untreated cells. The approximate mean IC50 values are
also shown.261
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rapidly in serum-free media even in the presence of KL, whereas
comparable CML progenitors undergo limited proliferation with
KL stimulation; after 6 days, the CML cells increased 1.6-fold
whereas the normal cells decreased to 25% of the starting
concentration.261 PD173955 (10 nM) had no effect on normal
cells, but completely blocked the CML cells’ proliferative
response. The most likely explanation for these observations is
that Bcr-Abl kinase activity cooperates with c-kit-activated
pathways when KL is the sole stimulus, facilitating activation

of signaling cascades. A similar enhanced response to KL was
reported in a primitive multipotent hematopoietic cell line,
FDCP-Mix, that expresses a conditional mutant of Bcr-Abl.517

Bcr-Abl mediated an increased expression of c-kit, and it was
suggested that this or stabilization of the active conformation of
c-kit by p210bcr-abl may also contribute to the enhanced
response of CML primitive progenitors to c-kit. While the
mechanism may differ in different circumstances, it is clear that
while primary CML progenitors have a greater proliferative

Figure 7 Comparative inhibition of 3H-thymidine uptake in blast cells from a CML patient in blastic phase by STI571, PD173955, and
PD166326. In total, 40 000 cells per well were incubated in 20% FCS/IMDM without cytokines for 48 h; then 3H-thymidine was added for another
18 h.262

Figure 8 KL alone (100 ng/ml) in serum-free media stimulates the growth of CML but not normal highly enriched CD34+ progenitors.
PD173955 10 nM had no effect on the normal cells, but completely inhibited the CML cells proliferative response to stimulation with KL.261
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response than normal progenitors to KL alone, they also have a
reduced synergistic response to KL in combination with other
cytokines as shown earlier (Figure 3).

To explain this apparent paradox and demonstrate that the
altered responses of primitive CML progenitors to KL and other
cytokines is indeed directly attributable to Bcr-Abl kinase
activity, we compared the growth responses of normal and
CML GM progenitors to these growth factors in the presence and
absence of PD173955. A representative experiment is shown in
Figure 9, left panels. While normal enriched GM progenitors in
the presence of KL exhibited only B17% of the maximal
proliferative response to stimulation by KL+G-CSF+GM-CSF,
CML GM progenitors with KL alone had B44% of the maximal
proliferative response to the three cytokines.261 Moreover,
10 nM of PD173955 completely abrogated this heightened
response to KL and the 3H-thymidine uptake values returned
to those seen with normal GM progenitors with KL as the sole
stimulus. That the increased uptake of 3H-thymidine by CML
GM progenitors growing in KL alone reflects an actual
increment in growth rather than merely increased survival of
cells initially in cycle or increased entry into S phase was shown
earlier in Figure 8. Compared to normal GM progenitors, CML
GM progenitors also have a heightened response to either
saturating amounts (8–10 ng/ml) or to subthreshold concentra-
tions (0.03 ng/ml) of G-CSF plus GM-CSF (not shown).261 This
heightened responsiveness is again directly attributable to the
cooperation of Bcr-Abl kinase activity with G-CSF and GM-CSF-
activated signaling pathways since 10 nM PD173955 completely
ablates the elevated response.

Figure 9 also shows that the addition of KL to saturating
amounts of GCSF+GM-CSF leads to the growth enhancement of
normal GM progenitors in a synergistic manner; 3H-thymidine
incorporation was increased on an average of Btwo-fold over
the additive effects of KL alone plus (G-CSF+GM-CSF) alone.
The addition of KL to normal GM progenitors growing in G-
CSF+GM-CSF also increased the S/G2/M fraction from 21 to
34% (not shown).261 In contrast, the addition of KL to saturating
amounts of G-CSF+GM-CSF did not lead to a synergistic

response in CML GM progenitors since their growth response
in the presence of all three factors was significantly less than
additive (Figure 9, lower left panel). This lack of synergism is not
surprising given that CML GM progenitors exhibited near-
optimal growth (B77% of maximum) in G-CSF+GMCSF alone.
Furthermore, cell cycle analysis revealed no increase in the
fraction in S/G2/M when KL was added to G-CSF+GM-CSF (not
shown).261 This greatly reduced requirement for the synergistic
contribution of KL to achieve optimal growth of CML GM
progenitors is consistent with our previous findings illustrated in
Figure 3.

The minimal growth-enhancing effects of KL in the presence
of G-CSF+GMCSF on CML GM progenitors at first seems
counterintuitive because these progenitors had a marked
response (B44% of maximum growth) when KL was the sole
stimulus. The most plausible explanation is that activated Bcr-
Abl kinase cooperates with both KL-activated pathways and
with G-CSF+GM-CSF-activated pathways to induce a heigh-
tened growth response. The ability of activated Bcr- Abl kinase
to cooperate with one or two cytokines would therefore reduce
the requirement for synergy between multiple cytokines as is
observed in normal primitive GM progenitors to achieve optimal
growth. The observation that the inhibition of growth of CML
GM progenitors by 10 nM PD173955 in the presence of all three
growth factors was significantly less than in the presence of KL
alone or G-CSF+GM-CSF as illustrated in Figure 9 (lower left)
supports this explanation. Since 10 nM PD173955 selectively
inhibits Bcr-Abl kinase activity in CML GM progenitor cells it
would be expected that some degree of synergy might be
restored, and indeed, the results of cell cycle analysis support
this interpretation. Treatment with 10 nM PD173955 in the
absence of KL reduced the S/G2/M fraction from 33 to 22%,
whereas the addition of KL restored the S/G2/M fraction to 29%
(not shown).261

More mature CML GM progenitors are less dependent
on Bcr-Abl: As GM progenitors mature they no longer

Figure 9 Left panels: Highly enriched normal and CML CD34+ GM progenitors, depleted of CD36+ cells, were incubated at the rate of 40 000
cells per well for 4 days with KL (100 ng/ml) alone, G-CSF+GM-CSF (10 ng/ml each) and all three cytokines with and without 10 nM PD173955;
1mCi 3H-thymidine per well was then added for an additional 18 h. Right panels. Cells were preincubated for 4 days with the three cytokines
without drug to allow some maturation; 10 nM PD173955 was then added to the cytokines for 3 more days+3H-thymidine for an additional 18 h.261
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require multiple growth factors to achieve optimal
growth,490,491,518 so one would expect that the cooperative
effects of Bcr-Abl kinase activity with growth factor(s) would be
diminished in more mature CML progenitors. In order to provide
direct evidence that such is the case, freshly isolated normal and
CML CD34+ GM progenitors were preincubated for 4 days in
the presence of G-CSF+GM-CSF without an inhibitor to allow
some degree of maturation to occur. A representative experi-
ment is shown in Figure 9, right panels. Phenotypic analysis
confirmed that both CML and normal GM progenitors were
more mature after 4 days in the presence of G-CSF+GM-CSF
since expression of the CD34 antigen rapidly declined and
expression of antigens appearing on maturing myeloid cells (ie
CD33, CD13, 14, and 15) greatly increased.261 The cells were
washed after 4 days and resuspended in the cytokines shown in
the presence and absence of PD173955 and examined for 3H-
thymidine uptake to compare with the GM progenitors initially
assayed at 0–5 days. The inhibitory effect of 10 nM PD173955 is
substantially reduced in the maturing CML cells, demonstrating
that they become much less dependent on the intrinsic Bcr-Abl
kinase activity as they mature, whereas the few, presumably
earlier, progenitors that were still responsive to KL alone were
still inhibited almost as greatly as the initial (0–5 day) primitive
progenitors.

It can also be seen in Figure 9 (right panels) that the
requirement for the synergistic interaction of KL with G-CSF and
GM-CSF seen in the primitive normal progenitors is consider-
ably diminished in the normal maturing progenitors, and that the
growth response of the maturing CML progenitors to G-
CSF+GM-CSF7KL is similar to that of the maturing normal
GM progenitors. 10 nM of PD173955 effectively inhibits Bcr-Abl
kinase in maturing CML GM progenitors, almost completely
blocking substrate phosphorylation (not shown),261 but has no

measurable inhibitory effect on their growth. The p210bcr-abl

protein is still detectable in the maturing cells but at a reduced
level compared to earlier progenitors, and the constitutive
phosphorylation of Bcr-Abl substrates is comparably less. One
can conclude from these results that Bcr-Abl has a much less
important role in the growth of maturing CML GM progenitors
than in the primitive progenitors.

We also investigated whether intrinsic Bcr-Abl kinase activity
could reduce the well-known normal requirement for the
synergistic interaction(s) between KL and EPO for optimal
growth of erythroid progenitor cells.490,491,519 Thus, enriched
normal and CML erythroid progenitors were examined for their
growth response in short-term serum-free suspension culture
with either KL alone, varying concentrations of EPO alone, or KL
together with varying concentrations of EPO and with and
without 10 nM PD173955. A typical experiment is shown in
Figure 10.261 Both KL and EPO are essential for any appreciable
growth of normal erythroid progenitors; their growth response is
because of a remarkable synergistic interaction since neither
factor alone elicits any significant response. Furthermore, the
contribution of EPO in this synergistic response is concentration
dependent. In marked contrast, CML erythroid progenitors
achieved B50% of the maximal growth response (KL+EPO
1 U) with KL alone. Moreover, a suboptimal concentration of
EPO (0.1 U) in combination with KL achieved 85% of an
optimal response.

As is the case with CML CD34+ GM progenitors, the
exaggerated response of CML CD34+ erythroid progenitors to
KL and EPO as single cytokines can be directly attributed to the
cooperativity of Bcr-Abl kinase activity with their receptor-
activated signaling pathways since 10 nM of PD173955 com-
pletely abrogated the heightened response and returned the 3H-
thymidine uptake values to those seen with normal erythroid

Figure 10 Top panel: Normal, highly enriched CD34+ erythrocyte progenitors (depleted of CD13, 14, 15, 41, and 61 expressing cells) were KL
and EPO with and without 10 nM of PD173955 for 48 h and 3H-thymidine added for 18 more hours; 3H-thymidine uptake is expressed as a
percentage of the maximum stimulation with KL 100 ng/ml+EPO 1 U. The normal progenitors require both KL and EPO for substantial growth, and
the synergistic growth response is dependent on the concentration of EPO. 10 nM of PD173955 of 10 nM has no inhibitory effect. Lower panel: In
contrast, CML CD34+ erythrocyte progenitors have an exaggerated growth response to KL alone or EPO alone. PD173955 of 10 nM completely
blocks the heightened response to the single cytokines and partially restores the normal synergistic response.

Strategies for curing CML
B Clarkson et al

1230

Leukemia



progenitors. Moreover, 10 nM PD173955 partially restored the
normal synergistic response in the presence of EPO 1 U+KL.

Prognosis and current status of treatment

Overall survival and prognostic factors

The overall median survival of patients with Ph+ CML in
chronic-phase from diagnosis treated with conventional che-
motherapy has varied from around 3–5 years in different series,
with a range of less than a year to over 20 years.41,308,520–525

Survival after the development of an accelerated phase is usually
less than a year and after blastic transformation, only a few
months, although patients with lymphoblastic transformation
may live longer with appropriate chemotherapy. In a multi-
institutional study of disease features at diagnosis in nonblastic
CML, the most important characteristics associated with
shortened survival were older age, male sex, large spleen, high
platelet count, high percentages of blasts in blood and marrow,
high percentages of eosinophils and basophils, the presence of
nucleated red cells in the blood, a high serum lactic
dehydrogenase level, and a low hematocrit.520,524,525 Based
on a Cox model using five variables: sex, spleen size, platelet
count, hematocrit, and percentage of circulating blasts, the
patients could be segregated into a high-risk group who had an
actuarial mortality of 30% during the first 2 years after diagnosis
and an annual risk of 30% thereafter, while the most favorable
group had a 2-year actuarial mortality of 9%, an average annual
risk thereafter of 17%, and a median survival of 52 months.
Additional factors that have been reported to be associated with
an unfavorable prognosis in other series are black race,
cytogenetic abnormalities in addition to the Ph chromosome,
rapid WBC doubling time, poor response to chemotherapy, liver
enlargement, and myelofibrosis.308,526–528

Conventional and intensive chemotherapy

In the classic paper by Minot et al529 in 1924, the median
survival of untreated CML patients was reported to be 31 months
from onset of symptoms, but this early series probably included
some patients in transition from the chronic-phase to an
accelerated or blastic phase. None of the treatment regimens
available at the time improved survival. During the last 75 years,
attempts to significantly prolong survival have been generally
disappointing. Although the clinical manifestations of the
chronic-phase can usually be readily controlled by many
different types of chemotherapeutic agents, and most patients
are able to lead fairly normal lives during the early part of the
disease, conventional chemotherapy with commonly used drugs
such as busulfan or HU given in relatively low doses rarely
cause cytogenetic remissions and at best have only a modest
effect in improving overall survival.530 In a large randomized
clinical trial in Germany comparing busulfan and HU in CML,
the median survival of busulfan-treated patients was 45.4
months while that of the HU group was 58.2 months
(P¼ 0.008).521

About 30 years ago, it was first reported that it was possible to
induce cytogenetic remissions in chronic-phase CML with
intensive chemotherapy and splenectomy in a significant
fraction of patients.313 Until that time it had been questioned
whether any normal hematopoietic stem cells remained that
were capable of repopulating the marrow. However, the
remissions were almost invariably short and further follow-up

showed that there was only a modest survival advantage for
patients having a complete or partial cytogenetic remis-
sions.127,130,531,532 Other intensive treatment protocols, with
or without splenectomy, have subsequently been tried during
the chronic-phase of CML, but these trials also resulted in only
marginal or no prolongation of survival.308,314,533–535

Differentiating agents

A number of drugs capable of inducing myeloid cell differentia-
tion (eg retinoic acid, HMBA, bryostatin, vitamin D derivatives,
etc) have been shown to cause differentiation and/or growth
inhibition of human CML or other types of leukemia cells in
vitro.536–539 Several clinical trials combining chemotherapy and
differentiation agents in myelodysplastic syndromes or CML
have been carried out,529,540–542 but none of these trials have
shown the same degree of therapeutic benefit that has been
demonstrated for all-trans-retinoic acid (ATRA) in acute
promyelocytic leukemia (APL).543–548

Interferon

Treatment with alpha-interferon (a-interferon) alone appears to
prolong survival by about a year compared to HU and/or
busulfan,69,549–554 and some patients (B6–20% in different
series), especially those with favorable prognostic indices, have
complete cytogenetic remissions.307,555–558 A smaller percen-
tage of patients appear to have quite durable complete
remissions that persist even after stopping treatment, but using
PCR technology or FISH analysis, small numbers of leukemic
cells can usually still be detected in the majority of patients
having long-term cytogenetic remissions.559–563 Interferon is not
devoid of toxicity, and many patients are unable to tolerate the
unpleasant side effects for the long periods of treatment required
to obtain durable responses. Some of the clinical trials
experienced better results than others; possible explanations
include different proportions of patients in higher or lower risk
groups or in aggressiveness in continuing therapy despite the
unpleasant side effects of interferon. The mechanism(s) by
which IFN inhibits growth of normal and CML progenitor cells is
still uncertain and is probably very complex and multifactorial.
A number of possible mechanisms have been proposed,
including affecting multiple gene transcription and protein
phosphorylation events,307,382,557,558,564,565 activation of den-
dritic cells,566 affecting Fas-R-mediated induction of apopto-
sis,477,478 downmodulating Bcr-Abl mRNA and p210bcr-abl and
suppressing cell growth and inducing apoptosis via cooperative
interaction of ICSBP and PU1 on the regulation of bcl-2 gene
expression.567 Combined treatment with a-interferon and
cytarabine (arabinosylcytosine, Ara-C) given subcutaneously568

(and more recently orally569) was reported to give a higher
percentage of complete hematologic and cytogenetic remissions
and possibly improved survival compared to interferon alone,
but the combination may also cause more toxicity and longer
follow-up and confirmation is needed before it can be
concluded that the combination significantly enhances well-
being and survival.

Bone marrow transplantation

Allogeneic and syngeneic transplants: Presently, the only
fairly consistently curative treatment for CML consists of marrow
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ablative doses of chemotherapy and/or total-body irradiation
followed by syngeneic or allogeneic bone marrow transplanta-
tion, but this option is only available to approximately one-
quarter of patients who have an HLA-matched sibling or an
unrelated HLA-matched donor. Of patients in chronic-phase
who were treated with allogeneic bone marrow transplants,
overall approximately 50–60% have had actual or projected
long-term survival (usually 45–7 years).551,570–573 In the largest
single-institution experience with the longest follow-up, a
survival rate of 70% at 10 years was reported.574 While early
reports of monitoring minimal residual disease following
transplantation and predicting the likelihood and rapidity of
hematologic relapse were inconsistent and sometimes contra-
dictory, with more experience and the development of more
accurate in situ hybridization (FISH) and competitive RT-PCR
assays, the results have become more reliable.560,563,575–577 As
might be expected, patients who remain RT-PCR and/or FISH
negative for several years or longer after transplants have an
increasing likelihood of being cured, but even some patients in
whom persistent low-level Bcr-Abl transcripts are detected
(without progressively increasing) may remain in clinical
remission for extended periods.560,578,579 As suggested earlier,
these persistent Ph+ cells may be produced by ‘limited Ph+ stem
cells’ that are incapable of undergoing enough symmetric
divisions to reproduce overt disease, or, alternatively, they
may be partially suppressed by donor lymphocytes or dendritic
cells.

Patients who develop graft-versus-host disease (GVHD)
following allogeneic transplantation have a lower incidence of
relapse than those who do not, and much effort has been given
to try to separate and augment a graft-versus-leukemia response
from GVHD. There are now numerous reports showing that
infusion of donor leukocytes may succeed in causing remissions
in chronic-phase CML patients who have relapsed after
allogeneic transplantation.580–585 In the early studies some of
the donor cell infusions caused an appreciable incidence of
GVHD, which was sometimes severe or even fatal, and marrow
aplasia was also reported.586–588 More recently, improved
results have been obtained with (CD8+-depleted) CD4+ donor
lymphocyte infusions (CD4+ DLI), which may act by inducing
host-reactive cytolytic CD8+ donor T cells to directly or
indirectly inhibit the Ph+ progenitors or stem cells.589,590

The survival of patients who lack HLA-matched siblings and
who receive transplants from unrelated HLA-matched donors
identified by bone marrow registries is generally substantially
lower than recipients of related donor transplants,591,592

although certain immunologically distinct HLA subtypes fare
better than others.570,593 During the last few years, G-CSF-
stimulated peripheral blood stem cells (PBSC) have replaced
bone marrow stem cells in some transplant centers, since PBSC
may engraft and function more rapidly in producing neutrophils
and platelets and also may be less likely to cause GVHD.

Since there is still an appreciable early mortality and relatively
high incidence of complications including chronic GVHD
associated with allogeneic BMT, the advisability of this form
of treatment is still controversial, especially in older patients
who are less able to tolerate the intensive treatment. In an
analysis of a large study comparing HU, interferon, and BMT,
there was a significant survival advantage for HU or interferon
during the first 4 years after diagnosis and for BMT starting 5.5
years after diagnosis;551 the survival advantage for BMT was
greater in patients with intermediate or high-risk prognostic
features than in those with low-risk features. In efforts to further
increase curability with reduced toxicity, investigators in Seattle
and elsewhere are currently exploring a number of new

approaches in clinical BMT protocols, including nonablative
(ie low-dose TBI B2 Gy) plus immunotherapy; leukemia-
specific targeted isotopic or toxin-conjugated antibodies direc-
ted against minor tissue-specific antigens to enhance selective
purging; pretargeting methods employing streptavidin and biotin
to increase antibody binding to the leukemia cells; and various
adoptive immunotherapy protocols post-transplant to reduce the
incidence of relapse and/or GVHD.

Autologous transplants: There have been numerous at-
tempts to treat patients without histocompatible donors both in
the blastic and chronic-phases of the disease with marrow
ablative intensive chemotherapy and/or irradiation regimens
followed by autologous stem cell transplantation,535,594,595 and
various methods have been tried to preferentially eliminate
residual Ph+ progenitor cells in the graft while sparing normal
stem cells. The methods include cytotoxic drugs, antisense
molecules against Bcr-Abl junction peptide sequences, peptide-
based vaccines using b3a2 junctional peptides;596–602 genera-
tion of dendritic cells to stimulate a selective antileukemic
cytotoxic T lymphocyte response,603,604 cold or radiolabeled
antibodies directed against surface antigens such as CD33601 or
AC133;605 and cell culture systems designed to selectively
amplify normal primitive progenitors (LTC-IC) without compar-
able expansion or with diminution of Ph+ early progeni-
tors.563,596,606 It is still uncertain which of the proposed
purging methods is optimal, and questionable whether any of
those so far tried are sufficiently selective and reliable to
eliminate all Ph+ progenitors while sparing enough normal stem
cells to permit successful grafting.

In the initial clinical trials few patients were cured by
autologous stem cell transplantation. The majority of patients
who survived the procedure still had Ph+ cells in the marrow
detectable by cytogenetic or PCR analysis,595,607 and retroviral
marking of donor cells showed that residual Ph+ progenitors that
persisted in the autologous transplant, despite in vivo or in vitro
purging attempts, can contribute to relapse as well as residual
leukemic cells surviving in the patient.608 An early meta-
analysis showed that the 3-year post-transplant leukemia-free
survival was less than 5%,609 but more recent reports suggest
that survival may be prolonged and that perhaps 15–25% of
patients undergoing autologous transplantation in the chronic-
phase may have more durable remissions, although the follow-
up is still too short to determine how many may have been
cured.594,596,610

Thus, despite enormous efforts during the past several decades
to improve treatment, only a minority of patients with chronic-
phase CML are presently being cured with BMT protocols, and it
is doubtful if older patients will ever be able to tolerate the
aggressive treatment required to eradicate the Ph+ clone. The
results are even worse for patients in the accelerated or blastic
phases of the disease or for those presenting with Ph+ acute
leukemia, and such patients are rarely amenable to cure with
any type of treatment. It is not known why the Ph+ acute and
chronic leukemias are so refractory to therapies that have
proven successful in some other types of leukemia and
disseminated lymphomas with other translocations or other
mutations, but there is a pressing need for more selective, less
toxic, and more effective treatment.

Novel therapies for CML

A number of potential ‘molecularly rationale’ therapies have
been suggested for CML, including some mentioned earlier as
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possible approaches for selectively purging Ph+ progenitors
from the marrow ex vivo for use in autologous BMT protocols.
Among the approaches suggested are the use of ribozymes; 611

antisense oligonucleotides complementary to the junction
sequence of Bcr- Abl;612,613 inhibition of functional domains
of Abl or Bcr-Abl proteins other than the kinase domain that
might serve as targets for specific therapies, such as the Abl SH2
domain or the first exon of Bcr,565 the oligomerization domain
of Bcr,150,158,159,162,188,565,614–618 inhibiting Grb2 interactions
with Bcr-Abl or Ras,462,619 or pathways dependent on Gab2, the
scaffolding protein that interacts with Grb2620–623 or some form
of specific immunologic therapy.597,601,621–628 The presence of
unique amino-acid sequences across the Bcr-Abl fusion break-
point suggested that it might be possible to develop a specific
vaccine. Although the p210bcr-abl protein is not expressed on
the cell surface, in principle, peptide sequences may be
presented in the context of HLA molecules for recognition by
T cells that might augment an immune response to leukemia
cells or perhaps kill them. One study sought to determine if
CML-specific amino-acid sequences could be presented by HLA
molecules, and if so, if these HLA bearing cells could serve as
targets of specific T cells from normal or leukemia patients.624

Based on these studies, a vaccine was prepared and a clinical
trial was initiated.601 to try to prevent recurrence after BMT, but
it is too soon to know if this approach will be successful in
preventing relapses.

Gleevecs (STI571) and other inhibitors of Bcr-Abl
tyrosine kinase: Since the increased PTK activity of the
oncogenic Bcr-Abl fusion proteins is well known to be essential
for transformation, many investigators have examined various
PTK inhibitors, hoping to find one that will selectively inhibit
Bcr-Abl kinase.221,629,630 One of the most potent and selective
inhibitors of Bcr-Abl kinase activity so far discovered is the
Novartis compound STI571 (also called Gleevec, Glivec,
Imatinib Mesylate and formerly Ciba-Geigy compound
CGP57148B), which has recently been undergoing clinical
trials in patients with CML.510,558,631–635 STI571 acts as a
competitive inhibitor of ATP at the ATP-binding site of the
tyrosine kinase domains of both the normal Abl and Bcr-Abl. It is
much less inhibitory to most other PTKs that have been tested
with the notable exceptions of two normal receptor PTKs, c-kit,
and PDGF-R.

In the Phase I trial that was carried out in patients in whom
treatment with interferon had failed or who could not tolerate
interferon,511 the dose was gradually escalated attempting to
reach therapeutically effective levels, without encountering
serious toxicity. As soon as a dose of B300 mg/day was
reached, it became apparent that a high percentage of patients
were having hematologic remissions. Subsequent Phase II trials
of STI571, generally administered orally once daily at 400 mg/
kg, in patients who had failed, become refractory to, or
developed intolerance to interferon, confirmed that the in-
cidence of complete hematologic remission with STI571 is
B95%, and that 60% of patients had major and 41% CCRs. Side
effects, including skin rashes, muscle cramps, fluid retention,
nausea, vomiting, and diarrhea, were frequent but were rarely
severe enough to require interruption of therapy. With further
follow-up it appears that many patients have developed
molecular or cytogenetic causes of resistance to STI571, and
studies in animals and cell lines have also reported frequent and
varied mechanisms of resistance, including overexpression of
Bcr-Abl with or without gene amplification, novel cytogenetic
aberrations, compensatory mutations in genes other than Bcr-

Abl, altered drug metabolism, different point mutations in the
ATP-binding site, reduced intake or increased efflux of drug
mediated by P-glycoprotein, loss of Bcr-Abl protein expression
and activation of compensatory survival pathways, and binding
of drug to a-1-acid glycoprotein (AGP).134,636–644

STI571 is also effective in inducing partial and sometimes
complete hematologic and cytogenetic responses in accelerated
and blastic-phase disease, but the responses are generally less
complete and of shorter duration, and resistance may develop
rapidly.645–647 A daily dose of 600 mg was more effective than
400 mg without much increase in toxicity, but the improvements
in onset and duration of hematologic response and overall
survival were only modest. STI571 is currently being tested in
combination with various other drugs in Bcr-Abl-positive cells
on the likely assumptions that any single agent such as STI571
is unlikely to be curative and that resistance will be
common.648–655

New potent inhibitors of Bcr-Abl kinase and
structural-activity analyses

Using a truncated variant of STI571, missing the piperazinyl
group, Schindler et al656 succeeded in cocrystallizing the
inhibitor and the Abl kinase domain, whereas previous attempts
to crystallize Abl kinase without an inhibitor had been
unsuccessful. Once the structure was known, in our collabora-
tive studies with Dr William Bornmann and Dr John Kuriyan, a
number of other phenylamino-pyrimidine derivatives were
designed and synthesized, but none proved more inhibitory to
Bcr-Abl than STI571.

Since a number of interactions had been reported between
Abl or Bcr-Abl with Src family kinases,191,192,657–659 we
considered the possibility that Lyn or possibly other Src family
members might serve as targets for the development of inhibitors
that could potentially function synergistically with inhibitors of
Bcr-Abl. In view of these interactions between Src and Bcr-Abl
and our own observations that p53/56lyn is constitutively
tyrosine phosphorylated in primary CML progenitors, we began
searching for selective inhibitors of Src kinases to use in
combination with STI571. We had previously found that the
Src inhibitors, PP1 and PP2 inhibit other kinases besides Src, and
also that PP1 is about 10-fold more inhibitory to M07e cells
growing in KL (IC50 B0.5 mM) than to Bcr-Abl-expressing cells
(M07e/p210bcr-abl: IC50 B5.0 mM). A selective inhibitor of Src
kinases (PD173955) that was more potent than PP1 was
reported in late 1999,660 and Dr Neal Rosen gave us some of
this inhibitor to see if it might act synergistically with STI571.
Unexpectedly, when tested alone, PD173955 was found to be
approximately 20-fold more inhibitory to p210bcr-abl-expressing
cells than STI571.262,512,513,661 Dr Bornmann and his colleagues
subsequently synthesized PD173955 and a large number of
other derivatives in the Core Preparative Synthesis Laboratory at
MSKCC and we began an extensive series of experiments aimed
at finding an even more specific and potent Bcr-Abl inhibitor.

PD173955 is a member of a new class of highly potent
tyrosine kinase inhibitors based on the pyrido[2,3-d]pyrimidine
core template.513 Shortly after we had begun our studies with
PD173955, another pyrido[2,3-d]pyrimidine derivative,
PD180970, was reported to inhibit p210bcr-abl tyrosine kinase
and to induce apoptosis in K562 cells;662 it was also found to
inhibit recombinant c-Src tyrosine kinase, but the authors
tentatively concluded that the inhibitory effects on K562 cells
were largely because of inhibition of p210bcr-abl tyrosine kinase
rather than Src. PD180970 was also synthesized by Dr
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Bornmann and was found to be only slightly less inhibitory to
M07/p210bcr-abl R10-positive and -negative cells (IC50¼B4–
7.5 nM), than PD173955 (IC50¼B2–2.5 nM), whereas the IC50s
for M07 cells growing in KL or IL3 are the same (0.1 and 0.5 nM,
respectively).262 The only structural difference in these com-
pounds is a methylthioether group at position 3 on the
phenylamine ring (PD173955) instead of a methyl group and a
fluorine at positions 3 and 4, respectively (PD180970).

PD173955 was cocrystallized with the Abl kinase domain by
Dr Bhushan Nagar in Dr John Kuriyan’s laboratory, then at
Rockefeller University, and analysis showed that PD173955
binds to a conformation in which the activation loop resembles
that of an active kinase domain.511 Furthermore, modeling
showed that PD173955 can also be accommodated in the
kinase domain when the activation loop is in the inactive
conformation. In contrast, STI571 is only able to associate with
Abl kinase when the activation loop is in the inactive
conformation.656 The crystallographic structure also reveals that
the methyl thio-ether group of PD173955 does not contact the
Abl kinase backbone and protrudes out of the binding pocket,
and this probably explains why PD173955 and PD180970 have
similar activities.

Since the crystal structure of Hck with PP1 bound in the ATP-
binding site was already known,240 it was possible to compare
the Abl and Src kinase domains and seek a structural
explanation as to why STI571 does not bind Src kinase, whereas
PD173955 binds both Abl and Src kinases almost equally well.
Although there is B49% sequence identity in their catalytic
domains, and the residues lining the nucleotide-binding site that
contact STI571 are either identical or are substituted conserva-
tively in Abl and Src kinases.656 STI571 is readily able to
discriminate between these two kinases despite their close
sequence similarity. The IC50 of STI571 for c-src, v-src, lyn, and
c-Fgr is B400- to 1000-fold greater than to c-abl or Bcr-
Abl.663,664

It appears that a principal reason that PD173955 is more
inhibitory than STI571 is because the former can bind both the
inactive and active conformations of Abl kinase, whereas
STI571 does not fit well in the ATP-binding pocket when the
activation loop is in the active conformation and thus is only
able to exploit the downregulated form of Abl. Unlike Src
kinase, which is dependent on tyrosine phosphorylation of
Tyr418 to assume its active conformation, Abl kinase can
assume both active and inactive conformations independent of
phosphorylation of Tyr393, the major site of phosphorylation in
the Abl activation loop.511 (Tyr 393 in splice form 1A is the same
as Tyr412 in splice form 1B.241) Although the conformational
changes are very rapid and dynamic, the fusion with Bcr and
resulting loss of Abl’s N-terminal 80 residues and myristoyl
group that have an autoregulatory function in the intact
molecule.195 presumably causes Abl to adopt mainly an active
conformation, thereby favoring its association with PD173955
over STI571. Moreover, phosphorylation of Tyr393 stabilizes
Abl kinase in the open or active conformation, thereby further
favoring its preferred association with PD173955.

The structural analyses also provide a plausible explanation
why PD173955 binds Src whereas STI571 does not. The
conformation of the NH2 terminal anchor of the acti-
vation loop (containing the highly conserved Asp-Phe-Gly
(DFG) motif) is quite different in the inactive Src and Abl kinase
structures,195,511 and this conformation in the Src kinases
effectively blocks the binding of STI571. Conversely, because
the active conformations of the Src and Abl kinases are quite
similar, PD173955 is able to bind both Src and Abl in their
active conformations whereas STI571 cannot bind either.

Recent work suggests that some potent and fairly specific Src
kinase inhibitors such as CGP76030665 and the pyrrolo-
pyrimidine, A-419259666,667 do indeed inhibit Bcr-Abl-expres-
sing cells and may act synergistically with STI571.665

PD173955 is quite insoluble, and a number of modifications
have been made to try to increase its solubility, potency, and
specificity. One of these derivatives (PD166326) was found to
be Bfour-fold more inhibitory to Bcr-Abl-expressing cell lines
and CML progenitors than PD173955262,512 (Figures 5 and 7).
PD166326 only differs from PD173955 in the substitution of a
methylhydroxy group for the methylthioether on the phenyl ring,
but modeling studies show that this enables PD166326 to form
an additional hydrogen bond with Thr319 in the ATP-binding
pocket that may account for its greater inhibition.262

Cocrystallization studies have shown that STI571 has six
hydrogen bonds and 21 van der Waals interactions with
residues in the ATP-binding pocket, and a significantly greater
binding interface than PD173955. Since the latter has only 11
van der Waals interactions and forms only two hydrogen
bonds, it would be expected that STI571 should bind more
tightly than PD173955 in the inactive conformation of Abl.
While this might be true if only the inactive form were
considered, in solution the isolated kinase domain of Abl
probably exists in dynamic equilibrium between the open and
closed conformations of the activation loop, and the crystal-
lographic data suggest that PD173955 should inhibit Abl
regardless of its phosphorylation state, whereas STI571 should
only bind when the kinase is unphosphorylated. Indeed, this has
been confirmed in kinase inhibition assays: PD173955 inhibits
Abl kinase with an IC50 of B5 nM independent of the
phosphorylation state while the IC50 for STI571 is B100 nM

for the dephosphorylated form only with no effect on the
phosphorylated form.511

Modeling studies have shown that the Thr315-Ile315 sub-
stitution as a result of the C-T mutation recently described638

might result in a steric clash between PD173955 and the methyl
group of Ile315 (as is also true of STI571), which might interfere
with binding even though it has no hydrogen bond with Thr315
as does STI571. Other analogs that may circumvent this clash
are currently being considered, but it should be stressed that this
C-T mutation is only one aspect of the overall problem of
resistance. Sawyers’ group638 and other investigators.641,643,668

have subsequently reported numerous other point mutations in
the kinase as well as other domains,641 some of which also
interfere with inhibitor binding and cause resistance, and as
previously noted, many other mechanisms of resistance to
STI571 have been observed.634,639,640,642,644,669,670

PD173955 and PD166326 have been tested and compared
with STI571 in a variety of other human tumor cell lines and
animal models.262,512 In most of the cell lines tested, PD173955
is considerably more inhibitory than STI571 (glioblastomas,
n¼ 4; neuroblastomas, n¼ 6; sarcomas, n¼ 3; Ewing’s Sarco-
ma, n¼ 2); the IC50 of STI571 is 410mM, while that of
PD173955 is between 200 and 1000 nM (as compared to
2–35 nM for Bcr-Abl-expressing human leukemia cell lines). We
are also conducting toxicological and pharmacological studies
in animals, including determining the maximum tolerated doses,
measuring plasma and tissue levels and bioavailability after oral
and parenteral administration, and developing optimal formula-
tions for both oral and parenteral use. From the knowledge
gained from structural analyses and modeling studies, we are
optimistic that it will be possible to design and synthesize even
more specific and potent inhibitors that also have improved
solubility and other favorable properties that will be suitable for
clinical use.
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Resistance to STI571 and other inhibitors of Bcr-Abl
tyrosine kinase

STI571 has proven to be remarkably effective as a single agent in
CML, and it is perhaps the best example yet of a highly selective
drug for any human cancer. However, based on past experience
with monotherapy with antimetabolites and most other che-
motherapeutic drugs given in conventional therapeutic doses it
is highly improbable that either STI571 or any of the newer
potent Bcr-Abl kinase inhibitors will be curative. As noted
above, multiple mechanisms of resistance to STI571 have been
reported as would only be expected. While it was of course first
necessary to determine STI571’s effectiveness as a single agent,
administration of the drug once daily over a long period at
moderate dosage with only gradual induction of remission
would be expected to result in frequent development of
resistance among the surviving Ph+ stem and early progenitor
cells. Some of the point mutations in the ATP-binding pocket
that specifically interfere with STI571 binding have justifiably
generated a great deal of interest in terms of designing new
inhibitors that might circumvent resistance because of the
mutations. In a collaborative study with Nikolas von Bubnoff,
we already have evidence that some, but not all, of the
mutations causing insensitivity to STI571 are still as sensitive as
wild-type cells to several of the pyrido pyrimidine analogs
(unpublished observations, 2003), and La Rosee et al668 have
recently reported similar findings. However, there are other
reasons that STI571 or any other single Abl kinase inhibitor is
unlikely to be curative. One important reason, currently often
under emphasized or neglected, is the existence of dormant
leukemic stem cells that are relatively insensitive to most
chemotherapeutic drugs, including the highly potent inhibitors
of Bcr-Abl kinase.

Resistance because of survival of dormant Ph+ stem
cells: Although growth of Bcr-Abl-positive cells can readily be
inhibited with relatively low and fairly selective doses of potent
Bcr-Abl kinase inhibitors with short exposure, much larger doses
and longer exposure are required to kill all the cells. One
example of the dosage and duration of exposure required to
eradicate a population of Bcr-Abl-expressing cells is illustrated
in Figure 11. During log-phase growth between 0 and 18 h, the
R10-negative subclone of M07e/p210bcr-abl 514 is growth factor
independent; has a viability of 95% or greater; a doubling time
of B18 h, a CE of B25% and a cell cycle distribution of 47–
56% of cells in G1, 35–42% in S, and 8.6–11.4% in G2/M
(values measured at 0, 4, and 18 h). No G0 cells are detectable
by flow cytometry using pyronin Y and Hoechst staining. As
seen in Figure 5, the average IC50 values for both inhibition of
growth and 3H-thymidine uptake for STI571 and PD166326 are
B40 nM and 0.4 nM, respectively; in other experiments the IC99–

100 values were B250–500 nM for STI571 and B5 nM for
PD166326 both for inhibition of cell growth in liquid culture
and inhibition of 3H-thymidine uptake (not shown). However,
considerably larger doses are required to totally eradicate a
population of 600 000 R10-negative cells during 5 days’
exposure (B6.7� the average doubling time) (Figure 11). Some
cells were able to survive 5 days’ exposure to 50 mM of STI571
and a smaller number up to 1mM of PD166326 and then grow at
the same rate as before treatment (Figures 11a and b). It took 7
days’ exposure at the same or slightly lower doses of STI571 or
PD166326 to sterilize the cultures, but even after 7 days, some
cells were able to survive exposure to 50 nM of PD166326 and
grow normally (Figure 11c). Retreatment of these surviving cells

showed no resistance compared to untreated cells (Figure 11d).
Similar experiments using a larger number of R10-negative cells
(ie 5� 106) in log-phase growth showed that a few cells could
survive 10–20 days’ exposure to concentrations of PD166326 as
high as 250 nM and 30 days exposure to up to 25 nM;
respectively; a representative experiment illustrating recovery
after 11 days’ exposure to 250 nM is shown in Figure 12.

Based on the time recovery was first detected and the
subsequent growth rate, it was estimated that very few cells,
perhaps only one or two, survived these relatively long
exposures. The cells surviving this (one-time) exposure for 10
or 20 days usually grew more slowly for several weeks but then
gradually resumed their pretreatment growth rate, which
became indistinguishable from that of cells never exposed to
the drug, and in all cases the surviving cells had IC50 and IC99–

100 values almost identical to cells never previously treated
(Figures 11 and 12). Thus, even in a population of rapidly
growing cells in which there are no detectable cells in G0,
relatively large doses and prolonged exposure to potent
inhibitors are required to kill the cells, doses that are quite
toxic to normal cells. Moreover, after the few survivors have
recovered from this one-time exposure, they have the same
growth characteristics as untreated cells and show no evidence
of resistance. The problem of total eradication is magnified
when one considers the long-recognized existence of leukemic
cells that can remain dormant in vivo for extended periods and
escape being killed.76,130,322,323,409,671,672 Ph+ stem cells and
early progenitors have usually been found to have only a slightly
higher proliferative rate than comparable normal
cells,76,123,248,260,325,381,399,400,429,501 and while there are no
reliable data on the duration of dormancy of Ph+ stem cells, it is
likely some of them can remain dormant for at least several
months and possibly much longer. Not surprisingly, it has been
reported that Ph+ primitive progenitors in G0 are resistant to
STI571 and that the drug may prevent their entry into S phase.669

and we have obtained similar results.

Considerations relevant to developing therapeutic strategies
aimed at cure

Summary of proliferative abnormalities in CML relevant
to therapy

In most patients at diagnosis, the bone marrow and other
involved organs such as the spleen contain almost entirely CML
cells; the remaining normal stem cells are largely quiescent and
unproductive, being suppressed by the leukemic population.
The altered signaling caused by Bcr-Abl results in discordant
development of the CML progenitors with asynchronous
maturation of the nucleus and cytoplasm and various subtle
dysplastic, functional and biochemical changes.248 While the
early erythroid progenitors (ie BFU-e) appear to have similar
abnormalities to the GM progenitors, expansion of the
granulocyte and megakaryocyte lineages predominate for
reasons not yet clear. The later maturing progenitors and
precursors still express functionally active p210bcr-abl, although
at a significantly reduced level, and they are less dependent on it
and are relatively insensitive to inhibitors of Bcr-Abl kinase. The
CML committed progenitors have less proliferative potential on
average than the corresponding normal progenitors, but once
fully committed, both normal and CML progenitors and their
progeny inexorably proceed through a limited number of
maturation divisions and then shortly die.

Strategies for curing CML
B Clarkson et al

1235

Leukemia



Increased activation of Ph+ stem cells as the primary
cause of myeloid expansion: There is general agreement
that the primary myeloid expansion in CML occurs at the level
of the primitive progenitor cells, but still some disagreement as
to how this comes about. Three possible scenarios are shown in
Figure 13. While a reduction in the frequency of progenitor cells
naturally undergoing apoptotic death may contribute, this alone
cannot account for the huge myeloid expansion. We and many

others formerly favored the second scenario, an increased
number of divisions by primitive progenitor cells, as the main
underlying reason for the myeloid expansion, since more
elaborate models than those shown in Figure 13 have shown
that only one or two extra divisions of early progenitors can
result in a huge amplification of the myeloid cells over
time.323,409,410,673,674 It is also apparent that the earlier cell
death occurs in the progenitor cell hierarchy, the more

Figure 11 Recovery of M07e/p210bcr-abl R10-negative cells after treatment with. (a) STI571 (0.5–50mM) for 5 days; (b) PD166326 (0.01–5mM)
for 5 days; (c). PD166321 (0.05–5mM) for 7 days. A total of 600 000 cells were treated. The drugs were removed and the cells washed and placed in
fresh media after 5 days (a+b) or 7 days (c). (d) The small fraction of cells (estimated B100–1000 cells) that survived 7 days’ exposure to 50mM of
PD166326, shown in panel c were grown up and one week later retreated with PD166326 to compare their IC50 and IC99 values with those of
previously untreated cells. No differences were noted between the pretreated and untreated cells in this or similar experiments with longer drug
exposure.
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pronounced the effect will be (ie cell death occurring in Level 2
in Figure 13a will have a greater effect than at Level 3), and the
same is of course true for extra divisions (not shown).

However, recent observations suggest that the third scenario,
increased activation of stem cells or very early progenitors, is

probably the major cause of the myeloid expansion. Since only
10% or fewer of normal stem cells are cycling under steady-state
conditions, only a small increase in their activation can easily
account for the myeloid expansion over time. Our studies
suggest that the enhanced activation of CML stem cells or

Figure 12 Recovery of M07e/p210bcr-abl R10-negative cells after treatment with PD166326 for 11 days. (a) 5 million cells were treated at each
concentration of drug (10–250 nM). A few viable cells were noted on day 38 or 27 days after exposure to 250 nM of the drug and washing, and by
day 46 they had resumed growth, but at a slightly lower rate than prior to treatment. (b) The cells surviving exposure to 250 nM of PD166326 were
retreated with 0.1–5 nM of drug from days 48–51; their IC50 and IC99 values, as determined by inhibition of 3H-thymidine uptake,262 were almost
identical to those of untreated cells (0.4 and 5 nM respectively). (c and d) The cells recovering from 11 days’ exposure to 250 nM at first grew more
slowly but gradually resumed the same growth rate as cells never exposed to the drug as measured both by growth in liquid culture (c) and 3H-
thymidine uptake (d) 3 months after exposure.

Figure 13 .
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primitive progenitors is probably directly caused by the
constitutively increased Bcr-Abl tyrosine kinase activity acting
cooperatively with cytokine-activated downstream signaling
pathways and resulting in a heightened growth response to
certain early-acting single cytokines such as KL, G-CSF, GM-
CSF, and EPO.261 The primitive progenitors are particularly
susceptible to these effects of Bcr-Abl, and at the same time they
have a reduced requirement for the synergistic interactions of
multiple cytokines; later maturing progenitors and precursor
cells are less affected. It is not difficult to envision how Bcr-Abl,
acting cooperatively with early-acting cytokines could easily
increase the frequency with which quiescent stem cells or
primitive multipotent progenitors are activated, probably by
constitutive activation of downstream cytokine receptor path-
ways that cooperate synergistically in normal progenitors. Other
investigators employing different methods and cell popula-
tions156,399,516,675,676 have similarly concluded that Bcr-Abl
expression in stem cells or early progenitors enhances their
sensitivity to growth factor-induced cell division and matura-
tion. The observation that low concentrations of potent
inhibitors of Bcr-Abl kinase largely abrogate both the abnormal
signaling and proliferative responses provides strong evidence
for the primary role of increased Bcr-Abl kinase activity in
causing the expansion of the primitive progenitors. The cytokine
receptor signaling pathways are very complex and interactive
and while the normal signaling circuitry and the aberrations
caused by Bcr-Abl are still ill-defined, many investigators
including ourselves are currently trying to define the specific
signaling pathways involved in the heightened response of CML
stem cells. Hopefully, this will eventually result in the
identification of additional vulnerable targets for specific
therapies, but in the meantime it may not be essential that all
the details be known before a curative strategy can be
developed. Assuming all later committed progenitors, both
normal and CML, are destined to die naturally after a limited
number of divisions, the prime goal of any curative therapy must
be to selectively eradicate all CML stem cells and primitive
progenitors that are capable of reproducing the disease, while
sparing enough normal stem cells to regenerate and maintain
normal hematopoiesis. The questions immediately arise as to
how many Ph+ stem cells or primitive progenitors are there that
are capable of reproducing the disease and how long can they
remain in a dormant state, relatively protected from chemother-
apy?

Need for better characterization and quantitation of
normal and Ph+ stem cells

There is an enormous literature and some controversy regard-
ing the identification and characterization of different stem
cell and progenitor cell candidates in animals and
humans.329,330,405–407,426,427,677–681 Owing to the difficulties
in isolating and accurately characterizing human Ph+ stem cells
or multipotent progenitors that are capable of reproducing CML,
there are no reliable quantitative estimates of the total number of
such cells that must be eliminated to effect a cure, nor of the
fraction of these cells that are dormant nor of the average or
maximum duration of dormancy.

In comparing normal and CML progenitor cells, most
investigators start with enriched CD34+ cells or CD34+ Lin�
cells since the CD34+ cells contain almost all of the progenitors
capable of forming colonies in vitro and are able to reconstitute
the marrow after ablation by therapy.682,683 However, since
expression of CD34 on stem cells may vary in accord with their

state of activation and commitment, some stem cells may be
excluded by restricting analysis to the CD34+ population.684–687

Moreover, there are no commonly accepted criteria for defining
the levels of expression of CD34 and of differentiation antigens
that constitute CD34+ positivity and lineage negativity. Differ-
ent laboratories, including our own, use different methods and
criteria depending on how many cells are available and the
particular experimental objective (eg the number of monoclonal
antibodies used to eliminate cells expressing different CD
antigens and the stringency by which Lineage Negativity is
defined by flow cytometry). Different assays require different
numbers of cells: relatively few cells are needed for cloning
CFU-GM or BFU-E, more for inhibition of 3H-thymidine uptake
in liquid culture, and many more for extensive phenotypic
profiling and for separation and collection of adequate numbers
of rare subpopulations such as small Lin� CD34+ cells or
CD34+ Lin� G0 cells. We have used and often combined
different methods to enrich subpopulations of normal and CML
progenitors to compare their proliferative behavior and proper-
ties.132,261,299,490–493,502,688–692 In some experiments, the pro-
genitors are highly enriched by negative selection using panels
of monoclonal antibodies to remove cells committed to
differentiation along any of the major lineages; in these
experiments both the enriched normal and CML Lin� blast
populations usually comprise about 0.1–1% of the initial
marrow buffy coat cells and consist almost entirely of Type I
blasts plus a few Type II blasts. The enriched progenitors can be
further separated on the basis of size into primitive, inter-
mediate, and late progenitors by velocity sedimentation on an
isokinetic gradient,490–493 by appropriate negative or positive
selection using panels of monoclonal antibodies and Dynal or
Miltenyi magnetic particles, and/or by cell sorting using high-
speed flow cytometry to isolate selected subpopulations.261

Since subsequent studies have tended to confirm our initial
hypothesis323,324 that the primary expansion of the CML
population begins in a very early progenitor cell ‘compartment’
and that the subsequent huge amplification in later maturing
compartments is merely a secondary consequence of this early
expansion, in recent years we have focused on comparing the
properties of normal and CML early progenitors. The progenitors
can be stimulated with specific cytokines and forced to
differentiate along each of the major myeloid lineages (G/M,
erythrocyte, and megakaryocyte) in either semisolid or liquid
culture. As the cells proliferate, differentiate and mature in
response to specific cytokines, measurements are made of their
growth characteristics, changes in the expression of surface
antigens associated with differentiation and maturation along
different lineages (eg CD3, CD19, CD34, CD33, CD38, CD36,
CD64, CD13, CD14, CD15, CD66B, CD41, CD61, CD117
(c-kit), and Glycophorin A) and changes in expression and
phosphorylation of intracellular proteins that are components of
key regulatory pathways.252–254,261,262 In some experiments,
carboxyfluorescein diacetate succinimyl ester, an intracellular
fluorescent dye that binds irreversibly to cytoplasmic constitu-
ents,669,693,694 is used to follow the number of divisions in liquid
culture after stimulation with specific single cytokines or
combination thereof.

Estimates of numbers of total Ph+ stem cells and cycling
and dormant fractions

Two sets of data were used for comparative purposes in order to
make some rough estimates of the total numbers of Ph+ stem
cells and the quiescent fraction. The first set selected was from
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Buckle et al325, who used CD34+ Lin� Thy+ Rhodamine123
(Rh) low markers to define the most primitive stem cell
subpopulation: 5.1% of normal and 2.3% (1.3–3.9) of CML
CD34+ Lin� cells were Thy+ Rh low, and only 1.5% of the
normal and 3.2% (0.5–5.4) of the CML primitive stem cells were
in cycle. The percentages of CD34+ Lin� cells recovered from
the total starting populations of normal and CML cells were not
stated, but in our hands, we usually recover 16–34%
(mean¼ 22%) of cells in normal mononuclear fractions after
Ficol separation to remove mature granulocytes and platelets
from the total buffy coat cells of normal bone marrow. After
positive selection of the CD34+ cells on Miltenyi columns, 0.7–
3% (mean¼ 1.3%) of CD34+ cells are recovered from the
normal mononuclear fractions or 0.1–1% (mean¼ 0.3%) of the
total starting normal buffy coat cells. Recovery of CD34+ cells
from CML blood or marrow is more variable, but tends to give
slightly higher recoveries: 0.4–9% (mean¼ 2.3%) from mono-
nuclear fractions, or 0.15–3.4% (mean 0.45%) of the total
starting CML buffy coat cells even if patients in early accelerated
phase, in whom recoveries are higher, are excluded. Some
investigators have reported higher proportional recoveries of
CD34+ cells,669 but the differences are probably because of
setting different criteria for CD34+ positivity, residual effects of
treatment, inclusion of patients with more advanced disease, or
different methodologies for selection and enrichment. Depend-
ing on the number of antibodies used and the stringency of the
criteria used to exclude cells expressing low levels of
differentiation antigens, the percentage of ‘Lin� CD34+ cells’
can vary considerably in different laboratories. For the purpose
of estimating the most primitive stem cells and progenitor cells,
we have selected data obtained using a battery of 15
monoclonal antibodies to remove cells committed to differ-
entiating along the major lineages. Using rather stringent criteria

to define lineage-negativity, on average about 10% of both
normal and CML CD34+ cells are largely Lin�.

If we accept Buckle et al’s325 data that the most primitive stem
cells comprise only 2.3% of the CD34+ Lin� cells and that only
3.2% of these cells are cycling, taking the mean value of our
data (0.45%) that the CML CD34+ cells comprise 0.15–3.4% of
the total myeloid cells in different patients, and assuming
10% of these are Lin�, we can roughly estimate the number of
primitive stem cells or primitive progenitors that may be
present and the quiescent fraction (Figure 14). Assuming there
are a total of 5� 1012 myeloid cells at diagnosis in the average
patient with chronic-phase CML, and that the CD34+ cells
comprise 0.45% of the total population, there would be
2.25%� 1010 CD34+ cells. If 10% of these are Lin�, there
would be 2.25� 109 CD34 Lin� cells, of which 2.3% or 52
million are Thy+ Rh low. Since only 3.2% (1.7 million) of these
most primitive cells are cycling at any time there would still be
about 50 million putative quiescent primitive stem cells. The
fractions of these presumed primitive stem cells that are
clonogenic or that have the potential to reproduce the disease
are of course unknown.

The second set of data we used to estimate the number of Ph+
stem cells is based on the recovery of CML CD34+ G0 cells and
their proliferative capacities. We have not been able to isolate
enough CML CD34+ Lin� quiescent (G0) cells to do extensive
quantitative recovery studies, but have found that G0 cells
isolated from the total CD34+ population have widely differing
proliferative potentials. In order to illustrate the differences
observed in the clonogenicity and proliferative potential of CML
CD34+ cycling and quiescent cells a typical experiment is
shown (Figure 15). In all, 2.05 million highly enriched CD34+
cells from a CML patient in chronic-phase were stained with
Pyronin Y and Hoecst and then separated by flow cytometry and

Figure 14 Assuming an average of 5 trillion total Ph+ myeloid cells are present at diagnosis, estimates were made of the total
CD34+ Ph+ cells, CD34+ Lin� cells, CD34+ Lin� Thy+ Rh123 low cells,325 CD34+ G0 cells, CD34 G0 high Proliferative cells and true Ph+ stem
cells (see text).
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cell sorting into G0 and G1/S/G2/M fractions; 1.2� 105 cells in
G0 and 6.2� 105 cycling cells were recovered (5.8 and 30.2%,
respectively, of the starting CD34+ population. These recovery
values are in the same range as those found in other similar
experiments (eg in five normal bone marrow populations of
0.5–5.85� 106 highly enriched CD34+ cells, the means and
ranges of recoveries were: 18.3% (15.7–32.5%) of G1/S/G2/M
cells and 4.4% (1.96–6.84%) G0 cells, and for six CML highly
enriched CD34+ cells 22.8% (11.2–30.5%) for G1/S/G2/M and
3.7% (1.9–5.8%) for G0 cells. Assuming the mean percentage
recoveries are representative of the whole CD34+ population,
then the normal and CML ratios of G1/S/G2/M: G0 CD34+ cells
would be 4.16 and 6.16, respectively. Thus, approximately
19.4% of the normal and 14% of the CML CD34+ cells would
be in G0. The slightly higher percentage of cycling CML CD34+
cells compared to normal CD34+ cells is of course consistent
with the former’s slightly higher CEs, higher uptake of 3H-
thymidine, and higher percentage of cycling cells on flow
cytometry that we have consistently noted.76,490 Buckle et al325

noted that the most primitive CML stem cells had twice as many
cycling cells as comparable to normal stem cells, although the
latter finding did not reach statistical significance.

After preincubating both fractions in liquid culture for 3 h with
the cytokines shown in Figure 15 with and without 2.5 nM of
PD166326, the cells were plated at 300 cells per plate in
methylcellulose at the same cytokine and drug concentrations,
and the number of CFU-GM and BFU-E of different sizes were
counted after 14 days. As typically seen, the G0 cells produced
many more and larger colonies than the G1/S/G2/M cells. Even

in the absence of EPO, CML CD34+ G0 cells typically produce
many BFU-E, unlike normal CD34+ G0 cells (not shown). The
maximum CE of the CD34+ G0 cells generating CFU-GM with
the five or seven cytokines shown was B14–15%; as in other
experiments, addition of IL3 and/or IL6 to G-CSF+GM-
CSF+KL+TPO+FL did not augment colony growth appreciably.
Two cytokines, G-CSF+GM-CSF, stimulated growth of 63% of
the number of colonies produced by the seven cytokines, but
most of the former were smaller. Addition of KL to G-CSF and
GM-CSF did not increase the number of CFU-GM but slightly
increased their size, and, as previously seen, KL had a protective
effect in overcoming the inhibition of growth caused by
PD166326.

In contrast to the G0-derived GM cells, the G1/S/G2/M-derived
GM cells when stimulated with G-CSF and GM-CSF7KL were
inhibited very little by PD166326. In other experiments not
shown, 2.5 nM of PD166326 also caused a pronounced
inhibition of growth of G0-derived CFU-GM and BFU-E when
they are stimulated with the same five or seven cytokines shown
in Figure 15 while having lesser effect in inhibiting G1/S/G2/M-
derived GM colony growth. Taken together with other data
shown earlier that PD166326 inhibits cells from entering S
phase, the most likely interpretation of these observations is that
low concentrations of PD166326 severely inhibits the CD34+
G0 cells from commencing proliferation and only a few, mostly
small colonies are formed, but the inhibitor has much less effect
on inhibiting the CD34+ G1/S/G2/M cells, presumably because
the latter consists largely of later committed maturing progeni-
tors.

Figure 15 In total, 2.05�106 highly enriched CD34+ cells obtained from a patient with chronic-phase CML were further separated by flow
cytometry after staining with Pyronin Y and Hoechst dyes into G1/S/G2/M and G0 fractions, yielding 6.2�105 and 1.3�105 cells, respectively.
The cells were preincubated for 3 h in liquid culture with the cytokines indicated with or without PD166326 (2.5 nM) (PD16) and then plated with
the same cytokine and drug concentration in methylcellulose at 300 cells per plate.261 The number of CFU-GM and BFU-E of different sizes were
counted after 14 days. The cytokine concentrations used were. KL 100 ng/ml alone and 50 ng/ml in combination; G-CSF+GM-CSF, each 8 mg/ml;
TPO (thrombopoietin), FL (Flt3 ligand), IL3, and IL6 all at 50 ng/ml. No EPO was added. FISH analysis was not performed in this experiment, but in
similar experiments 99–100% of the cells in the CML G0-derived CFU-GM and BFU-E were Ph+ and 88–100% (mean 94%) of the cells in the CML
G1/S/G2/M-derived colonies were Ph+.
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While it is of course not possible to conclude that even the
cells forming the largest colonies are representative of stem cells
capable of causing the disease, the CD34+ G0 fraction almost
certainly contains a considerably enriched number of the most
primitive stem or progenitor cells capable of very extensive
proliferation which are largely absent in the CD34+ G1/S/M/G2

fraction. In the experiment shown in Figure 15, a maximum of
1.25 extralarge CFU-GM and 3.5 large, mixed colonies were
generated by the G0 cells stimulated with five or seven
cytokines. Since 300 cells were plated, taken together these
high proliferative progenitors would comprise about 1.6% of the
total (recovered) CD34+/G0 population of 1.2� 105 cells or
1920 cells. Since recovery of G0 cells is incomplete, taking the
above-stated estimate that on average 14% of the total starting
2.05 million CD34+ cells are in G0 (¼ 287 000 cells) the high
proliferative G0 progenitors would comprise 1.6% of these G0

cells or 4592 cells of the starting 2.05 million CD34+
population. These recovery values, the percentages of CD34+
cells in G1/S/M/G2 and G0, and the percent of high proliferative
G0 cells are in the same range as those found in multiple similar
experiments and in fact very close to the mean values.

Ignoring possible multipotent CD34� stem cells, the average
CML patient with a total of 2.25� 1010 Ph+ CD34+ cells at
diagnosis would thus have B50.4 million (0.224%¼ 1.6�
14%) high proliferative CD34+ Ph+ G0 progenitors (Figure 14),
a figure remarkably similar to the previous estimate of 50 million
noncycling CD34+ Lin� Thy+ Rh Low cells using Buckle’s data.
These high proliferative primitive cells undoubtedly vary greatly
in their ultimate proliferative potential in vivo, and the fraction
capable of reproducing the disease is of course unknown.
However, if for example we assume that 0.1–1% of these 50
million primitive cells are capable of repeated symmetric
divisions and hence able to re-expand the true Ph+ stem cell
pool and recreate the disease, then the number of these cells
that have to be eliminated to effect a cure would be between
50 000 and 500 000 cells (Figure 14). Some of the remaining
99% or so of the high proliferative primitive Ph+ cells can
presumably continue to divide as ‘limited stem cells’323 for
many months and their progeny can continue to be detected by
sensitive assays, but they would be incapable of reproducing the
disease.

Obviously, these calculations are extremely rough and
uncertain and are partly based on assumptions that may or
may not be valid. As the disease progresses to an accelerated
and then blastic phase, the fraction of cells capable of
reproducing the disease presumably increases rapidly and
hence the disease becomes progressively more resistant to
therapy. Moreover, in addition to differences depending on the
stage of disease there are undoubtedly intrinsic differences in the
properties of stem cells in different patients. Nevertheless, in
planning therapeutic strategies, it is helpful to have at least a
rough approximation of the number of CML stem cells that must
be eradicated in order to effect a cure. Perhaps the crude
attempt outlined above will stimulate other investigators to
examine any relevant data they may have and come up with
more accurate estimates and ranges.

Regardless of whether or not 50 000–500 000 Ph+ stem cells
is the correct order of magnitude, another important question is
how long can some Ph+ stem cells remain dormant and escape
being killed or blocked from entering S phase by inhibitors such
as STI571 or PD166326. As shown earlier, even in a population
of 5 million Bcr-Abl-expressing R10-negative cells in which the
cells are rapidly cycling with a doubling time of B18 h and with
no detectable cells in G0, a few cells are able to survive 30 days’
one-time exposure of up to 25 nM of PD166326 and resume

growing at the same rate as initially, and, moreover, retain the
same sensitivity to the drug as untreated cells.

Based on autoradiographic labeling studies using continuous
intravenous infusions of 3H-thymidine in patients with acute
leukemia for 10–20 days, we estimated that some acute
leukemic cells can remain dormant for many months and
perhaps as long as a year and still be capable of reproducing the
disease.322,323,409,495–498,671,672,695–697 Moreover, as mentioned
earlier, recent data on twins and newborns suggest that
sometimes acute leukemic cells may remain largely quiescent,
or else controlled in a balanced state between proliferation and
cell death, for many years before going on to cause overt
leukemia.135,136,138–140 The continuous 3H-thymidine labeling
infusions in chronic-phase CML patients showed, as would be
expected, that essentially all of the committed maturing cells
including the blasts labeled rapidly within a few days, while in
blastic phase the blasts labeled much more slowly as in acute
leukemia.248,324 However, there are no comparable data
available on how long CML stem cells and early progenitors
can remain dormant in vivo during chronic-phase and
eventually cause recurrent disease. Based on the continuous
labeling data and the observations that primitive CML stem cells
or early progenitors have only slightly higher CEs and fractions
of cycling cells than comparable normal cells, it can be assumed
that some of these primitive CML stem cells can probably
remain dormant for at least several months and perhaps longer.

Possible curative strategies

Despite the many uncertainties, the time may be opportune to
attempt to develop a curative therapeutic strategy for CML based
on the considerations summarized above. The recent develop-
ment of highly potent and at least partially specific inhibitors of
Bcr-Abl kinase such as STI571 or PD166326 give therapists a
huge advantage that was previously unavailable in attempting to
selectively destroy Ph+ stem cells. One possible strategy might
be outlined as follows:

Phase 1: Preferably at diagnosis, before any other treatment,
begin with a relatively short course of therapy using a
combination of drugs that are known to be capable of killing
the actively proliferating CML progenitors and their progeny,
meanwhile sparing most of the normal, largely quiescent, stem
cells that are suppressed by the leukemic cells. HU, a potent
ribonucleotide reductase inhibitor, has commonly been used as
the initial treatment in CML,521 and has been shown to be
preferable to busulfan not only in improving survival but also in
causing less damage to normal cells. HU is usually capable of
destroying the majority of proliferating CML cells, but it is
incapable of inducing cytogenetic remissions except when
given in very high doses that are quite toxic because of
nonselective damage to rapidly dividing normal cells.698 Thus,
after the leukocyte count has been reduced to near normal levels
by HU, it is probably preferable to immediately switch to a
combination of drugs such as a purine analog (eg 6-thioguanine;
6-TG) and pyrimidine analog (Ara-C), a combination that has
been shown to be fairly effective in inducing complete
hematologic remissions both in AML.697,699 and CML, including
some (transient) cytogenetic remissions.127,130

Since the optimal dosage and duration of this relatively
nonselective treatment is unknown and will undoubtedly
require individualization in different patients, it will be essential
to closely monitor not only the usual hematologic parameters,
but also the relative numbers of Ph+ and normal marrow cells
using FISH analysis. The objective of this initial phase of
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treatment is to continue long enough to destroy the majority of
actively proliferating CML cells, but to stop before a major
fraction of normal stem cells begin to emerge from G0 and start
to proliferate. Past experience has shown that once normal cells
begin proliferating to repopulate the marrow, their sensitivity to
drugs such as HU or Ara-C+6-TG are similar to that of leukemia
cells. Hence the remissions are almost invariably quite short and
retreatment with the same drugs is ineffective in re-inducing
remissions.127,130,414,532,700–702

Phase 2: Once the majority of proliferating CML progenitors
and precursors have been killed, it should then be possible to
preferentially kill or at least inhibit the growth of a large fraction
of the surviving Ph+ stem cells and primitive progenitors that
have resumed proliferation with selective inhibitors of Bcr-Abl
given at moderate doses that have little effect on regenerating
normal stem cells. PD166326 or another analog with similar
activity may eventually prove to be preferable to STI571
because of its greater inhibitory activity, but the most appro-
priate plasma concentration and route of administration have
yet to be determined in clinical trials. Data such as that shown in
Figure 6 should be helpful in predicting the optimal plasma
level; the mean IC50 for PD173955 for CML progenitors in vitro
is B6 nM, but concentrations of up to 25 nM have no detectable
effect on normal progenitors. Since PD166326 is about four-fold
more inhibitory to Bcr-Abl than PD173955, the dose can be
lowered accordingly. Rather than administering the drug once
daily orally, a continuous intravenous infusion administered by
a portable pump will almost surely be preferable in order to
maintain a constant desired plasma concentration that will
selectively inhibit leukemic but not normal progenitors; how-
ever, the optimal dosage may be different by continuous
infusion, and this will have to be determined in Phase I trials.
Again it will be essential to monitor the number of normal and
Ph+ cells in the marrow closely to determine the optimal
duration of treatment individually for each patient.

Phase 3: After normal hematopoiesis has been fully restored,
the majority of normal stem cells should have survived the first
two stages of treatment and again be in G0, while any surviving
Ph+ stem cells and early progenitors will presumably resume
proliferating as soon as the inhibitor is stopped, just as before
treatment. At this stage of treatment, at least in early-stage
disease, there may be more normal than leukemic stem cells and
the latter should be at least slightly more actively dividing, so
one should have an advantage in using relatively nonselective
cytotoxic drugs to try to destroy the remaining leukemic stem
cells as rapidly as possible while sparing the majority of
(quiescent) normal cells. Thus, at this juncture we propose
giving a short course of a different selective Bcr-Abl kinase
inhibitor than that used in Phase 2, given at a somewhat higher
relative dosage, and combined with another relatively non-
selective cytotoxic drug to try to kill the remaining quiescent
leukemic cells.

It would of course be desirable if a second, highly selective
potent inhibitor of Ph+ stem cells were available that targeted
another site than the Bcr-Abl kinase ATP-binding pocket to act
in concert with the kinase inhibitor, but no such comparable,
selectively active inhibitor has yet been discovered; moreover,
even if such an inhibitor existed it is questionable whether it
would be capable of eliminating all the quiescent Ph+ stem
cells. Currently numerous laboratories are studying the possibi-
lities of inhibiting components of other pathways that may be
involved in CML, including Ras,653,703 MEK1/2,704 CDK4,705

Cyclin D2,301 Src family kinases,666,667 and Gab2,620,623

Various combinations of active drugs including imatinib
mesylate (STI571) are being examined for possible synergism

in Bcr-Abl-expressing cell lines or colony-forming assays,706 and
Phase I/II clinical trials of IFN-a in combination with imatinib
mesylate have begun; the latter apparently produced higher
rates of hematologic and cytogenetic responses in chronic-phase
CML than either drug alone, but as might be expected, at the
expense of greater toxicity.651,652 Although some of the
proposed drug combinations may prove effective in enhancing
cell kill and preventing resistance, it is improbable that they will
be capable of killing all the quiescent Ph+ stem cells.

Therefore, based on past experience in treating other
leukemias and observations such as those in Figures 11 and
12 that illustrate the difficulty in eradicating all cells with Bcr-
Abl inhibitors except at very high doses that will surely be
intolerable in patients, it will probably be necessary to
judiciously include a more generally cytotoxic drug at this stage
of treatment that may be capable of killing surviving quiescent
Ph+ stem cells or those developing resistance to Bcr-Abl
inhibitors. Based on extensive experience at BMT centers,
alkylating agents such as busulfan and cyclophosphamide are
known to be capable of eradicating Ph+ stem cells when given
in sufficiently high dosage. Since no drug has yet been
discovered that will selectively damage Ph+ quiescent stem
cells, ongoing studies are examining other cytotoxic drugs
including anthracycline derivatives,707,708 arsenic trioxide
(ATO),567,652,709,710 Taxol, and epothilone analogues,710 that it
is hoped may have partial selectivity and cause less toxicity than
busulfan or cyclophosphamide.

Phase 4: Since it is likely that more than one cycle of therapy
will be necessary to eradicate all the Ph+ stem cells, if any are
still detected in the marrow by FISH or RT-PCR analyses after the
marrow has recovered from Phase 3, a second cycle of treatment
should be given as soon as deemed safe. However, rather than
beginning with Ara-C and 6-TG, it will probably be advisable to
begin the second course with Phase 2, because based on past
experience,127,130,712 antimetabolites such as Ara-C and 6-TG
are more or less equally damaging to regenerating normal and
CML cells. Substitution of a different Bcr-Abl kinase inhibitor
than that used in the first treatment cycle should be preferable at
this stage to help circumvent resistance. If needed, subsequent
courses should follow a similar strategy, substituting other drugs
than used in the first two cycles if available.

Since we have assumed that the long-term quiescent Ph+ stem
cells are a major reason for therapeutic failure, one might
consider taking advantage of their enhanced sensitivity to
stimulation by single cytokines such as KL. However any such
manipulation must be approached with caution because: (1) The
artifical in vitro conditions used to demonstrate the increased
sensitivity of Ph+ primitive progenitors to KL and other single
cytokines are far different than those in the marrow environment
in vivo where the cells are exposed to multiple cytokines and
other cell interactions; and (2) KL partially protects Bcr-Abl-
expressing cells from the effects of inhibitors as shown earlier.

Precedents for attempting to design curative protocols for
CML

It can be foreseen that more cautious clinical investigators may
reject the possibility of initially treating newly diagnosed
patients so aggressively in attempting to develop a tolerable
curative regimen, and instead prefer a more traditional stepwise
approach. However, there are precedents to show that a bolder
approach may lead to dramatic success much more quickly;
numerous examples could be given, but two should suffice. The
present status of treating CML is reminiscent of the situation
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facing hematologists 40 or 50 years ago in treating acute
leukemia. In 1967, circulars and letters were sent to members of
the American and International Societies of Hematology
requesting information on any patients with acute leukemia
who had survived over 5 years. In total, 157 cases were
reported, all of whom had been treated only with 6-mercapto-
purine, methotrexate, prednisone, or combinations thereof.713

All three drugs were capable of inducing hematologic remission
in a minority of patients with acute leukemia, but the remissions
were generally short and resistance developed rapidly. On
subsequent follow-up in 1971 and 1978, 94 and 86 of the 157
patients respectively, were still living and well, without
evidence of disease.714 The denominator was unknown, but
the survivors were estimated to represent somewhere between
0.1 and 1% of all patients treated; the majority were children
with ALL, but there were some adults and some patients with
acute myeloblastic leukemia (AML).

Owing to of the inability to effect cures with single, relatively
nonselective drugs or simple combinations thereof, many
investigators undertook a more aggressive approach. At our
center the L-2 protocol was initiated in 1970; 10 drugs known to
have some effectiveness in ALL were combined in a sequence
based on what was then known about the cytokinetic behavior
of acute leukemic and normal cells.409 It quickly became
apparent that the results with the L-2 were dramatically better
than with previous therapy with only one or two drugs; when
first reported in 1974, 73% of the children were surviving at
54–80 months, 58% of whom were still in their initial
remission.715 Subsequent modifications of the L-2 and other
combined therapy protocols soon led to even better results in
childhood ALL, although the results of the treatment of adults
with ALL with similar protocols have been much less favorable,
in part because of a higher incidence of unfavorable subtypes
such as Ph+ ALL and in part because of poor tolerance of
intensive therapy in older patients.698,716–720

A second example is the extraordinary advances in the
treatment of APL. Without effective therapy, APL was the most
rapidly fatal of all types of leukemia; in the 1960’s, the median
survival after diagnosis was only 2 weeks at Memorial Hospital
in New York and only 9 days in Paris according to Jean Bernard,
as the majority of patients died rapidly as a result of hemorrhage,
fibrinolysis, or disseminated intravascular coagulopathy, often
exacerbated by cytotoxic chemotherapy. Successive improve-
ments took place during the 1970s and 1980s with the
introduction of anthracyclines, arabinosylcytosine and better
management of coagulopathy,721–724 but the majority of
patients were still dying of the disease until the late 1980s
when ATRA became available.544,725 ATRA produced tempor-
ary complete remissions in most patients, and when combined
with anthracyclines and other drugs, it appears that the great
majority of patients are now being cured.89,547,548,723,726,727 In
the last few years, ATO has also been shown to be remarkably
effective in APL, inducing remissions in the majority of newly
diagnosed patients as well as those who have relapsed after prior
therapy or who were refractory to treatment with ATRA and an
anthracycline.728–730 Moreover ATO alone, unlike ATRA alone,
produced a high percentage of more durable remissions
including molecular remissions with conversion to PML-RARa
negativity.731 Both ATRA and ATO selectively target cells
expressing the PML-RARa fusion protein and induce maturation
of the APL cells by complex mechanisms.732,733 ATO also
induces apoptosis by multiple mechanisms not only in APL cells
but in a broad spectrum of other human tumor cells including
lymphomas, lymphocytic leukemias, multiple myeloma, and
CML.734 In CML cells ATO-induced apoptosis occurs indepen-

dently of Bcr-Abl kinase activity.709 and has been shown to
enhance inhibition of Bcr-Abl-expressing cells by imatinib
mesylate.652,710 According to preliminary reports from
China.735,736 ATO alone has induced remissions in a high
percentage of CML patients both in the chronic and accelerates
phases without excessive toxicity, although severe cardiotoxi-
city and hepatotoxicity has occurred in other trials with ATO,
possibly related to impure preparations.566 Phase I/II trials
combining ATO and imatinib mesylate are planned for both
chronic and later phases of CML.652

While a great deal has already been learned, the molecular
and biochemical pathways and interactions are so complex and
knowledge of all the genes and proteins involved still so
fragmentary that it will be many years before all the details are
known as to why such drugs as ATRA and ATO are especially
effective in treating APL and perhaps other human neoplasias.
Now that the crystal structure of Abl kinase is known, it is
possible to define the interactions of specific inhibitors such as
STI571 and PD166326 with more precision, but there is still
much to be learned about why these compounds are so
uniquely inhibitory not only to Abl, but also to c-kit and
PDGF-R. The crystal structures of these two related receptor
tyrosine kinase domains are still unreported but the structure of a
larger construct of Abl including the SH2 and SH3 domains has
recently been published.195

There is presently so much interest in CML among investiga-
tors in different disciplines that we can be assured there will be
steady progress, but in the meantime it can be argued that
enough is already known that we are on the threshold of being
able to devise a curative strategy for CML. The strategy proposed
above may appear overly simplistic to some and perhaps other
investigators will have better ideas. Nevertheless, the avail-
ability of highly selective inhibitors of Bcr-Abl may provide the
needed specificity that was missing in previous largely
unsuccessful intensive treatment protocols, and if properly
integrated with other drugs in a comprehensive treatment
schedule, it may be possible to achieve results comparable to
those in childhood ALL and APL. With a curative goal in mind,
more attention should be given to the difficult problems of more
clearly defining and quantifying the Ph+ stem cells that can
reproduce the disease, better characterizing quiescent cells and
determining the range and maximum duration of their dormant
state, and developing drugs that will have more selectivity in
destroying these quiescent leukemic stem cells. Much attention
is currently being given to studying different types of resistance
to STI571, but this should not be an insuperable problem in a
well-designed combined drug regimen.

Summary and conclusions

The present treatment of CML is unsatisfactory and only a
minority of patients are presently being cured. CML is an
excellent target for the development of selective treatment
because of its highly consistent genetic abnormality and
qualitatively different fusion gene product with constitutive
tyrosine kinase activity, p210bcr-abl. p210bcr-abl has been shown
to have a key role in severely dysregulating a number of critical
regulatory circuits, but the signaling pathways affected are
complex and still incompletely defined. The p210bcr-abl protein
appears to be solely responsible for all the initial manifestations
of the chronic-phase of this disease, and CML is thus an
excellent model of an early form of human cancer because of a
single acquired genetic abnormality.
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Evidence is presented that Bcr-Abl kinase pathways that are
constitutively activated in CML stem cells and primitive
progenitors cooperate with cytokines to increase the proportion
of stem cells that are activated and thereby increase recruitment
into the committed progenitor cell pool. We propose this
increased activation of Ph+ stem cells is the primary and major
cause of the massive myeloid expansion in CML. The
cooperative interactions between Bcr-Abl- and cytokine-acti-
vated pathways disrupt the synergistic interactions between
multiple cytokines normally required for this process, while at
the same time causing numerous subtle biochemical and
functional abnormalities in the later progenitors and precursor
cells that we have collectively called discordant maturation or
development. The committed CML progenitors exhibit acceler-
ated maturation and reduced proliferative capacity compared to
normal committed progenitors, and like them are destined to die
after a limited number of divisions. Thus, the aim of any curative
strategy must be to totally eradicate all Ph+ stem cells that are
capable of symmetric division, re-expanding the Ph+ primitive
stem cell pool, and thereby able to reproduce the disease. A
number of highly potent and partially selective inhibitors of Bcr-
Abl kinase have recently become available that are capable of
killing the majority of actively proliferating early CML progeni-
tors with minimal damage to normal progenitors. Despite their
enhanced activation, and like their normal counterparts, the
great majority of CML primitive stem cells are quiescent at any
given time and hence relatively invulnerable to the Bcr-Abl
kinase inhibitors as well as other drugs that preferentially kill
proliferating cells. The survival of dormant Ph+ stem cells is
probably the major reason for inability to cure the disease during
initial treatment, while other forms of resistance may assume
more importance later. Based on a number of assumptions, we
have made rough estimates of the average number of Ph+
primitive stem cells present at diagnosis in chronic-phase CML
that must be destroyed to effect a cure.

A possible curative strategy is then proposed that attempts to
take optimal advantage of the highly potent inhibitors of Bcr-Abl
in combination with other drugs that may be at least partially
selectively cytocidal to the dormant Ph+ stem cells. CML has
often served as an exemplar of human neoplasia in the past, and
any promising new therapeutic leads resulting from this
endeavor may have broad applicability to other types of early
human cancers.
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