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Abstract:
The Compositional Interchange Format (CIF), is a modeling formalism for hybrid systems, that
aims to establishing interoperability of a wide range of tools by means of model transformations
to and from CIF. UPPAAL is a very successful tool for the specification and analysis of timed
systems.
It is interesting, both from a theoretical and a practical perspective, to be able to translate CIF
models to UPPAAL models, since this makes it possible to model check properties of timed
CIF models. This requires a semantic preserving transformation, which ensures that properties
validated in UPPAAL models also hold for their CIF counterparts. In addition, by providing
such a translation we are, at the same time, providing translations for a wider set of languages
that can be transformed to CIF.
This paper presents a semantic-preserving transformation from a subset of CIF models
to UPPAAL. The transformation described in this work constitutes the cornerstone for
transformations of a broader subset of CIF.

Keywords: Automata, formal languages, specification, verification, transformations, hybrid
systems, timed systems

1. INTRODUCTION

In solving particular control design problems many differ-
ent tools are used. These are tools for

• rigorous simulation of large hybrid systems consist-
ing of complex switched continuous dynamics and
distributed, hierarchically organised supervisory con-
trols defined by intuitive, graphical, or textual for-
malisms.
• model simplification/abstraction which derive consis-

tent over-approximations of complex hybrid dynamic
systems for analysis and synthesis purposes.
• identification of hybrid models from simulated or real

data.
• system analysis (e.g., reachability analysis, logic ver-

ification), controller synthesis, and on-line optimiza-
tion of classes of simple hybrid systems.

? This work was partially done as part of the European Community’s
Seventh Framework Programme (FP7/2007-2013) project MULTI-
FORM.

• real-time simulation for validation by hardware-in-
the-loop simulation.

• code generation to test controllers in the implemen-
tation environment, and to use this code to control
the hardware.

Providing interoperability of such software tools has thus
far not been realized in a systematic manner. As a first
step into this direction, the Compositional Interchange
Format (CIF) (Beek et al., 2008; Baeten et al., 2010) has
been defined. The purpose of the Compositional Inter-
change Format is to establish interoperability of a wide
range of tools by means of model transformations to and
from CIF. The application domain of the CIF consists
of languages and tools from computer science and from
dynamics and control for modeling, simulation, analysis,
controller synthesis, and verification in the area of hybrid,
timed, and untimed systems. Using the CIF as interme-
diate, the implementation of many bi-lateral translators
between specific formalisms can be avoided.
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CIF has a formal and compositional semantics that is
based on (hybrid) transition systems. This means that,
in case the other formalism involved also has a formal
semantics, it is possible to prove that certain model
transformations are property-preserving.

UPPAAL (Larsen et al., 1997) is a very successful tool
for the specification and analysis of timed systems. It is
therefore very interesting, both from a theoretical and a
practical perspective to be able to translate CIF models
to networks of UPPAAL automata, since this makes it
possible to perform model checking of timed CIF models.
In addition, by enabling CIF to UPPAAL transformations
we are also enabling transformations from a wider set
of languages such as those used for supervisory control
synthesis (Wonham, 2007; Ma and Wonham, 2006).

Providing a mathematically correct transformation is cru-
cial. If no proof of correctness is provided, the whole
transformation becomes pointless, since we have no guar-
antee that the property established in the UPPAAL model
holds in the original CIF model. UPPAAL has a clear and
unambiguous formal semantics in which a timed transition
system is associated to a network of UPPAAL automata
(Möller, 2002). Consequently, we are able to prove that
the transformation from CIF to UPPAAL is semantic-
preserving.

We are able to translate a subset of CIF to UPPAAL. This
should not come as a surprise, given that CIF features a
rich set of concepts for modeling hybrid systems, whereas
UPPAAL is based on timed automata, and it provides
no corresponding counterparts for some of the concepts
supported in CIF, such as action synchronization, time
can progress predicates or urgency. The translated subset
includes parallel composition, unidirectional communica-
tion via channels, shared variables, clocks, and restricted
forms of urgency.

The main contribution of this paper is a model trans-
formation of an expressive subset of the CIF formalism
to UPPAAL. We show that this model transformation
preserves the semantics of the translated CIF models (af-
ter some abstraction). Admittedly, once the translatable
subset of CIF is identified, the translation is rather simple,
which has the nice side effect of being structure preserving.
However the difficulties lie in identifying this subset, and
providing the proof of correctness. On the other hand, this
work constitutes the cornerstone for transformations of a
broader subset of CIF, that can be obtained via process
algebraic linearization (Usenko, 2002) to a translatable
form.

The class of CIF models that can be translated to UP-
PAAL, can be extended considerably in two ways: (1)
many CIF models that do not fit syntactically in the
class of translatable CIF models can be transformed in a
semantics-preserving way to a CIF model that is translat-
able, and (2) using the template and instantiation features
of UPPAAL, CIF models with hierarchy and process in-
stantiation may also be translated. A problem with the
later extension is that there seems to be no formal seman-
tics for these UPPAAL features which makes it impossible
to formally prove the correctness of such a translation. In
this way, even though we make some restrictions on the

target CIF models, it is still possible to deal with a large
class of real world models.

The remainder of this work is structured as follows. Sec-
tions 2 and 3 introduce CIF and UPPAAL, respectively.
Section 5 characterizes the subset of CIF that can be
translated to UPPAAL, and the transformation function
is defined in Section 6. Section 4 presents the semantics of
CIF and UPPAAL, which is required to discuss the proof
of correctness sketched in Section 7.

2. CIF IN A NUTSHELL

This section presents a concise syntax and formal seman-
tics of CIF (Beek et al., 2009).

The basic building blocks of CIF are hybrid automata,
which consist of a set of locations taken from the set
L and a set of edges that connect them. A location
specifies a (discrete) state of the system, and it can have
equations associated to it in the form of time can progress
(tcp) predicates or invariants. These equations define the
continuous behavior of the automaton: they determine
when time can pass, and how the value of the variables
change as time elapses. In addition, invariants also restrict
the action behavior of the automaton, since this predicate
must hold when a new location is entered. The values of the
variables belong to the set Λ. Guarded labeled transitions
(edges) specify the discrete behavior of the system. These
transitions are labeled with actions originating from A ∪
{τ}, where τ /∈ A is the silent action, and they contain
an update expression that determines how the values of
variables change after performing the action.

In the mathematical definition of CIF predicates and
variables are abstract entities (see (Beohar et al., 2010) for
a discussion). Initialization predicates, invariants, tcp, and
guards originate from the set Pt, which represents the set
of all predicates having free variables (i.e., variables that
are not bound to a quantifier). Variables are taken from
V. Reset predicates belong to the set Pr, which represents
the set of all predicates having free variables from the set
V ∪ {x+ | x ∈ V}. Dotted variables are also supported by
CIF but they are not relevant in the context of the present
work.

Besides these basic elements, automata contain:

(1) A set of controlled variables (Frehse, 2005). A con-
trolled variable cannot be assigned by any other au-
tomaton but the one that declares it, and arbitrary
jumps are forbidden (in principle all variables can
change in an arbitrary manner in an action transition
if they are not restricted by the update expression).

(2) A set of synchronizing actions. If an action is syn-
chronizing, then it must be executed synchronously
in a parallel composition. In CIF all actions are non-
synchronizing by default.

(3) A dynamic type mapping, which assigns to each
variable a dynamic type (Lynch et al., 2001). In the
context of the present work we omit the dynamic
type from CIF automata, since we only consider
declaration of variables and clocks at the model level.
This helps to keep the presentation simple.
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Given these preliminaries, a CIF automaton can be for-
mally defined as follows.
Definition 1 (CIF automaton). An automaton is a tuple

(V, init, inv, tcp, E, varC , actS)

where V ⊆ L is the set of locations; init, inv, tcp: V → Pt
are functions that associate to each location its correspond-
ing initialization predicate, invariant, and tcp predicate,
respectively; E ⊆ V ×Pt× (A∪{τ})× (2V ×Pr)×V is the
set of edges; varC ⊆ V is the set of controlled variables;
and actS ⊆ A is the set of synchronizing actions.

Automata can be composed using several operators. We
describe only those operators that are relevant in the
context of the current work. In general, CIF models
are referred to as compositions, which we assume to be
contained in the set C. The parallel composition operator,
denoted as p ‖ q, for p and q in C, allows the parallel
execution of p and q, which can communicate via shared
variables and synchronizing actions. Global variables can
be declared at the top level, along with an initialization
predicate that assigns initial values to the variables, and
urgency declarations that expresses which actions are
urgent in the model. The (concrete) syntax for these
declarations is given below.
Definition 2 (CIF model). A CIF model is of the form

|[ disc control x0, . . . , xm−1
; disc y0, . . . , yk−1
; clock c0, . . . , ct−1
; init u
; urgent a0, . . . , av−1
:: p ]|

where x0, . . . , xm−1 and y0, . . . , yk−1 are sequences of con-
trolled and uncontrolled discrete variable declarations, re-
spectively; c0, . . . , ct−1 is a list of clock declarations, u ∈ Pt
is a predicate, a0, . . . , av−1 is a list of urgent action dec-
larations; and p ∈ C is a CIF composition where all free
variables (i.e., variables that are not bound to an operator)
and clocks are declared in the model.

Besides the syntax just described, edges can be annotated
with send and receive actions, which have the form a!
and a?, with a ∈ A. These actions do not affect CIF
semantics, and they are interpreted (that is, the semantics
ignores these annotations) as regular actions. They provide
a convenient way to identify, in the formal definition of the
translation, when a given action is intended to be used as
a send or as a receive action.

In what follows we use the following notations related to
lists: [A] denotes the set of lists whose elements belong
to the set A; [ ] is the empty list; [x0, . . . , xn−1] denotes
a sequence of n elements, namely x0, . . . , xn−1; and given
lists xs and ys, xs ++ ys denotes the concatenation of xs
and ys.

3. UPPAAL IN A NUTSHELL

We have chosen the formal description of UPPAAL syntax
presented in (Bortnik et al., 2005), with some minor
modifications for the current work. Next, UPPAAL timed
automata and networks of automata are defined.
Definition 3 (Timed automaton). A UPPAAL timed
automaton is a tuple 〈L, l0, E, inv, TL〉 where:

(1) L ⊆ L is a set of locations, and l0 is the initial
location.

(2) E ⊆ L× Pu ×Au × Σl × L is the set of edges of the
automaton. The set Pu, contains the allowed predi-
cates in guards (Bortnik et al., 2005). The actions of
the automaton are taken from the set Au. Actions can
be simple actions a (a ∈ A), the silent action τ , send
actions h!, or receive actions h?, where h is a channel
(the set of channels is given in Definition 4). We use
notation Σl to refer to the set of lists of assignments
of the form [x0 = e0, . . . , xn−1 = en−1], where xi ∈ V,
and ei are integer expressions.

(3) inv ∈ L→ Pt is a function that assigns an invariant
predicate with each location. For a description of the
allowed invariants see (Bortnik et al., 2005).

(4) TL ∈ L → {o, u, c} is the function that assigns to
each location the type ordinary (o), urgent (u), or
committed (c).

In UPPAAL assignments are executed sequentially, from
left to right. For instance, given an initial valuation σ =
{(x, 0), (y, 1)}, assignment [y = 2, x = y+1] changes σ into
{(x, 3), (y, 2)}. Given an assignment as, and a valuation
σ, as(σ) represents the valuation that is obtained after
updating the values of the variables according to as. For
our previous example, [y = 2, x = y+ 1]({(x, 0), (y, 1)}) =
{(x, 3), (y, 2)}.
We allow simple actions in UPPAAL automata, which
originate from CIF models, to be able to relate these
actions to the original CIF models. This simplifies the
development of our theoretical work.

Note that the above definition lacks local variables,
whereas the UPPAAL tool-set provides support for this.
However we could not find a corresponding formalization
in literature, which forces us to avoid the treatment of this
feature.
Definition 4 (Network of timed automata). A network
of automata is a tuple

〈A, l, V, C,H, TH , init〉
where A = [A0, . . . , An−1] is a sequence of timed automata;
each Ai is of the form 〈Li, l0i , Ei, invi, TLi

〉, and for each
assignment [x0 = e0, . . . , xn−1 = en−1], if xi ∈ C then
ei = 0; l = [l00 , . . . , l0n−1

] is the initial location sequence;
V ⊆ V and C ⊆ V are disjoints sets of global variables and
clocks, respectively, and H is a set of channels. Function
TH ∈ H → {o, u} determines whether a given channel is
urgent (u) or not. Assignment init ∈ Σl determines the
initial values of all variables in V , and for all c ∈ C,
init(c) = 0.

4. CIF AND UPPAAL SEMANTICS

Before talking about the correctness of the translation
schema presented in Section 6, it is necessary to present
the semantic models for the two formalisms we are relating
in this paper.

The semantics of CIF models is defined through a hybrid
transition system (Cuijpers and Reniers, 2008). The states
of the hybrid transition system are of the form 〈p, σ〉,
where p ∈ C is a composition and σ ∈ V → Λ is a valuation
(function that assigns value to variables). There are three
kinds of transitions between these states, namely, action,
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time, and environment transitions. We describe them in
detail next.

Action transitions are of the form (p, σ)
a,b,X−−−→ (p′, σ′), and

they model the execution of an action a by composition p
in an initial valuation σ, which changes composition p into
p′ and results in a new valuation σ′. Label b is a boolean
that indicates whether action a is synchronizing, and label
X is the set of controlled variables.

Time behavior is captured by time transitions. Time tran-

sitions are of the form (p, σ)
ρ,A,θ7−→ (p′, σ′), and they model

the passage of time in composition p, in an initial valuation
σ, which results in a composition p′ and valuation σ′.
Function ρ : T⇀ Σ is the variable trajectory that models
the evolution of variables during the time delay, where T
is used to refer to the set of all time points and A ⇀ B
denotes the set of partial functions from A to B. Function
θ : T⇀ 2A is called a guard trajectory (Beek et al., 2010),
and it models the evolution of enabled actions during time
delays. For each time point s ∈ dom(θ), the function appli-
cation θ(s) yields the set of enabled actions of composition
p at time s. For all time transition dom(ρ) = [0, t], for some
time point t ∈ T , and dom(ρ) = dom(θ). Finally, label A
contains the set of synchronizing actions of p and p′ 1 .

In order to model parallel execution of compositions, we
need the notion of environment transitions, which are

transitions of the form (p, σ)
A
99K (p′, σ′), and they model

the fact that composition p (p′) is consistent in valuation
σ (σ′). Label A is the set of synchronizing actions of p and
p′, and the relation between these two components is the
same as for time transitions.

The semantics of a UPPAAL network of automata N is
defined through a timed transition system (Bengtsson and
Yi, 2004). The states of the timed transition system are
of the form (l, σ), where l is a sequence of locations taken
from the sequence of automata in N , and σ is a valuation,
as before. There are two kinds of transitions (or relations)
in the induced timed transition system 2 : actions and time
transitions. We explain them next.

An action transition is of the form (l, σ)
a−→ (l′, σ′),

where label a is either an action label or a channel. Time
transitions are of the form (l, σ)

t7−→ (l′, σ′), where t ∈ T
denotes the duration of the delay.

Having defined the semantic frameworks for the two for-
malisms, the next section relates the hybrid transition
system of a CIF model with the timed transition system
of its translation to UPPAAL.

5. DESCRIPTION OF THE TRANSLATED SUBSET

This section describes the subset of CIF that we can
currently translate to UPPAAL. We do so by specifying
syntactic constraints on CIF compositions.

Not every CIF automaton can be translated to UPPAAL
because there are constructs, such as urgency or synchro-

1 The set of synchronizing actions are not changed by time transi-
tions
2 This is the least timed transition system that satisfies the opera-
tional semantics rules.

nization, that cannot be expressed, in their full generality,
in the latter. The subset of CIF automata, which we are
able to translate, can be informally described as follows.

Initial locations Only automata having a unique initial
location are translated.

Local urgency UPPAAL provides a limited mechanism
for expressing urgency in the models: either time can
progress in a location, or no time can pass. Thus, the
tcp conditions in CIF automata are restricted to true or
false.

Controlled variables The only controlled variables that
can be declared in an automaton are those used to
receive values via channels.

Synchronizing actions Synchronizing actions are used
to implement binary channels. The set of synchronizing
actions that can be declared in the automaton must
coincide with the set of send and receive actions used
in an automaton.

Actions Action labels can be used for only one of the
following purposes: as a non-synchronizing action, send
action, or receive action. This is due to the fact that we
implement CIF synchronization using UPPAAL chan-
nels, and the latter is limited to channel synchronization.

Predicates The predicates that can be used in the guards
and invariants are restricted to those supported by
UPPAAL.

Edges The edges of the translatable CIF automata can
perform regular actions (of the form a, with a ∈ Aτ ),
send actions (a!), or receive actions (a?). CIF allows a
richer set of update predicates than UPPAAL, which
solely supports sequential assignments to variables and
clock resets. Thus, we can translate CIF updates only
if they produce a state change equivalent to some
sequential assignment. Definition 5 characterizes such
assignments.

In order to formalize the restrictions above, we need some
definitions.
Definition 5 (Translatable updates). An update predicate
is translatable if it is written as a conjunction of equalities

x+0 = e0 ∧ . . . ∧ x+n−1 = en−1

such that the following conditions hold.

(1) 〈∀i, j : 0 ≤ i ≤ j < n : xj
+ /∈ FV (ei)〉

(2) 〈∀i, j : 0 ≤ i < j < n : xi /∈ FV (ej)〉
(3) 〈∀i, j : 0 ≤ i < j < n : xi 6= xj〉

where FV (e) is the set of all free variables occurring in
expression e.

An update is translatable if it is of the form

({x0, . . . , xn−1}, x+0 = e0 ∧ . . . ∧ x+n−1 = en−1)

and the update predicate is translatable.

Note that a given update predicate may not be translat-
able, but it can be rewritten into an equivalent form such
that it is translatable.
Definition 6 (Ordinary, send, and receive actions). Given
an automaton α with a set of edges E we define 3 :

3 Symbol , denotes “equal by definition” (as opposed to semantic
equality).
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ord(α) , {a | a ∈ A ∧ (l, g, a, u, l′) ∈ E}
snd(α) , {a | a ∈ A ∧ (l, g, a!, u, l′) ∈ E}
rcv(α) , {a | a ∈ A ∧ (l, g, a?, u, l′) ∈ E}

Using the definitions above, the set of CIF automata that
can be translated can be formally defined as follows.
Definition 7 (Translatable automaton). A CIF automa-
ton (L, init, inv, tcp, E, varC , actS) is said to be translat-
able if the following conditions are met.

(1) init is of the form 7→ l0 , {(l, l = l0) | l ∈ L} for
some l0 ∈ L.

(2) ran(tcp) = {true, false}, where ran(f) denotes the
range of function f .

(3) Each edge in E is of the form (l, g, x, u, l′), where x
is of the form τ , a, a!, or a?; a ∈ A, and u is a
translatable update.

(4) ord(α), snd(α), and rcv(α) are pairwise disjoint.
(5) snd(α) ∪ rcv(α) = actS

The next step is to characterize the set of CIF composi-
tions that can be translated to UPPAAL. Informally, the
translatable compositions are parallel compositions of n
automata. All variables in the used composition must be
declared, and controlled (either at the top level or con-
trolled by a single automaton). The initialization predicate
must assign unique initial values to model variables. Syn-
chronization between the automata is restricted to point to
point synchronization (i.e., synchronization where exactly
two parties are involved).

The restrictions presented below, allow us to get CIF
compositions that can be translated to UPPAAL. All
variables are required to be controlled because if a variable
is allowed to jump arbitrarily, then there is an infinite
set of possible values that it can receive, and this cannot
be modeled in the target language. Synchronization can
take place only between two automata. Moreover, if two
automata synchronize via some shared action a, then
one of them can send data using a, and the other can
only receive data when it synchronizes in a. If we do
not have this restriction, then, given the way channels
are implemented, a send action can be synchronized with
a send action in the CIF model. Finally, an automaton
cannot modify variables that are declared as controlled in
the other automata. This is required because the concept
of controlled variables is not supported in UPPAAL.

Formally, the class of CIF models that can be translated
to UPPAAL is defined as follows.
Definition 8 (Translatable model). A CIF model is said
to be translatable if it is of the form

|[ disc control x0, . . . , xm−1
; disc y0, . . . , yk−1
; clock c0, . . . , ct−1
; init

∧
0≤i<m

xi = ei ∧
∧

0≤i<k

yi = di ∧
∧

0≤i<t

ci = 0

; urgent a0, . . . , av−1
:: α0 ‖ . . . ‖ αn−1 ]|

where

(1) Automaton αi = (Li, initi, invi, tcpi, Ei, varCi, actSi)
is translatable, for all i such that 0 ≤ i < n.

(2) varC0 ∪ . . . ∪ varCn−1 = {y0, . . . , yk−1}.

(3) Guards of urgent actions cannot contain clock vari-
ables.

(4) ei, dj ∈ Z, for all i, j such that 0 ≤ i < m and
0 ≤ j < k.

(5) 〈∀i, j : 0 ≤ i < j < n : snd(αi) ∩ snd(αj) = ∅〉.
(6) 〈∀i, j : 0 ≤ i < j < n : rcv(αi) ∩ rcv(αj) = ∅〉.
(7) 〈∀i, j : 0 ≤ i, j < n ∧ i 6= j : (rcv(αi) ∪ snd(αi)) ∩

ord(αj) = ∅〉.
(8) For each send action a! in αi with update (Ws, us),

and for each receive a? action in αj, with update
(Wr, ur), us ∧ ur must be a translatable update predi-
cate (note that the order of the conjunction is impor-
tant).

(9) 〈∀i, j : 0 ≤ i, j < n ∧ i 6= j : varCi ∩ jmp(αj) = ∅〉,
where jmp(α) returns the set of all variables that are
assigned in the edges of α.

(10) The values of clocks can only be changed to 0.

6. TRANSLATION SCHEME

In this section we describe how transformation of CIF
models to UPPAAL networks of automata can be per-
formed.

Given a translatable update u, T=(u) is the translation of
the update to a UPPAAL assignment. The translation is
formalized as follows.
Definition 9 (Translation of updates). For any translat-
able update, we define:

T=(({x0, . . . , xn−1}, x+0 = e0 ∧ . . . ∧ x+n−1 = en−1)) ,
[x0 = e−0 , . . . , xn−1 = e−n−1]

where given an expression e, notation e− is used to refer
to the expression obtained after replacing all occurrences
of free variables of e having the form x+, by x.

The following lemma is useful in proving the correctness of
Theorem 1. It states that a translatable CIF update and
its corresponding translation result in the same change in
the valuation.
Lemma 1 (Translatable updates and assignments). For
any translatable update of the form (W,u), for any valu-
ations σ, σ′, such that dom(σ) = dom(σ′) and 〈∀x : x ∈
dom(σ) : σ(x) = σ′(x)〉, we have that

σ′+ ∪ σ |= u⇔ (T=(u))(σ) = σ′

where σ′+ = {(x+, v) | (x, v) ∈ σ′}, and relation σ |= u
expresses that predicate u ∈ Pt ∪ Pr is satisfied (i.e., it is
true) in valuation σ.

In a similar way, we can define the translation of initial-
ization predicates.
Definition 10 (Translation of initializations). Given vari-
ables x0, . . . , xn−1, and integer values v0, . . . , vn−1 we de-
fine:

Ti(x0 =v0 ∧ . . .∧xn−1 =vn−1) = [x0 =v0, . . . , xn−1 =vn−1]

The translation of tcp predicates to a function that assigns
to each location the urgent or ordinary attribute is defined
as follows.
Definition 11 (Translation of tcp predicates). To,u(tcp) ,
{(l, o) | l ∈ dom(tcp) ∧ tcp(l)} ∪ {(l, u) | l ∈ dom(tcp) ∧
¬tcp(l)}
The transformation from CIF automata to UPPAAL au-
tomata is given next.
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Definition 12 (Translation of CIF automata). For any
translatable automaton, function Ta is defined by means of
the following equation.

Ta((L, 7→ l0, inv, tcp, E, varC , actS)) =
〈L, l0, E′, inv, To,u(tcp)〉

where E′ = {(l, g, x, T=(u), l′) | (l, g, x, (W,u), l′) ∈ E}.
As we saw in Section 5, a limited form of non-synchronizing
urgent actions is supported in the translatable CIF models.
To implement these, we need to use channels in UPPAAL.
The idea is to transform every non-synchronizing action,
that is declared as urgent, into a send action over an urgent
channel (in UPPAAL). In this way, by introducing an extra
automaton that is always ready to perform receive actions
over these channels, we can implement urgent actions. For
achieving this, we need the following definition.
Definition 13 (Receptive UPPAAL automaton). Given
a set of actions A, we define the receptive automaton P (A)
as the UPPAAL automaton

〈{lu}, lu, EA, {(lu, true)}, {(lu, o)}〉
where EA = { (lu, true, a?, [ ], lu)| a ∈ A}.
Next we provide a formalization of the transformation
function, which translates CIF models to UPPAAL net-
works of automata. Once the constraints on translat-
able models are identified, the transformation is relatively
straightforward. Note that the receptive automaton needs
to be constructed with the urgent actions that are not used
as channels. Otherwise we would get a different behavior
in the UPPAAL model.
Definition 14 (Translation of CIF models). Function T
is defined by means of the following equation.

T (|[ disc control x0, . . . , xm−1
; disc y0, . . . , yk−1
; clock c0, . . . , ct−1
; init u
; urgent a0, . . . , av−1
:: α0 ‖ . . . ‖ αn−1 ]|) =
〈A, [l0, . . . , ln−1], V, C,H, TH , Ti(u)〉

where

• A = [A0, . . . , An−1, P ({a0, . . . , av−1} \ ch)]

• ch =
⋃

0≤i<n

actSi

• Ta(αi) = 〈Li, li, E′i, invi, To,u(tcpi)〉
• Ai is equal to Ta(αi) except that every urgent action
a is replaced by a!.

• V = {xi | 0 ≤ i < m} ∪ {yi | 0 ≤ i < k}
• C = {ci | 0 ≤ i < t}
• H = ch ∪ {a0, . . . , av−1}
• TH = {(a, u) | a ∈ {a0, . . . , av−1}} ∪ {(a, o) | a ∈ H \
{a0, . . . , av−1}}

7. ABOUT THE CORRECTNESS

The ultimate goal of the transformation described in the
previous section is to enable the verification of temporal
properties of CIF models using UPPAAL model checking
capabilities. For this we prove that the hybrid transition
system induced by a CIF model and its corresponding
translation are bisimilar (modulo certain abstraction),
which means that for each CIF composition p, there is a

transition in the hybrid transition system induced by p if
and only if there is a corresponding transition in the timed
transition system of T (p). Bisimilarity respects most logics
for expressing behavioral properties. This guarantees that
if a property is asserted as valid in a given model T (p)
by the UPPAAL model checker, then p satisfies the same
property.

To be able to formalize the claim above we need to define
some notations beforehand, and to tweak the notion of
stateless bisimulation to compare two formalisms having
different semantics.

We use notation Jp0K ` (p, σ) −→ (p′, σ′) to express the
fact that the a transition in the right hand side of the `
symbol belongs to the transition system induced by the
composition p0, where −→ can be an action or a time
transition (environment transitions are not considered to
obtain the induced transition system), and the domain of
the valuations in the transition system coincides with the
variables and clocks used in the model. Making some abuse

of notation, the term JNK ` (l, σ) −→ (l
′
, σ′) denotes that

the transition on right hand side of the symbol ` is in
the transition system induced by the UPPAAL network of
automata N . Given a UPPAAL network of automata N of
the form 〈A, l, V, C,H, TH , init〉, we use notation actv(N)
to refer to the vector on initial locations of N , that is l.

Next, we define the notion of bisimulation (Milner, 1971)
between CIF and UPPAAL models.
Definition 15 (Bisimilarity). A relation R ⊆ C × [L] is
a bisimulaton relation with regards to CIF composition p0
and UPPAAL network of automata N if and only if for
all p, l, and σ such that (p, l) ∈ R the following holds:

(1) 〈∀a, b,X, p′, σ′ : Jp0K ` (p, σ)
a,b,X−−−→ (p′, σ′) : 〈∃l′ ::

JNK ` (l, σ)
a−→ (l′, σ′) ∧ (p′, l′) ∈ R〉〉

(2) 〈∀a, l′, σ′ : JNK ` (l, σ)
a−→ (l′, σ′) : 〈∃b,X, p′ :: Jp0K `

(p, σ)
a,b,X−−−→ (p′, σ′) ∧ (p′, l′) ∈ R〉〉

(3) 〈∀ρ, t, A, θ, p′, σ′ : Jp0K ` (p, σ)
ρ,A,θ7−→ (p′, σ′) ∧

dom(ρ) = [0, t] : 〈∃l′ :: JNK ` (l, σ)
t7−→ (l′, σ′) ∧

(p′, l′) ∈ R〉〉
(4) 〈∀t, l′, σ′ : JNK ` (l, σ)

t7−→ (l′, σ′) : 〈∃ρ,A, θ, p′ ::

Jp0K ` (p, σ)
ρ,A,θ−−−→ (p′, σ′)∧dom(ρ) = [0, t]∧ (p′, l′) ∈

R〉〉
Given a CIF composition p and a UPPAAL network of
automata N , we say that they are bisimilar, denoted by
p ↔ N , if and only if there exists a bisimulation relation
R, w.r.t. p and N , such that (p, actv(N)) ∈ R.

Having defined bisimulation, we can state our main theo-
rem as follows.
Theorem 1. For any translatable CIF composition p0 it
holds that p0 ↔ T (p0).

Proof. We define relation R as follows.

R ,{(p0, actv(p0))} ∪
{(p, actv(p)) | Jp0K ` (p1, σ)

ρ,A,θ7−→ (p, σ′)} ∪
{(p, actv(p)) | Jp0K ` (p1, σ)

a,b,∅−−−→ (p, σ′)}

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

12501



where given a composition p, function application actv(p)
returns a sequence xs ++ [lu], where xs is the sequence of all
the active locations of the automata contained in p, and
lu is the unique location of the receptive automaton.

It can be shown that R is a bisimulation relation.

The full details of the proof are described in (Nadales Agut
and Reniers, 2010).

8. CONCLUSION

We have identified a subset of CIF that can be trans-
lated to UPPAAL, providing a proof of correctness that
guarantees that all properties validated in UPPAAL for a
translated model are valid in the original CIF model as
well.

There are many conditions that a CIF model has to fulfill
to be regarded as translatable to a UPPAAL model. How-
ever we believe that the set of translatable CIF models can
be broadened significantly by performing partial elimina-
tion of CIF operators such as urgency and synchronization.
In this way, the modeler will not have to be aware of
such constraints. Providing an algorithm for this is an
interesting subject for further research.

The UPPAAL tool-set provides several other constructs,
such as local variable declarations, and channel broadcast.
However the semantics of these concepts is not formally
defined. In (Gómez, 2009), a semantics for broadcast in
UPPAAL is given, but only in a limited form. Thus,
we would like to investigate whether we can extend this
semantics to fully formalize broadcast, and then we could
study how the addition of broadcast in the target language
can broaden the set of translatable CIF models. As soon
as a formalization of these concepts is available we would
like to extend the translation presented here.
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