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Abstract
Brain imaging methods, such as positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI), provide a unique opportunity to study the neurobiology of human
memory.  Since these methods can measure most of the brain, it is possible to examine the
operations of large-scale neural systems and their relation to cognition.  Two neuroimaging
studies, one concerning working memory and the other episodic memory retrieval, serve as
examples of application of two analytic methods that are optimized for the quantification of
neural systems, structural equation modeling and partial least squares.  Structural equation
modeling was used to explore shifting prefrontal and limbic interactions from the right to the left
hemisphere in a delayed match-to-sample task for faces.  A feature of the functional network for
short delays was strong right hemisphere interactions between hippocampus, inferior prefrontal,
and anterior cingulate cortices.  At longer delays, these same three areas were strongly linked, but
in the left hemisphere, which was interpreted as reflecting change in task strategy from
perceptual to elaborate encoding with increasing delay.  The primary manipulation in the memory
retrieval study was different levels of retrieval success.  Partial least squares was used to
determine whether the image-wide pattern of covariances of Brodmann areas 10 and 45/47 in
right prefrontal cortex (RPFC) and the left hippocampus (LGH) could be mapped on to retrieval
levels.  Area 10 and LGH showed an opposite pattern of functional connectivity with a large
expanse of bilateral limbic cortices that was equivalent for all levels of retrieval as well as the
baseline task.  However, only during high retrieval area 45/47 was included in this pattern.  The
results suggest that activity in portions of the RPFC can reflect either memory retrieval mode or
retrieval success depending on other brain regions to which it is functionally linked and implies
that regional activity must be evaluated within the neural context in which it occurs. The general
hypothesis that learning and memory are emergent properties of large-scale neural network
interactions is discussed, emphasizing that a region can play a different role across many
functions and that role is governed by its interactions with anatomically-related regions.



3

Introduction
The past decade has seen tremendous advances in human cognitive neuroscience.  Undoubtedly,
part of the reason for this has been the explosion in the use of functional neuroimaging to
examine the neural basis of cognition.  Methods that image metabolic processes, such as positron
emission tomography (PET) and most recently functional magnetic resonance imaging (fMRI),
have provided wide access to the neural substrates of cognitive operations. The preferred method
for determining how the brain represents cognition has been to use psychological theories of
cognition to design studies for mapping the brain mechanisms.  Since the psychological models
are by and large quite successful at explaining behavior and guiding research, it seems reasonable
that the brain areas supporting cognition should look something like these models.  With the
advent of the computer age, the prevailing metaphor is to view cognitive processes as a series of
hierarchically organized computational modules (e.g., Baddeley, 1992; Fodor, 1983). The
processes investigated are usually conceived as separable, and cognition is usually thought of as
the additive result of these processes (though there are some notable exceptions, e.g.,
McClelland, 1979; Miller, Galanter, & Pribram, 1960).

When using these models to study the brain, it is important to keep in mind they were
developed without regard to the biology of the nervous system.  Modularity in the nervous
system is observed mainly in the sensory and motor systems, and even there, after a few synapses
beyond the receptor organs, modularity becomes fuzzier as the cross-talk between systems
increases.  Within sensory and motor systems there is a great deal of redundancy, such that brain
regions close to one another show overlapping functional characteristics.  The partial redundancy
in the nervous system allows for a great deal of flexibility in the responses of relatively small
collections of cells to the internal and external world.

Another important characteristic of the nervous system is the connectivity between cells.
While most other systems in the body show some capacity for cell to cell communication, the
nervous system is specialized for rapid transfer of chemoelectric signals.  While it is not true
every part of the brain is connected to every other part of the brain, there is a great deal of parallel
and reciprocal connectivity.  Physiologically, this means a single perturbation to the system is
conveyed to several parts of the brain simultaneously and some of this will feed back onto the
initial perturbation site.  Such feedback can modify the response of the system to subsequent
influence and lead to nonlinear responses despite linear changes in input.

When the question of mapping cognition to the brain is viewed in this way, the complexity of
the problem seems obvious.  Is it the case that cognitive processes, such as attention and
memory, are localized to discrete portions of the brain, or does the brain represent cognition
through the action of the whole?  Is there some reasonable compromise between these views?

The purpose of this paper is to suggest that cognitive and behavioral phenomenon, here
learning and memory, are the direct result of the interactions among anatomically connected
brain areas:  neural interactions.  The notion that cognition results from the operations of neural
networks has a long history (Finger, 1994; Lashley, 1929), and has been put forth in recent
theoretical work (e.g., Mesulam, 1998).  Central to the idea of large-scale networks for learning
and memory is that learning and memory are seen as a ubiquitous property of nervous tissue
(Gonzalez-Lima, 1989), while the phenomenological diversity of learning and memory are
emergent features of the interactions among brain regions (e.g., Edelman, 1978). A development
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out of the network approach is the idea of a “neural context”.  Neural context simply means that
the same activity change in an isolated region may be observed across several behavioral and
cognitive operations, but the activity and interactivity of related regions may be quite different.  It
is the relation of the activated region to other areas that determines the cognitive operation.  The
empirical demonstrations presented here come from studies concerning neural interactions as
revealed from metabolic imaging methods, but the theoretical implications extend across all
temporal and spatial scales of investigation.

Measuring Neural Interactions
Neural interactions refers, in a general sense, to influences that different elements in the nervous
system have on each other via synaptic communication (the term “elements” refers to any
constituent of the nervous system, either a single neuron or collections thereof).  The typical
approach to the understanding of neural interactions has been to see if the activity varies
systematically with some manipulated parameter.  However, activity changes in one neural
element usually result from a change in the influence of other connected elements, so focusing on
activity in one area will miss the change in afferent influence.  Furthermore, it is logically
possible for the influences on an element to change without an appreciable change in measured
activity.  The simplest example would be where an afferent influence switches from one source
to another, without a change in the strength of the influence.  Monitoring regional activity alone
would miss this critical shift (for experimental evidence see: Lindsey, Morris, Shannon, &
Gerstein, 1997; McIntosh et al., 1994).

The alternative approach to quantifying neural interactions is to measure the relation of
activity between elements.  One way to do this is by measuring the covariance of activity.  The
foundation for covariance analysis in neuroimaging was laid by Horwitz in a number of papers
that looked at regional interrelations in a pairwise manner (Horwitz, 1989; Horwitz, Duara, &
Rapoport, 1984; Horwitz, Duara, & Rapoport, 1986; Horwitz et al., 1991; Horwitz, Soncrant, &
Haxby, 1992b).  Since then, covariance analyses have been extended to the exploration of
interacting neural systems (McIntosh & Gonzalez-Lima, 1994), and to the identification of
spatial and temporal clustering with various multivariate techniques (Friston, 1994; McIntosh,
Bookstein, Haxby, & Grady, 1996a; McLaughlin et al., 1992).

The measurement of neural interactions in neuroimaging has proceeded under two general
approaches.  The first emphasizes pairwise interactions, often in terms of correlations or
covariances.  The second incorporates additional information, such as anatomical connections,
and considers interactions of several neural elements simultaneously to explicitly quantify the
effect one element has on another.  These two approaches are known as functional and effective
connectivity respectively.  Both terms were introduced in the context of electrophysiological
recordings from multiple cells (Aertsen, Gerstein, Habib, & Palm, 1989; Gerstein, Perkel, &
Subramanian, 1978).  More recently, they have been used in reference to neuroimaging data
(Friston, 1994).  Two methods that will be discussed here typify the use of covariance tools in the
analysis of neuroimaging data: structural equation modeling, which provides a measure of
effective connectivity, and partial least squares (PLS), which can be used to assessed functional
connectivity (for technical details see McIntosh et al., 1996a; McIntosh & Gonzalez-Lima, 1992;
McIntosh & Gonzalez-Lima, 1994; McIntosh et al., 1994).  Both methods have been used in
other scientific disciplines and are discussed here as they pertain to neuroimaging.  The present
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focus is on how to use the methods to ask specific questions about the functional organization of
the nervous system. An example using structural equation modeling is described first.
Changing Networks in Working Memory

The neural basis of working memory has been researched extensively in functional
neuroimaging and in monkey electrophysiological and lesion studies (e.g., Goldman-Rakic,
1990; Jonides et al., 1993; Kirkby, Van Horn, Ostrem, Weinberger, & Berman, 1996; McCarthy
et al., 1994; Petrides, 1994).  (For the present experiment, working memory is defined as the
process of maintaining an active representation of visual information for ongoing information
processing (Baddeley & Hitch, 1974).)  Consistent across most of these neurophysiological
studies is a strong involvement of prefrontal cortex.  A feature that has been difficult to
appreciate is how the areas connected with prefrontal cortex influence working memory
operations.  From the perspective of interacting neural systems, working memory as a
neurobiological process should engage several regions depending on task requirements.  While it
may be the case that for the operation of working memory to occur, prefrontal cortex must be
involved, the actual process is the interactions of prefrontal cortex with other brain regions.  So
rather than the function of prefrontal cortex, working memory may be best appreciated as one of
the emergent properties of the interactions of prefrontal cortex with other brain areas.  This
possibility was examined using structural equation modeling in the study presented below
(McIntosh, Grady, Haxby, Ungerleider, & Horwitz, 1996b).
Structural Equation Modeling:  Structural equation modeling, or path analysis, is a multivariate
analytic tool that is used to test hypotheses about the causal influences among measured or latent
variables.  One of the main purposes is to determine whether a hypothesized set of causal
relationships is consistent with the observed data.  The covariances among the variables are used
to provide weights to proposed causal relationships in a manner similar to a multiple linear
regression, which then indexes how well the proposed causal structure represents the observed
covariance.  It is used to in extensively in psychology and other social sciences (Bollen, 1989).
For example, structural equation modeling has been used to distinguish between inherited and
environmentally determined influences on certain personality traits (Loehlin, 1987) and whether
performances on several memory tasks is best accounted for by the influence of a unitary or
bidimensional memory system (Nyberg, 1994).  As applied to neuroimaging data, structural
equation modeling combines interregional covariances and neuroanatomy.  This is important
feature of the application of structural equation modeling to neuroimaging.  The causal structure
is determined from the anatomy, rather than hypothesized, and the major goal is to evaluate the
experimentally-induced changes in the effective connections between regions.
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Figure 1.  Graphic representation of essential steps in structural equation modeling for imaging data.  In the
top row, regions for the model are selected based partly on the statistical differences between task and
baseline (regions A, and F showing deactivation and B showing activation) and partly on theoretical
considerations, such as anatomical completeness or a theoretical model (regions C, D, and E).  In the middle
row, the activity correlations between areas are computed within-task and the anatomical model is
constructed based on published neuroanatomical work.  Finally, in the bottom row, the correlations are used
to derive path coefficients for each anatomical connection within task yielding two functional models.
Positive weights are solid and negative dashed with the thickness of the line indicating the size of the weight.
The "deactivations" identified from the subtraction image in region A corresponds to a reduced involvement
of region A, while the deactivation of F is because of strong negative feedback from region B.  The activation
in region B corresponds to its increased (suppressive) influence on F plus the stronger afferent influence from
D.

The basic steps for structural equation modeling are illustrated in Figure 1 and described below:
•  select regions or nodes of the network: The selection of areas for the model is driven by a

combination of univariate analysis of changes in mean rCBF, multivariate analyses (e.g., PLS),
and theoretical guidance.  If there is a particular theoretical model under consideration, such as a
putative network for visuospatial attention (Mesulam, 1981), the areas forming that model should
be included.

•  obtain the anatomical model: The anatomic connectivity between selected brain regions is
derived from the neuroanatomy literature.  This is not a trivial step and it is at this stage that the
theoretical persuasion of the investigator must guide the decision of which connections to include
in a model.  Any system of equations where there are unknowns to be solved benefit from
constraints to possible solutions.  Using the anatomy of the system helps to constrain solutions.
However, if all major and minor paths were included most models would contain reciprocal
loops at nearly every level with some interconnections between levels, both feedforward and
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feedback.  When all possible anatomical connections are included, it is likely that an
underdetermined system of equations would result, where there are either the same number of
known and unknown elements or more unknown elements.  In either case, unique solutions are
not obtainable.  In most cases, some compromise between anatomical accuracy and
interpretability may be needed.  There have been several published accounts where the
compromises in model building have been made explicit (for further discussion see McIntosh &
Gonzalez-Lima, 1992; McIntosh & Gonzalez-Lima, 1994). For instance, in the example below,
feedforward connections were modeled first, then the path coefficients fixed at those estimates
and feedback effects computed.  The stability of the solution was guaranteed by ensuring the
estimates were the same regardless of the order that the models were constructed.
Interhemispheric effects were then estimated based on the constraints from the feedforward and
feedback effects.  This is obviously a compromise of what the reality of the interactions may be,
and these compromises need to be made explicit for a complete understanding of the final model.
Such specificity is often lacking in neurocognitive models that are loosely based on activation
patterns.  Any modeling effort, whether based on simulations, data-fitting or intuition, is
necessarily a simplification and represents an approximation of reality.  It is the degree of
simplification that determines the utility of the model.

•  calculate interregional covariances:  For most published accounts of structural equation
modeling in neuroimaging, the interregional covariances were computed within a condition and
across participants.  For fMRI and data from electrical or magnetic recordings (ERP or MEG),
covariances can be computed for an individual subject across tasks or across trials of the same
task since many more within-subject measures can be made (for an application to fMRI see
Buchel & Friston, 1997).

•  calculate the path coefficients and compare functional models:  Path coefficients
represent the proportion the activity in one area is determined by the activity of other areas that
project to it.  When the coefficients are based on functional activity measured across participants,
they reflect what could be thought of as an average functional influence within a given task and
index the reliability and sign of the influence. The final step includes the comparison of path
coefficients across tasks to determine if the interactions within the functional network differ.

The data set was obtained from a rCBF PET study of working memory using a delayed match-
to-sample task for faces with a parametric manipulation of the delay interval (Haxby,
Ungerleider, Horwitz, Rapoport, & Grady, 1995).  The experiment consisted of a match-to-
sample task with no delay (perceptual matching), and five scans with increasing delay (1, 6, 11,
16, and 21 s). The data from delay conditions were averaged:  the 1 and 6 s delay conditions were
averaged into a short delay condition, the 11 and 16 s delay into an intermediate delay condition,
and the 21 s delay was the long delay condition.  The grouping of conditions was based on the
patterns of regional mean differences (Haxby et al., 1995).

For the working memory models, the regions chosen were those showing either a significant
increase or decrease in rCBF with increasing delay as determined with the linear trend analysis
and a task PLS (McIntosh et al., 1996b).  The areas included ventral occipital and temporal
regions (Brodmann areas (BA) 18, 37 and 21), inferior prefrontal cortices (BA 47; middle and
medial prefrontal regions are part of the larger model presented in the original publication),
anterior and posterior cingulate (BA 24 and 23) and the hippocampal gyrus (GH).  Generally
speaking, the posterior occipital and temporal areas showed decreasing rCBF with increased
delay and the prefrontal and cingulate regions showed increasing activity with increasing delay.
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Measures of activity were obtained from both hemispheres, and interregional covariance were
computed within-task and across participants.
Results:  Figure 2 shows a summary of the dominant interactions for the four conditions:
perceptual matching, short, intermediate and long delay.  In the perceptual matching network (top
of figure 2), strong interactions were present bilaterally in the ventral cortical visual stream
(Ungerleider & Mishkin, 1982), extending from occipital BA 18v, to occipitotemporal BA 37, to
temporal BA 21 and then into ventral prefrontal BA 47.  Prefrontal influences from BA 47 on
GH were strong bilaterally.  Cross-hemispheric effects were strongest between BA 47 and 37
with a slight asymmetry favoring the right hemisphere. The ventral stream and  interhemispheric
part of the network is extraordinarily similar to that of a previous path analysis from a similar
perceptual matching task (McIntosh et al., 1994), which indicates that the functional networks are
replicable across experiments and subjects.
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Figure 2. Summary diagram representing some of the dominant changes in functional interactions for the
working memory tasks.  Interactions are depicted on a horizontal schematic.  To maintain clarity, the
locations of these areas are not completely accurate and the reader is referred to the original publication for
the exact location of the regions and their effects within these functional networks (McIntosh et al., 1996b).
Positive path coefficients are shown as solid arrows, whereas negative ones are shown as segmented arrows.
Two-headed arrows represent reciprocal and symmetric functional interactions.

The main trends of interest across the delay conditions were a change in the interactions along
the ventral stream in the right hemisphere, more corticolimbic interactions in the short and
intermediate delays, and more frontal involvement in the long delay.  Of particular interest was
the observation that several key areas, especially prefrontal cortex and anterior cingulate, showed
strong interactions across all tasks, but the nature of these interactions changed as a function of
delay.
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The general feature of the short delay network, compared to matching, was an increase in the
interactions right hemisphere involving BA 37, inferior frontal BA 47 and GH, and reduced
influences in the left hemisphere (Figure 2, bottom left).  The pathway from BA 37 to BA 21 was
weaker in both hemispheres and the influence of BA 37 appeared to be rerouted into the GH on
the right.  Within the right hemisphere, there was a strong corticolimbic trinodal loop set up with
GH, BA 47 and BA 24.  This loop changed at the longer delay conditions.

The intermediate delay network (Figure 2, bottom center) could be characterized as showing
less right inferior frontal involvement, compared to the short delay network, but still maintaining
the right corticolimbic interactions with a positive loop between posterior cingulate and GH. The
intermediate delay model also showed some changes in left hippocampocingulate interactions
relative to the short delay model.

The long delay condition was characterized by a shift of what had been primarily right
hemisphere interactions to stronger left hemisphere interactions.  Right corticolimbic interactions
were essentially zero, while left corticolimbic interactions increased, and a trinodal loop emerged
similar to the that observed in the short delay for the right hemisphere. Prefrontal effects from
BA 47 seemed to play a stronger role in the long delay model compared to the other functional
models (Figure 2, bottom right).  Frontal effects on occipitotemporal and temporal areas were
especially strong in the long delay model.  This feedback, along with the changes in
interhemispheric interactions, resulted in an interesting interhemispheric circuit involving
prefrontal BA 47 and posterior cortical BA 37.
Discussion: The interpretation of the change in the functional networks across delay was
informed by the subject debriefing reports.  The participants indicated that they could maintain a
mental image of the sample face at short delays, but that it tended to degrade at the longer delays.
From this, it was felt that the strategy at shorter delays was to rely on maintenance of the iconic
representation of the face while at longer delays an elaborative rehearsal and encoding strategy
was employed.  The interactions of BA 37, GH and BA 47 during shorter delays, therefore, may
partly reflect the attempt to hold the image of the face, while the left hemisphere interactions at
the longer delay may represent elaborative rehearsal and encoding (McIntosh et al., 1996b).

The task-related network changes were not simply that certain areas interacted in one task and
not in another, but in the nature of the interactions.  It is important to note that the changes in
neural interactions were much more striking than changes in regional mean activity.  Anterior
cingulate, prefrontal cortices and GH showed strong interactions across all tasks, but the activity
of these regions was not consistently higher than the control condition (Haxby et al., 1995).
Even in cases where an area is not “active” relative to baseline, it may still show strong
interactions. Activation analysis detects differences only, while covariance analyses reveal
interesting changes in brain interactions not detectable through activation analysis.

Working memory studies have implicated three core regions:  the anterior cingulate,
dorsolateral prefrontal cortex, and the hippocampus (Goldman-Rakic, 1990).  These regions were
part of the functional networks for working memory discussed here, but they were also involved
in a perceptual matching task with no obvious working memory component. An argument could
be made that the interactions during perceptual matching also reflect some working memory
component related to task execution, but this would require further experimental validation.
Structural equation modeling results bring the suggestion that regions may play a part in more
than one functional network, and that it is the interactions with other brain regions that determine
what operations are being served at that time. Frontohippocampal interactions were present
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across all functional models.  What changed between tasks was the nature of these interactions
(indicated by the sign of the path coefficients). The hippocampus has been an enigma for brain
imaging studies, but when examined in the context of covariance relationships, part of the reason
for lack of consistent changes in activity may be that the interactions of this area are always
strong and what changes with memory demand is the nature of these interactions.  If this is true
for the rest of the nervous system, much is to be gained by evaluating neural activity and
interactivity related to cognition.
Neural context and retrieval mode

One concept that arises from the network approach is that of a neural context.  Most brain
regions receive inputs from many areas and then send projections to several others.  At any
instance, the interactions through anatomical connections may shift from one afferent/efferent
source to another, resulting in a change in cognition or behavior.  Across several different tasks, a
brain area may show the same activity pattern but serve different functions because of the
relation of that activity with other brain regions (for empirical examples see Chafee & Goldman-
Rakic, 1998; D'Esposito, Ballard, Aguirre, & Zarahn, 1998; Zhang, Riehle, Requin, & Kornblum,
1997).  The important factor is not that a particular event occurred at a particular site, but rather
under what neural context did that event occur   in other words what was the rest of the brain
doing?  Neural context is closely related to the idea of "functional pluripotentialism", put forth by
Filimonov (cited in Luria, 1962 pp. 24-25), which states that no formation in the central nervous
system is responsible solely for a single function and under certain conditions, a given formation
may be involved in other functional systems and may participate in performance of other tasks.

The notion of neural context can be illustrated by considering the activity of right prefrontal
cortex (RPFC) in episodic memory retrieval (McIntosh, Nyberg, Bookstein, & Tulving, 1997).
One of the most reliable results in neuroimaging of human memory is that of increased RPFC
activity during episodic memory retrieval (Cabeza & Nyberg, 1997; Tulving, Kapur, Craik,
Moscovitch, & Houle, 1994).  Experiments following from this observation suggest that the
activation of RPFC may reflect “retrieval mode” or the act of searching memory without regard
to the success of this search (Nyberg et al., 1995).  In isolation, the interpretation seems
reasonable.  However, if cognitive states like retrieval mode are subserved by a large-scale neural
network that includes RPFC, then the common pattern of RPFC activation across the retrieval
tasks should reflect part of the operation of a general network for retrieval mode.  Another
possibility, which ties into the idea of neural context, is that RPFC activity may be similar across
retrieval tasks, but result from the interactions with different brain regions depending on the act
of retrieving and the success of the retrieval.  Is the activation of RPFC reflecting a general
retrieval mode network, or are there several networks, differentially engaged, whose interactions
result in a similar pattern of RPFC activity?

One way to examine whether the same region has a consistent pattern of interactions across
retrieval tasks is to explore change in the correlation of that region, or functional connectivity,
with other parts of the brain.  If increased RPFC activity during retrieval represents retrieval
mode, then there should be a pattern of functional connectivity for the RPFC that is similar
across memory retrieval tasks.  The question was addressed using PLS.
Partial Least Squares Analysis:  PLS is a multivariate tool that can be used to describe the
relation between a set of exogenous measures, like experimental design or behavioral measures,
and a set of functional brain images (McIntosh et al., 1996a; McIntosh, Cabeza, Lobaugh,
Bookstein, & Houle, 1998a; Schreurs et al., 1997).  What results from a PLS analysis are sets of
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images that may be interpreted as nodes of neural systems representing some experimental effect
or relating to some behavior measure.  The same analytic tool can be used to explore whether a
part of the brain, represented by an image voxel, shows any task-related changes in its relation to
the rest of the brain.
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Figure 3 Graphic representation of the steps involved in a partial least squares analysis of seed-voxel
correlations.  Panel A:  a seed voxel is selected from the middle of the right side of the image (indicated by the
black hash mark) within each of three tasks and correlated with the rest of the six voxel image resulting in
one correlation map per task.  Black represents a strong negative correlation and white a strong positive.  In
panel B the three correlation maps are stacked into one large matrix and decomposed with singular value
decomposition resulting in three latent variable (LV) pairs.  Each pair consists of the singular image, which is
an image representation of the weights (saliences) for voxels, and the weights or saliences across tasks or the
task profile (bottom of each LV). As with the correlations, black represents a strong negative salience and
white a strong positive.  LV1 is a common pattern of seed voxel correlations, LV2 distinguishes the
correlation maps from tasks 2 versus 3, and LV3 contrasts the map for task 1 versus tasks 2 and 3.

A highly idealized graphical description of the PLS procedure used to analyze changes in
regional correlation is presented in Figure 3.  It can be regarded as an extension of the “seed
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voxel” correlation analysis proposed by Horwitz et al (1992a).  In panel A of Figure 3, activity
from a particular seed voxel (middle right of the ‘image’) is correlated with the activity from the
rest of the image in three tasks.  This produces a correlational map for each task depicting areas
that are correlated with the seed voxel.

In interpreting the correlation maps, a researcher would usually identify where the maps differ
across three tasks.  For example, in figure 3A the seed voxel shows an opposite pattern of
correlations with posterior areas in tasks 2 and 3, and correlates with its contralateral homologue
in task 1 only.  Common correlations across the three tasks are in contralateral prefrontal regions,
and, of course, of the seed voxel with itself.  The extraction of commonalities and differences in
the correlation maps is what the PLS analysis does. The PLS analysis of the correlation maps, or
seed PLS, operates on the three correlation maps together and, through singular value
decomposition (SVD), provides sets of mutually orthogonal latent variable (LV) pairs.  One
element of the pair contains numerical weights for each task creating a profile that depicts either
a common correlation pattern or a task-related difference (i.e., a contrast)1.  The other element of
the LV pair identifies the parts of the image that show the profile across tasks and can be
displayed in image space.  Because it is derived from SVD, it is called it a singular image.
Within the singular image are numerical weights for each voxel, and their variation across the
image shows which areas are maximally expressed on the particular LV.  The weights for both
the singular image and the task profile are called saliences.  In reference to Figure 3B, the
singular image from the first LV shows positive saliences at the location of the seed voxel
(middle right of the ‘image’) and negative saliences at the contralateral prefrontal voxel.  In the
bar graph below the singular image, the saliences across tasks are equal, so the first LV is the
common correlation of the seed voxel with itself and the contralateral frontal regions.  The
singular image in LV2 has a negative salience at a posterior location, and profile across the tasks
contrasts tasks 2 and 3, so the LV depicts a posterior difference in seed-voxel correlation
patterns.  Finally, LV3 shows the salience at the contralateral homologue for the seed voxel and
the task profile contrasts task 1 with 2 and 3.  Although the results of the seed PLS analysis in
Figure 3 could have easily been distilled from the examination of the within task correlation
maps, it is much more difficult when images contain several thousand more voxels are analyzed,
as with PET or fMRI data (and real data are seldom as clean).  The seed PLS analysis can also be
extended to include more than one seed voxel, as in the example below.  The interpretation of the
singular image and task profiles are the same as for the single seed voxel analysis, but a given
singular image may show different task profiles for each seed voxel (e.g., task commonalities for
one seed voxel, task differences for another).

The question of neural context and retrieval mode was examined with data from a PET rCBF
study of episodic memory retrieval (Nyberg, McIntosh, Houle, Nilsson, & Tulving, 1996b;
Nyberg et al., 1995).  Three retrieval tasks were used with differing levels of retrieval success.
Before scanning, participants were presented with two lists of words, some spoken by a male and
some by a female. For one list, participants were asked to identify the gender of the speaker
(shallow processing) and for the other list they were asked to decide whether the word
represented a living thing (deep processing or semantic encoding).  The retrieval conditions

                                                
1 Another way to think about this is to consider na experiment with only two tasks and thus only two correlation
maps.  The sum of these two maps (or average) will represent areas of common correlation and a subtraction of the
two maps would identify differences in correlations (McIntosh et al., 1996a).  This is essentially what occurs in PLS
and whether a singular image depicts common correlations or differences would be identified in the task profiles.
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consisted of yes/no recognition (indicated by a button-press) for visually presented word lists that
were either:  1) all unstudied (New), 2) from the shallow processing list (Shallow) or 3) from the
deep processing list (Deep). Retrieval success would be highest in condition 3, but in all tasks
participants would be in retrieval mode. A baseline task was also used, where a subject read a
single word and pressed a button.  Each condition was scanned twice.

Results & Discussion:  For the seed voxel PLS analysis, representative voxels from three areas
were selected:  the two RPFC areas (BA 45/47 and BA 10, atlas (Talairach & Tournoux, 1988)
XYZ coordinates: 32, 22, 0; 28, 44, 4,) and the left hippocampal gyrus (LGH:  -24, -36, -8).  The
RPFC regions were activated to a similar degree in all retrieval tasks compared to baseline
(Nyberg et al., 1995).  The LGH location was activated only in the Deep condition (Nyberg et al.,
1996b).  The RPFC regions, assuming their activation reflects part of a retrieval mode network,
should show common correlation patterns across the three retrieval conditions.  The LGH, which
may be more related to retrieval success, should show a pattern of correlations unique to the
Deep condition.  These hypotheses are presented graphically in Figure 4 in terms of expected task
profiles from a seed PLS.  A profile representing retrieval mode (Figure 4, top) would contrast
the read baseline task against the three retrieval conditions while a profile favoring retrieval
success (Figure 4, bottom) would contrast the New task against the Deep task with Shallow at
some intermediate level.
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Figure 4 Possible task profiles from a seed-voxel PLS that reflect two competing hypotheses for memory
retrieval.  The top of the figure, the task profile contrasts the three retrieval tasks with the reading baseline
task.  This profile would be consistent with a pattern of functional connectivity for retrieval mode, or the act
of retrieving independent of retrieval success.  The bottom figure shows a task profile that contrasts the
baseline and new task, where retrieval success is lowest, with Deep, and to a lesser degree, Shallow, where
retrieval success is greatest.  This is consistent with a pattern of functional connectivity representing retrieval
success.
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Figure 5 First latent variable from the PLS analysis of seed voxel correlations for left hippocampus (LGH),
right BA 45/47 and right BA 10.  The bottom of the figure shows the task profile for each seed voxel by task,
which is an index of how strongly the voxel covaries by task with the singular image at the top.  This profile
can be interpreted as a common pattern of correlations for LGH versus BA10 for all tasks, but Deep versus
all other tasks for BA 45/47.  The singular image depicts peak voxel that as a collection covaried with the task
profile.  Positive saliences (voxels positively correlated with LGH, i.e., greater values for higher LGH values)
are drawn in white, negative saliences (voxels positively correlated with BA10 or greater values for higher BA
10 values) in black, both thresholded at a salience greater than 0.5 (absolute value).  The image is displayed
on horizontal sections from a structural MRI that conforms to the atlas space of Talairach and Tourneaux
(1988).  Slices start at -28mm from the AC-PC line at the top left slice and move in increments of 4mm to
+40mm at the bottom right, and left is left and the top is anterior in the image. Black circles within the
singular image mark the location of the three seed voxels and the surrounding voxels that were removed to
reduce the spatial autocorrelation.

None of the task profiles from the seed PLS was consistent with a pure retrieval mode
interpretation.  The singular image from the first LV is displayed in Figure 5.  Large areas of
positive saliences extend across bilateral inferior temporal lobes, hippocampal and
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parahippocampal gyri, and retrosplenial cortex.  Negative saliences are noted in left and right
middle and dorsolateral prefrontal, medial occipital cortices and midbrain.  The task profiles for
each seed voxel in the bar graph at the bottom of Figure 5 indicate that the first LV was mainly a
common trend in correlations for LGH and BA 10.  LGH was positively correlated with areas
that were positively salient in the singular image, while BA 10 was positively correlated with
negatively salient areas.  There was, however, an interesting addition in the Deep condition.
Along with LGH and BA 10, the Deep condition showed a strong positive salience for the seed
voxel at BA 45/47.

One may interpret this LV to suggest that there is a common pattern of covariances between
BA 10, LGH and the other limbic and frontal areas identified on the singular image. In the Deep
condition, involving high memory retrieval following semantic encoding, another right prefrontal
region, BA 45/47, shows strong covariances with limbic areas.  That is to say, these three seed
voxels are bound by a common pattern of functional interrelations with themselves and other
brain areas only when there is successful episodic retrieval.

This interpretation of the LV may seem incongruent with the results from the activation
findings, which deal with mean differences, not covariances of voxels.  Recall that RPFC areas
used here were relatively activated in all retrieval tasks, while the LGH activity was highest in
the Deep condition.  Patterns of covariation across other LVs (not presented graphically)
suggested that the common task-related activation of RPFC may have arisen from different
functional interrelations since none of the LVs distinguished the retrieval tasks from baseline
(e.g., Figure 4, top).  For example, LV 2 was salient for the right prefrontal regions for the
Shallow and Deep conditions. The third LV was salient for BA 45/47 in the reading baseline
only.  In the fourth LV, the salience for BA 45/47 was strong in the New and Shallow tasks.

The results from the PLS analysis suggest that similar patterns of activation in RPFC came
about through different patterns of interregional interactions.  In LV 1, prefrontal BA 10 and the
LGH showed common correlations across all conditions, but only when there was high memory
retrieval following semantic encoding was BA 45/47 incorporated into the pattern.  In light of the
activation analysis, this may imply that the greater activation of the three seed voxels in the Deep
condition arises through their common functional connections.  For the Shallow and New tasks,
however, the common activation of the two right prefrontal regions came about through other
patterns of connectivity, perhaps due to increased suppressive influences on other regions
(Nyberg et al., 1996a) and stronger interactions with regions identified on subordinate LVs.

The exploration of neural interactions in this study is a compelling example of the idea of
neural context.  Activity patterns in RPFC were common for the three retrieval conditions
compared to baseline, but there was no evidence for a general retrieval mode network involving
RPFC.  One implication is that the equivalent activation level arose from different neural
interactions across the three retrieval tasks.  What distinguished the three retrieval conditions was
the neural context in which the RPFC activation occurred.  This result raises an interesting
possibility that neural interactions representing retrieval mode vary depending on the success of
memory retrieval.  This speculation could be formally tested using methods that afford better
temporal resolution, like ERP/MEG or fMRI, with the expectation that the regions that are
functionally connected with RPFC would depend on successful memory retrieval (e.g., Duzel et
al., 1998).

Neural context allows regions to be part of more than one functional network.  This is contrary
to notions that cognitive processes like attention and memory are subserved by specific neural
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systems (c.f., Mesulam, 1990; Posner & Petersen, 1990).  Most parts of the brain possess the
rudimentary properties necessary for cognition.  For instance, modification of responses related
to learning and memory have been observed in several parts of the brain from single cells in
isolate spinal cord preparations (Wolpaw & Lee, 1989; Wolpaw, 1997), to primary sensory and
motor structures (Donoghue & Sanes, 1994; Gonzalez-Lima, 1992; Molchan, Sunderland,
McIntosh, Herscovitch, & Schreurs, 1994; Recanzone, Schreiner, & Merzenich, 1992;
Weinberger & Diamond, 1987).  When several brain regions interact at a larger scale, these
rudimentary features will combine to produce a particular cognitive function (Bressler, 1995).
Whether or not a region is part of a neurocognitive system depends on the specifics of the
processing demands (what is the person doing?) and the interactions with other regions (what is
the rest of the brain doing?).  Just as an instrument in an orchestra may switch from a lead to a
support role in different pieces of music, some regions may play a more prominent role in certain
cognitive functions, and then play a supporting role in others.

Methodological Considerations and Caveats:
The techniques presented in this paper represent two of several possible approaches to the

estimation of functional and effective connectivity.  Partial least squares and structural equation
modeling may be employed separately or together to address specific questions about neural
interactions.  Indeed the combination of the two is a powerful means to go from activity changes,
to functional connectivity, and then finally to the derivation of effective connectivity (e.g.,
McIntosh, Cabeza, & Lobaugh, 1998b).  However, each approach does have its limitations.  The
examination of functional connectivity provides a means to address whether a region or
collection of regions is interacting, but gives no information on the direction of these
interactions.  As such, inferences regarding the modulation of one area by another are not
warranted.  Estimation of effective connectivity provides some basis for inferences regarding the
direction of influences, but in order to do this, assumptions on how these influences can occur
required.  For example, in structural equation modeling the anatomical model constraints how
regions may interact.  Moreover, because it is the modeling technique certain simplifications are
required as stated earlier.  Both methods as presented here are restricted to exploration of linear
relationships between brain areas.  While it is reasonable to assume that the scales measured in
PET the predominant relationship is linear, the explicit incorporation of nonlinearities will be
required for a full appreciation of neuronal components of cognition.  Indeed there is some
suggestion that in the time scales relevant for cognition (50-200 ms) there are significant
nonlinear components (Friston, 1997).  Nonlinear extensions to structural equation modeling are
rather straightforward (Kenny & Judd, 1984) and there has been some progress towards this in
fMRI (Buchel & Friston, 1997).

There is some concern about which source of variance, across tasks or across subjects, is best
for the estimation of neural interactions (see Friston, 1995; Strother, Kanno, & Rottenberg,
1995).  The issue of which source of variability is "correct" is not unique to neuroscience
(Mandler, 1959), and there is no necessity for a logical connection between covariances
computed across tasks within-subjects and those computed across subjects within-task.
However, there is also no justification for preferring one source of variability to another,
particularly in cases where both can be examined as in fMRI or ERP studies.  Within subject
analysis assesses the direct relation between regions while across subjects analysis provides an
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indication of the stability that relation.  These are complementary, not contradictory, pieces of
information.

For illustration, say we take 10 people of varying heights and weight, and ask them to pull on
a potentiometer by flexing their arm (an arm curl).  If you measured activity of the muscles in the
arm for each subject, say through blood flow, and correlate them, you would probably find a
strong correlation with the biceps and brachialis muscles.  Although each person would differ in
the amount of blood flow to the muscles, from the correlation based on this variance, you would
conclude that the muscles on the ventral surface of the arm have something to do with flexion.  If
instead you measured muscle activity in a single subject with a progressive increase in the
resistance to arm flexion, you would find a correlation between muscle activity in the ventral part
of the arm.  Replicating the measurement by running different subjects would lead you to the
same conclusion that you had reached by using the between-subjects covariance.  The point here
is that computing covariances between or within-subjects can lead to complementary conclusions
so long as there are adequate experimental controls, and the statistical analysis ensures the
answers are reliable.

Conclusions
The paper began by presenting the possibility that with neuroimaging we can investigate the

operations of neural networks supporting cognition.  Creating activity maps can give hints about
the constituents of these distributed systems, but an appreciation for their interactions can only
come from investigation of something like interregional covariances.  Two covariance-based
methods, structural equation modeling and partial least squares, were presented as ways to
quantify neural interactions.  Structural equation modeling was used to demonstrate the
dependence of the functional network interactions on memory load.  Partial least squares was
used to show how right prefrontal cortical activity could be associated with the act of searching
memory (retrieval mode) or successful retrieval depending on its relation to other brain regions,
or neural context.  Common in both examples is the possibility that learning and memory, very
broadly defined, may emerge from neural interactions rather than being the responsibility of
particular brain areas.

The idea that learning and memory are ubiquitous properties of the brain is counter to the
parcellated view of nervous system functional organization.  However, physiological data have
consistently shown that almost all parts of the nervous system show the capacity for learning and
memory.  There may, therefore, be several ‘types’ of learning and memory depending on which
regions are interacting.  This is not to say that the brain contains several memory systems that are
independent of perceptual operations, as has been implied by some theories in cognitive
psychology (Schacter & Tulving, 1994).  Instead, higher order memory will involve interactions
among different brain regions depending on the stimuli, the process, and what must be done with
the information.  This idea is similar to psychological theories that view memory as the dynamic
combination of several processes rather than a discrete system (Jacoby, 1991).  The interactions
between brain regions lead to formation of memory.  Memory per se is an emergent behavior of
the central nervous system — it is something the brain does.

At first pass, this may seem in direct opposition to data demonstrating severe and permanent
deficits in learning and memory following damage to specific parts of the brain.  However, it
should be clear that the idea of emergent properties from neural interactions is neutral with
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respect to the lesion findings.  Lesion findings give clues about functional organization, but are
silent as to how the function is carried out.  This point is underscored the following excerpt:

“The fact an animal can learn or retain the [conditioned] response after a lesion does not of
itself warrant the conclusion that the structure normally played no role in the response.  The
engram, we suspect, is wily enough to elude the subcortical shot as easily as the cortical
knife.  Memory seems more likely to be set processes, which define a state, than a "bit" in a
place.  That places participate in process is apparent, but we may more legitimately expect
the lesion of a region to alter the process than to abolish the state.  That lesions can alter
process we know, witness the effect of septal lesions on slow hippocampal waves.  The
problem that confronts us is to unravel how the condition response is produced by the process
(p 480 John, 1961)”.

Substituting the word “conditioned response” with something like “memory trace” makes this
point quite relevant to human cognitive neuroscience.

Some valuable insights could be gained from the exploration of network interactions in the
damaged nervous system to see how the networks reorganize themselves in an attempt to
compensate.  When interpreted in light of interactions in the normal brain, such research could
provide the important link between lesion data and normative experiments by explaining the
lesion effect.  For example, is the lesioned area a convergence site for functional interactions
(Damasio, 1989)? Some strides towards this end have been made in examining aging and
Alzheimer’s disease effects from a network perspective (Horwitz et al., 1995).

The idea of a neural context has important implications for how neuroimaging data are
evaluated.  If one is willing to accept that brain regions communicate with one another in the
course of cognitive operations, then what one brain area does must be determined by what other
areas connected to it are doing.  When an area is more active in a cognitive task relative to a
control task, that change must arise from neural interactions.  Undoubtedly, there are
consistencies in these activations as the realization of the Hemispheric Encoding/Retrieval
Asymmetry (HERA) model (Tulving et al., 1994), and the more recent Hippocampal
Encoding/Retrieval model (HIPER, Lepage, Habib, & Tulving, 1998) attests .  The next
reasonable step would be to determine whether such consistent activations arise from the
interactions of common neural systems.

Neuroimaging studies often present data in terms of “activated” regions that are considered
independent of deactivated regions.  However, relative deactivations are just as important as
activations in setting up a neural context.  An activation that occurs in one case may mean a
different thing in the company of different deactivations.  An illustrative example is selective
attention. In PET studies of visual selective attention, rCBF in auditory and somatosensory
regions decreases while visual regions are activated (Haxby et al., 1994).  Consider another study
where the same visual activation occurs without concomitant deactivation of auditory cortex.
This pattern may signal quite a different cognitive process, perhaps that both visual and auditory
domains are being attended to.  If activations alone were examined, there would be no difference
between studies.  Deactivations are problematic for those who strictly adhere to the cognitive
subtraction paradigm, but from a physiological perspective, increases and decreases in neural
activity are equally important for nervous system operation.  Deactivations can result from an
active suppressive influence or from reduced interactions in the task of interest (as with regions F
and A in Figure 1, respectively; it is worth noting that these interpretation ambiguities are also
there for activations).  A recent paper from our lab demonstrates how it is possible to evaluate the
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source of deactivations with structural equation modeling (Nyberg et al., 1996a), leading to
network models of cognitive operations that are more congruent with neurophysiology (Abeles,
1982; Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Somers, Nelson, & Sur, 1995;
Tsodyks, Skaggs, Sejnowski, & McNaughton, 1997; Turova, 1997; van Vreeswijk &
Sompolinsky, 1996).

The complexity of data analysis and interpretation is great when covariance-based approaches
are used.  However, most questions in neuroimaging are phrased such that the answer is best
provided by some sort of covariance analysis.  Data interpretations are often made from the
perspective of interacting networks, even if the network structure is never specified (Fink et al.,
1996).  To appreciate neural interactions does not require a drastic change in experimental
questions, rather it requires a change in how the answers are provided.  For example, top-down
modulation in studies of selective attention is best explored through a covariance-based
approach.  Activation of higher-order areas (prefrontal) may arise from increased input or output
and without further analysis these possibilities are not distinguishable (e.g., Shulman et al.,
1997).  Covariance analyses like structural equation modeling can sort out these possibilities.
Neuroimaging is in the peculiar position of having the answers to experimental questions
constrained by the analytic methods.  With the intellectual and financial investment needed from
functional imaging studies, it is a shame that the fate of an entire experiment rests on a t-test.
The subtraction method in PET, its carryover to fMRI, and the related statistical tools, have
become the default for imaging experiments, but neuroimaging has matured beyond this.  The
choice of the analytic tool should be dictated by the particular experimental question.  If the
question is about neurocognitive networks , then the answer should come from something like a
covariance-based analyses.  If questions are phrased at a regional level (e.g., does an area
contribute to an operation?), then activation analyses will provide an appropriate answer.
Removed from the constraints of convention, the theoretical issues addressable by neuroimaging
expand greatly.
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