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a b s t r a c t

The interest about hybrid optimization methods has grown for the last few years. Indeed, more and more
papers about cooperation between heuristics and exact techniques are published. In this paper, we pro-
pose to extend an existing taxonomy for hybrid methods involving heuristic approaches in order to con-
sider cooperative schemes between exact methods and metaheuristics. First, we propose some natural
approaches for the different schemes of cooperation encountered, and we analyse, for each model, some
examples taken from the literature. Then we recall and complement the proposed grammar and provide
an annotated bibliography.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

NP-hard problems are difficult to solve and no polynomial time
algorithm are known for solving them. Unfortunately, most combi-
natorial optimization problems, such as the Travelling Salesman,
N-Queens, Bin Packing, 0/1 Knapsack, Graph Partitioning, are NP-
hard. Two approaches can be considered to solve this kind of prob-
lems depending on their size.

For small instances, researchers usually use exact methods. Ex-
act methods find the optimal solution and assess its optimality.
There exist numerous exact methods such as the family of Branch
and X (Branch and Bound algorithm [58], Branch and Cut algorithm
[42], Branch and Price algorithm [12]), Linear Programming, Dy-
namic Programing, etc. A branch and X algorithm uses a divide
and conquer strategy to partition the solution space into subprob-
lems and then optimizes individually each subproblem. Exact
methods are known to be time expensive, so they can not be ap-
plied to large NP-hard problems or difficult ones.

When instances become too large for exact methods, heuristics
and in particular metaheuristics are often used. There are two main
categories of metaheuristics: single solution algorithms and popu-
lation based algorithms. The first category gathers local search (LS)
[54], greedy heuristic (GH) [70], simulated annealing (SA) [50],
tabu search (TS) [40], Iterated Local Search (ILS) [56] etc. The sec-
ond category, which is more and more studied, regroups evolution-
ary algorithms such as genetic algorithms [44], evolution strategies
[74], genetic programming [52], and also ant colonies (AC) [31],
scatter search (SS) [39], immune systems [48] etc. However, in
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general, metaheuristics are not able to solve the problems to opti-
mality and some convergence problems can be encountered.

During the last years, many works have been realized on coop-
erative (or hybrid) optimization approaches. In many cases, best
results are obtained with this kind of approaches, especially on
real-life problems. At the beginning, cooperations were mainly
realized between several metaheuristics. But nowadays, more
and more cooperation schemes between metaheuristics and exact
approaches are proposed. These strategies usually give good re-
sults because they are able to exploit simultaneously the advanta-
ges of both types of methods. For example, it may allow to give
quality guarantees to the identified solutions.

In this article, we propose to survey the different cooperation be-
tween these two types of method. The fact that more and more pa-
pers deal with this kind of approaches (see Fig. 1) clearly indicates
that it is an important issue for the operational research commu-
nity. So it seems interesting to classify these works. A state of the
art of this type of cooperation has been proposed recently by Stützle
and Dumitrescu [34]. They distinguish five classes of approaches for
cooperation between exact and local search methods; they also
provide an example for each type. The five classes proposed are:

� Use exact algorithms to explore large neighborhoods in local
search algorithms.

� Perform several runs of a local search and exploit information in
high quality solutions to define smaller problems that are ame-
nable for solution with exact algorithms.

� Exploit bounds in constructive heuristics.
� Use information from relaxations of integer programing prob-

lems to guide local search or constructive algorithms.
� Use exact algorithms for specific procedures in hybrid

metaheuristics.
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Fig. 1. The evolution of the publication activity on hybridizaton between exact methods and metaheuristics.
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The survey proposed by Stützle and Dumitrescu presents sev-
eral cooperative approaches to explain the different classes but
would have more interest if it were generalized to every optimiza-
tion methods. Their paper also excludes some combination such as
preprocessing.

In [68], Puchinger and Raidl, propose a survey of the state-of-
the-art approaches that combine exact methods and metaheuris-
tics. Their survey provides a classification of methods thanks to dif-
ferent classes. The first one deals with collaborative combinations
where no algorithm is contained in any other. This class is divided
into subclasses:

� Sequential execution.
� Parallel and intertwined execution.

The second class regroups integrative combinations and is sub-
divided into two subclasses:

� Incorporating exact algorithms in metaheuristics.
� Incorporating metaheuristics in exact algorithms.

Puchinger and Raidl illustrate each subclass with examples is-
sued from the literature.

In this article, we propose also to classify different articles issued
from the literature but we will also propose a taxonomy of methods
that combines exact and heuristic approaches. Important contribu-
tions of this article are the formal grammar proposed to classify the
methods, integration of conceptual and hierarchical aspects. A sepa-
ration between design and implementation is also taken into account.
Our survey is far from providing an exhaustive list but it will consti-
tute a good way for authors of new cooperation papers to classify their
approach or for developers to find ideas on how to combine methods
efficiently. In this article, cooperation and hybridization will be used
in the same way. These terms will indicate algorithms which combine
different optimization methods. The present paper uses the taxon-
omy proposed by Talbi [80] as we observe that it is valuable for coop-
erative methods between metaheuristics and exact approaches.

The remainder of the article is organized as follows. In Sections
2–4 the taxonomy used in [80] is recalled and illustrated with
examples of cooperation between exact methods and metaheuris-
tics, as in [80] the author only considers cooperation between
metaheuristics. The taxonomy is divided into three general as-
pects: cooperation method design (Section 2), approach design
(Section 3), and implementation issues (Section 4). In Section 5,
the grammar for hybrid metaheuristics is extended, and an anno-
tated review of different references is presented according to the
taxonomy. Conclusions are drawn in Section 6.
2. Cooperation method design

Cooperation involves two main components: the design and the
implementation. The former category concerns the cooperative
algorithm itself, involving issues such as the functionality and
the architecture. The implementation takes into account the hard-
ware platform, programming model and the environment.

In this section, we will focus on the design of the cooperative
mecanisms, i.e. how the methods will cooperate. For each type of
classification, the derived classes are presented and some exam-
ples from the literature are described.

To facilitate the reading of our survey, the terms used in [80] are
recalled. The design of metaheuristics can be classified in two types
of design classification:

� Low-level/High-level
– Low-level: The functional composition of a single optimiza-

tion method. A given function of a metaheuristic is replaced
by another method.

– High-level: The different algorithms are self-contained.

� Relay/Teamwork
– Relay: A set of methods is applied one after another, each

using the output of the previous as its inputs, acting in a
pipeline fashion.

– Teamwork represents cooperative optimization models.
Four classes are derived from this hierarchical taxonomy (see
Fig. 2).
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2.1. LRH (Low-level Relay Hybrid)

This class corresponds to the algorithms in which a given meth-
od is embedded into another method; the embedded method has
to be executed sequentially, i.e. the global method execution is
dependant to the results obtained by the embedded method. This
type of cooperation is commom when a heuristic approach is used
to improve an exact approach. In the context of cooperation be-
tween metaheuristics, the most proposed approaches is to run an
evolutionary algorithm then launch a local search in order to inten-
sify the search on the best solutions. If we consider the cooperation
between exact and heuristics methods, the most natural approach
is to design an heuristic to improve the search strategy of the exact
method (Fig. 3). For this scheme of cooperation, the heuristics will
work on a problem which is from a different nature (node selec-
tion, column generation) that the considered optimization
problem.

An example of this type of cooperation has been proposed by
Augerat et al. [2]. In this study, a branch and cut algorithm is pro-
posed to solve a capacitated vehicle routing problem (CVRP). The
cutting plane generation is a crucial part of branch and cut algo-
rithms. Indeed, it greatly determines their efficiency. The authors
remark that the linear inequality resulting from the constraint
capacities are those which provide the best cutting planes. So they
propose different heuristic approaches (constructive heuristics,
greedy algorithms, and Tabu search algorithms) to extract a set
of violated capacity constraints of the relaxed problem.

This class of cooperation is not widely used for cooperative
models between exact algorithms and heuristic approaches. In-
deed, in many studies, the authors use simple (node exploration)
or specific heuristics (column generation) to optimize the exact
search strategy.

2.2. LTH (Low-level Teamwork Hybrid)

In this class, an element of a given method is replaced by an-
other method. This kind of cooperation can drastically improve a
metaheuristic. Oppositely to LRH cooperations, LTH consist in an
embedded method which can be executed in parallel with the glo-
bal method.

In the context of cooperation between metaheuristics, a well
known LRH cooperative class of algorithms are memetic algorithm,
i.e. genetic algorithms with a local search replacing a transforma-
tion operator, which is in many cases the mutation operator.
Memetic algorithms are classified as LTH cooperation since the
GA can be executed while a local search is running, applied on pre-
Relay Teamwork Relay Teamwork

LTHLRH HRH HTH

High levelLow level

Cooperative metaheuristics

Fig. 2. The four classes derived from the cooperation method design classification:
LRH, LTH, HRH, and HTH.
viously selected individuals from the GA population. Concerning
the meta/exact cooperations, let us consider two main types of
approaches:

� Exact search LTH cooperation (Fig. 4): the exact approach build
partial solutions, which are used to define a search space for the
heuristic approach. Then, the results obtained by the heuristic
are analized in order to refine bounds, or column to generate
in a branch & cut algorithm.

� Heuristic search LTH cooperation (Fig. 5): the heuristic search
works like memetic algorithms, but in this case, the genetic
operator is replaced by an exact search within a subspace of
the global search space.

Cotta et al., propose a framework which lays on the cooperation
between genetic algorithms and a Branch and Bound (B&B)
Fig. 4. LTH cooperation (exact search): Heuristic designed to explore the search
space associated with a partial solution, in order to define bounds for cutting, or
exploration strategy.
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Fig. 5. LTH cooperation (heuristic search): Exact search is realized on solutions in
order to intensify the search within an evolution search, with proof of the local
optimality of the new solutions. The exact search could replace a genetic operator,
like in memetic searches.
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method. Two cases: (1) In exact search, some initial bounds/solutions are given. (2)
In heuristics search, initial solutions are given to the exach algorithm which works
on a subspace (partitioning, large neighborhood search).
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algorithm which is used as an operator [26]. The resulting hybrid
operator cleverly explores the dynastic potential (possible chil-
dren) of the solutions being recombined, providing the best combi-
nation of formae (see Fig. 6).

In [49], Kostikas and Fragakis present the application of Genetic
Programming (GP) in B&B based on Mixed Integer linear Program-
ming (MIP). The hybrid architecture employs the GP as a node
selection expression generator: a GP run, embedded into the B&B
process, exploits the characteristics of the particular MIP problem
being solved. The evolved method replaces the default one for
the rest of the B&B.

Jahuira et al., propose different hybridizations between genetic
algorithms and exact methods applied to the Travelling Salesman
Problem (TSP) [45,46]. The cooperation is introduced in the genetic
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Fig. 8. An example of High-level Relay Hybr
functions as the authors replace the genetic crossover by a branch
and bound algorithm and a Minimal Spanning Tree solution algo-
rithm. The initial solutions are also generated by means of the min-
imum spanning tree construction algorithm.

Large neighborhood search algorithms are typically LTH cooper-
ations. These algorithms can be viewed as local search algorithms
which use a large neighborhood to improve the efficiency of the
search. The exploration of this large neighborhood can be either
heuristic or exact. A survey of these methods can be found in [4].
Several studies propose exact methods to explore these large
neighborhoods to find the best solution in a subspace of the global
search space of the optimized problem. These types of approaches
have been proposed by Bent and Van Hentenryck to solve the
asymmetric TSP problem [16], or Shaw for VRP problem [78].

Globally, the frontier between LRH and LTH is thin. The differ-
ence mainly depends on the possibility, or not, to propose a parallel
version of the proposed algorithm without applying drastical
changes to the initial algorithm.

2.3. HRH (High-level Relay Hybrid)

In this class, the different methods are self-contained and are
executed in sequence. This cooperation scheme is the most repre-
sented for general hybridization.

Of course, like in the other cooperation schemes, different types
of resolution could be considered. However, in general, the most
natural approach is to design a sequential execution of a metaheu-
ristic which is launched before an exact approach (Fig. 7). The
metaheuristic is designed in order to give information to the exact
algorithm. If we consider an exact search, the information given
could be initial bounds, for example, which helps the exact algo-
rithm to speed up the search. If we consider a heuristic search,
the metaheuristic gives initial solution(s) to the exact search,
which helps to define a reduced search space to launch the exact
search. For example, the search space could be reduced by defining
partitions of the proposed solutions, or by defining large neighbor-
hoods around the proposed solutions.

Klepeis et al., propose a cooperation between the alpha Branch
and Bound algorithm and a conformational space annealing (CSA)
algorithm for protein structure prediction [53]. The alpha branch
and bound algorithm is a global optimization algorithm based on
a branch and bound algorithm. It is applicable to a large class of
nonlinear optimization problems that have twice differentiable
functions [5]. The CSA is a stochastic method that employs ele-
ments of both simulated annealing and genetic algorithms [57].
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Fig. 9. HTH cooperation: two algorithms are launched in parallel, and exchange
information (the metaheuristic provides information for search space reduction and
the exact method provides improved solution to intensify the search).
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In this algorithm, the authors alternate several runs of B& B and
CSA. They parallelize their algorithm in a master–slave model
(see Fig. 8).

In [16], Bent and Van Hentenryck propose a two-stage hybrid
algorithm for the vehicle routing problem with time windows.
First, the algorithm minimizes the number of vehicles by means
of a simulated annealing algorithm. Then it minimizes the travel
cost using a large neighborhood search technique which may relo-
cate a large number of customers.

In [14], Basseur et al., investigate several cooperative ap-
proaches for a biobjective permutation flow-shop scheduling prob-
lem. These schemes are designed around a biobjective hybrid
metaheuristic (Adaptive Genetic/Memetic Algorithm) and the
two-phase method [84], a biobjective exact method. The main ap-
proach consists in fixing a part of initial solutions and optimizing
exactly between two points of each individual. Then the process
is iterated for each part of the best initial solutions proposed by
the metaheuristic. Pareto fronts obtained by the Adaptive Genet-
ic/Memetic Algorithm are strictly improved by this hybridization.

2.4. HTH (High-level Teamwork Hybrid)

This class contains algorithms where self-contained methods
are performing a search in a parallel and cooperative manner.
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Fig. 10. An example of High-level Teamwork Hyb
Considering cooperation between metaheuristics, this coopera-
tion involve principally island parallel models. It is almost the
same with exact methods, with two different types of islands,
those which are dedicated to exact search, and those dedicated
to heuristic search. During the execution, the different algorithms
exchange information, which is dependant of the type of the island
(Fig. 9). The major difficulty is to set parameters (when and how
the exchange is realized for example).

For example, in [62], Simulated Annealing and Branch and
Bound are hybridized such that the two optimisation methods
work on the same problem. The model exchanges information
when conditions are satisfied. The model is parallel and is detailed
in part 4.2.

In some cases, the two different cooperative approaches are not
dedicated to solve instances of the same size. So, to obtain a HTH
cooperation, the two approaches have often to solve different parts
of the same problem in an independent manner. In [20], Chabrier
et al. propose a cooperation between a local search and a column
generation algorithm to solve VRP. The scheme of this HTH cooper-
ation is shown in Fig. 10. The problem is divided into subproblems
(partial model).
3. Approach design

Three criteria have been selected for the flat classification of
cooperation between exact and heuristic methods: the complete
resolution (exact or approximated), the resolution space (global
or partial), and the nature of the cooperation (general or specialist).

3.1. Exact/approximated resolution

The type of the whole cooperative method could be either exact
or heuristic. The exact cooperative approaches take useful informa-
tion from heuristics to speed up the enumeration of the whole
search space by upgrading bounds, finding initial solutions, defin-
ing useful cutting planes and so on.
MIP

Local

Search

Integer solutions generation

teger solution

ew columns

Integer solution

nteger Solution

Columns

Indicators

rid scheme for the vehicle routing problem.
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In the article of Chabrier et al. [20], a local search is used to gen-
erate new columns for a branch and cut algorithm. So the whole
approach is exact, despite the use of a metaheuristic in the cooper-
ative algorithm. Another way for this type of cooperation is the ap-
proach proposed by Cotta et al. [17]. The metaheuristic works on
the same problem than the exact method and gives bounds to
speed up the exact resolution.

Burke et al., describe a cooperative heuristic [8]. In this study,
the exact approach is included in a local search mechanism to ex-
plore exactly interesting subspaces.

3.2. Global/partial cooperation

The components of the cooperative approach may work on the
whole search space or only on a part. On one hand, in the global
cooperation all the algorithms explore the same search space and
on the other hand, in the partial cooperation, the problem is
decomposed into sub-problems, each having its own search space.
It may be noted that when the cooperation is a global one, the pur-
pose is generally to solve the problem optimally, while partial coo-
perations are usually associated to approached solutions.

3.2.1. Partial hybrids
The majority of metaheuristic/exact cooperation approaches are

often partial since the search space is generally too large for the ex-
act method. Indeed, there are many examples of partial cooperation.

An example is the Mimausa method designed by Mautor and
Michelon [60] for the quadratic assignment problem. The method
builds at each iteration a subproblem and solves it by a branch
and bound algorithm. Palpant et al., propose an heuristic for solv-
ing the Project scheduling with resource constraint. The heuristic
integrates an exact method into a local search heuristic [65]. At
each iteration, the process generates a main subproblem whose ex-
act resolution provides a starting point for solving the remaining
subproblem. Other approaches propose to solve the subproblems
with an exact method and to integrate it in a metaheuristic:
Budenbender for the Direct Flight Network Design Problem [11],
the forget-and-extend algorithm [23] etc.

In [25], Chelouah and Siarry propose an hybrid method combin-
ing a tabu search algorithm and a simplex algorithm to deal with
the global minimization of functions depending on continuous
variables. The simplex algorithm is used to accelerate the conver-
gence toward a minimum value.

In [14], branch and bound iterations are made on the potentially
optimal Pareto solutions found by an hybrid evolutionary algo-
rithm for a biobjective flowshop problem. However, only a small
part of the search space is explored by the exact approach, because
a large part of each individual is fixed before.

3.2.2. Global cooperation
In global cooperation, two optimization methods have to work

on the same search space, usually the whole search space.
First, we consider as global cooperation exact algorithms which

use a heuristic to improve bounds and then speed up an enumer-
ative approach. In [72], Portmann et al., propose an exact approach
to solve a hybrid flowshop problem. A specific heuristic computes
solutions to provide an initial bound for a branch and bound algo-
rithm. The two algorithms explore the same search space making
this cooperation global.

3.3. Specialist/general

In a general hybrid model, all the algorithms solve the same opti-
mization problem whereas the components of a specialist coopera-
tion solve different problems. Many cooperations proposed in the
literature are general, as for example the study of Cotta et al. [17].
The study of Chabrier et al. [20] is a good example of a special-
ist cooperation on the VRPTW (vehicle routing problem with time
windows). One method solves a set covering problem and the
other one a routing problem. In [83], T’kindt et al., investigate a
biobjective flowshop problem with two machines. The objective
are treated in a lexicographic way. The first objective, the Make-
span is exactly solved by an exact approach (Johnson algorithm),
then an ant system is applied to optimize the second objective.
In many cases, specialist cooperations are used to solve problems
with specific features, which can be solved exactly. Another
possibility is a LRH approach, which optimizes heuristically (resp.
exactly) a specific mechanism of an exact (resp. heuristic)
method.
4. Implementation issues

The implementation choices of a cooperative algorithm can be a
good way to improve the scalability of a method. Hence, an inter-
esting point is to classify algorithms through the kind of imple-
mentation. In an optimization point of view, it is interesting to
investigate the use of parallelism.

4.1. Sequential implementation

The majority of the proposed implementations are sequential.
In many papers, it is suggested to parallelize the proposed cooper-
ation in order to design better cooperation schemes and to speed
up the execution. However, in these papers, the proposed ap-
proaches are not implemented, but only proposed as research per-
spectives. It is mainly due to the number of areas which are
involved (parallelism, exact approaches, heuristics approaches. . .),
and by the fact that the parallel models are not really natural (not
like island models for genetic algorithms, for example).

4.2. Parallel implementation

Only a few studies propose parallel implementation for cooper-
ation between exact and heuristics approaches. One very impor-
tant point to determine is what kind of information is exchanged
and when. In parallel implementations several architectures can
be encountered: Multiprocessor, cluster or grid architecture. In
metaheuristic and exact method cooperation the majority of the
work use small cluster implementation. In [17], Cotta et al., pro-
pose a parallel implementation of their hybrid GA/B&B approach.
GAs are executed in a parallel way, and a processor is dedicated
to launch B&B resolutions on restricted problems. This processor
allows to give new individuals to the GAs.

In [62], Simulated Annealing and Branch and Bound are
hybridized in a parallel manner. The model uses two processors.
On the first one, the simulated annealing is running and on the
second one the Branch and Bound. Bounds and variable decisions
are exchanged. Upper bounds obtained from SA are immediately
passed onto the B&B code. If these bounds are better than B&B
incumbent bounds, the B&B execution updates its current best
bound value. Moreover, any integer bound obtained by the B&B
execution is passed on to the SA code and used as an alternative
reheated solution. Secondly, variable choice information is ex-
changed, once both SA and B&B have calculated their respective
variable ranking and pseudocosts information, a single variable
choice list is constructed by averaging the ranking positions from
both strategies.

For future direction, it is important to notice that more and
more frameworks allow to facilitate the parallelization of coopera-
tion. To this purpose, we present several frameworks that allow to
realize cooperation between metaheuristics and exact methods.
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4.3. Frameworks

4.3.1. A-Teams
An asynchronous team (A-Team) is a strongly cyclic computa-

tional network [81]. The number of agents can be arbitrarily large
and the agents may be distributed over an arbitrarily wide area.
Agents cooperate by working on one another’s results. Each agent
is completely autonomous (it decides which results it is going to
work on and when).

4.3.2. TECHS
TECHS (TEams for Cooperative Heterogeneous Search) allow the

use of very different search agents within a search team while still
achieving synergetic effects [32]. An agent could be either a meta-
heuristic or an exact method.

4.3.3. MALLBA and TRACER
n MALLBA (university of MAlaga, university of La Laguna, uni-

versity of BArcelona), each optimization method is encapsulated
in a skeleton [1]. Different exact methods are proposed (Branch
and Bound, Divide and Conquer, Dynamic Programming) and also
heuristic methods. MALLBA is one of the few frameworks that pro-
poses the possibility to directly develop parallel hybrid methods
between exact and heuristic methods. The parallelism is available
for LAN and WAN computer platforms. TRACER is the following
project of MALLBA.
Fig. 11. The proposed grammar for cooperation
Since many cooperation scheme could be designed to cooperate
exact methods with metaheuristics, frameworks are useful in order
to reuse mechanisms proposed by the literature. However, there
exists only first experiments in this area since this research area
is very recent.

5. Global overview

As we have extended the taxonomy [80] to the case of cooper-
ation between metaheuristics and exact methods, we recall the
grammar for cooperation schemes. In our case, we consider only
heterogeneous models, since metaheuristics and exact methods
are definitely different!

For the heuristics methods, we use these following abbrevia-
tions:

� SA: Simulated Annealing
� GA: Genetic Algorithm
� MA: Memetic Algorithm
� ES: Evolution Strategy
� GP: Genetic Programming
� NN: Neural Network
� DW: Descent Walk
� LS: Local Search
� ILS: Iterated Local Search
� TS: Tabu Search
between metaheuristics and exact methods.
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� GH: Greedy Heuristic
� AC: Ant Colonies
� SS: Scatter Search
� CSA: Conformational Space Annealing
� SH: Specific Heuristic

For the exact methods, the abbreviations used are:

� B&B: Branch and Bound
� alphaB&B: the alpha Branch and Bound
Table 1
Annotated bibliography

Refs. Design

[3] LTH (DP(ILS)) (approximate, partial, general) sequential
[6] HRH(B&P + SH) (approximate, partial, general) sequential
[14] HRH(HTH(GA + MA),B&B) (approximate, partial, general) sequential
[13] HRH(HRH(GH + LS) + B&C) (exact, global, general) sequential
[10] HRH(TS + LP) (approximate, partial, general) sequential
[16] HRH(SA + LTH (LS(B&B))) (approximate, partial, general) sequential
[11] HRH(GH + LTH (TS(B&B))) (approximate, partial, general) sequential
[8] LRH(LS + DP) (approximate, partial, general) sequential
[17] LTH(GA(B&B)) (approximate, partial, general) parallel static
[24] LTH(LS(DP)) (approximate, partial, general) sequential
[19] HRH(RS + LP) (approximate, partial, general) sequential
[20] HTH(B&P(HRH(MLP+LS))) (exact, global, specialist) sequential
[25] HRH(TS + Splx) (approximate, partial, general) sequential
[26] LTH(GA(B&B)) (approximate, partial, general) sequential
[28] LTH(TS(B&B)) (approximate, partial, general) sequential
[33] HTH(AS(HRH(B&B + AC))) (approximate, partial, specialist) sequential
[35] HRH(LP + GA) (approximate, partial, general) sequential
[36] LRH(B&B + GA) (exact, global, general) sequential
[45] LRH(MST + LTH (GA(B&B—ACM))) (approximate, global, general) sequen
[46] LRH(MST + LTH (GA(ACM))) (approximate, global, general) sequential
[51] HRH(LP + MA) (approximate, partial, general) sequential
[53] HRH(aB&B + CSA) (approximate, partial, specialist) parallel static
[47] LTH (GA(Splx)) (approximate, partial, general) sequential
[49] LTH (MLP(GP)) (exact, global, specialist) sequential
[59] LRH(AS + LP) (approximate, global, specialist) sequential
[60] HRH(B&B + TS) (approximate,partial,general) sequential
[65] HTH(LS(CP)) (approximate, partial,general) sequential
[69] HRH(DW + B&B) (exact, global,general) sequential
[66] HTH(LS(CP)) (approximate, partial,general) sequential
[72] HRH(SH + (HTH(B&B(GA)))) (exact, global, general) sequential
[76] HRH(SH + B&B) (approximate, partial, general) sequential
[78] LTH (LS(B&B)) (approximate, partial, general) sequential
[79] HRH(B&B + NN) (approximate, partial, general) sequential
[83] HRH(SES + GA) (approximate, partial, specialist) sequential
[85] LRH(ILS + Splx) (approximate, global, specialist) sequential
[87] HRH(AS + RT) (approximate, partial, general) sequential
[75] LTH(LP(GA)) (exact, partial, general) sequential
[55] HRH(GA + MIP) (exact, partial, general) sequential
[61] LTH(GA(SES)) (approximate, partial, specialist) sequential
[63] HRH(B&B + GA) (approximate, partial, specialist) sequential
[71] HRH(IP + SS) (approximate, partial, specialist) sequential
[67] LTH(B&C&P(GA)) (approximate, partial, general) sequential
[82] HRH(GA + IP) (exact, partial, general) sequential
[37] HTH(B&B + EA) approximate, partial, general sequential
[29] HRH(IPL + AC) (approximate, partial, specialist) sequential
[41] LTH(SA(LP)) (approximate, partial, general) sequential
[38] LTH(SS(Splx)) (approximate, partial, general) sequential
[27] HTH(GA + LP) (approximate, partial, general) sequential
[73] HTH (B&B + GA) (exact, global, general) sequential
[62] HTH(SA + B&B) (approximate, global, general) parallel
[77] HRH(Cplex + GA) (approximate, partial, general) sequential
[18] HRH(LR + TS) (approximate, global, general) sequential
[7] HRH(BS + TS) (approximate, partial, general) sequential
[9] LTH(GRASP(OCTANE)) (approximate, partial, specialist) sequential
[21] LTH(TS(LP)) (approximate, partial, specialist) sequential
[15] LTH(AC(BS)) (approximate, global, general) sequential
[22] LTH(LS(SES)) (approximate, partial, general) sequential
[30] LTH(BS(LS)) (approximate, partial, general) sequential
[64] HRH(LP + GRASP) (approximate, partial, specialist) sequential
[86] LTH (LR + TS) (approximate, partial, general) sequential
[43] LTH (LS(B&B)) (approximate, partial, general) sequential
� B&C: Branch and Cut
� B&C&P: Branch and Cut and Price
� BS: Beam Search (Breadth first search process without

backtracking)
� LP: Linear Programming (as CPlex, etc.)
� DP: Dynamic Programming
� CP: Constraint Programming
� Splx: Simplex Search
� SG: Search Goal
� SES: Specific exact search
Optimization problem

TSP
Large-scale set partitioning
Biobjective M-machines Flow-shop problem
VRP with time windows
Irregular stock cutting
VRP with time windows
Direct flight network design
Asymmetric TSP
TSP
One machine Flow-shop (weighted sum of tardiness)
Fiber-optic cable manufacturing (scheduling)
VRP
Multiminima continuous functions
Generalized Schwefel function, rule base learning
VRP
Local access network design
Generalized assignment
Max-SAT

tial TSP
TSP
Prize-collecting steiner tree
Protein structure prediction
Gene regulatory network models
MIPLIB3 benchmarks
Quadratic assignment
Quadratic assignment
Project scheduling with resource constraints
Quadratic assignment
TSP
Hybrid flow-shop
p-median problem
VRP
Biobjective broadcast scheduling problem
Biobjective 2 machines flow-shop problem
One-dimensional cutting stock variant (pattern restricted problem)
0–1 multi-dimensional knapsack
graph coloring
Markov Decision Processes
graph colouring
Flowshop
0–1 programming
2D bin packing
Jobshop
Multidimensional Knapsack
Project portfolio selection
Irregular strip packing
Bicriteria 0,1-knapsack
Scheduling in power systems
Hybrid flowshops
Zero-one LP
Single line scheduling
Single source capacitated location problem
One-dimensional bin packing problem
Multiconstraint knapsack problem
Capacitated network design
open shop scheduling
Routing
2-machine flow shop, uncapacitated p-median location problem
Weighted maximal planar graph problem
Workshift and rest assignment of nursing personnel
Flow shop problem
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The grammar is proposed in Fig. 11 and is particularly adapted
to the design of cooperative schemes where it is interesting to
know which method uses the other one. So the order in the
description of a method has an importance. For example [17] is a
Low Level Co-Evolutionary Hybrid scheme denoted by LTH (GA
(B&B)) for the Design and this means that the B&B is used as an
operator by the genetic algorithm. So for LTH scheme the first
method uses the second in its design.

For the relay model, the order used indicates the order of the
different methods used by the authors. For example in [14], the
authors use in one of their models a LRH(GA + exact) which means
that they apply an exact method on the solutions of a genetic algo-
rithm in order to have the exact Pareto front in a multi-objective
flowshop problem.

In Table 1, we propose a annoted survey of the literature, with
for each reference the corresponding classification and grammar
and the optimization problem solved.
6. Conclusion

The interest for hybrid metaheuristics is still growing as we can
observe that several workshops and conferences are dealing with
it: Hybrid Metaheuristics (HM 2005, 2006) workshop of ECAI, Con-
ference on Hybrid Intelligent Systems (HIS 2005, 2006), Applica-
tion of Hybrid Evolutionary Algorithms to NP-complete problems
workshop of GECCO, etc.

In this paper, we have presented an extension of the work of
Talbi [80] to cooperation between exact methods and metaheuris-
tics. The objective was to offer a short review of the literature on
the subject but also the paper had the purpose to show how the
methods can be combined and how to describe such cooperations
in order to favorize discussion in future papers on cooperation.

With this classification, we remark that several ways of cooper-
ation can be explored. Moreover, only a few parallel implementa-
tion are realized for cooperative approaches between exact and
heuristic approaches. Parallelism could be a good way to improve
algorithms efficiency, as in many cases for hybrid metaheuristics
[80]. A second important point is that most of the found coopera-
tive algorithms involving on exact scheme are for mono-objective
problems. The major difficulty for applying such cooperation to
multi-objective problems is that there are few exact methods that
can treat the specificities of multi-objective optimization [14].

In order to solve these difficulties, the use of frameworks seems
to be a promizing way, if the user is not expert in all the topics in-
volved in these cooperations. For example, some heuristics could
be designed by an expert of this area, which also uses a framework
in order to solve subproblems. The frameworks which could be in-
volved concerns exact search, heuristics search, parallelism, or
multi-objective optimization. It will be also very interesting to pro-
pose cooperative frameworks, which try to unify the different
types of existing framework, in order to allow the user to define
complex cooperative models in a few effort.
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