Procaspase-3 Activation as an Anti-Cancer Strategy: Structure-Activity Relationship of PAC-1, and its Cellular Co-Localization with Procaspase-3

Quinn P. Peterson,¹ Danny C. Hsu,² David R. Goode,² Chris J. Novotny,¹ Ryan K. Totten,² and Paul J. Hergenrother^{1,2}*

Supporting Information

Department of Chemistry² Department of Biochemistry¹ Roger Adams Laboratory University of Illinois Urbana, IL 61801

*To whom correspondence should be addressed: hergenro@uiuc.edu

Table of Contents

Biological Evaluation
Material and Methods
Materials
Cell Culture
Cell Death Assay S3
Recombinant expression and purification of procaspase-3/caspase-3
Caspase-3 Activity Assays
EGTA Fluorescence Titration Assay
Immunofluorescent Staining
Live Cell Imaging
Image Analysis
Induction of Apoptosis by PAC-1 derivatives
Supporting Figures
Figure S1. Cytotoxicity of PAC-1 and derivatives
Figure S2. Relief of zinc mediated caspase-3 inhibition
Figure S3. Formation curves for zinc binding determination
Figure S4. Inhibition by class IV compounds
Figure S5. Biochemical assessment of 2h S16
Figure S6. Cellular localization of 2h S17
Figure S7. Colocalization of 2h and caspase-3/-7 S18
Figure S8. Assessment of apoptotic induction by PAC-1 derivatives
Chemical Information
Materials and Methods S21-S54
Scheme S1. Syntheses of PAC-1 derivatives
Scheme S2. Synthesis of 4c S39
Scheme S3. Syntheses of 4a and 4b S41
Scheme S4. Syntheses of 4f and 4g S44
Scheme S5. Syntheses of 4d and 4e S47
Scheme S6. Synthesis of 2h S51
References
Spectral/Purity Data

Materials and Methods

Materials—All reagents were obtained from Fisher unless otherwise indicated. All buffers were made with MilliQ purified water. **PAC-1** and derivatives were synthesized as previously described and as described herein. Ac-DEVD-pNA was synthesized as described. Luria broth (LB) was obtained from EMD. Etoposide was obtained from Sigma. Caspase Activity Buffer contains 50 mM Hepes (pH 7.4), 300 mM NaCl and is Chelex® treated. Ni NTA binding buffer contains 50 mM Tris (pH 8.0), 300 mM NaCl, and 10 mM imidazole. Ni NTA Wash Buffer contains 50 mM Tris (pH 8.0), 300 mM NaCl, and 20 mM imidazole. Ni NTA Elution Buffer contains 50 mM Tris (pH 8.0), 300 mM NaCl, and 500 mM imidazole. Annexin V Binding Buffere contains 10 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM CaCl₂, 0.1% BSA. The C-terminal 6xHis-tagged procespase-3 proteins were expressed as described below.

Cell Culture—U937 human lymphoma cells and SK-Mel-5 human melanoma cells were obtained from ATCC. Cells were cultured in RPMI 1640 growth media supplemented with 10% FBS and 1% penstrep. Cells were incubated at 37 °C and 5 % CO₂. Subculture of SK-Mel-5 cells was achieved through trypsinization of the cell monolayer using 0.05% Trysin-EDTA (Gibco) dilution and further culture in RPMI 1640 growth media supplemented with FBS and pen-strep as above.

Cell Death Assay—U937 human lymphoma cells were plated into the wells of 96 well plate at a density of 5000 cells per well in 200 μ L of RPMI 1640 growth media with 10% FBS and 1% pen-strep. To each well was added 2 μ L of 100X compound stock solutions in DMSO at varying concentrations so that the cells were treated with concentrations between 0 μ M and 100 μ M compound. Each concentration was tested in quintuplicate. In each plate 5 wells received 10 μ M etoposide as a positive control and 5 wells received 2 μ L of DMSO as a negative control. The plates were then incubated at 37 °C and 5% CO₂ for 72 hours. After the 72 hour incubation period, the plates were analyzed using a Sulforhodamine B assay as previously described.¹ Specifically, to each well of the plate was added 50 μ L of an 80% (w/v) solution of TCA in H₂O and the plates were allowed to rest at 4 °C overnight. The plates were then washed gently with a steam of H₂O five times to remove the excess TCA and precipitated serum proteins. The plates were then allowed to each well and allowed to stain for 30 minutes at room temperature. After staining, the wells were gently washed 5 times with 100 μ L of 10 mM Tris base (pH 10.5) was then added to each well and the plates were

placed on an orbital shaker for five minutes. The OD was then read at 510 nm in a Molecular Dynamics plate reader and the percent cell death calculated and normalized to the positive control (100% cell death) and the negative control (0% cell death). The percent cell death was averaged for each compound concentration and plotted as a function of compound concentration. The data were fit to a logistical dose response curve using Table curve 2D and the IC₅₀ value was calculated. The experiment was repeated three times and the average of the calculated IC₅₀ values was reported. The standard error of the mean (SEM) was determined and reported for the triplicate experiments. The individual dose-response curves are shown in figure S1.

Recombinant expression and purification of procaspase-3/caspase-3—Procaspase-3 and caspase-3 were recombinantly expressed and purified exactly as previously described.² Briefly, procaspase-3 and caspase-3 were expressed from the pHC332 expression plasmid in the electrocompentent BL21(DE3) strain of *Escherichia coli* (Novagen). The C-terminally 6xHis-tagged protein was purified using the Ni NTA resin (Qiagen). Protein containing fractions were collected and pooled. The purified protein was then further purified to remove any contaminating zinc by applying the protein to a PD-10 column (GE Healthcare) charged with Caspase Activity Buffer that had been treated with Chelex ® resin. The resulting zinc free, protein containing fractions in Caspase Activity Buffer were pooled, the concentration determined, and the protein solution was flash-frozen in liquid nitrogen and stored at -80 °C.

Caspase-3 Activity Assays—Zinc-free stocks (2X) of caspase-3 (1 μ M) were prepared in Caspase Activity Buffer. Compound stock solutions were made (2X) at various concentrations from 200 μ M to 200nM in Caspase Activity Buffer. A stock (10X) of ZnSO₄ (25 μ M) in Caspase Activity Buffer was prepared. To each well of 384 well plate was added 20 μ L of caspase-3 (500 nM final), 20 μ L compound stock, and 5 μ L of ZnSO₄ (2.5 μ M final) or buffer. Each plate contained positive control wells (0 μ M zinc and no compound) and negative control wells (2.5 μ M zinc and no compound). The plates were incubated at room temperature for 30 minutes. Then, to each well of the plate was added 5 μ L of a 2 mM stock of Ac-DEVD-pNA substrate and the absorbance at 405 nm was immediately monitored every 1 minute for 30 minutes on a spectramax plate reader (Molecular Devices, Sunny Vale, CA). The slope of each well was used to determine the activity and was normalized to the positive and negative control wells to give a percent activity. The data for each compound concentration (4 wells) was averaged and the percent activity was plotted as a function of compound concentration. The data was analyzed using Table Curve 2D and fitted to a logistical dose-response curve. The majority of compounds achieved a maximal activity at 10 μ M. The

percent activity at 10 μ M was determined for each compound and reported as an average of the three replicate experiments with the corresponding SEM. The individual dose-response curves are shown in Figure S2.

EGTA Fluorescence Titration Assay—This titration assay is based on a published protocol.[ref] Before titration, cuvette was filled with EDTA (10 mM) for 10 min, followed by sterile deionized water and acetone washing for removing any residue metal ions. **PAC-1** or derivative (60 μ M) was added to a cuvette containing buffer (Hepes: 50 mM, KNO₃: 100 mM, pH 7.2) with EGTA (7.3 mM) to achieve a 10-fold dilution (final **PAC-1** concentration: 6 μ M). Zn(OTf)₂ (0 - 10 mM) was added incrementally. The formation of Zn-**PAC-1** (or derivative) complex was monitored by the increase in fluorescence intensity (ex/em: 410 nm/475nm). Fluorescence intensity at 475 nm was plotted against free Zn concentration ([Zn]_f/M) calculated using MaxChelator program [ref]. The data was analyzed using KaleidaGraph and fitted to a formation curve based on Eq S1 derived by published protocol.[ref]

$$I = (IminK_D + Imax[Zn]_f)/(K_D + [Zn]_f)$$
 Eq S1

where Imin and Imax were defined as the fluorescence intensity of the free probe (**PAC-1** or derivative in this case) and that of the Zn-probe complex respectively.

Immunofluorescent Staining—Round 18 mm no. 1 borosillicate coverglass (VWR) were coated with poly-lysine by shaking the coverglass in a poly-lysine solution (Sigma) for 1 hour and then washing with MilliQ. SK-MeI-5 human melanoma cells were grown on the poly-lysine coated coverglass in the bottom of a 12 well plate. When Cells achieved ~80% confluency, the cells were treated with either DMSO or 100 μ M **PAC-1** in DMSO (total DMSO <1%) for 1 hour. The cells were then washed two times with 1 mL of PBS and fixed in 3.7% formaldehyde in PBS for 10-15 minutes at room temperature. The cells were then washed again two times with PBS and then permeabilized with 0.1% Triton X-100 in PBS for 5 minutes. The cells were then blocked in 3% BSA in PBS for 10 minutes and incubated with a 1:500 rabbit anti-procaspase-3 antibody for 1 hour. The coverglass was then washed 5 times with PBS and incubated with a 1:1000 dilution of the secondary anti-rabbit Alexafluor 647 conjugated antibody for 20 minutes protected from light. The coverglass was again washed 5 times with PBS and once with MilliQ H₂O. The coverglass were then mounted on glass slides using Fluorosave (Calbiochem) and stored in the dark until imaging. Cells were imaged on a Leica SP2 Multiphoton Confocal microscope.

Live Cell Imaging—SK-Mel-5 cells were grown on the bottom of no. 1 borosillicate growth chambers (Nunc) to a confluency of ~80%. Cells were then treated with DMSO, 25 μ M FAM-DEVD-fmk in DMSO, 25 μ M AF350-PAC-1 in DMSO, or both 25 μ M FAM-DEVD-fmk and 25 μ M AF350-PAC-1 concurrently for 1 hour at 37 °C and 5 % CO₂. Cells were then washed 5 times with RPMI 1640 growth media lacking phenol red. The cells were then allowed to further incubate at 37 °C for 2 hours before imaging. For cells stained with SYBR green for nuclear staining, a 1:100,000 dilution of SYBR green in media was added immediately prior to imaging. Cells were imaged on a Leica SP2 Multiphoton Confocal microscope.

Image Analysis—Images were adjusted in brightness and contrast to allow for clarity. For all images in Figure 4, the red channel was adjusted using Image J to reflect a linear intensity gradient between 10 and 28. For the green channel, the images were adjusted to a linear intensity gradient between 0 and 44. To account for the offset of the microscope optics, the red channel was manually offset by 5 pixels in the x direction and the green channel was manually offset by 6 pixels in the y direction. The images were filtered with a gausian blur with a radius of 1 pixel to improve the signal to noise ratio. Using the Image J plugin, JACoP, the % overlap was determined using the Manders overlap coefficient.

Induction of Apoptosis by PAC-1 derivatives—U937 Cells (1 mL of 1 x 10[°] cells/mL) were treated with 5 μ L ethanol stocks of the various compounds to achieve a final concentration of 50 μ M. The cells were incubated at 37 °C for 12 hours. The cells were centrifuged (200g for 5 min), washed with PBS (2 mL), resuspended in 500 μ L Annexin V Binding Buffer. To each sample was added 10 μ L of FITC conjugated Annexin V stain (Southern Biotech) and 10 μ L of propidium iodide (Sigma) to a final concentration of 50 μ g/mL. Cell populations were analyzed on a Benton Dickinson LSR II cell flow cytometer.

Supporting Figures:

Figure S1. Cytotoxicity of **PAC-1** and derivatives. Each graph shows the dose response curves used to generate the IC_{50} value for each derivative. The results of these experiments are summarized in Table 1 of the manuscript.

Figure S2. Relief of zinc mediated caspase-3 inhibition. Each graph represents three separate dose response experiments. The error bars represent the standard error of the mean for each data point. The majority of compounds show a maximal activity at 10 μ M. The % activity at 10 μ M for each compound was included in Table 1.

S13

Figure S3. Formation curves for zinc binding determination. K_d values are summarized in Table 1.

Figure S4. Inhibition by class IV compounds. 4a and 4b inhibit caspase-3 in the absence of zinc. This potent inhibition masks any activation at $10 \mu M$.

Figure S5. Biochemical assessment of **AF350-PAC-1(2h)**. A) **AF350-PAC-1(2h)** relieves zinc mediated inhibition of procaspase-3. B) **AF350-PAC-1(2h)** induces cell death in U937 human lymphoma cells with an IC₅₀ of $14.8 \pm 3.2 \,\mu$ M. C) **AF350-PAC-1(2h)** binds zinc with a K_d of 61 ± 9 nM.

Figure S6. Cellular localization of **AF350-PAC-1**. Wide field images showing the localization of **AF350-PAC-1** in SK-MEL-5 cells.

Figure S7. Colocalization of **AF350-PAC-1** and caspase-3/-7. Wide field images showing the colocalization of **AF350-PAC-1** and spots of intense caspase-3/-7 activity as visualized by FAM-DEVD-fmk.

Figure S8. Assessment of apoptotic induction by **PAC-1** derivatives. U-937 cells were treated with **PAC-1**, **2d**, **4c** (50 μ M each) or vehicle control for 12 hours, then stained with Annexin V and PI. All three compounds induce apoptosis as assessed by the Annexin V positive/PI negative populations. Results shown are of 3 separate experiments.

Chemical Information

Materials and Methods

General

All reactions requiring anhydrous conditions were conducted under a positive atmosphere of nitrogen or argon in oven-dried glassware. Standard syringe techniques were used for anhydrous addition of liquids. Dry tetrahydrofuran was obtained by passing over activated alumina columns or molecular sieves in a commercial solvent purification system (Innovative Technologies). Unless otherwise noted, all starting materials, solvents, and reagents were acquired from commercial suppliers and used without further purification. Flash chromatography was performed using 230-400 mesh silica gel. Hydrazide **5**,³ **PAC-1** (1),³ **1a**,³ **1h**,³ 3-allylsalicylaldehyde,⁴ 2-mercaptobenzaldehyde,⁵ **23**,³ **30**,⁶ **44**³ were prepared according to the literature method with modifications.

Compound Analysis.

All NMR experiments were recorded either in CDCl₃ (Sigma), CD₃OD (sigma) or Acetone-*d6* (Sigma) on a Varian Unity 400 MHz or 500 MHz spectrometer with residual undeuterated solvent as the internal reference. Chemical shift, δ (ppm); coupling constants, *J* (Hz); multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet); and integration are reported. High-resolution mass spectral data was recorded on a Micromass Q-Tof Ultima hybrid quadrupole/time-of-flight ESI mass spectrometer at the University of Illinois Mass Spectrometry Laboratory. All melting points are uncorrected. Analytical HPLC performed on a Altima C18 column, 2.1x20 mm, mobile phase A is 0.1% TFA in H₂O, B is acetonitrile using a gradient system from 0-45% B over 5 min, then 45-55% B from 5-10 min, then 55-100% B over 10-15 min, constant 100% over 15-20 min, and from100-0% over 20-25. LC-MS performed on a C18 column, 2.1x5 mm, mobile phase A is 0.1% TFA in H₂O, B is acetonitrile using a gradient system with constant 0% B over 0-2 min, then 0-50% B from 2-5 min, then 50-100% B over 5-7 min, constant 100% over 7-8 min, and from100-0% over 8-10.

Scheme S1. Syntheses of PAC-1 derivatives

General Procedure for 1-Benzylpiperazines 35-36

Anhydrous piperazine (6 equiv.) was added to THF (6 mL), and the mixture was heated to reflux until the piperazine was fully dissolved. To the solution substituted benzyl chloride (1 equiv.) was added dropwise. White precipitate was formed immediately. The reaction mixture was refluxed for 2.5-3 hr monitoring by TLC. The stirring mixture was cooled and then filtered. The solids were washed with THF (3 mL) and then EtOAc (3 mL). The combined organic layer was concentrated *in vacuo*, which was then washed with basic water with 5% brine and KOH (pH >12). The aqueous layer was extracted with CH₂Cl₂ (3 x 10mL) and

EtOAc (10 mL) at pH > 12. The organic layers were combined, dried over Na_2SO_4 and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc).

1-(4-Methoxybenzyl)piperazine (35)

The general procedure was followed: 4-Methoxybenzyl chloride (0.5 mL, 3.7 mmol, 1 equiv.), piperazine (1.9 g, 22.2 mmol, 6 equiv.), THF (8 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **35** (0.67 g, 88%) as light yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 8.7 Hz, 2H), 3.73 (s, 3H), 3.37 (s, 2H), 2.81 (t, *J* = 4.9 Hz, 4H), 2.33 (broad s, 4H), 1.50 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 158.8, 130.6, 130.2, 113.7, 63.3, 55.4, 54.6, 46.3. HRMS (ESI): found: 207.1501 (M+1); calcd for C₁₂H₁₉N₂O: 207.1497. IR (neat): 3288 cm⁻¹.

1-(3-Nitrobenzyl)piperazine (36)

The general procedure was followed: 3-Nitrobenzyl chloride (5 g, 29.1 mmol, 1 equiv.), piperazine (15.1g, 174.6 mmol, 6 equiv.), THF (64 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **36** (6.07 g, 94%) as yellow liquid. ¹H NMR (500 MHz, CDCl₃): δ 7.61 (d, *J* = 7.6 Hz, 1H), 8.13 (s, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 3.50 (s, 2H), 2.82 (t, *J* = 4.8 Hz, 4H), 2.36 (broad s, 4H), 1.54 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 148.5, 141.0, 135.3, 129.3, 123.9, 122.3, 62.8, 54.7, 46.2. HRMS (ESI): found: 222.1238 (M+1); calcd for C₁₁H₁₆N₃O₂: 222.1243. IR (neat): 3389, 1530, 1345 cm⁻¹.

General Procedure for Ethyl 2-(4-Benzylpiperazin-1-yl)acetate 41-42

To a stirred mixture of substituted 1-benzylpiperazine (1 equiv.) and NaHCO₃ (1.25 equiv.) in acetone (7 mL) was added ethyl chloroacetate (1.1 equiv.). The reaction was refluxed for 20-22 hr monitoring by TLC. The solution was filtered and the solid was washed with acetone (10 mL). The filtrate was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:1 EtOAc/Hexanes).

Ethyl 2-(4-(4-methoxybenzyl)piperazin-1yl)acetate (41)

The general procedure was followed: **35** (0.67 g, 3.2 mmol, 1 equiv.), ethyl chloroacetate (0.39 mL, 3.6 mmol, 1.1 equiv.), NaHCO₃ (0.34 g, 4.06 mmol, 1.25 equiv.), acetone (7 mL). Purification with flash column chromatography on silica gel (1:1 EtOAc/Hexanes) afforded **41** (0.73 g, 77%) as orange oil. ¹H NMR (500 MHz, CDCl₃): δ 7.18 (d, *J* = 8.6 Hz, 2H), 6.80 (d, *J* = 8.6 Hz, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.74 (s, 3H), 3.41 (s, 2H), 3.15 (s, 2H), 2.51 (broad d, 8H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.5, 158.9, 130.5, 130.3, 113.7, 62.5, 60.8, 59.8, 55.4, 53.3, 52.9, 14.5. HRMS (ESI): found: 293.1869 (M+1); calcd for C₁₆H₂₅N₂O₃: 293.1865. IR (neat): 1742, 1660 cm⁻¹.

Ethyl 2-(4-(3-nitrobenzyl)piperazin-1-yl)acetate (42)

The general procedure was followed: **36** (6.01 g, 27.2 mmol, 1 equiv.), ethyl chloroacetate (3.2 mL, 29.9 mmol, 1.1 equiv.), NaHCO₃ (2.85 g, 34.0 mmol, 1.25 equiv.), acetone (54 mL). Purification with flash column chromatography on silica gel (1:1 EtOAc/Hexanes) afforded **42** (7.18 g, 86%) as light orange liquid. ¹H NMR (500 MHz, CDCl₃): δ 8.13 (s, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.54 (s, 2H), 3.15 (s, 2H), 2.52 (d, *J* = 7.1 Hz, 8H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.4, 148.5, 140.9, 135.2, 129.3, 123.8, 122.3, 62.1, 60.8, 59.6, 53.1, 53.0, 14.4. HRMS (ESI): found: 294.1559 (M+1); calcd for C₁₃H₂₀N₅O₃: 294.1566.

General Procedure for Ethyl 2-(4-Benzylpiperazin-1-yl)acetate 37-40

To a stirred mixture of picolyl halide hydrohalide or substituted benzyl chloride (1.2 equiv.) and K_2CO_3 (3 equiv.) in ethanol or acetone (7 mL) was added ethyl 2-(piperazin-1-yl)acetate (1 equiv.). The reaction was refluxed for 15-19 hr monitoring by TLC. The solution was filtered and the solid was washed with ethanol (10 mL). The filtrate was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:1 EtOAc/Hexanes).

Ethyl 2-(4-(pyridin-2-ylmethyl)piperazin-1-yl)acetate (37)

The general procedure was followed: 2-picolyl bromide hydrobromide (0.49 g, 1.9 mmol, 1.2 equiv.), ethyl 2-(piperazin-1-yl)acetate (0.28 g, 1.6 mmol, 1 equiv.), K₂CO₃ (0.67 g, 4.8 mmol, 3 equiv.), ethanol (7 mL). Purification with flash column chromatography on silica gel (1:1 EtOAc/Hexanes) afforded **37** (0.28 g, 65%) as deep yellow oil. ¹H NMR (500 MHz, CDCl₃): 8.49 (d, J = 4.9 Hz, 1H), 7.82 (dt, J = 1.7 Hz, J = 7.7 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.32 (dd, J = 5.5 Hz, J = 7.0 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.67 (s, 2H), 3.24 (s, 2H), 2.61 (broad d, 8H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): 170.3, 157.9, 148.5, 137.5, 124.0, 122.8, 63.5, 60.5, 58.6, 52.6, 52.5, 13.4. HRMS (ESI): found: 264.1719 (M+1); calcd for C₁₄H₂₂N₃O₂: 264.1712

Ethyl 2-(4-(pyridin-3-ylmethyl)piperazin-1-yl)acetate (38)

The general procedure was followed: 3-picolyl chloride hydrochloride (0.32 g, 1.9 mmol, 1.2 equiv.), ethyl 2-(piperazin-1-yl)acetate (0.28 g, 1.6 mmol, 1 equiv.), K₂CO₃ (0.67 g, 4.8 mmol, 3 equiv.), ethanol (7 mL). Purification with flash column chromatography on silica gel (1:1 EtOAc/Hexanes) afforded **38** (0.35 g, 82%) as deep yellow oil. ¹H NMR (500 MHz, CD₃OD): δ 8.50 (d, *J* = 1.5 Hz, 1H), 8.44 (dd, *J* = 1.5 Hz, *J* = 4.8 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.41 (dd, *J* = 4.5 Hz, *J* = 7.7 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.58 (s, 2H), 3.23 (s, 2H), 2.57 (broad d, 8H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.3, 149.8, 147.8, 138.1, 134.2, 124.0, 60.5, 59.5, 58.5, 52.5, 52.3, 13.4. HRMS (ESI): found: 264.1716 (M+1); calcd for C₁₄H₂₂N₃O₂: 264.1712

Ethyl 2-(4-(pyridin-4-ylmethyl)piperazin-1-yl)acetate (39)

The general procedure was followed: 4-picolyl chloride hydrochloride (0.32 g, 1.9 mmol, 1.2 equiv.), ethyl 2-(piperazin-1-yl)acetate (0.28 g, 1.6 mmol, 1 equiv.), K₂CO₃ (0.67 g, 4.8 mmol, 3 equiv.), ethanol (7 mL). Purification with flash column chromatography on silica gel (1:1 EtOAc/Hexanes) afforded **39** (0.31 g, 72%) as deep yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.51 (d, *J* = 5.8 Hz, 2H), 7.25 (d, *J* = 5.7 Hz, 2H), 4.16 (q,

J = 7.1 Hz, 2H), 3.50 (s, 2H), 3.19 (s, 2H), 2.56 (broad d, 8H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.4, 150.0, 147.7, 124.0, 61.8, 60.8, 59.6, 53.1, 53.1, 14.4. HRMS (ESI): found: 264.1714 (M+1); calcd for C₁₄H₂₂N₃O₂: 264.1712 IR (neat): 1738, 1660 cm⁻¹.

Ethyl 2-(4-(2,5-dimethoxybenzyl)piperazin-1-yl)acetate (40)

The general procedure was followed: 2,5-dimethoxybenzylchloride (5.0 g, 26.8 mmol, 1.2 equiv.), ethyl 2-(piperazin-1-yl)acetate (3.8 g, 22.3 mmol, 1 equiv.), K₂CO₃ (9.2 g, 66.9 mmol, 3 equiv.), acetone (40 mL). Purification with flash column chromatography on silica gel (1:1 EtOAc/Hexanes) afforded **40** (5.3 g, 73%) as deep yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 6.94 (d, *J* = 3.0 Hz, 1H), 6.76 (apparent d, *J* = 8.8 Hz, 1H), 6.71 (dd, *J* = 3.0 Hz, *J* = 8.9 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 6H), 3.54 (s, 2H), 3.18 (s, 2H), 2.58 (broad s, 8H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.6, 153.7, 152.3, 127.6, 116.6, 112.3, 111.7, 60.8, 59.8, 56.3, 56.1, 55.9, 53.4, 52.9, 14.5. HRMS (ESI): found: 323.1982 (M+1); calcd for C₁₇H₂₇N₂O₄: 323.1971. IR (neat): 1742, 1672 cm⁻¹.

General Procedure for 2-(4-benzylpiperazin-1-yl)acetohydrazide 6-8 and 10-12

To a stirred solution of substituted ethyl 2-(4-Benzylpiperazin-1-yl)acetate (1 equiv.) in ethanol (1.9 mL, 0.5 M) was added anhydrous hydrazine (3 equiv.). The reaction was refluxed for 15-18 hr monitoring by TLC. The reaction mixture was concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ and washed with water (10 mL) and brine (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and EtOAc (10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc).

2-(4-(Pyridin-2-ylmethyl)piperazin-1-yl)acetohydrazide (6)

The general procedure was followed: ethyl 2-(4-(pyridin-2-ylmethyl)piperazin-1-yl)acetate (0.25 g, 0.95 mmol, 1 equiv.), anhydrous hydrazine (90 μ L, 2.9 mmol, 3 equiv.), ethanol (1.9 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **6** (0.17 g, 71%) as yellow oil. ¹H NMR (500 MHz, CD₃OD): δ 8.49 (d, *J* = 4.9 Hz, 1H), 7.83 (dt, *J* = 1.8 Hz, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.33 (dd, *J* = 5.0 Hz, *J* = 7.4 Hz, 1H), 3.68 (s, 2H), 3.06 (s, 2H), 2.58 (broad s, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 170.2, 157.8, 148.4, 137.5, 124.1, 122.8, 63.5, 59.9, 53.0, 52.8. HRMS (ESI): found: 250.1670 (M+1); calcd for C₁₂H₂₀N₅O₂: 250.1668 IR (neat):

2-(4-(Pyridin-3-ylmethyl)piperazin-1-yl)acetohydrazide (7)

The general procedure was followed: ethyl 2-(4-(pyridin-3-ylmethyl)piperazin-1-yl)acetate (0.25 g, 0.95 mmol, 1 equiv.), anhydrous hydrazine (90 µL, 2.9 mmol, 3 equiv.), ethanol (1.9 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **7** (0.17 g, 72%) as yellow oil. ¹H NMR (500 MHz, CD₃OD): δ 8.51 (d, *J* = 1.5 Hz, 1H), 8.45 (dd, *J* = 1.6 Hz, *J* = 4.9 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.43 (dd, *J* = 4.6 Hz, *J* = 7.4 Hz, 1H), 3.60 (s, 2H), 3.05 (s, 2H), 2.55 (broad s, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 170.2, 149.8, 147.8, 138.2, 134.2, 124.0, 59.9, 59.5, 53.0, 52.6. HRMS (ESI): found: 250.1670 (M+1); calcd for C₁₂H₂₀N₅O₂: 250.1668 IR (neat):

2-(4-(Pyridin-4-ylmethyl)piperazin-1-yl)acetohydrazide (8)

The general procedure was followed: ethyl 2-(4-(pyridin-4-ylmethyl)piperazin-1-yl)acetate (0.25 g, 0.95 mmol, 1 equiv.), anhydrous hydrazine (90 µL, 2.9 mmol, 3 equiv.), ethanol (1.9 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **8** (0.18 g, 78%) as yellow oil. ¹H NMR (500 MHz, CD₃OD): δ 8.47 (d, *J* = 6.0 Hz, 2H), 7.42 (d, *J* = 5.9 Hz, 2H), 3.58 (s, 2H), 3.05 (s, 2H), 2.54 (broad d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 170.1, 148.9, 148.9, 124.6, 61.1, 59.9, 53.1, 52.7. HRMS (ESI): 250.1669 (M+1); calcd for C₁₂H₂₀N₅O₂: 250.1668. IR (neat): 3347, 1665 cm⁻¹.

2-(4-(2,5-Dimethoxybenzyl)piperazin-1-yl)acetohydrazide (10)

The general procedure was followed: ethyl 2-(4-(2,5-dimethoxybenzyl)piperazin-1-yl)acetate (0.19 g, 0.60 mmol, 1 equiv.), anhydrous hydrazine (58 µL, 1.81 mmol, 3 equiv.), ethanol (1.2 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **10** (0.16 g, 88%) as off-white semi-solid. ¹H NMR (500 MHz, CDCl₃): δ 8.16 (s, 1H), 6.93 (d, *J* = 2.9 Hz, 1H), 6.76 (m, 2H), 3.84 (s, 2H), 3.76 (s, 3H), 3.75 (s, 3H), 3.54 (s, 2H), 3.05 (s, 2H), 2.53 (s, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 170.7, 153.7, 152.3, 127.2, 116.7, 112.5, 111.9, 60.8, 56.4, 56.0, 55.9, 53.9, 53.2. HRMS (ESI): 309.1928 (M+1); calcd for C₁₅H₂₅N₄O₃: 309.1927. IR (neat): 3584, 1670 cm⁻¹.

2-(4-(4-Methoxybenzyl)piperazin-1-yl)acetohydrazide (11)

The general procedure was followed: ethyl 2-(4-(4-methoxybenzyl)piperazin-1-yl)acetate (0.70 g, 2.4 mmol, 1 equiv.), anhydrous hydrazine (220 μ L, 7.1 mmol, 3 equiv.), ethanol (4.8 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **11** (0.54 g, 82%) as off-white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.13 (s, 1H), 7.20 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.84 (d, *J* = 3.9 Hz, 2H), 3.79 (s, 3H), 3.44 (s, 2H), 3.06 (s, 2H), 2.46 (s, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 170.8, 159.0, 130.5, 130.1, 113.8, 62.5, 60.8, 55.5, 53.9, 53.2. HRMS (ESI): 279.1811 (M+1); calcd for C₁₄H₂₃N₄O₂: 279.1821. IR (neat): 3584, 17, 1676 cm⁻¹. m.p.: 111.5-112.5 °C.

2-(4-(3-Nitrobenzyl)piperazin-1-yl)acetohydrazide (12)

The general procedure was followed: ethyl 2-(4-(3-nitrobenzyl)piperazin-1-yl)acetate (7.0 g, 22.7 mmol, 1 equiv.), anhydrous hydrazine (2.1 mL, 68.2 mmol, 3 equiv.), ethanol (45 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **12** (5.4 g, 82%) as light yellow oil. ¹H NMR (500

MHz, CDCl₃): δ 8.13 (s, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 8.11 (s, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 3.82 (s, 2H), 3.52 (s, 2H), 3.01 (s, 2H), 2.45 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 170.5, 148.5, 140.7, 135.2, 129.4, 123.8, 122.4, 62.0, 60.7, 53.7, 53.2. HRMS (ESI): 294.1559 (M+1); calcd for C₁₃H₂₀N₅O₃: 294.1566.

General Procedure for N'-(3-allyl-2-hydroxybenzylidene)-2-(4-benzylpiperazin-1-yl)acetohydrazide **1b–g**, **1j**, **1k**, **2a-g**, **3**

To a stirred solution of substituted benzaldehyde (1 equiv.) in ethanol (6 mL), 2-(4-benzylpiperazin-1-yl)acetohydrazide (1.8 equiv.) and HCl (10 mol%) were added. The reaction was refluxed for 12-16 hr monitoring by TLC. The solution was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc).

2-(4-Benzylpiperazin-1-yl)-N'-(2-(methylthio)benzylidene)acetohydrazide (1b)

The general procedure was followed: hydrazide **5** (0.45 g, 1.8 mmol, 1.8 equiv.), 2-(methylthio)benzaldehyde (0.14 mL, 1.0 mmol, 1 equiv.), HCl (8 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **1b** (0.34 g, 88%) as light yellow semi-solid. ¹H NMR (500 MHz, CDCl₃) indicated a 87:13 ratio of two geometrical isomers: δ 10.11 (s, 1H x 0.87 isomer A), 8.67 (s, 1H x 0.13 isomer B), 8.65 (s, 1H x 0.87 isomer A), 8.12 (s, 1H x 0.13 isomer B), 8.05 (d, *J* = 8.0 Hz, 1H x 0.87 isomer A), 7.74 (d, 1H, *J* = 7.9 Hz x 0.13 isomer B), 7.36 (m, 2H), 7.33 (m, 1H), 7.28 (m, 1H), 7.21 (m, 1H), 3.70 (s, 2H x 0.13 isomer B), 3.55 (s, 2H x 0.87 isomer A), 3.53 (s, 2H x 0.13 isomer B), 3.20 (s, 2H x 0.87 isomer A), 2.58 (broad d, 8H x 0.87 isomer A), 2.50 (s, 3H), 2.46 (d, 8H x 0.13 isomer B), 1.65 (s, 3H x 0.13 isomer B). ¹³C NMR (126 MHz, CDCl₃): δ 172.3, 166.8, 146.0, 142.7, 138.7, 138.6, 138.1, 132.4, 132.2, 130.9, 130.2, 129.5, 129.3, 128.5, 128.4, 128.1, 128.0, 127.7, 127.4, 127.3, 126.1, 125.5, 63.2, 63.0, 63.0, 61.3, 58.5, 53.8, 53.7, 53.1, 17.4, 17.1. HRMS (ESI): 383.1900 (M+1); calcd for C₂₁H₂₇N₄OS: 383.1906. IR (neat): 1677, 1588 cm⁻¹. Purity: 99% (HPLC). N'-(2-aminobenzylidene)-2-(4-benzylpiperazin-1-yl)acetohydrazide (1c)

The general procedure was followed: hydrazide **5** (0.54 g, 2.2 mmol, 1.8 equiv.), 2-aminobenzaldehyde (0.15 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **1c** (0.33 g, 78%) as light yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 9.96 (s, 1H), 8.13 (s, 1H), 7.33 (m, 2H), 7.28 (m, 1H), 7.14 (dd, *J* = 8.0 Hz, *J* = 10.2 Hz, 2H), 6.67 (m, 2H), 6.12 (s, 2H), 3.55 (s, 2H), 3.18 (s, 2H), 2.58 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 165.8, 151.1, 147.7, 138.0, 132.7, 131.2, 129.4, 128.6, 127.5, 116.3, 116.0, 115.1, 63.1, 61.2, 53.9, 53.3. HRMS (ESI): 352.2137 (M+1); calcd for C₂₀H₂₆N₅O: 352.2137. IR (neat): 3423, 3310, 3208, 1685, 1617 cm⁻¹. m.p.: 168-169 °C. Purity: 99% (LC-MS).

2-((2-(4-benzylpiperazin-1-yl)acetyl)hydrazono)methyl)benzoic acid (1d)

The general procedure was followed: hydrazide **5** (0.54 g, 2.2 mmol, 1.8 equiv.), 2-carboxybenzaldehyde (0.18 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **1d** (0.36 g, 79%) as white solid. ¹H NMR (500 MHz, CD₃OD) indicated a 75:25 ratio of two geometrical isomers: δ 8.87 (s, 1H x 0.75 isomer A), 8.61 (s, 1H x 0.25 isomer B), 8.08 (m, 1H x 0.75 isomer A), 7.92 (m, 1H x 0.25 isomer B), 7.69 (m, 1H), 7.34 (m, 7H), 3.75 (s, 2H x isomer B), 3.63 (s, 2H x isomer B), 3.59 (s, 2H x isomer A), 3.14 (s, 2H x isomer A), 2.69 (broad d, 8H). ¹³C NMR (126 MHz, CD₃OD): δ 179.1, 171.9, 153.4, 145.5, 141.0, 135.4, 135.1, 133.7, 133.5, 133.2, 132.4, 132.3, 132.1 (2 partially resolved peaks), 131.2, 130.0 (2 partially resolved peaks), 129.1, 66.6, 64.0, 56.9, 56.8, 56.4, 56.3. HRMS (ESI): 381.1938 (M+1); calcd for C₂₁H₂₅N₄O₃: 381.1927. IR (neat): 3364 (br), 1675 cm⁻¹. m.p.: 150-151.5 °C. Purity: 99% (HPLC).

Methyl 2-((2-(4-benzylpiperazin-1-yl)acetyl)hydrazono)methyl)benzoate (1e)

The general procedure was followed: hydrazide **5** (0.54 g, 2.2 mmol, 1.8 equiv.), methyl 2-formylbenzoate (0.20 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **1e** (0.37 g, 72%) as white solid. ¹H NMR (500 MHz, CDCl₃) indicated a 87:13 ratio of two geometrical isomers: δ 10.17 (s, 1H x 0.87 isomer A), 9.11 (s, 1H x 0.13 isomer B), 9.02 (s, 1H x 0.87 isomer A), 8.63 (s, 1H x isomer B), 8.24 (d, *J* = 7.9 Hz, 1H x 0.87 isomer A), 8.01 (d, *J* = 7.5 Hz, 1H x 0.13 isomer B), 7.97 (d, *J* = 7.9 Hz, 1H x 0.87 isomer A; accidentally overlap with 1H x 0.13 isomer B), 7.54 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.31 (apparent d, 4H), 7.26 (m, 1H), 3.94 (s, 3H x 0.87 isomer A), 3.89 (s, 3H x 0.13 isomer B), 3.68 (s, 2H x 0.13 isomer B), 3.54 (s, 2H), 3.19 (s, 2H x isomer A), 2.58 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 167.5, 166.8, 146.9, 138.1, 135.0, 132.8, 131.0, 130.8, 130.0, 129.5, 129.4, 129.0, 128.6, 128.6, 128.5, 128.4, 128.4, 127.4, 63.1, 61.4, 53.9, 53.2, 52.6. HRMS (ESI): 395.2037 (M+1); calcd for C₂₂H₂₇N₄O₃: 395.2083. IR (neat): 1716, 1664 cm⁻¹. m.p.: 109.5-111 °C. Purity: 98% (LC-MS).

2-(4-Benzylpiperazin-1-yl)-N'-(2-chlorobenzylidene)acetohydrazide (1f)

The general procedure was followed: hydrazide **5** (0.40 g, 1.6 mmol, 1.8 equiv.), 2-chlorobenzaldehyde (0.10 mL, 0.9 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (5 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **1f** (0.31 g, 94%) as yellow oil. ¹H NMR (500 MHz, CDCl₃) indicated a 78:12 ratio of two geometrical isomers: δ 10.61 (s, 1H x 0.12 isomer B), 10.40 (s, 1H x 0.78 isomer A), 8.53 (s, 1H x 0.78 isomer A), 8.23 (s, 1H x 0.12 isomer B), 8.09 (m, 1H x 0.78 isomer A), 7.88 (m, 1H x 0.12 conformer B), 7.27 (m, 5H), 7.21 (m, 3H), 3.65 (s, 2H x 0.12 conformer B), 3.49 (s, 2H), 3.17 (s, 2H x 0.78 conformer A), 2.58 (broad m, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 172.1, 166.9, 144.7, 140.6, 138.1, 134.4, 134.3, 131.7, 131.6, 131.3, 131.0, 130.1, 129.9, 129.5, 129.3, 128.5, 128.4, 128.1, 127.4, 127.3, 127.3, 127.2, 127.1, 63.2, 63.1, 61.3, 58.4, 53.9, 53.8, 53.1, 53.1. HRMS (ESI): 371.1624 (M+1); calcd for C₂₀H₂₄N₄OCl: 371.1639. IR (neat): 1682, 1595 cm⁻¹. Purity: 98% (LC-MS).

2-(4-Benzylpiperazin-1-yl)-N'-(2-mercaptobenzylidene)acetohydrazide (1g) and N',N''-(2,2'-disulfanediylbis(2,1-phenylene)bis(methan-1-yl-1-ylidene))bis(2-(4-benzylpiperazin-1-yl)acetohydrazide) (1i)

The general procedure was followed: hydrazide **5** (0.37 g, 1.5 mmol, 1.8 equiv.), 2-mercaptobenzaldehyde (0.11 g, 0.82 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (14 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **1g** (0.054 g, 18%) as yellow oil and **1i** (0.19 g, 63%) as yellow oil. In order to minimize the oxidation to form **1i** via disulfide bond, the product was dissolved in CHCl₃ as a 100 μ M stock solution. **1g**: ¹H NMR (400 MHz, CDCl₃) indicated a 84:16 ratio of two geometrical isomers: δ 10.07 (s, 1H), 8.42 (s, 1H), 7.68 (dd, *J* = 1.7 Hz, *J* = 7.4 Hz, 1H), 7.26 (m, 7H), 7.14 (m, 1H), 5.23 (s, 1H x 0.84 isomer A), 4.85 (s, 1H x 0.16 isomer B), 3.67 (s, 2H x 0.16 isomer B), 3.51 (s, 2H x 0.84 isomer A), 3.17 (s, 2H x 0.16 isomer B), 3.15 (s, 2H x isomer A), 2.54 (broad d, 8H). **1i**: ¹H NMR (500 MHz, CDCl₃): δ 9.98 (s, 2H), 8.43 (s, 2H), 7.95 (m, 2H), 7.47 (m, 2H), 7.24 (m, 14H), 3.50 (s, 4H), 3.14 (s, 4H), 2.53 (broad d, 16H). HRMS (ESI): 735.3259 (M+1); calcd for C₄₀H₄₇N₈O₂S₂: 735.3263. IR (neat): 1672 cm⁻¹. Purity: 98% (HPLC).

2-(4-Benzylpiperazin-1-yl)-N'-(3,5-diallyl-2-hydroxybenzylidene)acetohydrazide (1j)

The general procedure was followed: hydrazide **5** (0.54 g, 2.2 mmol, 1.8 equiv.), **22** (0.24 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) and then recrystallization with EtOAc afforded **1j** (0.48 g, 93%) as beige solid. ¹H NMR (500 MHz, CDCl₃): δ 11.08 (s, 1H), 10.00 (s, 1H), 8.40 (s, 1H), 7.33 (m, 4H), 7.28 (m, 1H), 7.01 (d, *J* = 1.9 Hz,

1H), 6.90 (d, J = 1.9 Hz, 1H), 6.03 (tdd, J = 6.6 Hz, J = 10.0 Hz, J = 16.7 Hz, 1H), 5.93 (tdd, J = 6.7 Hz, J = 9.5 Hz, J = 16.2 Hz, 1H), 5.07 (m, 4H), 3.55 (s, 2H), 3.43 (d, J = 6.6 Hz, 2H), 3.30 (d, J = 6.7 Hz, 2H), 3.18 (s, 2H), 2.58 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 166.0, 155.0, 151.6, 145.3, 138.0, 137.8, 136.8, 133.0, 130.6, 129.4, 129.0, 128.5, 127.5, 116.9, 116.0, 115.8, 63.1, 61.2, 53.9, 53.2, 39.4, 34.1. HRMS (ESI): 433.2611 (M+1); calcd for C₂₆H₃₃N₄O₂: 433.2604. IR (neat): 3212 (br), 1737, 1680, 1616 cm⁻¹. m.p.: 93-93.5 °C. Purity: 95% (LC-MS).

N'-(3-allyl-2-methoxybenzylidene)-2-(4-benzylpiperazin-1-yl)acetohydrazide (1k)

The general procedure was followed: hydrazide **5** (0.54 g, 2.2 mmol, 1.8 equiv.), **23** (0.21 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) and then recrystallization with EtOAc afforded **1k** (0.41 g, 85%) as white solid. ¹H NMR (500 MHz, CDCl₃) indicated a 85:15 ratio of two geometrical isomers: δ 10.06 (s, 1H x 0.85 isomer A), 9.15 (s, 1H x 0.15 isomer B), 8.38 (s, 1H x 0.85 isomer A), 7.97 (s, 1H x 0.15 isomer B), 7.90 (dd, *J* = 1.6 Hz, *J* = 7.8 Hz, 1H x 0.85 isomer A), 7.68 (dd, *J* = 1.6 Hz, *J* = 7.8 Hz, 1H x 0.15 isomer B), 7.27 (s, 2H), 7.26 (s, 2H), 7.20 (m, 2H), 7.04 (t, *J* = 7.6 Hz, 1H), 5.92 (tdd, *J* = 6.4 Hz, *J* = 10.1 Hz, *J* = 16.6 Hz, 1H), 5.03 (m, 2H), 3.73 (s, 3H x 0.85 isomer A), 3.67 (s, 3H x 0.15 isomer B), 3.63 (s, 2H x 0.15 isomer B), 3.49 (s, 2H), 3.38 (d, *J* = 6.4 Hz, 2H), 3.14 (s, 2H x 0.85 isomer B), 2.53 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 166.6, 157.9, 144.6, 137.0, 133.4, 133.1, 132.8, 129.4, 128.5, 127.4, 127.0, 125.9, 125.0, 124.9, 124.8, 116.4, 63.3, 63.1, 61.3, 53.9, 53.2, 33.8. HRMS (ESI): 407.2443 (M+1); calcd for C₂₄H₃₁N₄O₂: 403.2447. IR (neat): 1662 cm⁻¹. m.p.: 111.5-113 °C. Purity: 98% (LC-MS).

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(pyridin-2-ylmethyl)piperazin-1-yl)acetohydrazide (2a)

The general procedure was followed: **6** (0.54 g, 2.2 mmol, 1.8 equiv.), 3-allylsalicylaldehyde (0.19 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **2a** (0.39 g, 83%) as light brown semi-solid. ¹H NMR (500 MHz, CDCl₃): δ 11.19 (s, 1H) 10.04 (s, 1H), 8.50 (d, *J* = 4.5 Hz, 1H), 8.35 (s, 1H), 7.61 (dt, *J* = 1.7 Hz, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 1H), 7.12 (t, *J* = 7.2 Hz, 2H), 7.02 (d, *J* = 6.5 Hz, 1H), 6.78 (t, *J* = 7.6 Hz, 1H), 5.96 (tdd, *J* = 6.6 Hz, *J* = 10.0 Hz, *J* = 16.8 Hz, 1H), 5.00 (m, 2H), 3.67 (s, 2H), 3.38 (d, *J* = 6.6 Hz, 2H), 3.15 (s, 1H), 2.60 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 165.8, 163.8, 156.6, 151.5, 149.6, 136.8, 136.7, 132.5, 129.4, 128.4, 123.6, 122.6, 119.3, 117.1, 115.9, 64.5, 61.1, 53.7, 53.4, 34.1. HRMS (ESI): 394.2235 (M+1); calcd for C₂₂H₂₈N₅O₂: 394.2243. IR (neat): 3209 (br), 1690, 1605 cm⁻¹. Purity: 96% (HPLC).

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(pyridin-3-ylmethyl)piperazin-1-yl) acetohydrazide (2b)

The general procedure was followed: **7** (0.10 g, 0.42 mmol, 1.8 equiv.), 3-allylsalicylaldehyde (0.038 g, 0.23 mmol, 1 equiv.), HCl (10 µL, 12M), ethanol (1.4 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **2b** (0.080 g, 88%) as light brown semi-solid. ¹H NMR (500 MHz, CDCl₃): δ 11.18 (s, 1H). 9.98 (s, 1H), 8.46 (m, 2H), 8.36 (s, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.21 (m, 1H), 7.12 (d, *J* = 7.2 Hz, 1H), 7.02 (d, *J* = 7.7 Hz, 1H), 6.78 (t, *J* = 7.6 Hz, 1H), 5.96 (tdd, *J* = 6.6 Hz, *J* = 10.1 Hz, *J* = 16.8 Hz, 1H), 5.00 (m, 2H), 3.49 (s, 2H), 3.38 (d, *J* = 6.6 Hz, 2H), 3.13 (s, 2H), 2.52 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 165.9, 156.6, 151.6, 150.6, 149.1, 149.0, 136.9, 136.7, 132.5, 129.4, 128.4, 123.7, 119.3, 117.1, 115.9, 61.1, 60.2, 53.8, 53.2, 34.1. HRMS (ESI): 394.2237 (M+1); calcd for C₂₂H₂₈N₅O₂: 394.2243. IR (neat): 3199 (br), 1684, 1607 cm⁻¹. Purity: 95% (HPLC).

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(pyridin-4-ylmethyl)piperazin-1-yl) acetohydrazide (2c)

The general procedure was followed: **8** (0.075 g, 0.30 mmol, 1.8 equiv.), 3-allylsalicylaldehyde (0.027 g, 0.17 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (1 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **2c** (0.060 g, 90%) as light brown semi-solid. ¹H NMR (500 MHz, CDCl₃): δ 11.27 (s, 1H), 10.08 (s, 1H), 8.55 (d, *J* = 5.8 Hz, 2H), 8.39 (s, 1H), 7.27 (s, 2H), 7.18 (dd, *J* = 1.5 Hz, *J* = 7.4 Hz, 1H), 7.06 (dd, *J* = 1.5 Hz, *J* = 7.7 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.02 (tdd, *J* = 6.6 Hz, *J* = 10.0 Hz, *J* = 16.7 Hz, 1H), 5.07 (m, 2H), 3.54 (s, 2H), 3.44 (d, *J* = 6.6 Hz, 2H), 3.20 (s, 2H), 2.59 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 166.0, 156.6, 151.5, 150.0, 147.5, 136.7, 132.5, 129.4, 128.4, 124.0, 119.3, 117.1, 115.9, 61.7, 61.2, 53.8, 53.3, 34.1. HRMS (ESI): 394.2238 (M+1); calcd for C₂₂H₂₈N₅O₂: 394.2243. IR (neat): 3189 (br), 1685, 1606 cm⁻¹. Purity: 97% (HPLC).

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(2,5-dimethoxybenzyl)piperazin-1-yl) acetohydrazide (2e)

The general procedure was followed: **10** (0.67 g, 2.2 mmol, 1.8 equiv.), 3-allylsalicylaldehyde (0.19 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **2e** (0.44 g, 80%) as beige solid. ¹H NMR (500 MHz, CDCl₃): δ 11.20 (s, 1H), 9.98 (s, 1H), 8.33 (s, 1H), 7.11 (dd, *J* = 1.5 Hz, *J* = 7.4 Hz, 1H), 7.01 (dd, *J* = 1.5 Hz, *J* = 7.7 Hz, 1H), 6.89 (d, *J* = 3.0 Hz, 1H), 6.77 (t, *J* = 7.6 Hz, 1H), 6.71 (m, 2H), 5.96 (tdd, *J* = 6.6 Hz, *J* = 10.1 Hz, *J* = 16.7 Hz, 1H), 5.00 (m, 2H), 3.71 (s, 3H), 3.70 (s, 3H), 3.52 (s, 2H), 3.38 (d, *J* = 6.6 Hz, 2H), 3.11 (s, 2H), 2.54 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 164.9, 155.4, 152.5, 151.1, 150.3, 135.5, 131.3, 128.2, 127.2, 126.0, 118.0, 115.9, 115.5, 114.6, 111.3, 110.7, 60.0, 55.2, 54.8, 54.7, 52.7, 51.9, 32.8. HRMS (ESI): 453.2507 (M+1); calcd for C₂₅H₃₃N₄O₄: 453.2502. IR (neat): 3215 (br), 1694, 1608 cm⁻¹. m.p.: 101.2-103 °C. Purity: 95% (LC-MS).

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(4-methoxybenzyl)piperazin-1-yl)acetohydrazide (2f)

The general procedure was followed: **11** (0.60 g, 2.2 mmol, 1.8 equiv.), 3-allylsalicylaldehyde (0.19 g, 1.2 mmol, 1 equiv.), HCl (10 µL, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **2f** (0.41 g, 81%) as light yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 11.19 (s, 1H), 9.97 (s, 1H), 8.35 (s, 1H), 7.16 (d, *J* = 8.3 Hz, 2H), 7.12 (d, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.78 (m, 3H), 5.96 (m, 1H), 4.99 (m, 2H), 3.73 (s, 3H), 3.43 (s, 2H), 3.38 (d, *J* = 6.6 Hz, 2H), 3.11 (s, 2H), 2.50 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 164.8, 157.9, 155.4, 150.4, 135.5, 131.3, 129.4, 128.5, 128.2, 127.2, 118.1, 115.9, 114.7, 112.7, 61.2, 59.9, 54.3, 52.6, 51.8, 32.8. HRMS (ESI): 423.2383 (M+1); calcd for C₂₂H₂₈N₅O₂: 423.2396. IR (neat): 3211 (br), 1686, 1609 cm⁻¹. Purity: 99% (LC-MS).

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(3-nitrobenzyl)piperazin-1-yl) acetohydrazide (2g)

The general procedure was followed: **12** (0.63 g, 2.2 mmol, 1.8 equiv.), 3-allylsalicylaldehyde (0.19 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **2g** (0.39 g, 74%) as beige solid. ¹H NMR (500 MHz, CDCl₃): δ 11.18 (s, 1H), 9.95 (s, 1H), 8.34 (s, 1H), 8.12 (s, 1H), 8.05 (d, *J* = 6.6 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 7.3 Hz, 1H), 7.01 (dd, *J* = 1.4 Hz, *J* = 7.7 Hz, 1H), 6.77 (t, *J* = 7.6 Hz, 1H), 5.95 (tdd, *J* = 6.6 Hz, *J* = 10.1 Hz, *J* = 16.8 Hz, 1H), 4.99 (m, 2H), 3.56 (s, 2H), 3.37 (d, *J* = 6.6 Hz, 2H), 3.13 (s, 2H), 2.53 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 165.9, 156.7, 151.8, 148.6, 140.6, 136.7, 135.2, 132.6, 129.5, 129.4, 128.5, 123.9, 122.6, 119.3, 117.1, 115.9, 62.1, 61.2, 53.8, 53.3, 34.1. HRMS (ESI): 438.2142 (M+1); calcd for C₂₃H₂₈N₅O₄: 438.2141. IR (neat): 3218 (br), 1682, 1526, 1349 cm⁻¹. m.p.: 84-86 °C. Purity: 96% (HPLC).
2-(4-(2,5-Dimethoxybenzyl)piperazin-1-yl)-N'-(2-hydroxybenzylidene) acetohydrazide (3)

The general procedure was followed: **10** (0.67 g, 2.2 mmol, 1.8 equiv.), salicylaldehyde (0.13 g, 1.2 mmol, 1 equiv.), HCl (10 μ L, 12M), ethanol (6 mL). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **3** (0.41 g, 82%) as light yellow semi-solid. ¹H NMR (500 MHz, CDCl₃): δ 10.98 (s, 1H), 10.05 (s, 1H), 8.46 (s, 1H), 7.30 (m, 1H), 7.21 (dd, *J* = 1.6 Hz, *J* = 7.7 Hz, 1H), 7.00 (m, 1H), 6.96 (d, *J* = 3.0 Hz, 1H), 6.90 (dt, *J* = 1.0 Hz, *J* = 7.5 Hz, 1H), 6.78 (m, 2H), 3.78 (s, 3H), 3.78 (s, 3H), 3.59 (s, 2H), 3.18 (s, 2H), 2.62 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 166.2, 158.8, 153.7, 152.3, 151.5, 132.1, 131.2, 127.2, 119.5, 117.6, 117.5, 116.8, 112.5, 111.8, 61.2, 56.4, 56.0, 55.9, 54.0, 53.2. HRMS (ESI): 413.2182 (M+1); calcd for C₂₂H₂₉N₄O₄: 413.2189. IR (neat): 3214 (br), 1684, 1621 cm⁻¹. Purity: 98% (LC-MS).

3,5-Diallylsalicylaldehyde (22)

To a stirred mixture of 3-allylsalicylaldehyde (0.097 g, 0.60 mmol, 1 equiv.) and K₂CO₃ (0.10 g, 0.74 mmol, 1.25 equiv.) in DMF (5 mL) was added allyl bromide (0.077 mL, 0.89 mmol, 1.5 equiv.). The reaction mixture was stirred for 3 hr at room temperature. The solution was filtered, washed with DMF (3 mL) and then concentrated under high vaccum. The residue (neat) was microwaved at 100 W for 5 min. The crude product was purified by normal phase Prep TLC (1:4 CH₂Cl₂/Hexanes) to provide **22** (0.048 g, 40%) as yellow liquid. ¹H NMR (500 MHz, CDCl₃): δ 11.17 (s, 1H), 9.85 (s, 1H), 7.23 (apparent dd, *J* = 2.1 Hz, *J* = 4.1 Hz, 2H), 5.97 (m, 2H), 5.10 (m, 2H), 5.07 (m, 2H), 3.41 (d, *J* = 6.6 Hz, 2H), 3.35 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 196.9, 158.2, 138.0, 137.2, 136.1, 131.5, 131.3, 129.0, 120.3, 116.6, 116.4, 39.2, 33.4. HRMS (ESI): 203.1066 (M+1); calcd for C₁₃H₁₅O₂: 203.1072. IR (neat): 2847, 1701 cm⁻¹.

3-Allyl-2-methoxybenzaldehyde (23)

To a stirred mixture of 3-allylsalicylaldehyde (0.11 g, 0.68 mmol, 1 equiv.) and K₂CO₃ (0.28 g, 2.0 mmol, 3 equiv.) in acetone was added iodomethane (0.050 mL, 0.80 mmol, 1.2 equiv.). The reaction mixture was stirred for 15 hr. The solution was filtered, washed with acetone and then concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:9 EtOAc/Hexanes) to afford **23** (0.073 g, 75 %) as light yellow liquid. ¹H NMR (500 MHz, CDCl₃): δ 10.37 (s, 1H), 7.72 (dd, *J* = 1.6 Hz, *J* = 7.7 Hz, 1H), 7.47 (dd, *J* = 1.5 Hz, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 5.98 (tdd, *J* = 6.4 Hz, *J* = 10.1 Hz, *J* = 16.6 Hz, 1H), 5.11 (m, 2H), 3.89 (s, 3H), 3.47 (d, *J* = 6.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 190.3, 161.6, 137.1, 136.6, 134.5, 129.6, 127.5, 124.8, 116.8, 64.5, 33.4. HRMS (ESI): 177.0919 (M+1); calcd for C₁₁H₁₃O₂: 177.0916

N'-(3-allyl-2-hydroxybenzyl)-2-(4-benzylpiperazin-1-yl)acetohydrazide (4d)

To a solution of **PAC-1** (1)(0.10 g, 0.25 mmol, 1 equiv.) in 3:1 THF/ACOH (8 mL in total) was added sodium cyanoborohydride (0.048 g, 0.76 mmol, 3 equiv.) at 0 °C. The reaction mixture was allowed to warm slowly to room temperature and stirred for 20 hr. The reaction mixture was then poured into a slurry of ice and concentrated hydrochloric acid (1 mL). The resulting mixture was extracted with CH₂Cl₂ (2 x 10 mL) and EtOAc (2 x 10 mL). The combined organic layer was washed with saturated sodium bicarbonate, dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to afford **4d** (0.069 g, 67%) as white solid. ¹H NMR (400 MHz, CDCl₃): δ 9.26 (s, 1H), 8.42 (d, *J* = 4.8 Hz, 1H), 7.30 (m, 5H), 7.09 (dd, *J* = 1.2 Hz, *J* = 7.4 Hz, 1H), 6.87 (dd, *J* = 1.3 Hz, *J* = 7.4 Hz, 1H), 6.74 (t, *J* = 7.5 Hz, 1H), 6.05 (tdd, *J* = 6.6 Hz, *J* = 10.1 Hz, *J* = 16.7 Hz, 1H), 5.09 (m, 2H), 4.95 (s, 1H), 4.18 (s, 2H), 3.45 (s, 2H), 3.44 (s, 2H), 3.04 (s, 2H), 2.36 (d, 8H). ¹³C NMR (101 MHz, CDCl₃): δ 170.1, 154.9, 137.3, 130.2, 129.4, 129.3, 128.5, 128.2, 127.8, 127.4, 120.5, 119.8, 115.6, 63.0, 60.7, 54.6, 53.7, 53.1,

34.3. HRMS (ESI): 395.2428 (M+1); calcd for C₂₃H₃₁N₄O₂: 395.2447. IR (neat): 3268 (br), 1676 cm⁻¹. m.p.: 83-84 °C. Purity: 98% (HPLC).

Ethyl 2-(4-benzylpiperidin-1-yl)acetate (43)

To a stirred mixture of 1-benzylpiperidine (0.30 mL, 1.7 mmol, 1 equiv.) and NaHCO₃ (0.18 g, 2.1 mmol, 1.25 equiv.) in acetone (3.5 mL) was added ethyl chloroacetate (0.20 mL, 1.9 mmol, 1.1 equiv.). The reaction was refluxed for 20 hr monitoring by TLC. The solution was filtered and the solid was washed with acetone (10 mL). The filtrate was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:1 EtOAc/Hexanes) to give **43** (0.36 g, 82%) as yellow liquid. ¹H NMR (500 MHz, CDCl₃): δ 7.28 (m, 2H), 7.18 (m, 1H), 7.15 (m, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.18 (s, 2H), 2.92 (d, *J* = 11.4 Hz, 2H), 2.54 (d, *J* = 7.0 Hz, 2H), 2.10 (dt, *J* = 2.1 Hz, *J* = 11.7 Hz, 2H), 1.63 (dd, *J* = 1.4 Hz, *J* = 13.4 Hz, 2H), 1.53 (m, 1H), 1.40 (ddd, *J* = 3.7 Hz, *J* = 12.2 Hz, *J* = 24.1 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.5, 140.7, 129.3, 128.4, 126.0, 60.8, 59.9, 53.8, 43.3, 37.6, 32.0, 14.5. HRMS (ESI): 262.1819 (M+1); calcd for C₁₆H₂₄NO₂: 262.1807. IR (neat): 1741, 1655 cm⁻¹.

2-(4-Benzylpiperidin-1-yl)acetohydrazide (26)

To a stirred solution of **43** (0.29 g, 1.1 mmol, 1 equiv.) in ethanol (2.3 mL, 0.5 M) was added anhydrous hydrazine (0.11 mL, 3.4 mmol, 3 equiv.). The reaction was refluxed for 18 hr monitoring by TLC. The

reaction mixture was concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ and washed with water (10 mL) and brine (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and EtOAc (10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to afford **26** (0.18 g, 66%) as milky oil. ¹H NMR (500 MHz, CDCl₃): δ 8.20 (s, 1H), 7.27 (m, 2H), 7.18 (m, 1H), 7.12 (m, 2H), 3.82 (broad s, 2H), 3.01 (s, 2H), 2.77 (d, *J* = 11.6 Hz, 2H), 2.52 (d, *J* = 7.1 Hz, 2H), 2.07 (dt, *J* = 2.4 Hz, *J* = 11.9 Hz, 2H), 1.62 (d, *J* = 13.1 Hz, 2H), 1.50 (m, 1H), 1.26 (ddd, *J* = 3.8 Hz, *J* = 12.4 Hz, *J* = 15.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 171.2, 140.6, 129.3, 128.4, 126.1, 61.2, 54.7, 43.3, 37.4, 32.6. HRMS (ESI): 248.1755 (M+1); calcd for C₁₄H₂₂N₃O: 248.1763. IR (neat): 3322, 1667 cm⁻¹.

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-benzylpiperidin-1-yl)acetohydrazide (4c)

To a stirred solution of 3-allylsalicylaldehyde (0.063 g, 0.39 mmol, 1 equiv.) in ethanol (2.2 mL), **26** (0.17 g, 0.70 mmol, 1.8 equiv.) and HCl (10 mol%) were added. The reaction was refluxed for 13 hr monitoring by TLC. The solution was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to provide **4c** (0.12 g, 80%) as white solid. ¹H NMR (500 MHz, CDCl₃): δ 11.28 (s, 1H), 10.26 (s, 1H), 8.43 (s, 1H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.21 (dd, *J* = 7.1 Hz, *J* = 14.2 Hz, 2H), 7.15 (d, *J* = 7.3 Hz, 2H), 7.11 (d, *J* = 7.7 Hz, 1H), 6.86 (t, *J* = 7.6 Hz, 1H), 6.04 (tdd, *J* = 6.6 Hz, *J* = 10.1 Hz, *J* = 16.8 Hz, 1H), 5.09 (m, 2H), 3.46 (d, *J* = 6.6 Hz, 2H), 3.21 (s, 2H), 2.93 (d, *J* = 10.4 Hz, 2H), 2.58 (d, *J* = 7.1 Hz, 2H), 2.26 (t, *J* = 10.1 Hz, 2H), 1.72 (d, *J* = 13.0 Hz, 2H), 1.60 (m, 1H), 1.38 (dd, *J* = 11.1 Hz, *J* = 22.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 166.2, 156.7, 151.5, 140.4, 136.8, 132.5, 129.4, 129.3, 128.5, 128.5, 126.3, 119.3, 117.2, 115.9, 61.5, 54.7, 43.2, 37.3, 34.1, 32.4. HRMS (ESI): 392.2321 (M+1); calcd for C₂₄H₃₀N₃O₂: 392.2338. IR (neat): 3208 (br), 1678, 1608 cm⁻¹. m.p.: 140.8-141.3 °C. Purity: 96% (HPLC).

Scheme S3. Syntheses of 4a-b

Ethyl 2-(1-benzylpiperidin-4-yl)acetate (44)

To a stirred mixture of benzyl chloride (0.3 mL, 2.6 mmol, 1 equiv.) and K₂CO₃ (1.1 g, 7.8 mmol, 3 equiv.) in acetone (11 mL) was added 2-(piperidin-4-yl)acetic acid ethyl ester (0.54 g, 3.1 mmol, 1.2 equiv.). The reaction was refluxed for 22 hr monitoring by TLC. The solution was filtered and the solid was washed with ethanol (10 mL). The filtrate was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:1 EtOAc/Hexanes) to give **44** (0.60 g, 88%) as clear liquid. ¹H NMR (500 MHz, CDCl₃): δ 7.28 (apparent d, *J* = 4.4 Hz, 4H), 7.22 (m, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.46 (s, 2H), 2.83 (d, *J* = 11.7 Hz, 2H), 2.19 (d, *J* = 7.1 Hz, 2H), 1.95 (dt, *J* = 2.2 Hz, *J* = 11.8 Hz, 2H), 1.75 (m, 1H), 1.65 (d, *J* = 12.9 Hz, 2H), 1.30 (dt, *J* = 3.6 Hz, *J* = 12.3 Hz, 2H), 1.21 (t, *J* = 5.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 173.0, 138.7, 129.4, 128.3, 127.1, 63.6, 60.4, 53.7, 41.5, 33.2, 32.3, 14.5. HRMS (ESI): 262.1812 (M+1); calcd for C₁₆H₂₄NO₂: 262.1807. IR (neat): 1736 cm⁻¹.

2-(1-Benzylpiperidin-4-yl)acetohydrazide (24)

To a stirred solution of **44** (0.58 g, 2.2 mmol, 1 equiv.) in ethanol (4.4 mL, 0.5 M) was added anhydrous hydrazine (0.21 mL, 6.6 mmol, 3 equiv.). The reaction was refluxed for 19 hr monitoring by TLC. The reaction mixture was concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ and washed with water (10

mL) and brine (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and EtOAc (10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to afford **24** (0.39 g, 72%) as milky oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29 (m, 3H), 7.24 (m, 2H), 7.15 (broad s, 1H), 3.82 (broad s, 2H), 3.47 (s, 2H), 2.86 (d, *J* = 11.7 Hz, 2H), 2.04 (d, *J* = 7.1 Hz, 2H), 1.96 (m, 2H), 1.83 (m, 1H), 1.65 (d, *J* = 12.8 Hz, 2H), 1.28 (ddd, *J* = 3.8 Hz, *J* = 12.1 Hz, *J* = 24.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 172.7, 136.9, 129.7, 128.1, 127.4, 63.0, 53.3, 40.6, 33.2, 31.3. HRMS (ESI): 248.1767 (M+1); calcd for C₂₂H₂₈N₅O₂: 248.1763. IR (neat): 1738 cm⁻¹.

N'-(3-allyl-2-hydroxybenzylidene)-2-(1-benzylpiperidin-4-yl)acetohydrazide (4a)

To a stirred solution of 3-allylsalicylaldehyde (0.093 g, 0.57 mmol, 1 equiv.) in ethanol (3.3 mL), 24 (0.25 g, 1.0 mmol, 1.8 equiv.) and HCl (10 mol%) were added. The reaction was refluxed for 16 hr monitoring by TLC. The solution was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to provide 4a (0.16 g, 71%) as white solid. ¹H NMR (500 MHz, CDCl₃) indicated a 81:19 ratio of two conformers: δ 11.25 (s, 1H x 0.19 conformer B), 10.47 (s, 1H x 0.81 conformer A), 10.43 (s, 1H x 0.81 conformer A), 9.07 (s, 1H x 0.19 conformer B), 8.29 (s, 1H x 0.19 conformer B), 7.97 (s, 1H x conformer A), 7.31 (apparent d, J = 4.6 Hz, 4H), 7.24 (m, 1H), 7.20 (d, J = 7.5 Hz, 1H x 0.81 conformer A), 7.16 (d, J = 7.4 Hz, 1H x 0.19 conformer B), 7.12 (dd, J = 1.4 Hz, J = 7.7 Hz, 1H x 0.81 conformer A), 7.04 (dd, J = 1.2 Hz, J = 7.7 Hz, 1H x 0.19 conformer B), 6.89 (t, J = 7.6 Hz, 1H x 0.81 conformer A), 6.82 (t, J = 7.6 Hz, 1H x 0.19 conformer B), 6.02 (m, 1H), 5.11 (m, 2H x conformer A), 5.04 (m, 2H x conformer B), 3.49 (s, 2H), 3.46 (d, J = 6.5 Hz, 2H x 0.81 conformer A), 3.42 (d, J = 6.6 Hz, 2H x 0.19 conformer B), 2.89 (d, J =11.6 Hz, 2H), 2.60 (d, J = 6.9 Hz, 2H x 0.81 conformer A), 2.19 (d, J = 7.1 Hz, 2H x 0.19 conformer B), 2.01 (t, J = 11.6 Hz, 2H), 1.94 (m, 1H), 1.78 (d, J = 12.5 Hz, 2H x 0.81 conformer A), 1.74 (d, J = 12.7 Hz, 2H x)0.19 conformer B), 1.43 (m, 2H x 0.81 conformer A), 1.31 (m, 2H x 0.19 conformer B). ¹³C NMR (126 MHz, CDCl₃): § 193.1, 174.7, 155.7, 147.9, 138.6, 136.6, 132.5, 129.6, 129.6, 129.5, 128.5, 128.4, 128.1, 127.2, 119.8, 117.1, 116.1, 63.6, 53.8, 39.6, 33.8, 32.9, 32.5. HRMS (ESI): 392.2338 (M+1); calcd for C₂₄H₃₀N₃O₂: 392.2338. IR (neat): 3204 (br), 1660, 1605 cm⁻¹. m.p.: 109.5-110.3. Purity: 97% (HPLC).

Tert-butyl 4-(2-hydrazinyl-2-oxoethyl)piperidine-1-carboxylate (25)

To a stirred solution of **45** (0.31 g, 1.1 mmol, 1 equiv.) in ethanol (2.3 mL, 0.5 M) was added anhydrous hydrazine (0.11 mL, 3.4 mmol, 3 equiv.). The reaction was refluxed for 19 hr monitoring by TLC. The reaction mixture was concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ and washed with water (10 mL) and brine (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and EtOAc (10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to afford **25** (0.18 g, 62%) as clear oil. ¹H NMR (500 MHz, CDCl₃): δ 4.05 (d, *J* = 12.2 Hz, 2H), 2.76 (s, 2H), 2.09 (d, *J* = 7.2 Hz, 1H), 1.95 (m, 2H), 1.68 (d, *J* = 13.3 Hz, 2H), 1.45 (s, 9H), 1.13 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 155.3, 79.8, 40.9, 40.5, 33.6, 31.7, 27.5, 17.2. HRMS (ESI): 258.1698 (M+1); calcd for C₁₁H₂₂N₄O₃: 258.1690. IR (neat): 3301, 1670 cm⁻¹.

Tert-butyl 4-(2-(2-(3-allyl-2-hydroxybenzylidene)hydrazinyl)-2-oxoethyl)piperidine-1-carboxylate (4b)

To a stirred solution of 3-allylsalicylaldehyde (0.056 g, 0.35 mmol, 1 equiv.) in ethanol (2.0 mL), **25** (0.16 g, 0.62 mmol, 1.8 equiv.) and HCl (10 mol%) were added. The reaction was refluxed for 16 hr monitoring by TLC. The solution was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to provide **4b** (0.14 g, 71%) as beige solid. ¹H NMR (500 MHz, CDCl₃) indicated a 76:24 ratio of two conformers: δ 11.43 (s, 1H x 0.24 conformer B), 10.80 (s, 1H x 0.76 conformer A), 10.49 (s, 1H x 0.76 conformer A), 10.10 (s, 1H x 0.24 conformer B), 8.29 (s, 1H x 0.24 conformer B), 8.04 (s, 1H x 0.76 conformer A), 7.19 (d, *J* = 7.4 Hz, 1H x 0.76 conformer A), 7.13 (m, 1H), 7.02 (d, *J* = 7.7 Hz, 1H x 0.24 conformer B), 6.88 (t, *J* = 7.6 Hz, 1H x 0.76 conformer A), 6.80 (t, *J* = 7.6 Hz, 1H x 0.24 conformer B), 6.01 (m, 1H), 5.08 (m, 2H x 0.76 conformer A), 5.02 (m, 2H x 0.24 conformer B), 4.10 (s, 2H), 3.45 (d, *J* = 6.5 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m, 1H), 1.79 (d, *J* = 12.2 Hz, 2H x 0.76 conformer A), 2.21 (d, *J* = 7.1 Hz, 2H x 0.24 conformer B), 2.09 (m

conformer A), 1.74 (d, J = 13.0 Hz, 2H x 0.24 conformer B), 1.45 (s, 9H x 0.76 conformer A), 1.44 (s, 9H x 0.24 conformer B), 1.27 (dq, J = 4.3 Hz, J = 12.6 Hz, 2H x 0.76 conformer A), 1.13 (dq, J = 4.0 Hz, J = 12.4 Hz, 2H x 0.24 conformer B). ¹³C NMR (126 MHz, CDCl₃): δ 174.3, 168.1, 156.6, 155.7, 155.1, 150.6, 148.3, 136.7, 136.5, 132.6, 132.4, 129.7, 129.3, 128.4, 128.1, 119.8, 119.2, 117.2, 116.1, 115.9, 79.9, 79.7, 39.5, 33.8, 32.9, 32.3, 28.7. HRMS (ESI): 402.2409 (M+1); calcd for C₂₂H₃₂N₃O₄: 402.2393. IR (neat): 3216 (br), 1688, 1663, 1608 cm⁻¹. m.p.: 76-78 °C. Purity: 95% (HPLC).

Scheme S4. Syntheses of 4f – g

General Procedure for haloacetamides 29 and 30

To a stirred solution of 2-(2-aminoalkyl)phenol (1 equiv.) in 1:1 CH₂Cl₂/sat. Na₂CO₃ (40 mL in total) was added chloroacetyl chloride (1.1 – 2.0 equiv.) at room temperature. The reaction mixture was stirred for 4 hours. The organic layer was separated and the aqueous layer was extracted with DCM (3 x 10 mL). The combined organic solution was dried over Na₂SO₄, and concentrated *in vacuo*. The crude product was purified with flash column chromatography on silica gel (1:4 EtOAc/Hexanes).

2-Chloro-N-(2-hydroxyphenethyl)acetamide (29)

The general procedure was followed: 2-(2-aminoethyl)phenol (0.05 g, 0.36 mmol, 1 equiv.), chloroacetyl chloride (0.03 mL, 0.38 mmol, 1.04 equiv.), 1:1 CH₂Cl₂/sat. Na₂CO₃ (6 mL in total). Purification with flash column chromatography on silica gel (1:4 EtOAc/Hexanes) afforded **29** (0.036 g, 46%) as light yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.13 (dt, *J* = 1.4 Hz, *J* = 7.9 Hz, 2H), 7.09 (d, *J* = 7.7 Hz, 1H), 6.85 (m, 3H), 4.05 (s, 2H), 3.53 (dd, *J* = 6.9 Hz, *J* = 12.7 Hz, 2H), 2.89 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 167.3,

154.7, 130.9, 128.5, 124.8, 120.8, 116.0, 42.8, 41.0, 30.2. HRMS (ESI): 214.0629 (M+1); calcd for $C_{10}H_{13}NO_2Cl$: 214.0635. IR (neat): 3291 (br), 1650, 1608 cm⁻¹.

2-Chloro-N-(2-hydroxybenzyl)acetamide (30)

The general procedure was followed: 2-(2-aminomethyl)phenol (0.30 g, 2.4 mmol, 1 equiv.), chloroacetyl chloride (0.39 mL, 4.9 mmol, 2 equiv.), 1:1 CH₂Cl₂/sat. Na₂CO₃ (40 mL in total). Purification with flash column chromatography on silica gel (1:4 EtOAc/Hexanes) afforded **30** (0.43 g, 88%) as light yellow oil. ¹H NMR (500 MHz, CDCl₃) indicated a 55:45 ratio of two conformers: δ 7.64 (broad s, 1H x 0.55 conformer A), 7.34 (m, 1H), 7.24 (m, 1H x 0.55 conformer A), 7.19 (m, 1H x 0.55 conformer A), 7.12 (dt, *J* = 1.5 Hz, *J* = 8.3 Hz, 1H), 7.08 (broad s, 1H x 0.45 conformer B), 6.91 (dd, *J* = 1.0 Hz, *J* = 8.1 Hz, 1H x 0.45 conformer B), 6.83 (dt, *J* = 1.1 Hz, *J* = 7.4 Hz, 1H), 4.43 (d, *J* = 6.0 Hz, 1H x 0.45 conformer B), 4.41 (d, *J* = 6.4 Hz, 1H x 0.55 conformer), 4.34 (s, 1H), 4.01 (overlap of two singlets of conformers A and B, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 168.3, 166.9, 166.5, 155.6, 148.9, 131.0, 130.7, 130.2, 129.8, 127.3, 123.7, 122.6, 120.4, 117.4, 42.6, 41.1, 40.7, 39.3. HRMS (ESI): 200.0473 (M+1); calcd for C₉H₁₁NO₂Cl: 200.0478

General Procedure for 4f - g

To a stirred mixture of 27^{1} (1.3 equiv.) and K₂CO₃ (2 equiv.) in 2:3 acetone/chloroform (25 mL in total) was added haloacetamide (1 equiv.). The reaction was refluxed for 18 hr monitoring by TLC. The solution was filtered and the solid was washed with chloroform (10 mL). The filtrate was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc)

2-(4-Benzylpiperazin-1-yl)-N-(2-hydroxyphenethyl)acetamide (4f)

The general procedure was followed: **27** (0.15 g, 0.84 mmol, 1.3 equiv.), **29** (0.14 g, 0.64 mmol, 1 equiv.), K_2CO_3 (0.18 g, 1.3 mmol, 2 equiv.) in 2:3 acetone/chloroform (5 mL in total). Purification with flash column chromatography on silica gel (1:4 EtOAc/Hexanes) afforded **4f** (0.21 g, 91%) as white semi-solid. ¹H NMR (500 MHz, CDCl₃): δ 8.69 (s, 1H), 7.50 (t, *J* = 5.6 Hz, 1H), 7.30 (m, 5H), 7.08 (m, 2H), 6.83 (d, *J* = 7.9 Hz,

1H), 6.78 (t, J = 7.4 Hz, 1H), 3.57 (td, J = 6.7 Hz, J = 13.0 Hz, 2H), 3.52 (s, 2H), 3.00 (s, 2H), 2.88 (t, J = 6.9 Hz, 2H), 2.46 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 171.6, 155.5, 137.8, 130.8, 129.5, 128.5, 128.2, 127.5, 125.2, 119.9, 116.1, 63.1, 61.4, 53.5, 53.1, 39.4, 30.7. HRMS (ESI): 354.2173 (M+1); calcd for C₂₁H₂₈N₃O₂: 354.2182. IR (neat): 3585, 3319 (br), 1650, 1607 cm⁻¹. Purity: 95% (LC-MS).

2-(4-Benzylpiperazin-1-yl)-N-(2-hydroxybenzyl)acetamide (4g)

The general procedure was followed: **27** (0.48 g, 2.7 mmol, 1.3 equiv.), **30** (0.43 g, 2.1 mmol, 1 equiv.), K_2CO_3 (0.58 g, 4.2 mmol, 2 equiv.) in 2:3 acetone/chloroform (25 mL in total). Purification with flash column chromatography on silica gel (1:4 EtOAc/Hexanes) afforded **4g** (0.62 g, 86%) as white solid. ¹H NMR (500 MHz, CDCl₃): δ 9.41 (s, 1H), 7.91 (s, 1H), 7.25 (m, 5H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.79 (t, *J* = 7.3 Hz, 1H), 4.33 (d, *J* = 6.7 Hz, 2H), 3.47 (s, 2H), 3.00 (s, 2H), 2.45 (broad d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 173.2, 156.2, 138.0, 130.9, 130.2, 129.4, 128.5, 127.4, 124.5, 120.0, 118.2, 63.1, 61.0, 53.8, 53.2, 40.2. HRMS (ESI): 340.2020 (M+1); calcd for C₂₀H₂₆N₃O₂: 340.2025. IR (neat): 3584, 3368 (br), 1653, 1600 cm⁻¹. m.p.: 119-119.8 °C. Purity: 97% (HPLC).

Scheme S5. Syntheses of 2d and 4e

2-Allyl-6-((2-methylhydrazono)methyl)phenol (47)

To a stirred solution of 3-allylsalicylaldehyde (0.50g, 3.1 mmol, 1 equiv.) in EtOH (47 mL) was added methylhydrazine (0.32 mL, 6.1 mmol, 2 equiv.) at room temperature. The reaction mixture was refluxed for 17 hr. The solvent was evaporated. The residue was purified by flash column chromatography on silica gel (1:9 EtOAc/Hexanes) to give **47** (0.58g, 99%) as yellow liquid. ¹H NMR (500 MHz, CDCl₃): δ 11.65 (broad s, 1H), 7.66 (s, 1H), 7.10 (d, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 7.6Hz, 1H), 6.85 (t, *J* = 7.5 Hz, 1H), 6.09 (tdd, *J* = 6.5 Hz, *J* = 10.0 Hz, *J* = 16.8 Hz, 1H), 5.30 (broad s, 1H), 5.12 (m, 2H), 3.49 (d, *J* = 6.5 Hz, 2H), 2.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 155.3, 140.2, 137.2, 129.9, 127.6, 127.5, 119.1, 119.1, 115.6, 35.0, 34.2. HRMS (ESI): 191.1177 (M+1); calcd for C₁₁H₁₅N₂O: 191.1184. IR (neat): 3401, 1639, 1617 cm⁻¹.

General Procedure for 48 and 28

To a stirred solution of **48** or **28** (1 equiv.) in 1:1 CH_2Cl_2/sat . Na_2CO_3 (40 mL in total) was added chloroacetyl chloride (1.1 – 2.0 equiv.) at room temperature. The reaction mixture was stirred for 4 hours. The organic layer was separated and the aqueous layer was extracted with DCM (3 x 10 mL). The combined organic solution was dried over Na_2SO_4 , and concentrated *in vacuo*. The crude product was purified with flash column chromatography on silica gel (1:4 EtOAc/Hexanes).

N'-(3-Allyl-2-hydroxybenzylidene)-2-chloroacetohydrazide (48)

The general procedure was followed: **46** (0.34 g, 1.9 mmol, 1 equiv.), chloroacetyl chloride (0.17 mL, 2.1 mmol, 1.1 equiv.), 1:1 CH₂Cl₂/sat. Na₂CO₃ (31 mL in total). Purification with flash column chromatography on silica gel (1:4 EtOAc/Hexanes) afforded **48** (0.19 g, 39%) as light yellow solid. ¹H NMR (500 MHz, CDCl₃) indicated a 55:45 ratio of two conformers: δ 11.05 (s, 1H x 0.45 conformer B), 10.04 (s, 1H x 0.55 conformer A), 9.42 (s, 1H x 0.55 conformer A), 8.37 (s, 2H x 0.45 conformer B), 8.05 (s, 1H x 0.45 conformer A), 7.13 (m, 2H x 0.55 conformer A), 6.89 (m, 1H), 6.04 (m, 1H), 5.09 (m, 2H x 0.55 conformer A), 4.47 (s, 2H x 0.45 conformer B), 4.23 (s, 2H x 0.55 conformer A), 3.47 (d, *J* = 6.4 Hz, 2H), 2.67 (m, 2H x 0.45 conformer B). HRMS (ESI): 253.0748 (M+1); calcd for C₁₁H₁₅N₂O: 253.0744.

N'-(3-Allyl-2-hydroxybenzylidene)-2-chloro-N-methylacetohydrazide (28)

The general procedure was followed: **47** (0.30 g, 2.4 mmol, 1 equiv.), chloroacetyl chloride (0.39 mL, 4.9 mmol, 2 equiv.), 1:1 CH₂Cl₂/sat. Na₂CO₃ (40 mL in total). Purification with flash column chromatography on silica gel (1:4 EtOAc/Hexanes) afforded **28** (0.43 g, 88%) as light yellow oil. ¹H NMR (500 MHz, CDCl₃) indicated a 82:18 ratio of two conformers: δ 10.20 (s, 1H x 0.82 conformer A), 7.91 (s, 1H x 0.82 conformer B), 7.84 (dd, *J* = 1.9 Hz, *J* = 7.4 Hz, 1H x 0.18 conformer B), 7.74 (s, 1H x 0.18 conformer B), 7.31 (m,

overlap of 1H x 0.18 conformer B and 1H of 0.18 conformer B), 7.23 (d, J = 7.4 Hz, 1H x 0.82 conformer A), 7.18 (dd, J = 1.3 Hz, J = 7.7 Hz, 1H x 0.82 conformer A), 6.93 (t, J = 7.6 Hz, 1H x 0.82 conformer A), 6.04 (m, 1H x 0.82 conformer A), 5.89 (m, 1H x 0.18 conformer B), 5.12 (m, 2H), 4.71 (s, 1H x 0.18 conformer B), 4.54 (s, 2H x 0.82 conformer A), 4.31 (s, 2H x 0.18 conformer B), 3.47 (overlap of two peaks of conformer A, a doublet of 2H and a singlet of 3H), 3.37 (s, 3H x 0.18 conformer A), 3.32 (d, J = 6.5 Hz, 2H x 0.18 conformer B). ¹³C NMR (126 MHz, CDCl₃): δ 166.4, 155.3, 145.1, 136.4, 135.4, 134.5, 133.0, 132.7, 132.5, 130.1, 128.3, 127.4, 125.1, 120.0, 117.3, 117.2, 116.2, 43.1, 42.5, 40.5, 34.9, 33.8, 28.6. HRMS (ESI): 267.0896 (M+1); calcd for C₁₃H₁₆N₂O₂Cl: 267.0900. IR (neat): 3330, 2107, 1645 cm⁻¹.

General Procedure for 2d and 4e

To a stirred mixture of **27** or **49** (1.3 equiv.) and K_2CO_3 (2 equiv.) in acetone (25 mL in total) was added **28** or **48** (1 equiv.). The reaction was refluxed for 18 hr monitoring by TLC. The solution was filtered and the solid was washed with chloroform (10 mL). The filtrate was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc).

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(4-fluorobenzyl)piperazin-1-yl)acetohydrazide (2d)

The general procedure was followed: **49** (0.61 g, 3.2 mmol, 1.5 equiv.), **48** (0.43 g, 2.1 mmol, 1 equiv.), K_2CO_3 (0.87 g, 6.3 mmol, 3 equiv.) in acetone (25 mL in total). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **2d** (0.62 g, 86%) as white solid. ¹H NMR (500 MHz, CDCl₃): δ 11.26 (s, 1H), 10.10 (s, 1H), 8.46 (s, 1H), 7.31 (m, 2H), 7.20 (d, J = 7.3 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 7.03 (t, J = 8.6 Hz, 2H), 6.86 (t, J = 7.6 Hz, 1H), 6.04 (tdd, J = 6.6 Hz, J = 10.1 Hz, J = 16.7 Hz, 1H), 5.08 (m, 2H), 3.56 (s, 2H), 3.46 (d, J = 6.5 Hz, 2H), 3.22 (s, 2H), 2.62 (d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 216.9, 165.8, 156.7, 151.8, 136.7, 132.6, 130.9, 129.4, 128.5, 119.3, 117.1, 115.9, 115.5, 115.3, 62.1, 61.1, 53.7, 53.0, 34.1. ¹⁹F NMR (400 MHz, CDCl₃): δ 115.8. HRMS (ESI): 411.2196 (M+1); calcd for C₂₃H₂₈N₄O₂F: 411.2196. IR (neat): 3210, 1686, 1607 cm⁻¹. m.p.: 113.8-114.5 °C. Purity: 96% (HPLC).

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-benzylpiperazin-1-yl)-N-methylacetohydrazide (4e)

The general procedure was followed: **27** (0.15 g, 0.76 mmol, 1.5 equiv.), **28** (0.14 g, 0.51 mmol, 1 equiv.), K_2CO_3 (0.21 g, 1.5 mmol, 3 equiv.) in acetone (2.4 mL in total). Purification with flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **4e** (0.17 g, 81%) as white solid. ¹H NMR (500 MHz, CDCl₃): δ 10.74 (s, 1H), 7.84 (s, 1H), 7.32 (m, 4H), 7.25 (m, 1H), 7.20 (dd, J = 0.9 Hz, J = 7.4 Hz, 1H), 7.15 (dd, J = 1.5 Hz, J = 7.7 Hz, 1H), 6.89 (t, J = 7.6 Hz, 1H), 6.06 (tdd, J = 6.7 Hz, J = 10.0 Hz, J = 16.8 Hz, 1H), 5.12 (m, 1H), 3.59 (s, 2H), 3.53 (s, 2H), 3.47 (d, J = 6.7 Hz, 2H), 3.41 (s, 2H), 2.63 (broad d, 8H). ¹³C NMR (101 MHz, CDCl₃): δ 169.8, 155.3, 142.9, 138.4, 136.8, 131.9, 129.6, 129.4, 128.4, 128.3, 127.2, 119.5, 117.8, 115.9, 63.2, 61.0, 53.6, 52.9, 34.2, 27.9. HRMS (ESI): 407.2441 (M+1); calcd for C₂₄H₃₁N₄O₂: 407.2447. IR (neat): 3062 (br), 1681, 1612 cm⁻¹. m.p.: 120-121 °C. Purity: 96% (HPLC).

Scheme S6. Synthesis of AF350-PAC-1 (2h).

1-(3-(azidomethyl)benzyl)piperazine (51)

To a stirred solution of α, α' -dibromo-m-xylene (5.0 g, 18.9 mmol, 1 equiv.) in 6:1 acetone/H₂O (35 mL in total) was added sodium azide (1.8 g, 28.4 mmol, 1.5 equiv.). The reaction mixture was stirred for 10 hr at room temperature. The mixture was diluted with DCM (30 mL), washed with H₂O (20 mL) and brine (20 mL), dried over Na₂SO₄, filtered, concentrated *in vacuo*. After column chromatography on silica gel (9:1 Hexanes/ EtOAc), a mixture of **50** and minor diazido-m-xylene was obtained as light yellow liquid.

Anhydrous piperazine (4.0 g, 46.5 mmol, 6 equiv.) was added to THF (17 mL), and the mixture was heated to reflux until the piperazine was fully dissolved. To the solution the mixture of **50** and minor diazido-m-xylene (1.75g, 7.7 mmol, 1 equiv.) was added dropwise. White precipitate was formed immediately. The reaction mixture was refluxed for 3 hr. The stirring mixture was cooled and then filtered. The solids were washed with THF (15 mL) and then EtOAc (15 mL). The combined organic layer was concentrated *in vacuo*, which was then washed with basic water with 5% brine and KOH (pH >12). The aqueous layer was extracted with CH₂Cl₂ (3 x 15 mL) and EtOAc (15 mL) at pH > 12. The organic layers were combined, dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to afford **51** (0.66 g, 30% over 2 steps) as light yellow liquid. ¹H NMR (500 MHz, CDCl₃): δ 7.29 (m, 3H), 7.18 (d, *J* = 7.2 Hz, 1H), 4.30 (s, 2H), 3.47 (s, 2H), 2.85 (t, *J* = 4.9 Hz, 4H), 2.38 (s, 4H), 1.75 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 139.2, 135.5, 129.4, 129.2, 128.9, 127.2, 63.7, 54.9, 54.8, 46.3. HRMS (ESI): 232.1552 (M+1); calcd for C₁₂H₁₈N₅: 232.1562

Ethyl 2-(4-(3-(azidomethyl)benzyl)piperazin-1-yl)acetate (52)

To a stirred mixture of **51** (0.6 g, 2.6 mmol, 1 equiv.) and NaHCO₃ (0.27 g, 3.3 mmol, 1.25 equiv.) in acetone (5 mL) was added ethyl chloroacetate (0.31 mL, 2.9 mmol, 1 equiv.). The reaction was refluxed for 22 hr monitoring by TLC. The solution was filtered and the solid was washed with acetone (5 mL). The filtrate was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:1 EtOAc/Hexanes) to give **52** (0.75 g, 91%) as yellow liquid. ¹H NMR (500 MHz, CDCl₃): δ 7.28 (m, 3H), 7.17 (d, *J* = 7.3 Hz, 1H), 4.29 (s, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.50 (s, 2H), 3.17 (s, 2H), 2.54 (broad d, 8H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.5, 139.1, 135.5, 129.3, 129.1, 128.9, 127.2, 62.9, 60.8, 59.7, 54.9, 53.2, 53.0, 14.5. HRMS (ESI): 318.1923 (M+1); calcd for C₁₆H₂₄N₅O₂: 318.1930. IR (neat): 2098, 1739 cm⁻¹.

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(3-(azidomethyl)benzyl)piperazin-1-yl)acetohydrazide (53)

To a stirred solution of **52** (0.7 g, 2.2 mmol, 1 equiv.) in ethanol (4.4 mL, 0.5 M) was added anhydrous hydrazine (0.21 mL, 6.6 mmol, 3 equiv.). The reaction was refluxed for 16 hr monitoring by TLC. The

reaction mixture was concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (10 mL) and washed with water (10 mL) and brine (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and EtOAc (10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to yield **53** (0.52 g, 77%) as yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 8.15 (s, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.26 (d, *J* = 6.1 Hz, 2H), 7.19 (d, *J* = 7.4 Hz, 1H), 4.31 (s, 2H), 3.85 (s, 2H), 3.50 (s, 2H), 3.05 (s, 2H), 2.48 (d, *J* = 7.4 Hz, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 170.7, 138.9, 135.6, 129.3, 129.1, 129.0, 127.3, 62.8, 60.8, 54.9, 53.8, 53.3. HRMS (ESI): 304.1877 (M+1); calcd for C₁₄H₂₂N₇O: 304.1886

N'-(3-allyl-2-hydroxybenzylidene)-2-(4-(3-(azidomethyl)benzyl)piperazin-1-yl)acetohydrazide (34)

To a stirred solution of 3-allylsalicylaldehyde (0.16 g, 0.99 mmol, 1 equiv.) in ethanol (6 mL), **53** (0.51 g1.7 mmol, 1.7 equiv.) and HCl (10 mol%) were added. The reaction was refluxed for 15 hr. The solution was concentrated *in vacuo*, and then purified by flash column chromatography on silica gel (1:4 MeOH/EtOAc) to afford **34** (0.37 g, 84%) as yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 11.28 (s, 1H), 10.04 (s, 1H), 8.38 (s, 1H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.29 (d, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.18 (dd, *J* = 1.4 Hz, *J* = 7.4 Hz, 1H), 7.08 (dd, *J* = 1.5 Hz, *J* = 7.7 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.03 (tdd, *J* = 6.6 Hz, *J* = 10.1 Hz, *J* = 16.7 Hz, 1H), 5.07 (m, 2H), 4.34 (s, 2H), 3.56 (s, 2H), 3.45 (d, *J* = 6.6 Hz, 2H), 3.19 (s, 2H), 2.58 (broad d, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 166.1, 156.6, 151.5, 138.8, 136.8, 135.6, 132.5, 129.4, 129.3, 129.1, 128.4, 127.4, 119.7, 119.3, 117.1, 115.9, 62.8, 61.2, 54.9, 53.9, 53.2, 34.1. HRMS (ESI): 448.2460 (M+1); calcd for C₂₄H₃₀N₇O₂: 448.2461. IR (neat): 3221 (br), 2099, 1686, 1608 cm⁻¹.

3-(2-((1-(3-((4-(2-(2-(3-allyl-2-hydroxybenzylidene)hydrazinyl)-2-oxoethyl)piperazin-1yl)methyl)benzyl)-1H-1,2,3-triazol-4-yl)methylamino)-2-oxoethyl)-7-amino-4-methyl-2-oxo-2Hchromene-6-sulfonic acid (AF350-PAC-1, 2h)

To a solution of propargyl amine HCl (2.0 mg, 0.022 mmol, 1.8 equiv.) and triethylamine (5.1 μ L, 0.037 mmol, 3 equiv.) in DMF (150 μ L) was added Alexa Fluor 350 NHS-ester **31** (5.0 mg, 0.012 mmol, 1 equiv.) in DMF (150 μ L) at minimal amount of light. The reaction was stirred for 20 hr at room temperature. The crude product was purified by flash column chromatography on silica gel (10% MeOH in EtOAc to 100% MeOH) to give **33** with a small amount of silica gel as light yellow-green solid.

To a solution of $[Cu(CH_3CN)_4]PF_6$ (5.0 mg, 0.013 mmol, 1.1 equiv.), *tris*-(benzyltriazolylmethyl)amine (TBTA, 7.1 mg, 0.013 mmol, 1.1 equiv.) and **33** (4.3 mg, 0.012 mmol, 1 equiv.) with a small amount of silica gel in 4:3:3 t-BuOH/MeOH/H2O (1 mL in total) was added **34** (37 mg, 0.082 mmol, 6.7 equiv.) at minimal amount of light. The reaction mixture was stirred for 24 hr at room temperature. Twice purification by flash column chromatography on silica gel (1:4 MeOH/EtOAc) afforded **AF350-PAC-1** (**2h**) (2.4 mg, 25% over 2 steps) as light green solid. ¹H NMR (500 MHz, CD₃OD): δ 8.33 (s, 1H), 8.03 (s, 1H), 7.78 (s, 1H), 7.35 (m, 3H), 7.27 (m, 2H), 7.16 (m, 2H), 6.83 (m, 1H), 6.57 (s, 1H), 6.01 (m, 1H), 5.56 (s, 2H), 5.01 (m, 2H), 4.41 (s, 1H), 4.36 (s, 1H), 3.57 (m, 4H), 3.41 (m, 2H), 3.20 (m, 2H), 2.58 (broad d, 8H), 2.26 (s, 2H). HRMS (ESI): 798.3032 (M+1); calcd for C₃₉H₄₄N₉O₈S: 789.3034

Purity of **PAC-1** (1): 100% Purity of **1a**: 95% Purity of **1h**: 99%

References

1. Vichai, V.; Kirtikara, K., Sulforhodamine B colorimetric assay for cytotoxicity screening. *Nat Protoc* **2006,** 1, (3), 1112-6.

2. Peterson, Q. P.; Goode, D. R.; West, D. C.; Ramsey, K. N.; Lee, J.; Hergenrother, P. J., PAC-1 activates procaspase-3 through relief of zinc-mediated inhibition. *J. Mol. Biol.* **2009**, 144-158.

3. Putt, K. S.; Chen, G. W.; Pearson, J. M.; Sandhorst, J. S.; Hoagland, M. S.; Kwon, J.-T.; Hwang, S.-K.; Jin, H.; Churchwell, M. I.; Cho, M.-H.; Doerge, D. R.; Helferich, W. G.; Hergenrother, P. J., Small molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. *Nature Chem Biol* **2006**, *2*, 543-550.

4. Dauzonne, D.; Folléas, B.; Martinez, L.; Chabot, G. G., Synthesis and in vitro cytotoxicity of a series of 3-aminoflavones. *European Journal of Medicinal Chemistry* **1997**, 32, (1), 71-82.

5. Kasmai, H. S.; Mischke, S. G., An Efficient and Convenient Synthesis of 2-Mercaptobenzaldehyde. *Synthesis* **1989**, (10), 763-765.

6. Mehanna, A. S.; Kim, J. Y., Design, synthesis, and biological testing of thiosalicylamides as a novel class of calcium channel blockers. *Bioorganic & Medicinal Chemistry* **2005**, 13, (13), 4323-4331.

ppm (f1)

ppm (f1)

ppm (f1)

¹³C NMR, CD₃OD

ppm (f1)

ppm (f1)

HPLC

LC-MS Purity: 99%

HPLC

* RUN # 485 JAN 15, 2008 14:44:03 START 7.976 S 13.868 16.806 TIMETABLE STOP + JAN 15, 2008 14:44:03 485 RUN# AREA% WIDTH AREA% RT AREA TYPE 99.04042 .343 SBB 95377600 7.976 .259 .18911 BU 182115 13.868 .77048 .172 BU 741989 16.806 TOTAL AREA=9.6302E+07

MUL FACTOR=1.0000E+00

S92

LC-MS Purity: 98%

S95

ppm (f1)

LC-MS Purity: 98%

86S

HPLC

LC-MS Purity: 95%

LC-MS Purity: 98%

S107

2b

MUL FACTOR=1.0000E+00

LC-MS Purity: 95%

LC-MS Purity: 99%

2g

LC-MS Purity: 98%

Data File D:\HPCHEM\DATA\2009\DH\DH_RED.D Sample Name: DH-RED Acq. Operator : DE Location : P1-F-07 Acq. Instrument : Bl Chupacabra Injection Date : 5/25/2009 12:29:23 AM Inj Volume : 10 µl Acq. Method : C:\HPCHEM\1\METHODS\DH.M : 5/24/2009 11:34:17 PM by DH Last changed (modified after loading) Analysis Method : C:\HPCHEM\1\METHODS\DH.M Last changed : 5/24/2009 7:59:02 PM by TMA MWD1 A, Sig=280.8 Ref=off (DH/DH_RED.D) 9-203 mAU 0200 700 600 500 -400 300 200 -516272 100 13 10 12.5 15 17.5 20 2.5 7.5 Fraction Information Fraction collection off No Fractions found. Area Percent Report Signal Sorted By 1.0000 Multiplier 1.0000 Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: MWD1 A, Sig=280,8 Ref=off Peak RetTime Type Width Height Area Area [mAU*s] [mAU] * [min] # [min] ----|-----|-----|-----------0,2198 1.02969e4 780.93475 97.6546 9.203 MM 1.8558 0,2233 195.67628 13.030 MM 14.60288 2 3 17.513 MM 0.2340 51.62722 3.57708 0.4895 1.05442e4 799.21470 Totals : El Chupacabra 5/25/2009 12:55:07 AM DH Page 1 of 2

min

4d

MUL FACTOR=1.0000E+00

HPLC

Dat	a File D:\HPCHEM\DATA\2005 mple Name: DH-RT1	O\DH\DH_RT1.D		
	Acq. Operator : DH Acq. Instrument : El Chug Injection Date : 5/24/21 Acq. Method : C:\HPCI Last changed : 5/24/20	pacabra 009 11:37:49 FM 4EM/1/METHODS/DH.M 009 11:34:17 PM by DH	Location : P1-F-05 Inj Volume : 10 µl	
	(modif: Analysis Method : C:\BFCI Last changed : 5/24/20	SA AILEF IDEALING) SM\1\METHODS\DH.M 39 7:59:02 PM by TMA		
	MWD1 A. Sig=280,8 Ret=off	r(DHDH_RTI.D)	8	
	mAU		1	
	2000 -		prod.	
	1750 -			
	1500			
	1250			
	1000 -			
	750			
	500		AL SP	
	250 -		E Style S .	
			Stratte 1 Str	
	25	5 75	10 12.5 15	17.5 r
	U 2.3			
	Prostion Teformation			
		FIGULUA INICIALLY		
	Fraction collection off			
	No Bracklong found			
		Area Dargent Kenort		
		Miea Percenc Report		
	Sorted By	Signal		
	Multiplier :	1.0000		
	Use Multiplier & Dilution	1 Factor with ISTDs		
	Signal 1: MWD1 A, Sig=280	0,8 Ref=off		
	Peak RetTime Type Width	Area Height	Area	
	# [min]	-		
	1 11.736 MM 0.336	9 B27,44397 40.931	48 2.2377	
	2 12.324 MM 0.180	4 3.52645e4 2073.870	36 95.3694	
	4 13.955 MM 0.175	6 528.56183 50.169	71 1.4294	
	Totals :	3.6976Be4 2197.853	26	
31	Chupacabra 5/25/2009 12:0.	1:22 AM DH	Ра	ge 1 of 2

LC-MS Purity: 95%

HPLC

4g

TOTAL AREA=5408976

MUL FACTOR=1.0000E+00

ppm (t1)

¹³C NMR, CDCl₃

¹⁹F NMR, CDCl₃

HPLC

ppm (f1)

S183

HPLC

S186