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Exploiting Partial Channel State Information for
Secrecy over Wireless Channels

Matthieu R. Bloch and J. Nicholas Laneman

Abstract—In this paper, we investigate the effect of partial
channel state information on the achievable secure communica-
tion rates and secret-key generation rates over ergodic fading
channels. In particular, we establish lower bounds for the strong
secrecy capacity and the strong secret-key capacity of ergodic
and block-ergodic fading channels with partial Channel State
Information at the Transmitter (CSIT). Our analysis sheds light
on the usefulness of CSIT to harness the benefits of fading for
secrecy and allows us to quantify the penalty incurred by lack of
full CSIT. In particular, we illustrate numerically situations in
which little CSIT is required to recover most of the benefits of
fading and in which the legitimate terminals have an incentive
to characterize their channel precisely.

Index Terms—wireless fading channel; channels state informa-
tion; secrecy capacity; secret-key capacity.

I. INTRODUCTION

The goal of achieving information-theoretic secrecy at the
physical-layer of wireless channels has attracted much atten-
tion in recent years. The generalizations of the wiretap channel
model [2] and of the secret-key generation model [3], [4] to
various wireless channels [5]–[9] have highlighted the benefits
of fading for secrecy and have even guided the design of
some experimental systems [10], [11]. However, the ability
to harness these benefits often relies on the knowledge of the
channel statistics and even of the instantaneous realizations of
the fading gains, which has hindered the acceptance of the
information-theoretic models as credible cryptographic mod-
els. The analysis of models and the design of coding schemes
that operate with little if no information about the eavesdropper
are still in their early stages, see for instance [12].

In this paper, we do not address the problem of achieving
secrecy without any information about eavesdroppers, but
rather we study how much Channel State Information (CSI) is
required to take advantage of fading. Specifically, we focus
on ergodic fading channels with known statistics and we
investigate the secure message rates and secret-key rates that
can be obtained if there is only partial CSIT. In the extreme
cases of perfect CSI and no CSI, the secrecy capacity and
secret-key capacity have been studied for Single-Input Single
Output (SISO) or Multiple-Input Multiple Output (MIMO)
ergodic and block ergodic channels, see for instance [6],
[7], [13]–[15]. However, to the best of our knowledge, few
works analyze intermediate situations in which partial CSIT
is available, for instance via a rate-limited feedback link. For
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Fig. 1. Communication over a channel with imperfect CSI.

simplicity, we focus in this paper on a SISO ergodic fading
channel. The model and results bear some similarities with
those of the concurrent work in [16], [17] and we draw similar
conclusions regarding the usefulness of CSIT.

Strictly speaking, all the models studied in the remainder
of the paper can be viewed as direct extensions of the discrete
memoryless wiretap channels with causal CSI [18], [19], for
which the secrecy capacity and secret-key capacity are often
known; however, these results depend on auxiliary random
variables and are not easily evaluated. In this paper, we extend
these results by providing numerically computable expressions
of achievable secure communication rates and secret-key ca-
pacity, which provide insight beyond that of the known single-
letter expressions; we also establish strong secrecy rates by
leveraging recent results on the secrecy capacity of arbitrary
channels [20], [21]. Two of the main conclusions drawn from
our analysis is that little CSIT is required to take advantage
of fading and that legitimate terminals should try to precisely
characterize their communication channel.

The remainder of the paper is organized as follows. Sec-
tion II sets the notation and introduces the ergodic wireless
channel with partial CSIT that we analyze. Section III presents
our results for the secrecy capacity and secret-key capacity of
the model. Section IV provides a numerical illustration of the
results for a specific fading model. Finally, Section V offers
some concluding remarks.

II. SYSTEM MODEL

We consider the channel model illustrated in Figure 1, in
which a legitimate transmitter (Alice) communicates with a
legitimate receiver (Bob) in the presence of an eavesdropper
(Eve). The channels are independent real-valued fading chan-
nels governed by stationary ergodic fading gains Sn and S′n,
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respectively, and corrupted by independent i.i.d. additive Gaus-
sian noise Nn and N ′n with Ni ∼ N (0, 1), N ′i ∼ N (0, 1). We
consider two models of fading. In the ergodic fading model,
the fading gains change from one symbol to the next and the
relations between input and outputs are given at each time
instant i by

Yi =
√
SiXi +Ni,

Zi =
√
S′iXi +N ′i .

In the block-ergodic fading model, the fading gains remain
constant over coherence intervals of length m, which we
assume is large enough for asymptotic coding theorems to
apply. The relations between input and outputs are given at
each time instant i within coherence interval k by

Yk,i =
√
SkXk,i +Nk,i,

Zk,i =
√
S′kXk,i +N ′k,i.

In the sequel, we often refer to the channel between Alice and
Bob as the main channel and to the channel between Alice and
Eve as the eavesdropper’s channel.

Bob has access to his exact CSI and received Signal-
to-Noise Ratio (SNR) Vi , (Si, SiE

[
X2
i |U i

]
), while Eve

has access to her exact CSI and received SNR V ′i ,
(S′i, S

′
iE
[
X2
i |U ′i

]
). Alice has access to causal CSI about

both channels, which we denote by Ui and U ′i , respectively,
which are deterministic functions of the CSI Si and S′i,
respectively. This models, for instance, the situation in which
the received SNR is estimated accurately at the receiver while
the channel state is available to the transmitter through a rate-
limited feedback link. The random variables corresponding
to the first order joint distribution of Si, S′i, Ui, U

′
i , Vi, V

′
i are

simply denoted by S, S′, U, U ′, V, V ′. Finally, the transmitted
symbols are subject to a long-term average power constraint
1
n

∑n
i=1 E

[
X2
i

]
6 P .

We consider two modes of operation over this channel. In
the first mode, the objective is for Alice to transmit a message
M reliably and secretly to Bob, in such a way that Eve obtains
virtually no information about the message. Specifically, Alice
uses a code defined as follows.

Definition 1. An (n, 2nR) code Cn consists of:

• a message set Mn , J1, 2nRK;
• a set of stochastic encoding functions fi : Mn × U i ×
U ′i → X for iJ1, nK used to transmit codeword symbols
corresponding to a message m;

• a decoding function gn : Yn × Vn → M used to form
an estimate m̂ of the transmitter message.

The reliability performance of the code is measured in terms
of the probability of error Pe(Cn) , P

[
M̂ 6=M |Cn

]
and the

secrecy performance is measured in terms of the variational
distance S(Cn) , V(pZnV ′nM , pZnV ′npM ).1

A rate R is an achievable secure communication rate if there

1This measure of secrecy is more stringent than the weak secrecy measure
1
n
I(M ;ZnV nV ′n) [21].

exists a sequence of (n, 2nR) codes {Cn} such that

lim
n→∞

Pe(Cn) = lim
n→∞

S(Cn) = 0.

The supremum of achievable secure communication rates is
the secrecy capacity Cs.

In the second mode, the objective is for Alice and Bob to
extract a secret key from the channel randomness. In this case,
we assume that there exists a public authenticated side channel
of unlimited capacity over which they can communicate. Eve
has access to all messages transmitted over this side channel
but cannot tamper with them. Formally, a secret-key generation
strategy is the following. 2

Definition 2. An (n, 2nR) secrecy key generation strategy Sn
consists of:
• a key set Kn , J1, 2nRK;
• a set of encoding functions to create messages sent

over the public channel, based on past messages; this
messages are collectively denoted by F ∈ F;

• a set of stochastic encoding functions fi used to transmit
symbols over the channel as a function of past messages
and past state information;

• two decoding functions f : F × Xn × Un → Kn and
g : F × Yn × Vn → Kn to estimate keys k and k̂.

The reliability performance is measured in terms of the prob-
ability of error Pe(Sn) , P

[
K̂ 6= K|Sn

]
and the secrecy

performance is measured in terms of the variational distance

S(Sn) , V(pZnFV ′nK , pZnV ′nF pK).

A rate R is an achievable secret-key rate if there exists a
sequence of (n, 2nR) strategies {Sn} such that

lim
n→∞

Pe(Sn) = lim
n→∞

S(Sn) = 0.

The supremum of achievable secure communication rates is
the secret-key capacity Csk.

III. MAIN RESULTS

A. Secrecy Capacity

We first establish achievable secure communication rates for
the ergodic model.

Proposition 1. The strong secrecy capacity of an ergodic
wireless channel with partial CSIT can be lower bounded
according to

Cs > max
γ

E
[
1

2
log

(
1 + Sγ(U,U ′)

1 + S′γ(U,U ′)

)]
where γ is such that E[γ(U,U ′)] 6 P .

Proof: Rather than establishing the result from first prin-
ciples with a random coding argument, we rely on a lemma
that establishes an n-letter expression for the the secrecy
capacity of arbitrary wiretap channels. The proof is provided
in Appendix A.

2We refer the reader to [3] for a more explicit definition.
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Lemma 1. The strong secrecy capacity of an arbitrary wiretap
channel with imperfect state information is

Cs = max
{Wn,Tn}∞n=0

(
p-limsup
n→∞

1

n
I(Wn;Y n|V n) − p-liminf

n→∞

1

n
I(Wn;Zn|V ′n)

)
,

(1)

where {Wn, Tn}∞n=0 is such that Wn → Tn → Xn → Y nZn

for all n.

Following [22], we now consider a specific use of the CSI
at the transmitter, according to which the transmitted symbol
i is scaled by

√
γ(Ui, U ′i), where γ is a deterministic time-

invariant function such that E[γ(U,U ′)] 6 P . Upon denoting
by Xi the transmitted symbol at time i, the situation is then
as if Xi was transmitted over a new ergodic channel, without
CSIT and full CSI at the receivers, characterized by

Yi =
√
HiXi +Ni

Zi =
√
H ′iXi +N ′i ,

(2)

with Hi = Siγ(Ui, U
′
i), H

′
i = S′iγ(Ui, Ui), and subject to a

power constraint 1
n

∑n
i=1 E

[
X2
i

]
6 1. The secrecy capacity

of the original channel is at least the secrecy capacity of the
new one since it corresponds to a specific use of the CSI.
We can then obtain an achievable rate for the new channel
by substituting an appropriate choice of random processes in
Eq. (1). Specifically, we set Wn = Tn = Xn, and we choose
an i.i.d. process Xi ∼ N (0, 1). Substituting this in Eq. (1) we
obtain

1

n
I(Tn;Y n|V n) = 1

n

n∑
i=1

I(Xi;Yi|Vi)

=
1

n

n∑
i=1

1

2

(
log(1 +Hi)− |N |2i +

|Y |2i
1 +Hi

)
,

where we have used the fact that Yi ∼ N (0, 1) conditioned on
XiVi and Yi ∼ N (0, 1+Hi) conditioned on Vi. The processes
{Vi} and {Yi} are stationary and ergodic by construction, so
that 1

nI(T
n;Y n|V n) converges in probability to

E

[
log(1 +H)− |N |2 + |Y |2

1 +H

]
= E[log(1 + Sγ(U,U ′))],

since E
[
|Y |2 /(1 +H)

]
= E

[
|N |2

]
= 1. Using similar

arguments, we can also show that 1
nI(T

n;Zn|V ′n) con-
verges in probability to E[log(1 + S′γ(U,U ′))]. Consequently,
Lemma 1 guarantees that the rate

E[log(1 + Sγ(U,U ′))]− E[log(1 + S′γ(U,U ′))]

is an achievable strong secrecy rate. Maximizing over all
choices of power allocation functions γ yields the desired
result.

Remark 1. The achievable rate in Proposition 1 holds in the
more general case in which the CSIT is a noisy version of
the true CSI, and as long as the various CSIs remain jointly
ergodic and stationary.

If the transmitter has perfect CSI about both channels (U =
S and U ′ = S′), the lower bound in Proposition 1 coincides

with the secrecy capacity. In this case, the optimal power
allocation function γ does not depend on the fading statistics
and can be derived in closed-form, as was already obtained
in [6] with a completely different proof. If the transmitter has
no CSI (U independent of S and U ′ independent of S′), the
lower bound is maximized by a constant power allocation γ;
whether the lower bound is positive or not then depends on
the statistics of the fading and, in particular, it is zero if the
fading statistics are identical on both channels.

We now establish achievable secure communication rates
for the block-ergodic model.3

Proposition 2. The strong secrecy capacity of a block-ergodic
wireless channel can be lower bounded according to

Cs > E

[[
E
[
1

2
log

(
1 + Sγ(U,U ′)

1 + S′γ(U,U ′)

) ∣∣∣∣UU ′]]+
]

where γ is such that E[γ(U)] 6 P and [x]+ , max(x, 0).

Proof: Consider a fixed power allocation function γ such
that E[γ(U,U ′)] 6 P . As for the proof of Proposition 1,
we construct a new block-ergodic wiretap channel without
CSI at the transmitter and full CSI at the receivers Setting
Hi , Siγ(u, u

′) and H ′i , S′iγ(u, u
′), the relations between

input and outputs in coherence interval k in which the CSIT
is (u, u′) are

Yk,i =
√
HiXk,i +Nk,i

Zk,i =
√
H ′iXk,i +N ′k,i,

(3)

subject to the constraint 1
mn

∑k
i=1

∑n
j=1 E

[
X2
k,i

]
6 1. We

then note that, because the CSIT Ui is a deterministic function
of the fading gains Si and because the legitimate receiver
knows the fading gain and the exact received SNR, it can
recover γ(u, u′) if a constant-power code is used. In this
case, Alice and Bob can effectively demultiplex the channel
into parallel sub-channels, each characterized by a different
value of u, u′. Letting Rs(u, u′) denote an achievable secure
communication rate for the channel characterized by (u, u′),
the stationarity and ergodicity of the fading ensures that

Cs >
∫∫

dudu′p(u, u′)Rs(u, u
′). (4)

We then construct an appropriate process to substitute in
Eq. (1) as follows. We set Wn = Tn = Xn and we let
ε > 0 and N ∈ N∗. We choose for {Xi} a process that
consists of i.i.d. codewords Cm of length m stemming from
a constant-rate constant-power code for the main channel in
Eq. (3). By the channel coding theorem, we know that the
code can be chosen with rate CB − ε and probability of
error ε, where CB denotes the capacity of the main channel
in Eq. (3). Since the process is memoryless by block, the
information density 1

nI(T
n;Y n|V n) converges in probability

3This result corrects an error in the statement of [1, Proposition 2].
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to 1
m I(Cm;Y m|V m), which is lower bounded as follows.

1

m
I(Cm;Y m|V m) =

1

m
H(Cm)− 1

N
H(Cm|Y mV m)

>
1

m
H(Cm)− 1

m
− ε(CB − ε), (5)

where the last line follows from Fano’s inequality. We now
turn our attention to the information density 1

nI(T
n;Zn|V ′n).

As earlier, it converges in probability to 1
m I(Cm;Zm|V ′m),

which is upper bounded as

1

m
I(Cm;Zm|V ′m) 6 CE (6)

where CE denotes the capacity of the eavesdropper’s channel
in Eq. (3). In addition, we have

1

m
I(Cm;Zm|V ′m) 6

1

n
H(Cn) . (7)

Combining Eq. (5), Eq. (6), and Eq. (7), we obtain

p-liminf
n→∞

1

n
I(Tn;Y n|V n)− p-limsup

n→∞

1

n
I(Tn;Zn|V ′n)

>
1

m
H(Cm)− 1

N
− ε(CB − ε)−min(CE ,

1

m
H(Cm))

=

[
1

m
H(Cm)− CE

]+
− 1

N
− ε(CB − ε)

> [CB − CE − ε]+ −
1

N
− ε(CB − ε).

Since ε and N are arbitrary, we obtain Cs > [CB − CE ]+.
Finally, note that the capacity of the channels characterized
by Eq. (3) is obtained for a constant power allocation, so that

CB = E
[
1

2
log(1 + Sγ(u, u′))

]
CE = E

[
1

2
log(1 + S′γ(u, u′))

]

Going back to Eq. (4), we obtain

Cs > E

[[
E
[
1

2
log

(
1 + Sγ(U,U ′)

1 + S′γ(U,U ′)

) ∣∣∣∣UU ′]]+
]

The lower bound given in Proposition 2 is always larger
than that of Proposition 1 because the expectation to optimize
is always positive. In addition, as already noted in [7], the
achievable rates are positive even in the absence of CSIT about
the eavesdropper’s channel (U ′ independent of S′) as long as
P[S > S′] > 0; therefore, even for situations in which the
legitimate receiver’s channel has a lower average SNR than
the eavesdropper’s channel, secure communication at non-zero
rates is possible. We stress that this powerful result is tightly
related to the specific nature of the block ergodic fading.

B. Secret-Key Capacity

We now turn our attention to the problem of secret-key
generation over the ergodic and block-ergodic models.

Proposition 3. The strong secret-key capacity of an ergodic
wireless channel can be lower bounded according to

Csk > max
γ

E
[
1

2
log

(
1 + S′γ(U,U ′) + Sγ(U,U ′)

1 + S′γ(U,U ′)

)]
where γ is such that E[γ(U)] 6 P .

Proof: We first transform the original channel into a new
channel with no CSIT characterized by Eq. (2), as done in
the proofs in Proposition 1. For this channel, Alice sends
i.i.d. random symbols Xi generated according to N (0, 1). This
transforms the channel into a specific source model for key
generation [3], in which the components Y V → X → ZV ′

form a Markov chain. In this case, the secret-key capacity is
known and given by I(X;Y V |ZV ′) = I(X;Y |ZV V ′) since
V is independent of X . Hence we have,

Csk > I(X;Y |ZV V ′)
= h(Y |ZV V ′)− h(Y |ZXV V ′)
= h(Y Z|V V ′)− h(Z|V V ′)− h(N)

= E
[
1

2
log
(
(2πe)2(1 + γ(U,U ′)(S + S′))

)]
− E

[
1

2
log ((2πe)(1 + γ(U,U ′)S′))

]
− 1

2
log(2πe)

= E
[
1

2
log

(
1 + S′γ(U,U ′) + Sγ(U,U ′)

1 + S′γ(U,U ′)

)]
.

Maximizing over γ establishes the lower bound on Csk.

Remark 2. Proposition 3 also holds for block-ergodic chan-
nel. Note that having longer coherence intervals does not
improve the secret-key capacity.

IV. NUMERICAL EXAMPLE

The results established in Section III still depend on an
optimization over all possible power allocation functions γ.
One can therefore try to perform an optimization to com-
pute the various bounds. Without perfect CSIT, the objective
functions given in Proposition 1 and Proposition 2 are not
concave functions of the power allocation γ, which means
that the Karush-Kuhn-Tucker conditions are only necessary
conditions. Nevertheless, the optimization of the lower bound
in Proposition 1 can be performed numerically using the
following lemma.

Lemma 2. Define the function fuu′(γ) as

fuu′(γ) ,
∫∫

s− s′
(1 + sγ(u, u′))(1 + s′γ(u, u′))

p(s|u)p(s′|u′)dsds′.

Assuming there exists (uo, u
′
0) with p(u0, u

′
0) > 0 such that

E[S − S′|u0, u′0] > 0, then γ(u, u′) defined as

γ(u, u′) ,

{
f−1uu′(λ) if 0 6 λ 6 E[S − S′|u, u′],
0 else.

is a power allocation under power constraint

P (λ) =
∑
u,u′

p(u, u′)γ(u, u′).
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Proof: One can check that if there exists (uo, v0) with
p(u0, u

′
0) > 0 such that E[S − T |u0, v0] > 0, then using the

entire power P is optimal. Then, by forming the Lagrangian
L as follows

L =
∑
u,u′

p(u, u′)

∫∫
log

(
1 + sγ(u, u′)

1 + s′γ(u, u′)

)
p(s|u)p(s′|u′)dsds′ − λ

∑
u,u′

p(u, u′)γ(u, u′)

and by using the Karush-Kuhn-Tucker conditions with respect
to the function γ(u, v), we obtain the desired result.

By varying λ, Lemma 2 provides the optimal power al-
location for all power constraints P . Since λ > 0, notice
that γ(u, v) = 0 whenever E[S|u, v] 6 E[T |u, v], which is
consistent with the intuition that no power should be allocated
when the eavesdropper’s channel is expected to be better
than the legitimate receiver’s channel. The lower bound in
Proposition 2 can be evaluated with a similar procedure.

The objective function in Proposition 3 is a concave func-
tion of the power allocation function γ. Following the same
approach as in Lemma 2, one can claim to identify the optimal
power allocation function. In the case of perfect CSIT, one can
then identify the power allocation in closed form, which does
not depend on the channel statistics. We report it here for
completeness.

Lemma 3. Define

g(s, s′) ,
1

2

(
−
(
1

s′
+

1

s+ s′

)
+

√(
1

s′
− 1

s+ s′

)(
4

λ
+

1

s′
− 1

s+ s′

))
Then, the power allocation γ(s, s′) = g(s, s′)1 {g(s, s′) > 0}
is the optimal power allocation for power P = E[γ(S, S′)].

We now illustrate the above results with a numerical exam-
ple. We consider a channel for which {Si}i>1 and {S′i}i>1

are independent i.i.d. processes with Si and Si uniformly
distributed over [0, 2]. Receivers have perfect knowledge of
their own instantaneous received SNRs, and U (resp. U ′) is
a uniformly quantized version of S (resp. S′) obtained with
Nm (resp. Ne) intervals.

Figure 2 illustrates the impact of quantized CSI on achiev-
able secure communication rates when the transmitter has the
same precision on the eavesdropper and legitimate receiver
CSIT (N , Nm = Ne). As expected, the penalty imposed by
quantization vanishes as the precision increases. Interestingly,
only one bit of quantization closes most of the gap between
no CSIT and full CSIT, and the rate gain becomes marginal
for more that five quantization intervals. At low SNR (less
than 0dB), precision seems even less critical and one bit of
feedback is sufficient. In the high SNR regime, the asymptotic
limits of achievable secure rates can be computed exactly and
are given by

Rlim
s =

N(N − 1) logN − 2
∑N−1
k=1 k log k

2N2

Based on the expression above, and using the approximation∑N−1
k=1 k ln k ≈

∫ n−1/2
1/2

dxx lnx, one can also show that

Rlim
s =

1

4
− logN

8N2
+ o

(
logN

N2

)
as N →∞,

−20 −10 0 10 20
Transmitter power (dB)

0.00

0.05

0.10

0.15

0.20

0.25

S
ec

u
re

ra
te

s
R
s

(n
at

s/
s/

H
z)

Full CSI

N = 4

N = 3

N = 2

Fig. 2. Impact of quantized CSI on achievable secure communication rates.
Legend indicates the number of intervals N used for uniform quantization.
Thin horizontal lines indicate asymptotic values.
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Fig. 3. Impact of asymmetric quantized CSI on achievable secure rates. Legend
indicates the number of intervals Nm and Ne used for uniform quantization.

which confirms the observations made form the simulations.
Figure 3 shows the impact of unequal precision for CSI of

the legitimate receiver’s channel and eavesdropper’s channel.
Interestingly, the lack of precision on the eavesdropper’s CSIT
can be somewhat compensated by increasing the precision of
the legitimate receiver’s CSIT. For instance, the rates attained
with Nm = 5 quantization intervals for the legitimate receiver
and Ne = 2 quantization intervals for the eavesdropper are
close to those attained with Nm = Ne = 2 for both channels.

Figure 4 illustrates the impact of quantized CSI on the
achievable secret-key rates. Quantized CSI inflicts a negligible
penalty across the entire range of SNRs and, in particular,
achieves the full CSI performance in the high-SNR regime.

V. CONCLUSION

Our analysis of the secrecy of wireless channels with partial
CSIT shows that little CSIT is needed to take advantage of
the fading of ergodic wireless channels. Our simulations show
that, in the case of secure communication, partial CSIT inflicts
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Fig. 4. Impact of quantized CSI on achievable secret-key rates rates. Legend
indicates the number of intervals N used for uniform quantization.

a penalty across the whole SNR range; in contrast, in the case
of secret-key generation, the penalty incurred by partial CSIT
disappears in the high SNR regime.

Interestingly, our results suggest that the legitimate termi-
nals should try to characterize their own channel precisely. A
good precision on the CSIT for the main channel allows the
transmitter to better identify the fading realizations that are
detrimental for secrecy, which in turn translates into higher
secrecy rates.

An important aspect that we have not addressed is the “cost”
of CSI. Our model considers that CSI is obtained for free
whereas in reality this may come at the expense of resources,
such as bandwidth for a reverse link. The analysis of the trade-
off between channel estimation and communication will be the
subject of future investigations.

APPENDIX A
PROOF OF LEMMA 1

Assuming that Um and Ue are finite, the channel is trans-
formed into an equivalent one without CSI at the transmit-
ter and receivers, whose input symbol is a vector Ti ∈
X |Um|i×|Ue|i and whose output are the pairs (Yi, Vm,i) and
(Yi, Ve,i). A code C for the new channel is a set

C = {tn(m) = (t1(m), . . . , tn(m)) : m ∈M,

ti(m) ∈ X |Um|i×|Ue|i
}
,

and at each time i, the channel input is the component
of the vector ti(m) indexed by (uim, u

i
e). An input process

{Tn}∞n=0 is entirely characterized by a set of probabilities
{pTn(tn)}∞n=0, and the transition probability of the new chan-
nel is

p(yn, zn, vnm, v
n
e |tn) =

∑
snm,s

n
e ,u

n
m,u

n
e

p(yn, zn|tn(unm, une ), snm, sne ) p(unm, une , vnm, vne , snm, sne ) .

This new channel is strictly equivalent to the original one it
terms of capacity. We also know that the secrecy capacity of an

arbitrary wiretap channel is The secrecy capacity of a wiretap
channel

(
X ,Y,Z,

{
pY nZn|Xn(yn, zn|xn)

}∞
n=1

)
is

Cs = max
{V n,Xn}∞n=1

(
p-liminf
n→∞

1

n
I(V n;Y n) −p-limsup

n→∞

1

n
I(V n;Zn)

)
,

where the process {V n, Xn}∞n=1 satisfies

V n → Xn → ZnY n ∀n ∈ N∗.

Specializing this information-spectrum formula to the equiv-
alent channel yields the desired result. The proof can be
extended to continuous alphabets Um and Ue using discrete
approximations.
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