
Fast Regular Expression Matching using FPGAs

Reetinder Sidhu

sidhu@halcyon.usc.edu

Viktor K. Prasanna

prasanna@ganges.usc.edu

Department of EE-Systems, University of Southern California,
Los Angeles CA 90089

Abstract

This paper presents an eÆcient method for �nding matches

to a given regular expression in given text using FPGAs. To

match a regular expression of length n, a serial machine re-

quires O(2n) memory and takes O(1) time per text character.

The proposed approach requires only O(n2) space and still

processes a text character in O(1) time (one clock cycle).

The improvement is due to the Nondeterministic Finite Au-

tomaton (NFA) used to perform the matching. As far as the

authors are aware, this is the �rst practical use of a nonde-

terministic state machine on programmable logic.

Furthermore, the paper presents a simple, fast algorithm

that quickly constructs the NFA for the given regular ex-

pression. Fast NFA construction is crucial because the NFA

structure depends on the regular expression, which is known

only at runtime. Implementations of the algorithm for con-

ventional FPGAs and the Self-Recon�gurable Gate Array

(SRGA) are described.

To evaluate performance, the NFA logic was mapped onto

the Virtex XCV100 FPGA and the SRGA. Also, the per-

formance of GNU grep for matching regular expressions was

evaluated on an 800 MHz Pentium III machine. The pro-

posed approach was faster than best case grep performance

in most cases. It was orders of magnitude faster than worst

case grep performance. Logic for the largest NFA considered

�t in less than a 1000 CLBs while DFA storage for grep in

the worst case consumed a few hundred megabytes.

1 Introduction

By exploiting the recon�gurability of FPGAs, signi�cant per-

formance improvements have been obtained over other modes

of computation for several applications. This paper describes

the use of FPGAs for fast regular expression matching. The

problem is to �nd all strings in input text that match the

given regular expression. The primary application of regu-

lar expression matching is in text search programs such as

grep. Other important applications include lexical analysis

and DNA sequence matching.

�This research was performed as part of the MAARCII project.

This work is supported by the DARPA Adaptive Computing Sys-

tems program under contract no. DABT63-99-1-0004 monitored

by Fort Huachuca.

The approach proposed in this paper constructs a Non-

deterministic Finite Automaton (NFA) and uses it to pro-

cess text characters. The time and space requirements of

the NFA construction algorithm are respectively linear and

quadratic in the length of the regular expression. The NFA

can then process one text character every clock cycle. To

process a text character in constant time on a serial machine

requires the construction of a Deterministic Finite Automa-

ton (DFA). DFA construction, in the worst case, requires

time and space exponential in the length of the regular ex-

pression. The proposed approach signi�cantly reduces time

and space requirements by exploiting the recon�gurability

and �ne-grained parallelism of FPGAs.

Previous work in string matching using FPGAs has primar-

ily focused on searching for a speci�c string [3] [5]. Attempts

at regular expression matching using FPGAs have been based

on DFAs and su�er form the same ineÆciencies as serial ma-

chine implementations.

The following section reviews Finite Automata (FA) and

regular expression theory which is used later. Section 3 de-

scribes the development of the NFA construction algorithm

and its implementation on existing FPGAs. Section 4 de-

scribes the Self-Recon�gurable Gate Array (SRGA) and the

implementation of the NFA construction algorithm using self-

recon�guration. Performance evaluation results are presented

in Section 5 and the conclusion in Section 6.

2 Background

Below we informally review regular expressions, NFAs, DFAs,

regular expression matching using FAs, and NFA construc-

tion from given regular expression. Please see [4][1] for de-

tails.

2.1 Regular Expressions

A regular expression is a pattern that matches one or more

strings of characters. Individual characters are consid-

ered regular expressions that match themselves. j; �; (;) are
metacharacters that which are used as follows. If r1 and r2

are regular expressions, then r1jr2, r1r2, r1� and (r1) are also
regular expressions such that: (1) r1jr2 matches any string

matched by r1 or r2, (2) r1r2 matches any string a pre�x of

which is matched by r1 and the rest by r2, (3) r1� matches

any string composed of zero or more strings matched by r1,

a b

c d

.

*

|

.

Figure 1: Syntax tree for ((ajb)�)(cd).

and (4) (r1) matches the same strings as r1. Further, � is a

regular expression that matches the empty string. As an ex-

ample, the regular expression ((ajb)�)(cd) matches all strings

composed of any sequence of zero or more a and b charac-

ters that terminate with the characters cd. Figure 1 shows

the syntax tree representation of the expression which is used

later. An additional metacharacter � is used to denote con-

catenation in the syntax tree representation.

2.2 NFA and DFA

Informally, an NFA is a directed graph in which each node

is a state and each edge is labeled with a single character or

�. One state is designated the initial state and some states

are accepting or �nal states. A DFA is an NFA with no

edges labeled � and no state has more than one outgoing

edge labeled with the same character. An FA (NFA or DFA)

processes an input string and either accepts it or rejects it.

A string is accepted if the string characters match the labels

on any path of the FA that leads from the initial state to an

accepting state.

2.3 Regular Expression Matching using

FAs

Given a regular expression, it is possible to construct an NFA

from it which accepts the same strings that are matched by

the regular expression. Such an NFA can therefore be used to

process the input text and perform regular expression match-

ing. On a serial machine, an NFA can be constructed from

the given regular expression of length n in O(n) time and

the NFA takes O(n) memory. The NFA processes a single

text character in O(n) time. Thus the total time required to

search through text of length m is O(mn) and the memory

required is O(n). An alternate approach for faster search-

ing is to construct a DFA from the regular expression which

takes O(2n) time and O(2n) memory. The DFA can process

a text character in O(1) time. Thus the above approach re-

quires O(2n +m) time and O(2n) memory. Text searching

programs such as grep employ the latter approach but use

optimization techniques that in many cases signi�cantly re-

duces DFA construction time and memory. However, there

are always cases for which DFA construction time and mem-

ory are both exponential.

In contrast, the proposed FPGA based approach takes

O(n) time and O(n2) memory to construct an NFA which

can process a text character every clock cycle. Thus total

time required is O(n +m) and the total memory required is

O(n2) in all cases. The following section reviews the proce-

dure for NFA construction from a regular expression. The

procedure is used by the proposed approach as described in

Section 3.

2.4 NFA Construction for Given Regu-

lar Expression

Below we review the construction of an NFA which matches

the same strings as the given regular expression. NFAs for

smaller regular expressions can be used to construct NFAs

for bigger regular expressions by applying the following rules.

An NFA that matches a single character (c) is constructed as

shown in Figure 2(a). NFAs that match the regular expres-

sions r1jr2, r1r2, r1� can be constructed as shown in Figure

2 (b), (c) and (d) respectively. N1 and N2 are NFAs for the

regular expressions r1 and r2 respectively. Each NFA has the

initial state q and only one �nal state f . The NFA for (r1)

is the same as that for r1. By parsing a regular expression

into its constituent subexpressions, and applying the above

rules recursively, an NFA can be constructed that matches

the same strings as the given regular expression. As an ex-

ample, Figure 3 shows the NFA constructed using above rules

for ((ajb)�)(cd).

3 NFA Construction using FP-

GAs

We begin by showing in Section 3.1 how an arbitrary NFA can

be implemented in logic. In Section 3.2 we describe simple

logic structures that implement NFAs (shown in Figure 2) for

a single character, r1jr2, r1r2 and r1�. Section 3.3 presents an
algorithm that reads a regular expression and uses the above

logic structures to implement an NFA that matches the same

strings as the given regular expression. Implementation of

the above algorithm on conventional FPGAs is discussed in

Section 3.4.

3.1 NFA Implementation in Logic

There are two standard techniques for implementing DFAs

in logic [2]. One way is to use memory that stores the DFA

states in a (typically binary) encoded form. Since the mem-

ory can look up only one next state every clock cycle, it would

be diÆcult to extend the above technique to eÆciently im-

plement an NFA. The other technique is to use the One-Hot

Encoding (OHE) scheme. One ip-op is associated with

each state and at any time exactly one ip-op stores a 1,

signifying the current (or active) state. Combinational logic

associated with each ip-op ensures that the 1-bit from the

active ip-op is transferred in the next clock cycle to only

q fc

q1 f 1 f 2q2N 1 N 2
ε

f 1

f 2

q1

q2

N 1

N 2

f

ε

ε

ε

ε
q q1 f 1N 1 fε ε

ε

ε

q

(a)

(b)

(c)

(d)

Figure 2: NFAs for (a) single character, (b) r1jr2, (c) r1r2, and (d) r1�.

ε

ε

ε

ε

ε ε εεq f

a

b

c d

ε

ε

Figure 3: NFA for ((ajb)�)(cd).

one ip-op (the input to the DFA determines which one).

Below, we extend the OHE technique to enable direct imple-

mentation of NFAs in logic.

As mentioned in Section 2.2, one of the two di�erences

between an NFA and DFA is that a state in an NFA can

have more than one outgoing edge with the same label. In

implementation, this simply translates into allowing a par-

ticular ip-op output to be connected to the input of more

than one ip-op. The implementation is trivial and enables

multiple transitions and multiple active ip-ops every clock

cycle. The other di�erences is that an NFA can have edges

labeled � (empty string) while a DFA cannot. Such an edge

transfers the status of its source state to its destination state

without waiting for the next character to be processed. In

implementation, this can be eÆciently achieved by connect-

ing the input (as opposed to output) of the source ip-op

to the input of the destination ip-op. Figure 4(a) shows a

simple NFA and Figure 4(b) shows its implementation using

the techniques described above.

3.2 Logic Structures for NFA Implemen-

tation

The following two observations help understand the logic

structures described below: (1) As stated above, and � tran-

sition translates to a connection from the input of the source

ip-op to the input of the destination ip-op. Therefore, if

all transitions from the source ip-op are � transitions, the

ip-op does not have to be implemented and can be elimi-

nated. (2) As can be seen from Figure 2, only � transitions

from the accept states of the NFAs are used to construct

bigger NFAs. Thus based on observation (1), the ip-ops

corresponding to the accept states of the NFAs in Figure 2

do not have to be implemented and can be eliminated.

Figure 5(a) shows the logic structure that implements the

NFA (shown in Figure 2(a)) that matches a single character.

The ip-op corresponding to the accept state has been elim-

inated based on observation (2). The output is 1 only when

the ip-op stores a 1 and the input character matches the

character stored in the inside the comparator. Figure 6 shows

an eÆcient implementation of the comparator. Figure 5(b)

shows the logic that implements the NFA for r1jr2 (shown

in Figure 2(b)). Both the initial and �nal state ip-ops are

eliminated based on observations (1) and (2) respectively.

The only logic required is an OR gate to combine the out-

puts from N1 and N2. Figure 5(c) shows the implementation

of the NFA for r1r2 (shown in Figure 2(c)). As the latter

�gure shows, only three edges are required. Thus the logic

consists of just three wires. Figure 5(c) shows the logic that

implements the NFA for r1� (shown in Figure 2(d)). As in

case of r1jr2, the initial and �nal state ip-ops are elimi-

nated. An OR gate is used to combine the two inputs to the

initial state of N1. Another OR gate combines the two inputs

to generate the accept output.

The above logic structures can be combined to construct

an NFA for a given regular expression. To complete the con-

0

0

0,1

ε 1

a

b

c

(a) (b)

0,1

0

1

ε

a b c

0

i

Input
i

Figure 4: (a) Simple NFA. (b) Implementation in logic.

struction of such an NFA, the i and o ports of the top level

logic structure need to be connected as follows. The o port

is connected to a ip-op representing the �nal state of the

NFA. When the NFA processes text characters, a 1 in this

ip-op for any character would signify a regular expression

match at that character. An NFA typically processes a single

string and indicates if a match occurs or not. However, we

require the NFA to match strings beginning at any position in

the input text. To do so, from a theoretical point of view, the

regular expression (a1ja2j:::jaj)� needs to be pre�xed to the

regular expression of interest|a1; a2; :::; aj are all the char-

acters of the input text. In practice, this can be eÆciently

implemented by simply setting the i port of the top level logic

structure to be permanently high. As an example, Figure 7

shows the implementation using logic structures of the NFA

shown in Figure 3.
i o

N1 N2

i1 i2o1 o2

oi i o

N1 N2

i1 i2o1 o2

oi i o

i o i o

N1

i1o1

oi

Flip
flop

cText
character

i o

(a)

(d)(b)

(c)

Figure 5: Logic structures for (a) single character, (b)

r1jr2, (c) r1r2, and (d) r1�.

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

LUT 1 LUT 2

Figure 6: Comparator for ASCII character a (01100001).

Output is one only when input to LUT1 is 0110 and to

LUT2 is 0001.

3.3 NFA Construction Algorithm

Figure 8 shows the algorithm. It accepts the regular expres-

sion in post�x form which is easily obtained by postorder

traversal of the syntax tree of the regular expression. For

example, the post�x form of the regular expression in Figure

1 is abj � cd � �. The post�x form eliminates the need for the

(and) metacharacters and simpli�es the algorithm.

The algorithm uses a stack data structure and relies on

the following placement and routing subroutines. place char,

place j, place � and place � respectively place the logic struc-

tures for a character, and the metacharacters j; �; �. They all

return a pointer reference (p) to the placed structure. route1

and route2 create bidirectional connections between the logic

structures the pointers to which are supplied as arguments|

route1(p, q) connects the o output of q to the i1 input of p

and the o1 output of p to the i input of q. Similarly route2(p,

q) creates connections to i2 and o2 ports of p. The last two

lines of the algorithm create connections to the i and o ports

of the logic structure for the last symbol in the regular ex-

pression. The o port is connected to the input of a ip-op

and the i port is connected to a permanently high signal.

1 Match
flip-flop

b da c

character
Text

Figure 7: Implementation of NFA for ((ajb)�)(cd). Dashed boxes indicate logic structures.

Assuming that the placement and routing subroutines take

constant (O(1)) time, the algorithm executes in O(n) time

where n is the length of the regular expression. The con-

structed NFA can process one character each clock cycle

(O(1) time). To be able to process one character in O(1)

time on a serial machine, a DFA has to be constructed for

the input regular expression. Doing so takes O(2n) time. In

practice, optimized DFA construction techniques can be quite

fast in many cases but still require exponential time in the

worst case. In contrast the proposed approach is very fast

(O(n) time) in all cases.

The area of the NFA constructed using the proposed ap-

proach would depend upon the placement and routing sub-

routines. In Section 4.2 we show an implementation of these

which can construct an NFA in O(n2) area. On the other

hand, on a serial machine a DFA takes O(2n) memory. Again,

optimized techniques can often reduce the exponential mem-

ory requirement but not always. In contrast, the proposed

approach requires only O(n2) in all cases.

3.4 FPGA Implementation

We now discuss the implementation of the NFA construction

algorithm for an FPGA architecture. The crucial fact to keep

in mind is that the NFA mapping time needs to be as small

as possible. NFA mapping time is composed of the time re-

quired to construct the NFA, generate con�guration bits for

the NFA logic and con�gure the FPGA with the generated

bits. Reducing this time is important because the NFA can

be constructed only at runtime when the user inputs the reg-

ular expression. Thus the NFA mapping time is a part of the

overall execution time and therefore it should be minimized.

The NFA construction algorithm can be implemented as

a program that reads a regular expression and outputs the

NFA logic in the form of an HDL description, or a technology

mapped netlist, or a placed and routed netlist, or directly in

the form of con�guration bits. In the interests of minimizing

the NFA mapping time, direct generation of con�guration

bits would be preferable because then the synthesis, place-

ment and routing steps can be bypassed. However, doing

so is not practical for following two reasons. The bitstream

formats of commercial FPGAs are proprietary. Also, even

if the formats were known, any error in generating con�gu-

ration bits could potentially permanently damage the chip.

Thus, the preferred approach would be to implement the NFA

construction algorithm as a program that outputs the NFA

logic as a placed and routed netlist and use vendor tools for

generating con�guration bits. For Xilinx FPGAs, another ap-

proach would be to write the program in Java and use Jbits

[9] for generating con�guration bits.

For details on the placement of the logic structures and

routing between them, please see Section 4.2 which describes

the algorithm implementation for the SRGA architecture.

Implementation for other architectures can be done along

similar lines.

for(i=0; i<regexp_len; ++i)

{

switch(regexp[i])

{

case char: place_char(regexp[i], &p);

push(p);

case |: place_|(&p);

pop(&p1);

route1(p, p1);

pop(&p2);

route2(p, p2);

push(p);

case .: place_.(&p);

pop(&p1);

route1(p, p1);

pop(&p2);

route2(p, p2);

push(p);

case *: place_*(&p);

pop(&p1);

route1(p, p1);

push(p);

}

}

pop(&p);

route_input_high(p);

route_output_ff(p);

Figure 8: NFA construction algorithm.

Section 5 presents the performance evaluation results of the

above approach for the Xilinx Virtex FPGA architecture. As

can be seen from the results, the NFA logic is quite fast, but

the NFA mapping time still forms a signi�cant portion of the

overall execution time.

4 NFA Construction using the

SRGA

We describe in the following sections how the NFA mapping

time can be further reduced by using self-recon�guration. Us-

ing self-recon�guration, the NFA construction algorithm can

be implemented as con�gured logic on the device itself. The

logic reads the input regular expression, directly generates

the con�guration bits for NFA logic and con�gures the de-

vice with them, all without any external intervention. All

three components of the NFA mapping time|NFA construc-

tion, con�guration bits generation and device con�guration|

are signi�cantly reduced using self-recon�guration. We start

with a description of the SRGA device.

4.1 Self-Recon�gurable Gate Array

(SRGA)

In most cases, con�guration of an FPGA, whether at com-

pile time or at runtime, is performed externally. Much greater

performance gains and a high degree of exibility can be ob-

tained if the device can generate con�guration bits at runtime

and use them to modify its own con�guration|the ability of

a device to do so is what we call self-recon�guration.

The SRGA is a multicontext device [7][8] which, as the

name implies, has been designed to support eÆcient self-

recon�guration. The key device features that allow it to do

so are: (1) Single cycle context switching and (2) Single cy-

cle random access to the con�guration memory. Using these

two features self-recon�guration can be performed quickly as

shown by the simple example below.

The problem is to con�gure an AND gate but at compile

time, we don't know where on the logic cell array the AND

gate is to be con�gured|the location is known only at run-

time. Since we cannot con�gure the AND gate at compile

time, we con�gure on one of the contexts logic which will in

turn con�gure the gate (as shown in Figure 9). At runtime,

the coordinates of the logic cell which is to be con�gured as

an AND gate are sent to the SRGA. The logic con�gured

on the device reads these coordinates. It then computes the

address of the con�guration memory locations corresponding

to the logic cell|bits written into these locations control the

functionality of the logic cell. The con�gured logic writes bits

that con�gure the logic cell as an AND gate into the above

con�guration memory locations. Finally, it switches to the

context on which the gate was con�gured.

Please see [6] for a detailed description of the SRGA device

and its capabilities, including row and column routing using

self-recon�guration.

4.2 NFA Construction using Self-

Recon�guration

Figure 10 shows the algorithm that reads a regular ex-

pression and constructs the corresponding NFA using self-

recon�guration. The algorithm is based on the one shown in

Figure 8 and it operates in a similar manner|the basic di�er-

ence is that the above algorithm explicitly places and routes

the NFA logic. Figure 11 shows the simpli�ed block diagram

of the datapath and control logic that implements the algo-

rithm. The placement and routing performed by the algo-

rithm is explained below. For clearer understanding, please

also see the step by step NFA construction by the algorithm

for ((ajb)�)(cd) shown in Figure 12.

To perform placement and routing, it is necessary to spec-

ify the logic cell in which a particular logic structure is (or is

to be) con�gured. The counters row and col, and the regis-

ters row1, col1, row2 and col2 are used for this purpose. Note

that the stack pushes or pops a row, column pair in a single

operation.

The algorithm places the NFA logic as a binary tree, sim-

ilar to the syntax tree of the regular expression. At the leaf

nodes are the logic structures for the characters and all of

them are placed in the same row (row 0). The column is

speci�ed by the column counter col which is incremented each

time one is placed. Placement in the same row simpli�es

broadcasting the text characters to the comparators.

Logic structures for the metacharacters form the non-leaf

bits
configuration

coordinates

the AND gate

Gate

AND gate

AND gate
Context
Switch

Interface
Memory
Config.

Context 3

Context 1

Context 2

Logic for
configuring

Context
Switch
Logic

Interface
Memory
Config.

Context 3

Context 1

Context 2

C

Active
context

Interface

context
Active

Context
Switch

Interface
Memory
Config.

Context 3

Context 2

C

Context 1
Active
context

Interface

(a) (b) (c)

Figure 9: An illustration of self-recon�guration using the SRGA.

row col

Stack

Control
logic

Memory

i

char

.
|

*

push pop

comparator row_inc col_inc

regexp[i]

OR

inc_i

row2

row1

col2

col1

Figure 11: Datapath and control logic for NFA construction algorithm.

nodes are each is placed on a separate row. The row is spec-

i�ed by the row counter which is incremented each time one

is placed. Note that the logic structure for one of the child

nodes of j or � is always in the preceding row. Thus by placing
the logic structure for j or � in the same column as the other

child node, connections to the former and latter child nodes

require only row and column routing operations respectively.

The logic structure for the only child node of � is always in

the preceding row. Thus the connection can be established by

simply placing the logic structure for � in the same column.

The numbers at the end of each line in Figure 10 indicate

the number of clock cycles required to complete the operation

on that line. Counter increments occur in parallel with other

operations and so take zero clock cycles. As described in [6],

any row or column routing operation on the SRGA takes 4

clock cycles.The row route and col route operations create

bidirectional connections. Also, it takes 2 clock cycles to

switch to the context with the routing logic and back to the

current context. Thus each routing operation takes 10 clock

cycles. The time for the placement operations is composed of

the time to con�gure the logic structure in a logic cell (1 bit

per clock cycle) and 2 clock cycles for the context switching.

The time for the character logic structure also includes the 32

clock cycles required to con�gure the comparator as shown

in Figure 6.

The above algorithm thus con�gures the logic structures

for char, j, � and � in 47, 45, 37 and 28 clock cycles respec-

tively. We use the above numbers to estimate NFA construc-

tion time using the SRGA in Section 5.4.

5 Performance Evaluation

In this section, we compare the performance of FPGA imple-

mentations based on the proposed approach with the perfor-

mance of the Unix text search program grep. The comparison

criteria are the space needed (memory for software and area

for FPGA), and the time required for FA construction and

text character processing.

To compare performance, the regular expression we match

using both approaches is (ajb)�a(ajb)(ajb):::(ajb) which has k
occurrences of (ajb) at the end (henceforth written as (ajb) �
a(ajb)k). It matches any sequence of a's and b's in which the

(k+1)th character from the right is a. Any DFA constructed

for the above expression would have at least 2k states. We

vary k to study performance variation with regular expression

length.

5.1 Software Performance

The software performance evaluation was carried out on a

machine with an 800 MHz Pentium III Xeon processor with

2 GB RAM running Linux (Red Hat 6.2). The regular ex-

pression matching program used was GNU grep version 2.4,

which is distributed with the OS. The times reported are user

a

0 1

0

1

2

3

ba

i=2, regexp[i]=| line=12
row=1, row1=0, row2=0
col=1, col1=1, col2=0

row=1, row1=0, row2=0
col=1, col1=1, col2=0

i=2, regexp[i]=| line=13 i=2, regexp[i]=| line=15
row=1, row1=0, row2=0
col=1, col1=1, col2=0

row=2, row1=0, row2=1
col=1, col1=1, col2=0

i=3, regexp[i]=* line=29

Stack

0,0

Stack

0,0
0,1

Stack

Stack Stack

1,0

Stack

2,0

dc

0 1

0

1

2

3

a

4

2 3

b

1

Text

0 1

0

1

2

3

ba

0 1

0

1

2

3

0 1

0

1

2

3

a b

0 1

0

1

2

3

ba

0 1

0

1

2

3

ba

(b)(a) (c)

i=0, regexp[i]=a line=7
row=1
col=0

i=1, regexp[i]=b line=7

col=1
row=1

(g)

(d) (e) (f)

Figure 12: NFA construction for ((ajb)�)(cd) (post�x form: abj � cd � �). Each �gure shows NFA construction

immediately after the algorithm statement indicated by line has been executed.

1 row=1; col=0; i=0; [1]

2 while(i<regexp_len)

3 {

4 switch(regexp[i])

5 {

6 case char: place_char(regexp[i], col); [46]

7 push(0, col); [1]

8 ++col; [0]

9

10 case |: pop(&row1, &col1); [1]

11 pop(&row2, &col2); [1]

12 place_|(row, col2); [22]

13 route_row(col2, col1); [10]

14 route_col(row, row2); [10]

15 push(row, col2); [1]

16 ++row; [0]

17

19 case .: pop(&row1, &col1); [1]

20 pop(&row2, &col2); [1]

21 place_.(row, col2); [14]

22 route_row(col2, col1); [10]

23 route_col(row, row2); [10]

24 push(row, col2); [1]

25 ++row; [0]

26

27 case *: pop(&row2, &col2); [1]

28 place_*(row, col2); [26]

29 push(row, col2); [1]

30 ++row; [0]

31

32 }

33 ++i;

34 }

35 pop(&row, &col); [1]

36 route_input_high(row, col); [3]

37 route_output_ff(row, col); [3]

Figure 10: NFA construction algorithm.

k Text �le CPU Maximum

size (bytes) time memory

8 2560 0.01 s 1 MB

9 5632 0.05 s 1 MB

10 12288 0.15 s 1.9 MB

11 26624 0.50 s 2.2 MB

12 57344 2.22 s 3.0 MB

13 122880 16.11 s 4.4 MB

14 262144 82.88 s 7.5 MB

15 557056 345.33 s 13 MB

16 1179648 1383.55 s 26 MB

17 2490368 5499.60 s 54 MB

18 5242880 21900.36 s 111 MB

19 11010048 87309.38 s 229 MB

Table 1: Results for text search and complete DFA con-

struction (worst case).

space CPU times and the memory reported is the maximum

memory used by that invocation of grep.

GNU grep uses clever techniques to reduce time and space

requirements. Essentially, it constructs the DFA for the given

regular expression in a \lazy" manner|only those parts of

the DFA are constructed which are required to process the

input text characters. For instance, if none of the characters

in the regular expression occurs in the text, the DFA is not

constructed at all. Therefore, to force grep to construct the

entire DFA, the input text must contain patterns that exer-

cise all possible DFA transitions. For example, for the regular

expression (ajb) � a(ajb)2, we create a �le containing the four
lines \aaa", \aab", \aba" and \abb"1.

k Text �le CPU Maximum Time per

size (bytes) time memory character

8 2560 0.00 s 580 KB {

9 5632 0.00 s 580 KB {

10 12288 0.00 s 580 KB {

11 26624 0.00 s 580 KB {

12 57344 0.00 s 580 KB {

13 122880 0.005 s 580 KB {

14 262144 0.01 s 580 KB {

15 557056 0.03 s 580 KB 53.86 ns

16 1179648 0.04 s 580 KB 33.91 ns

17 2490368 0.08 s 580 KB 32.12 ns

18 5242880 0.17 s 580 KB 32.42 ns

19 11010048 0.34 s 580 KB 30.88

Table 2: Results for text search and minimal DFA con-

struction (best case).

Such �les were created for regular expressions ranging from

k = 8 to k = 19. The program grep was then invoked once for

each regular expression with the corresponding �le supplied

as input text. The results, summarized in Table 1, demon-

strate the exponential blowup in both time and memory that

can occur in DFA based regular expression matchers. As k is

increased, time required and memory consumed quickly reach

unacceptable levels. It should be clear from the above discus-

sion that times obtained are composed of the worst case DFA

construction time (since the complete DFA is constructed)

plus the time required to search (k + 2)2k text characters.

We now determine time and memory requirements for best

case DFA construction (only one transition computed). We

do this by repeating the above experiment with text �les of

the same sizes as before, but with each �le containing 2k

repetitions of a single pattern instead of 2k patterns. Table

2 shows the results obtained. The assumption that the DFA

construction takes negligible time is justi�ed by the almost

constant time per text character in all cases. Also, all the grep

invocations use the same amount of memory. Therefore, we

1In general, for (ajb) � a(ajb)k , the number of lines in the text

�le would be 2k. Each line would have k+2 characters (the (k+2)th

character being a newline) resulting in a �le size of (k+2)2k bytes.

k DFA Construction

size time

8 420 KB 0.01 s

9 420 KB 0.05 s

10 1.32 MB 0.15 s

11 1.62 MB 0.50 s

12 2.42 MB 2.22 s

13 3.82 MB 16.11 s

14 6.42 MB 82.87 s

15 12.42 MB 345.30 s

16 25.42 MB 1383.51 s

17 53.42 MB 5499.52 s

18 110.42 MB 21900.19 s

19 228.42 MB 87309.04 s

Table 3: Software performance results for DFA construc-

tion (worst case). Best case requires negligible time and

memory. Time per text character is 30.88 ns.

obtain the DFA construction time and memory requirements

by subtracting values in Table 2 from corresponding values in

Table 1. Also, the time required to process a text character

is estimated to be equal to the time per character for k = 19.

Table 3 summarizes the software performance results.

5.2 FPGA Performance

The FPGA performance results were obtained using Xilinx

Foundation tools running on a 450 MHz Pentium III and the

target device was the Virtex XCV100 FPGA which is one of

the smallest Virtex FPGAs. It has a 20� 30 CLB array . The

NFA construction for the Virtex architecture is based on the

algorithm shown in Figure 10. The basic di�erence is that by

utilizing the richer interconnect of Virtex, logic structures for

two metacharacters (instead of one) can be placed in a single

row of logic cells2. Also, the required routing along rows and

columns can be performed using the longlines, 12 of which

are present along each row and column. Doing so simpli�es

and speeds up the row route and col route operations.

We obtain the NFA size, NFA construction time, and time

per text character for (ajb) � a(ajb)k, k ranging from 8 to

19, as follows. The logic structures shown in Figure 5 were

described in VHDL. Using these, VHDL descriptions of the

above regular expression were written and synthesized. NFA

simulation was performed to verify proper operation. Next,

the oor plan editor was used to manually place each NFA as

it would have been by the algorithm described above. These

were then routed and used to determine the NFA size and the

time required to process a text character. The NFA construc-

tion time, as described in Section 3.4, consists of the times

required for the NFA construction algorithm, con�guration

bit generation, and FPGA con�guration. Since a very small

2A logic cell consists of an LUT and a ip-op and thus corre-

sponds to one-fourth of a Virtex CLB.

k Con�guration FPGA NFA

bit generation con�guration construction

8 20 ms 1 ms 21 ms

9 38 ms 1 ms 39 ms

10 31 ms 1 ms 32 ms

11 33 ms 1 ms 34 ms

12 30 ms 1 ms 31 ms

13 28 ms 1 ms 29 ms

14 32 ms 1 ms 33 ms

15 33 ms 1 ms 34 ms

16 33 ms 1 ms 34 ms

17 36 ms 1 ms 37 ms

18 36 ms 1 ms 37 ms

19 30 ms 1 ms 31 ms

28 38 ms 1 ms 39 ms

Table 4: NFA construction times.

amount of computation is required by the NFA construction

algorithm, we assume its execution time to be quite small

compared to the time required for the latter two tasks. Thus

the NFA construction time is estimated to be the sum of the

con�guration bit generation and FPGA con�guration times

as shown if Table 4. Table 5 summarizes all the results.

k NFA Construction Time per text

area time character

8 10 � 7 CLBs 21 ms 10.70 ns

9 11 � 8 CLBs 39 ms 11.68 ns

10 12 � 8 CLBs 32 ms 11.99 ns

11 13 � 9 CLBs 34 ms 12.17 ns

12 14 � 9 CLBs 31 ms 12.69 ns

13 15 � 10 CLBs 29 ms 12.32 ns

14 16 � 10 CLBs 33 ms 12.70 ns

15 17 � 11 CLBs 34 ms 11.89 ns

16 18 � 11 CLBs 34 ms 12.55 ns

17 19 � 12 CLBs 37 ms 13.06 ns

18 20 � 12 CLBs 37 ms 13.24 ns

19 21 � 13 CLBs 31 ms 14.98 ns

28 30 � 16 CLBs 39 ms 17.42 ns

Table 5: NFA area, NFA construction time and time per

text character for the FPGA implementation.

5.3 Performance Comparison

FA size The space requirement (memory for software and

area for FPGA) is determined by the FA size. For soft-

ware, in the best case scenario, the DFA requires a small,

constant amount of memory. However, as shown in Ta-

ble 3, the exponential blowup of the DFA size can con-

sume hundreds of megabytes in the worst case.

In contrast, using the proposed approach the area of

the NFA constructed on an FPGA grows only quadrat-

ically with regular expression length in all cases. Thus

space requirements are dramatically reduced compared

to the worst case software requirements but are some-

what larger than the best case requirements. However,

in practice, NFAs for long regular expressions can �t

into a small amount of logic. For example the expres-

sion (ajb) � a(ajb)28 which has a length of 118 can �t

into the XCV100 (see the last row of Table 5). NFAs for

much longer regular expressions can be constructed on

bigger devices.

FA construction time In case of software, the DFA con-

struction time in the best case scenario is negligible.

However, it increases exponentially with regular expres-

sion length in the worst case. As shown in Table 3, DFA

construction can take a few hours even on an 800 MHz

microprocessor.

In contrast, using the proposed approach, an NFA can be

constructed on an FPGA in less than a tenth of a second

in all cases. Thus construction time is several orders of

magnitude lower than the worst case software time, but

slightly higher than the best case software time.

Time per text character As explained in Section 2.3,

once constructed, DFAs as well as NFAs can process

each text character in a constant amount of time. As

described in Section 5.1 above, this time in case of soft-

ware is 30.88 ns.

The times per text character using the proposed ap-

proach vary with the length of the regular expression and

are shown in Table 5. All these times are signi�cantly

lower than the time required by software running on an

800 MHz microprocessor. However, the time required

increases with regular expression length (the increase is

roughly linear). Assuming the linear increase holds, the

time required by the FPGA to process a text character

will be lower than the time required by software even for

regular expressions hundreds of characters in length.

As an example, �nding matches to (ajb)�a(ajb)8 in a 2MB

�le using grep will take 64.76 ms to 74.76 ms while consum-

ing 580 KB to 1 MB memory, depending on the contents of

the text �le. In comparison, the FPGA implementation will

always take 43.44 ms and occupy 70 CLBs. For k = 19 in

the above example, grep would require 64.76 ms to 87309.1 s

time and 580 KB to 229 MB of memory. The FPGA imple-

mentation would need 62.42 ms time and 273 CLBs.

To summarize, for text �les above a certain size, the FPGA

implementation always performs better than a software regu-

lar expression matcher. The improvement can be several or-

ders of magnitude in both time and space requirements. For

smaller �les, in some cases, the FPGA performance may be

slightly slower than software. This happens for cases where

DFA construction time is smaller than the NFA construc-

tion time and the text �le is too short for the faster FPGA

processing to make a di�erence. Speedups can be obtained

even for these cases by using the SRGA as described below

to reduce the NFA construction time to less than 1 ms.

5.4 SRGA Performance

The SRGA architecture discussed in Section 4 has been de-

scribed in Verilog and synthesized using a standard cell li-

brary for a 0.18 � process. Placement and routing of the

design are in progress. Below, we determine NFA size and

estimate the NFA construction time. The time required to

process a text character (and a more precise NFA construc-

tion time) will be reported after the SRGA design is complete.

k NFA NFA construction

size time

8 19 � 22 166.7 �s

9 21 � 24 184.3 �s

10 23 � 26 201.9 �s

11 25 � 28 219.5 �s

12 27 � 30 237.1 �s

13 29 � 32 254.7 �s

14 31 � 34 272.3 �s

15 33 � 36 289.9 �s

16 35 � 38 307.5 �s

17 37 � 40 325.1 �s

18 39 � 42 342.7 �s

19 41 � 44 360.3 �s

Table 6: NFA size and NFA construction times for the

SRGA implementation.

The NFA construction algorithm, along with the number

of clock cycles required to process each character of the reg-

ular expression are described in Section 4.2. Using these, we

determine the number of clock cycles required to construct

the NFA for (ajb) � a(ajb)k to be 259 + 176k. Also, based on

available SRGA timing information, we conservatively esti-

mate the clock period of the NFA construction logic (shown

in Figure �g:algolog) to be 100 ns. Product of clock period

and number of clock cycles provides the NFA construction

times which are summarized in Table 6. The table also shows

NFA logic size.

Compared with NFA construction times for the FPGA im-

plementation, the times for the SRGA are about two orders of

magnitude smaller. This is due to self-recon�guration which

enables the device to generate con�guration bits and con�g-

ure itself with them. The faster NFA construction should

speed up the proposed approach compared to a software reg-

ular expression matcher even for small text �les. We expect

to demonstrate this once the SRGA design is complete.

6 Conclusion

In this paper we have shown how to eÆciently perform regular

expression matching using FPGAs. The proposed approach

takes O(n +m) time and O(n2) space to �nd matches to a

regular expression of length n in text of lengthm. In contrast,

the fastest serial machine algorithm requires O(2n+m) time

and O(2n) space.

The key techniques that make the proposed approach ef-

�cient are the use of an NFA (instead of the DFA used on

serial machines) for regular expression matching, and the fast

construction of such an NFA. Based on theoretical de�nitions

of DFA and NFA, we have described how an NFA can be di-

rectly implemented in logic by extending the OHE technique

of DFA implementation. Also, based on theoretical tech-

niques for NFA composition, we have developed a simple,

fast algorithm that constructs an eÆcient NFA implemen-

tation for the given regular expression. We believe that the

proposed approach has not been explored before on other par-

allel machines because the recon�gurability and �ne-grained

parallelism of FPGA devices is essential for the eÆciency of

the NFA implementation and construction techniques.

The other important contribution of the paper is to show

how NFA construction can be performed very quickly using

self-recon�guration. We have developed an implementation

of the NFA construction algorithm as con�gured logic on the

SRGA which can construct an NFA in a few hundred �s.

Finally, we have shown in this paper detailed performance

comparisons between software and FPGA implementations

that justify the space and time performance claims made.

The implementation results have shown that for most cases,

the FPGA implementation is faster than grep for regular

expression matching. The improvement can be several or-

ders of magnitude in both time and space requirements. The

FPGA implementation can be slightly slower for small �les

due to the time required for NFA construction. We have

shown how this time can be reduced by about two orders

of magnitude by constructing the NFA on the SRGA using

self-recon�guration.

It was observed that software regular expression matchers

use techniques that help avoid the worst case memory and

time requirements in many cases. However, no matter what

techniques are used, for any DFA based matcher there will

always be cases that cause exponential blowup in the time and

memory required. We have demonstrated that the proposed

approach overcomes this problem.

7 Acknowledgement

The authors thank Bharani Thiruvengadam for his work on

FPGA performance evaluation.

References

[1] A. V. Aho. Handbook of Theoretical Computer Science,

Volume A Algorithms and Complexity, chapter 5. MIT

Press/Elsevier, 1990.

[2] S. Golson. State machine design techniques for

verilog and vhdl. Synopsys Journal of High-

Level Design, pages 1{48, September 1994.

www.synopsys.com/news/pubs/JHLD/JHLD-099401.

[3] B. Gunther, G. Milne, and L. Narasimhan. Assessing doc-

ument relevance with run-time recon�gurable machines.

In J. Arnold and K. L. Pocek, editors, Proceedings of

IEEE Workshop on FPGAs for Custom Computing Ma-

chines, pages 10{17, Napa, CA, April 1996.

[4] John E. Hopcroft and Je�ery D. Ullman. Introduc-

tion to Automata Theory, Languages, and Computation.

Addison-Wesley, 1979.

[5] R. P. S. Sidhu, A. Mei, and V. K. Prasanna. String match-

ing on multicontext FPGAs using self-recon�guration. In

FPGA '99. Proceedings of the 1999 ACM/SIGDA Seventh

International Symposium on Field Programmable Gate

Arrays, pages 217{226, Feb. 1999.

[6] R. P. S. Sidhu, A. Mei, S. Wadhwa, and V. K. Prasanna.

A self-recon�gurable gate array architecture. In FPGA

'99. Proceedings of the 1999 ACM/SIGDA Seventh Inter-

national Symposium on Field Programmable Gate Arrays,

Aug. 2000.

[7] E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon.

A �rst generation DPGA implementation. In FPD'94

- Third Canadian Workshop of Field-Programmable De-

vices, pages 138{143, May 1995.

[8] Steve Trimberger, Dean Carberry, Anders Johnson, and

Jennifer Wong. A time-multiplexed FPGA. In J. Arnold

and K. L. Pocek, editors, Proceedings of IEEE Workshop

on FPGAs for Custom Computing Machines, pages 22{

28, Napa, CA, April 1997.

[9] Xilinx Inc. JBits. www.xilinx.com/products/jbits/index.htm.

