
Design Web Services: Towards Service Reuse at
the Design Level

Wang Chu, Depei Qian
Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China

Email: sdchuw @ 163.com

Abstract—Service oriented software development has gained

more and more importance in the area of e-business. Most

researchers focus on the semantic description of Web

services and automated composition but pay little attention

to how to design Web services for supporting service reuse

effectively, thus a substantial amount of modeling and

programming is still required. In this paper, a pattern

oriented service design method is presented by which all

components of different abstraction levels are uniform in

regard to their specifications and composition mechanism.

Pattern oriented service design model provides a traceable

and explicit link from business components to software

components so that the top-down service reuse at design

level is supported, and the service maintainer profits from

the traceability because the impact of requirement or design

modifications can be better assessed. The semantic

information of component specification can support

semantics based component reuse. The pattern oriented

service design model can improve development productivity

by offering a better chance of reuse through better

modularity.

Index Terms—Web service design, E-business, Pattern

oriented design approach, Service reuse.

I. INTRODUCTION

Web service technologies provide the necessary
mechanisms to expose shareable resources over the
network and allow the resources to be consumed by users
across heterogeneous platforms, enhancing interaction
across organizations. Hence, Web service is fast
emerging as the technology of choice to build e-business
applications. The pace of business life is much quicker
today than in the past, thus the e-business applications
need to be deployed much quicker than earlier software
applications. Due to the rapid business pace today, the e-
business applications also need to be engineered for more
flexibility and adaptability [1]. Many companies are
adopting service-oriented architecture (SOA). SOAs offer
the potential to increase reuse, create new applications
from old and new services.

Adopting service oriented paradigm in practice for real
software and system development, however, has
uncovered several challenging issues, such as maintaining
consistent system configuration or integrity of
dynamically composed services, or identifying services at
the right level of granularity [2]. From a software

engineering perspective, e-business application
development has certain characteristics that make it
different from traditional software development. The e-
business applications have the following characteristics
[3]:

(1) Web applications constantly evolve. Managing the
evolution of an e-business application is a major
challenge—much more demanding than a traditional
software development.

(2) Web applications have a compressed development
schedule, and time pressure is heavy.

One of the main challenges in the development of e-
business applications is the provision of methodologies
that support the specification and design of compositions
of services. Traditional software engineering
methodologies are hardly applied in this scenario, where
the environment is highly dynamic. Novel design method
must be developed to support the refinement from the
business process to the final services. Similarly, novel
techniques must be devised to construct compositions of
services that can provide feedback to business analysis
and stakeholders, who can use this information to devise
new business strategies at design time. Currently, the
development and maintenance of most e-business
applications is chaotic and far from satisfactory. Existing
Web design approaches face a few issues as following:

• Lack of composition information (i.e. service
dependencies). The dependencies between a single
service specification and an overall architectural model
are a vital part of a methodology which supports life
cycle oriented service composition. Process lifecycle
management without a complete system model is not
possible [4]. Lack of composition information will hinder
service composition with respect to service contexts.

• Lack of formal semantics. Existing researches have
used UML extension to describe the web system’s
architecture. However, it is hard to detect the system
problems, such as correctness, consistency etc., of the
composition of Web services without a formal semantics
of web services architecture [5]. UML models contain
business elements in software model levels, e.g., objects,
operations, events, which are all finer-grained semantics,
and lacks of the ability to support coarse-grained
semantic modeling [6,7]. Compared with traditional
software design, service design embraces two distinctive
characteristics: 1) the business processes can be published

JOURNAL OF COMPUTERS, VOL. 4, NO. 3, MARCH 2009 193

© 2009 ACADEMY PUBLISHER

as coarse-grained services; 2) the services at different
granularities can be discovered, composed, and verified
by means of automated tools. Hence the work products
created during service design process should have formal
semantics.

• Lack of design information. Web services
composition require addressing various challenges related
to Web service discovery, orchestration, verification and
execution monitoring. However, existing Web
development approaches just provide the infrastructure
mechanisms for service composition at implementation
level. The apparent lack of design information is one of
the most significant problems of Web services
development. The design information is treated only as
non-software artifacts, i.e., as detailed documentation in
which design solutions are scrutinized based on a
standardized description format. This can create a major
maintenance problem as the programmers tend to lose
sight of the original design. The original design intents of
the Web services are obfuscated, or worse, have
disappeared altogether. It takes immense effort to
implement and test changes as the effects on other
services are hard to predict.

Given a set of published services, it is an open question
how the services can “drive” software development
through all phases of the software lifecycle. This suggests
that an important complement to Web services consists of
documentation and guidelines that aid developers during
requirements specification and analysis to achieve a
mapping from the problem domain to the abstractions
provided by the services. Clearly it is not enough to
search for reusable service components in a repository
late in the development lifecycle. It is necessary to
introduce a systematic service design methodology to
support the service reuse at higher abstraction levels. In
this paper, a pattern oriented service design approach is
presented that consists of three phases: business
analyzing, service modeling, and software component
development. In this solution, business entities and
services in a service-oriented application are specified as
components, and architecture is used as the blueprint for
service composition, using component relationships to
shorten the gap between business goal and services. We
use patterns to package software design expertise with
domain knowledge into conceptual building blocks upon
which more complex and more flexible software designs
can be built. Patterns constitute a promising attempt to
moving the emphasis in software engineering away from
service-based implementation towards service-based
problem solving. We enrich the component specification
by pre/post conditions, behavior, and constraints that
support automatic verification. Hence, the reliability of
service-composition can be improved by checking the
correct usage of services. In particular, the pattern
oriented service design is an approach for analysis and
design of services that support principles such as
reusability and componentization.

It is necessary to point out that this paper only
concentrates on the service design, other aspects of

service development such as publishing, ontology
extracting, and so on will not be discussed.

This paper is organized as follows. Section II outlines
the related work on service development approach.
Section III details the pattern oriented service design
process. Section IV depicts the semantic-based
component specification. Section V discusses service
reuse at design level. Finally, section VI gives the
conclusion and ongoing work.

II. RELATED WORK

Our work is most closely related to two classes of
research. The first is component based software
development, and the second is the service modeling and
composition technologies.

Daniela Barreiro Claro et al. propose SPOC (Semantic
based Planning for Optimal web services Composition).
The problem of composing web services is reduced into
four fundamental phases. The first one is planning which
determines the execution order of the tasks, a task is
considered as a service activity. The second one is
discovery that aims at finding candidate services for each
task in the plan. The third phase aims at optimizing
services composition, and, finally, the fourth concerns
execution. The composition of web services starts by
creating the initial plan based on task definitions. All the
definitions of existing tasks are located in a repository
that the planner can consult for obtaining task interfaces
[8].

In [9], Ronan Barrett et al. use Web service semantic
descriptions to assist the semi-automatic generation of the
distribution pattern model. Distribution patterns express
how a composed system is to be assembled and
subsequently deployed. Distribution pattern models are a
form of platform-independent model. These patterns are
considered compositional choreographies, where only the
message flow between services is modeled. Distribution
patterns are modeled using a UML activity diagram in
association with distribution pattern UML profile.

In [10], instead of having only a syntactic interface to a
component, Joseph R. Kiniry provides a higher-level
semantic specification. The key to this new solution is the
notion of semantic compatibility. Components are
described with domain-specific documentation extensions
called semantic properties. These properties have a
formal semantics that are specified in kind theory and are
realized in specific programming languages. The
semantic components are composed automatically
through the generation of “glue” code, and such
compositions are formally validated. Composition is a
constructive operation—its result is a new thing that has
some of the properties of its constituent pieces. The
semantics of the specific composition operation used
dictates the properties of the new construct.

Ioana Sora et al. address the composition problem of a
whole system according to a set of requirements by
dividing it into sub-problems of layered compositions.
The composition strategy is driven mainly by the
dependencies established between components by their
requirements. The automatic composition problem is the

194 JOURNAL OF COMPUTERS, VOL. 4, NO. 3, MARCH 2009

© 2009 ACADEMY PUBLISHER

following: given a set of requirements describing the
desired system, and a component repository that contains
descriptions of available components, the composition
process has to find a set of components and their
interactions to realize the desired functionality. The
requirements describing the desired system have to be
expressed as sets of required properties, defined in the
same vocabulary as used for the component descriptions.
Rather than enumerating desired system properties,
requirements are expressed in a sufficiently high
abstraction level domain specific language [11].

Fábio Zaupa et al. present a development environment
that focuses on application development process based on
services. This environment supports the generation of
Web applications based on the Service oriented
Architecture (SOA) and the product line approach. The
development process consists of a set of activities: 1)
Define the application domain; 2) Model the services
based on feature models of the product line approach; 3)
Instantiate the feature models; 4) Map the instantiated
feature model to a corresponding implementation
diagram; 5) Implement the service from the
implementation diagram; and 6) Generate applications
based on the defined services. The concepts of product
line are applied to support the modeling of domain
services. These services are configured to compose Web
applications. Features are abstractions to represent the
capabilities of Web applications. Each high-level feature
is realized through a domain service. Each service
encompasses the operations and data needed to realize the
associated feature [3].

Jaejoon Lee et al. propose an approach that identifies
reusable services at the right level of granularity. The
approach is adapted from the analysis technique of
product line engineering, which is the most successful
approach for establishing reuse in practice. They present
how reusable services can be identified and specified
based on features: these features identify variations of a
family of products from a user’s point of view and thus
will be the subjects of reconfigurations of service centric
systems at runtime [2].

Kevin Jin et al. present a business-oriented service
design and management methodology. The methodology
integrates software engineering techniques, such as
design patterns to develop IT solutions from a service
business perspective [12].

Software composition is the construction of software
applications from components that implement
abstractions pertaining to a particular problem domain.
Raising the level of abstraction is a time-honored way of
dealing with complexity, but the real benefit lies in the
increased flexibility: a system built from components
should be easy to recompose to address new requirements
[13].

III. PATTERN ORIENTED SERVICE DESIGN

Patterns represent platform and programming language
independent solutions for design problems in a certain
design context, which is an organizing means that
facilitate rapid mapping from business requirements to

infrastructure designs. Designers can make the
application development processes more manageable by
defining patterns [14,15].

A. Architecture Centric Design Approach

Architectures play a major role in determining the
quality and maintainability of a system. The overall
architecture of a software system has long been
recognized as important to its quality. Architectures are
the foundation for designing, communicating, and
constructing complex software systems. The intent of
architectures is to illustrate a software system’s
decomposition into the individual components, the
communication paths, and the processing resources.
Components are widely used for managing distributed
applications because they not only capture the software
architecture of managed applications as an assembly of
components but also permit to dynamically adapt these
applications to changing environments [16,17]. In this
paper, architecture is used to describe component
composition.

The architecture centric design follows the traditional
“divide-and-conquer” approach of defining architecture
that consists of three activities: 1) Goal decomposing: the
objective of this activity is to divide the system goal or
requirements into a number of sub-goals and assign them
to components. In this activity, “Responsibility-
Assignment” relationships between the system goal and
the components are created, and they are called -
relationships; 2) Architecture defining: the objective of
this activity is to construct architecture to achieve the
system goal. Determining cooperation rule(s) of the
components is the major work of this activity. “Take-
Part-In” relationships between the components and the
architecture are created, and they are called -
relationships; 3) Validating: the objective of this activity
is to check whether the constructed architecture meets the
system goal or requirements. In this activity, “Achieved-
By” relationship between the system goal and the
architecture is created, and it is called -relationship.

The divide-and-conquer procedure results in a design
pattern, written as L A{Ci|i N}, which contains
following component relationships: { i: L Ci|i N}, { i:
Ci A|i N}, and : L A, where L, C, and A represent
“Goal/requirements”, “Component”, and “Architecture”
respectively. The created relationships are used to trace
and to understand the architectures.

In this paper, the architecture centric design approach
is applied to all of the service design phases: business
analyzing, service modeling, and software component
development.

B. Business Analyzing

Business analyzing serves as the first step in service
design process. By analyzing the business operation and
structure of the organization, domain engineers construct
business patterns and identify what business functionality
is potentially of use to others.

We use the concept of business component as a means
to encapsulate the business goal, constituent partners,
activities, constraints, and so on.

JOURNAL OF COMPUTERS, VOL. 4, NO. 3, MARCH 2009 195

© 2009 ACADEMY PUBLISHER

(1) Identifying business pattern.
Firstly, domain engineers identify the strategic

business domains with appropriate stakeholders. This step
will allow the definition of business invariants used as
criteria to define the optimal e-business patterns, and then
specify the business patterns.

Business analyzing needs to be able to model all three
aspects: resources, organization and processes. As a first
step, build high-level, abstract models of the business
goals, business processes, and business entities, with the
aim of:

• identifying reusable business components that
provide services;

• identifying the business policies that must be obeyed
by business components;

• identifying common domain ontology.
Definition 1 (Business pattern) Let R0, {Ri|i N} be

business components, R be a business architecture, R0

only contains business goal, and there exist { i:
R0 Ri|i N} and { i: Ri R|i N}. If there exists :
R0 R, then R0, R, {Ri}, { i}, { i}, and constitute a
business pattern, written as R0 R{Ri|i N}.

Definition 2 (Business model) A business model is a
set of business patterns at different levels of granularity,
written as QM={R0

j
jR

j{Ri
j|i N}|j n}, where n is the

number of the business patterns.
Business patterns are specified at several levels of

granularity in a consistent way and can be used to
describe team, department, or whole organization.

(2) Validating business model.
Domain engineers assess the quality of the business

model, using automation tool whenever possible.
The e-business application development starts from the

premise that all businesses have a business design. A
business design describes how that business works – the
processes that it performs; the organizational structure;
the economic and market influences that affect how that
business achieves its goals; the rules and policies that
condition how the business operates. The foundations of
business design are business processes that are part of the
fabric of a business and contribute to how the business
functions and responds to its customers [18]. Business
analyzing helps domain engineers understand,
communicate, and learn more about the different aspects
of business processes in the organization.

A business pattern specifies the business architecture
for products, services and information flow. The business
patterns are the conceptual and architectural
implementation of the business strategy and are the
foundation for the service design [19].

C. Service Modeling

The objective of service modeling is to package
business operations as service components. This phase
results in hierarchical service composition patterns.
Service components perform useful business functions
through the well-defined interfaces. The main advantage
of service components is that they enable practical reuse
of assets both within and across organizations. Given a
business pattern specifying business goal, packaging

business functionality as service components involves
the following steps:

(1) Service component defining.
Designers decompose business goal, define service

components, and create specifications describing the
service component’s functionality.

(2) Architecture constructing.
The objective is to define cooperation rule(s) of the

service components.
(3) Composition pattern validating.
When a service composition pattern is finished, it is

time for developers and users to validate whether the
composition pattern meets the given business goal. It is
important to assess the operation of the service
composition patterns and the potential implications of
introduction of the services on the organization. This
evaluation should include: possible impact of the
introduction of the e-business applications on the
organization; the resulting changes in its business
processes, and so on.

Service modeling is a top-down procedure. The
business components within a business pattern offer high
level service components. After the big picture of
communication between coarse service components is
defined, the coarse service components are divided into
smaller service components which encapsulate business
processes. Iteration is needed here so that the right size of
services is identified and the relationships between
service components are modeled explicitly. The
component relationships form services dependency
graph. Service composition pattern not only supports
service reuse but also supports service relationships
reuse.

Definition 3 (Service composition pattern) Let
{Gi|i N} be service components, G be an architecture, R0

be a business component or service component that
contains business goal, and there exist { i:R0 Gi|i N}
and { i:Gi G|i N}. If there exists : R0 G, then R0, G,
{Gi}, { i}, { i}, and constitute a service composition
pattern, written as R0 G{Gi|i N}.

Definition 4 (Service model) A service model is a set
of service composition patterns at different abstract
levels, written as UM={R0

k
kG

k{Gi
k|i N}|k m}, where

m is the number of the patterns.
The service model may contain coarse-grained

business patterns.
The granularity of services must become more like

business activities that business components perform and
much less like fine-grained software interfaces. Fine-
grained services make interoperability between
applications and between business partners difficult
because the fine granularity is, at least in part, dictated by
technology that provisions their business capabilities. It is
far easier to interoperate at business activity level because
businesses largely perform common business tasks
(where interoperability often must take place) in similar
ways [20].

Service composition patterns describe how to compose
service components and provide a seamless record of
trace information from high-level business components

196 JOURNAL OF COMPUTERS, VOL. 4, NO. 3, MARCH 2009

© 2009 ACADEMY PUBLISHER

down to simple service components. The simple service
components specify software requirements and
constraints that are used to design software components.

Modeling service at the architectural level is in its
embryonic stage, which is used to specify high-level
compositional view of a software application [21].

D. Software Component Development

Software component development consists of two
activities: software component design and software
component implementation. Software component
development results in a software component model.

Software component design is an architecture centric
design procedure which is based on decomposing the
software requirements contained in service components.
The top-level software requirements are decomposed into
coarse conceptual components. The conceptual
components and the cooperation rule are aggregated into
a logical architecture. The logical architecture is validated
whether to meet the software requirements. The coarse
conceptual components are, in turn, decomposed into fine
conceptual components. When all of the conceptual
components can be implemented or be used to select pre-
existing software components, component design is
finished.

Definition 5 (Software component composition
pattern) Let {Ti|i N} be conceptual components or
existing software components, T be an architecture, G0 be
a service component or conceptual component that
contains software requirements, and there exist
{ i:G0 Ti|i N} and { i:Gi T|i N}. If there exists
:G0 T, then G0, T, {Ti}, { i}, { i}, and constitute a

software component composition pattern, written as
G0 T{Ti|i N}.

Definition 6 (Software component model) A software
component model is a set of software component
composition patterns, written as TM={G0

l
lT

l{Ti
l|i N}|

l q}, where q is the number of the patterns.
Service model and software component model

constitute Web service design model.
Definition 7 (Service design model) A service design

model is a 3-tuple H=(QM, UM, TM), where QM, UM, TM

are business model, service model, and software
component model respectively.

The pattern oriented design process results in a
hierarchical pattern model. The different components at
different abstract levels can be traced by component
relationships within the patterns.

An e-business application is a living system. It
continues to evolve, change, and grow. Poor design and
infrastructure have caused many Web applications to be
unable to support the demands placed on them, so they
have therefore failed [1]. A sound design model must be
in place to support the evolution of an e-business
application in a controlled, but flexible and consistent
manner. The pattern oriented service design approach
helps to create a reusable design model that will allow
evolution and maintenance of an e-business application.

The pattern oriented service design approach is based
on the idea that each service can be traced back to a

certain business component. Having identified the related
design patterns, one can document them with formal
techniques and provide them as reusable and evolvable
assets. Thus, the service based application development
becomes such activities as specialization, alteration, and
assembly of the patterns.

IV. SEMANTIC-BASED COMPONENT SPECIFICATION

Semantics is one of the key elements for the automated
composition of components. Web services need a formal
model to facilitate the automated composition of
components at varying levels of granularity [21].

A component (i.e., business component, service
component, software component) C can be characterized
as: “C = (Features + Resources + Constituent partners
+Operations+ Choreography) + Behavior + Constraints”.

Features contain three attributes: Domain, Name, and
Synonyms. Domain gives the area of interest of the
component. The Synonyms attribute contains a set of
alternative characteristics of Name. Components take part
in architecture through their Operations. Constituent
Partners are components that cooperate with each other
and regulated by Choreography.

Operations are described at three levels: syntactic,
semantic, and operational.

Syntactic properties: Operations are syntactically
described by the following attributes: name, mode, input,
and output. Each operation has input parameters, output
parameters, or both. A parameter has a name and type
associated with it.

Semantic properties: The semantics of Operations is
crucial to component discovery. It is necessary to include
a semantic specification for the meaning of the
operations. The information at the “semantic” level can
be described by using formalisms like the pre/post
conditions. Semantic properties defined for operations
include Pre-condition, Post-condition, and other domain
specific properties.

Operational properties: We propose to provide
Scenarios as operational properties that can be used as
interpretation of Operations to understand component
function and to validate constructed patterns. In addition,
Scenarios can be used to validate whether the discovered
component satisfies business goal, and be used to conduct
regression test when the developer/provider change the
component implementation, leaving the interfaces
unchanged.

Given the dynamic nature of the SOA environment,
continuous evaluation of service components is one
approach for achieving a level of trust. Standard
verification techniques are not sufficient [22]. Online
verification is required. The pre- and post-conditions and
scenarios can support online verification.

In the component specification, Behavior describes
another kind of semantic information of Operations by
using formalisms like finite state transition system. Not
all the operation sequences are permitted. Behavior is
used to determine valid order of Operations.

Resources record resources that can be accessed by the
specified component.

JOURNAL OF COMPUTERS, VOL. 4, NO. 3, MARCH 2009 197

© 2009 ACADEMY PUBLISHER

Besides the previous information, it is also necessary
to specify another kind of semantic information
concerning with the interaction “protocols” (also named
“choreography”). Choreography determines the
interoperability of Constituent partners.

Constraints refer to non-functional “properties” of the
component, i.e., security, reliability, performance
properties, or business rules. In fact it is often the case
that several discovered components possess the same
functionalities. The automated selection of one
component among these functionally equivalent
components may require constraints compatibility.

Definition 8 (Component description) A component
description is a tuple D=(, , E), where:

• is a set containing signatures of component
description. The signatures are semantically annotated
using appropriate domain ontology.

• is a set of functional goals (operations) and
constraints.

• E is the context of , including Choreography,
Constituent Partners, and so on.

Component description is used to define component
specification independent of specific description logic.
Component description can use web services technology.
Web services technologies are a collection of
technologies that allow services to expose interfaces in
ways that are discoverable, network accessible, and cross-
platform. By exposing interfaces in this way, they will be
usable in the widest variety of environments.

Definition 9 (Scenario) Given a component description
D=(, , E), a scenario for a component operation is a
pair (M, V), where:

• M is a transition system structure (W, wo, ,), is a
set of activities of the given operation.

• V is a valuation function: V: F W S, F is formulas
over (e.g., pre-condition and post-condition), S is the
sort of a given formula f. V(f)(w) returns the value of f at
state w.

Scenario can be used to test the component
compositions.

Definition 10 (Component specification) A component
specification is a tuple C=(D, B), D=(, , E), B is a set

of scenarios, and B .
 is defined as following: Given a operation

:<a(p,o)> , where p is input, o is output, and are
precondition and post-condition of a(p,o) respectively, it
is said to be satisfied by a scenario b=(M, V), M=(W, wo,

,), written as b :<a(p,o)> , iff there exists path:
w0w1...wn, <wi, wj> , i, j n, holds at w0 (V()(w0) is
true), when a(p,o) is executed, the state arrives at wn, and

 holds at wn (V()(wn) is true).
By integrating scenarios into component specification,

the operational requirement of the component
composition is met. The behavior and properties of the
composite component can be checked by automated
tool[s].

The pattern-oriented service design focuses on
business patterns, which it considers as reusable
elements. This promotes the idea of viewing an e-
business application as federations of services

components connected via well-specified choreography
that define service interaction.

V. SERVICE REUSE AT THE DESIGN LEVEL

Constructing e-business applications by composing
prefabricated Web service is an attractive vision for
software development. In this paper, architecture centric
de-composing/composing mechanisms and semantic-
based component specifications are introduced to make
the Web service tractable and reusable.

In service based e-business development, service
composition is done in three steps: 1) Business
architecting: Architects define the business requirements
and specify business components, interconnections and
configuration; 2) Application planning: By applying
service design model, lower-level system skeleton will be
produced according to higher-level architecture. The
skeleton includes choreography and placeholders for
services, but also the constraints guiding later
composition. Service design model supports top-down
service integration; 3) Application assembling: While all
services are discovered or implemented in lower-level
languages, automated tools are used to integrate the
skeleton and services. Component relationships within
patterns can support composition checking which can be
done by composition tool.

The application planning problem is the following:
Given a business model describing the desired system,
and a pattern repository that contains descriptions of
available architectural patterns, the planning process has
to find a set of patterns to map business goal into
services. The requirements describing the desired system
have to be expressed in the same ontology as used for the
component descriptions. The requirements should be
expressed in a sufficiently high abstraction level.

The top-down service reuse process through stepwise
refinements is depicted in Figure 1. The overall building
process is driven by the business requirements. The
requirements for the system are put on the main flow of
the system and propagated from that point on. The
addition of new components on the flow occurs according
to the current requirements, which are those propagated
from the initial requirements together with those of the
new introduced components. When a requirement
matches with business component in service design
model then the discovered coarse service is reused.
Otherwise if that requirement has sub-requirements then
it will have to be fine-tuned, so that its internal sub-
requirements are used to discover fine-grained
components. A solution is considered complete when the
current requirement set becomes empty. It is possible that
for certain sets of requirements no solution can be found.

We explain service composition process in Figure 1 as
following cases:

Case 1: When business goal g matches with the
business goal g of business pattern g r{r1, r2}, the
business pattern and related services are reused. This is
coarse business process integration.

Case 2: Business goal g doesn’t match with the
business goal of business patterns within business model,

198 JOURNAL OF COMPUTERS, VOL. 4, NO. 3, MARCH 2009

© 2009 ACADEMY PUBLISHER

thus the goal g is decomposed into sub-goals rx and ry.
Sub-goal rx matches with the business goal r1 within
business pattern g r{r1, r2}, hence service composition
pattern r1 1r1 {r11, r12} and related services are reused.

Case 3: Sub-goal ry is further decomposed into goals
ry1 and ry2. Goal ry2 matches with a simple service rn2, and
service rn2 is reused. Goal ry1 is decomposed into ry11 and
ry12 that are used as requirements specification to select
existing software component or to develop new software
components.

An increasing number of software corporations are
realizing that most software development projects are not
one-of–a-kind efforts. They can develop common
component assets for future contracts and products in the
same application domain. Thus, they can achieve large-
scale productivity gains. Hence new software process
model is needed that explicitly distinguishes between
software development for reuse which creates core
component assets and software development with reuse
which uses core component assets to create products. In
order to support the top-down service reuse from business
model to software components, in this paper, we apply
the pattern oriented approach to service design by which
a traceable service design model is constructed.

It is important to ensure that the service design model
is usable. To be usable, the service design model must be
easy to trace, to communicate to stakeholders and to
maintain. The traceability is essential to reuse the service
design model. Software maintenance profits from
traceability because the maintainers understand why a
system was built the way it was, and can better assess the
impact of requirement or design modifications. During
development of an e-business application, engineers can
select the services from the service design model that
meet stakeholders’ needs, and then assemble them.

In the architecture-centric service design process,
model transformations from business model and
requirements model to component design and component
implementation are seamless. The traceability between
different models at different abstraction levels can be
captured and maintained as a side effect of the design
process of service design model. In addition, architectural
patterns are used to model and to document service
design model, so that the service design model is
traceable and reusable.

VI. CONCLUSION AND FUTURE WORK

Realizing service reuse is more challenging than
realizing the reuse of traditional software component.
That is because the service reuse process is conducted
automatically at runtime. Compared with the traditional
service design methods, the main features of our
approach are listed as following:

(1) Domain-specific pattern reuse: From software
engineering perspective, the business patterns tend to
recur, and the best service design practices tend to recur.
Patterns are a means of providing reusable solutions to
repeating problems.

(2) Service reuse: The service design model supports
service reuse at different levels of granularity. Coarse-
grained services are more reusable because any changes
of the implementation occur inside the services and are
hidden from the user. This enables services to be adapted

ry11

ry12

ry1

ry2

Pattern
Selecting

Cm

Cm2

Cm1

rm

rn

rn2r12

r1

rn1r11

r

Pattern
Selecting

Pattern
Selecting

Pattern
Selecting

Top-down component reuse

g

rx

ry

g

r1

r2

r1 rn

Pattern selection

process

Service design

model

Figure 1. Pattern based service reuse

Service model Software Component model

… …

Business model

JOURNAL OF COMPUTERS, VOL. 4, NO. 3, MARCH 2009 199

© 2009 ACADEMY PUBLISHER

and reused more easily. In addition, the semantic
information of components and explicit component
relationships can support service discovery effectively.
Business patterns separate concerns between the business
logic of the e-business application and the service
components, which also improves reusability of the
services. The service design model is a hierarchical
structure that supports top-down component reuse, that is,
the service reuse is supported when the e-business
application is designed.

(3) Service composition: The architectures within the
patterns can be used to guide service composition, which
contain the configuration skeletons for component
composition. The behavior and scenarios of the
component specifications support runtime verification of
the service composition.

(4) Reduction of time and development costs: As the
services of e-business application evolve, the major
development effort concentrates on the business logic of
each new application. The patterns are matched, and the
services only need to be searched and configured to the e-
business architecture. This reuse of services reduces
much of the necessary modeling and programming
needed to construct an e-business application.

(5) Maintainability. Patterns are used to represent
service design information while simultaneously
providing a traceable and explicit link from business
components to software components. The patterns map
business goal into services and software components. The
service maintainer profits from the traceability because
he/she can understand why a service was designed the
way it was, and can better assess the impact of design
modifications.

Future work includes automated means for semantics
based pattern matching, pattern management, and pattern
test.

REFERENCES

[1] San Murugesan, Athula Ginige. “Web Engineering:
Introduction and Perspectives”. In: Software Engineering

for Modern Web Applications: Methodologies and

Technologies. IGI Publishing, 2008. pp.1-24.
[2] Jaejoon Lee, Dirk Muthig, Minseong Kim, Sooyong Park.

“Identifying and Specifying Reusable Services of Service
Centric Systems through Product Line Technology”.
Proceedings of the First Workshop on Service-Oriented

Architectures and Software Product Lines. May 2008.
pp.D1-D11.

[3] Fábio Zaupa, Itana M. S. Gimenes, Don Cowan, Paulo
Alencar, Carlos J. P. Lucena. “A Service-oriented Process
to Develop Web Applications”. Journal of Universal

Computer Science, Vol. 14, No. 8, 2008. pp.1368-1387.
[4] Konrad Pfadenhauer, Schahram Dustdar, Burkhard Kittl.

“Challenges and Solutions for Model Driven Web Service
Composition”. Proceedings of 3rd International Workshop

on Distributed and Mobile collaboration (DMC), 2005.
[5] Yujian Fu, Zhijiang Dong, Xudong He. “Formalizing and

Validating UML Architecture Description of Web
Systems”. Proceedings of ICWE’06 Workshops, 2006.

[6] Zhongjie Wang, Xiaofei Xu, and Dechen Zhan. “A Survey
of Business Component Identification Methods and

Related Techniques”. International Journal of Information

Technology. Vol. 2 No 4, 2006. pp.229-238.
[7] Jaap Gordijn and Hans Akkermans. “Designing and

Evaluating E-Business Models”. IEEE Intelligent Systems.
July/August 2001. pp.11-17.

[8] Daniela Barreiro Claro, and Patrick Albers, and Jin-Kao
Hao. “Web services composition”. In Semantic Web

Service, Processes and Application. Springer, 2006.
pp.195-225.

[9] Ronan Barrett, Claus Pahl. “Semi-Automatic Distribution
Pattern Modeling of Web Service Compositions using
Semantics”. Proceedings of the 10th IEEE International

Enterprise Distributed Object Computing Conference.
2006, pp.417–422.

[10] Joseph R. Kiniry. “Semantic Component Composition”.
Proceedings of the Third International Workshop on

Composition Languages, 2003.
[11] Ioana Sora, Pierre Verbaeten, Yolande Berbers. “Using

Component Composition for Self-customizable Systems”.
Proceedings of Workshop on Component-Based Software

Engineering: Composing Systems from Components, 2002.
pp.23-26.

[12] Kevin Jin, Pradeep Ray. “Business-oriented Development
Methodology for IT Service Management”. Proceedings of

the 41st Hawaii International Conference on System

Sciences, 2008.
[13] Oscar Nierstrasz, Theo Dirk Meijler. “Research Directions

in Software Composition”. ACM Computing Surveys, Vol.
27, No. 2, 1995. pp.262-264.

[14] Hampel A. & Bernroider E. “A Component-based
Framework for Distributed Business Simulations in E-
Business Environments”. Proceedings of the Fourth

International Conference on Electronic Business-Shaping

Business Strategy in a Networked World. pp.370-375.
[15] Bruce Robertson, Val Sribar. “The e-Business Challenge”.

Enriching the Value Chain: Infrastructure Strategies

Beyond the Enterprise. Intel Press IT Best Practices Series,
2006.

[16] Anthony I. Wasserman. “Principles for the Design of Web
Applications”. http:// www. se-hci.org/bridging /interact

2005 /07_Wasserman.pdf. 2005.
[17] Julie Street, Hassan Gomaa. “Software Architectural Reuse

Issues in Service-Oriented Architectures”. Proceedings of

the 41st Hawaii International Conference on System

Sciences, 2008.
[18] Michael P. Papazoglou, Paolo Traverso, Schahram

Dustdar, Frank Leymann. “Service-Oriented Computing: a
Research Roadmap”. Int. J. Cooperative Inf. System. 17
(2): 223-255, 2008.

[19] Alexander Osterwalder, Yves Pigneur. “An e-Business
Model Ontology for Modeling e-Business”. Proceedings of

the 15th Bled Electronic Commerce Conference e-Reality:

Constructing the e-Economy, 2002.
[20] Thomas B Winans, John Seely Brown. “Policy-driven

Service Oriented Architectures”. Working Paper, Deloitte
Development LLC., May 2008.

[21] Nikola Milanovic, Miroslaw Malek. “Architectural
Support for Automatic Service Composition”. Proceedings

of the IEEE International Conference on Services

Computing (SCC 2005), USA, 2005, pp.133-140.
[22] Leonardo Salayandía, Ann Q. Gates. “Towards a workflow

management system for service oriented modules”. Int. J.

Simulation and Process Modelling, Vol.3, No.1-2, 2007.
pp.18-25.

200 JOURNAL OF COMPUTERS, VOL. 4, NO. 3, MARCH 2009

© 2009 ACADEMY PUBLISHER

