
Some Parallel Algorithms forInteger FactorisationRichard P. BrentOxford University Computing Laboratory,Wolfson Building, Parks Road,Oxford OX1 3QD, UKrpb@comlab.ox.ac.ukhttp://www.comlab.ox.ac.uk/oucl/people/richard.brent.html3 June 1999(revised 30 August 1999)
Abstract. Algorithms for �nding the prime factors of large compositenumbers are of practical importance because of the widespread use ofpublic key cryptosystems whose security depends on the presumed di�-culty of the factorisation problem. In recent years the limits of the bestinteger factorisation algorithms have been extended greatly, due in partto Moore's law and in part to algorithmic improvements. It is now rou-tine to factor 100-decimal digit numbers, and feasible to factor numbersof 155 decimal digits (512 bits). We describe several integer factorisa-tion algorithms, consider their suitability for implementation on parallelmachines, and give examples of their current capabilities.

Copyright c
 1999, R. P. Brent and Springer-Verlag. Expanded version of invitedpaper to be presented at Euro-Par '99, Toulouse, 1{3 Sept. 1999. Shorter version [11]in LNCS 1685 (1999), 1{22. See http://www/springer.de/comp/lncs/index.htmlrpb193 typeset using LATEX2e

21 IntroductionAny positive integer N has a unique prime power decompositionN = p�11 p�22 � � � p�kk(p1 < p2 < � � � < pk primes, �j > 0). This result is easy to prove, but thestandard proof gives no hint of an e�cient algorithm for computing the primepower decomposition. In order to compute it, we need {1. An algorithm to test whether an integer N is prime.2. An algorithm to �nd a nontrivial factor f of a composite integer N .Given these components there is a simple recursive algorithm to compute theprime power decomposition.Fortunately or unfortunately, depending on one's point of view, problem 2is generally believed to be hard. There is no known deterministic or randomisedpolynomial-time1 algorithm for �nding a factor of a given composite integer N .This empirical fact is of great interest because the most popular algorithm forpublic-key cryptography, the RSA algorithm [81], would be insecure if a fastinteger factorisation algorithm could be implemented [67].In this paper we survey some of the most successful integer factorisationalgorithms. Since there are already several excellent surveys emphasising thenumber-theoretic basis of the algorithms, we concentrate on the computationalaspects, and particularly on parallel/distributed implementations of the algo-rithms.1.1 Primality testingThere are deterministic primality testing algorithms whose worst-case runningtime on a sequential computer is O((logN)c log log logN), where c is a moderateconstant. These algorithms are practical for numbers N of several hundred deci-mal digits [1, 21, 60]. If we are willing to accept a very small probability of error,then faster (polynomial-time) probabilistic algorithms are available [38, 62, 77].Thus, in this paper we assume that primality testing is easy and concentrate onthe more di�cult problem of factoring composite integers.1.2 Public key cryptographyAs we already observed, large primes have a signi�cant practical application {they can be used to construct public key cryptosystems2. The best-known is theRSA system, named after its inventors Rivest, Shamir and Adleman [81]. The1 For a polynomial-time algorithm the expected running time should be a polynomialin the length of the input, i.e. O((logN)c) for some constant c.2 A concept introduced by Di�e and Hellman [29]. Also known as asymmetric or openencryption key cryptosystems [84, 92].

3security of RSA depends on the (assumed) di�culty of factoring the product oftwo large primes. This is the main practical motivation for the current interest ininteger factorisation algorithms. Of course, mathematicians have been interestedin factorisation algorithms for hundreds of years, but until recently it was notknown that such algorithms were of \practical" importance.In the RSA system we usually take N = p1p2, where p1; p2 are large primes,each approximately equal, but not too close, to n1=2. The product N is madepublic but the factors p1; p2 are kept secret. There is an implementation ad-vantage in using a product of three large primes, N = p1p2p3, where each piis approximately N1=3. Some of the computations can be done mod pi and theresults (mod N) deduced via the Chinese remainder theorem. This is faster if weuse three primes instead of two. On the other hand, the security of the systemmay be compromised because N , having smaller prime factors, may be easier tofactor than in the two-prime case.1.3 The discrete logarithm problemThe di�culty of the discrete logarithm problem [66, 50] was used by Di�e andHellman [29] to construct the Di�e-Hellman key agreement protocol. This well-known protocol allows two parties to establish a secret key through an exchangeof public messages. Related public-key algorithms, such as the El Gamal algo-rithm [32, 33, 84], also depend on the di�culty of the discrete logarithm problem.These public-key algorithms provide practical alternatives to the RSA algorithm.Although originally considered in the setting of the multiplicative groupGF(p)�of GF(p) (the �nite �eld with a prime number p of elements), they generaliseto any �nite group G. There may be advantages (increased speed or securityfor a �xed size) in choosing other groups. Neal Koblitz [39] and Victor Millerindependently proposed using the group of points on an elliptic curve, and thisis a subject of much current research.We do not consider algorithms for discrete logarithms in this paper. However,it is interesting to note that in some cases integer factorisation algorithms haveanalogues which apply to the discrete logarithm problem [66, 95, 96]. This is lessoften true for discrete logarithms over elliptic curves, which is one reason for thepopularity of elliptic curves in cryptographic applications [51, 52].1.4 Parallel algorithmsWhen designing parallel algorithms we hope that an algorithm which requirestime T1 on a computer with one processor can be implemented to run in timeTP � T1=P on a computer with P independent processors. This is not alwaysthe case, since it may be impossible to use all P processors e�ectively. However,it is true for many integer factorisation algorithms, provided P is not too large.The speedup of a parallel algorithm is S = T1=TP . We aim for a linearspeedup, i.e. S = �(P).

42 Multiple-Precision ArithmeticBefore describing some integer factorisation algorithms, we comment on theimplementation of multiple-precision integer arithmetic on vector processors andparallel machines. Multiple-precision arithmetic is necessary because the numberN which we want to factor may be much larger than can be represented in asingle computer word (otherwise the problem is trivial).2.1 Carry propagation and redundant number representationsTo represent a large positive integer N , it is customary to choose a convenientbase or radix � and express N asN = t�1X0 dj�j ;where d0; : : : ; dt�1 are \base � digits" in the range 0 � dj < �. We choose � large,but small enough that � � 1 is representable in a single word [4, 38]. Considermultiple-precision addition (subtraction and multiplication may be handled in asimilar way). On a parallel machine there is a problem with carry propagationbecause a carry can propagate all the way from the least to the most signi�cantdigit. Thus an addition takes worst case time �(t), and average time �(log t),independent of the number of processors.The carry propagation problem can be reduced if we permit digits dj outsidethe normal range. Suppose that we allow �2 � dj � � + 1, where � > 4. Thenpossible carries are in f�1; 0; 1; 2g and we need only add corresponding pairsof digits (in parallel), compute the carries and perform one step of carry prop-agation. It is only when comparisons of multiple-precision numbers need to beperformed that the digits have to be reduced to the normal range by fully propa-gating carries. Thus, redundant number representation is useful for speeding upmultiple-precision addition and multiplication. On a parallel machine with su�-ciently many processors, such a representation allows addition to be performedin constant time.2.2 High level parallelismRather than trying to perform individual multiple-precision operations rapidly,it is often more convenient to implement the multiple-precision operations inbit or word-serial fashion, but perform many independent operations in parallel.For example, a trial of the elliptic curve algorithm (x7) involves a predeterminedsequence of additions and multiplications on integers of bounded size. Our im-plementation on a Fujitsu VPP 300 performs many trials concurrently (on one ormore processors) in order to take advantage of each processor's vector pipelines.

52.3 Use of real arithmeticMost supercomputers were not designed to optimise the performance of ex-act (multiple-precision) integer arithmetic. On machines with fast
oating-pointhardware, e.g. pipelined 64-bit
oating point units, it may be best to representbase � digits in
oating-point words. The upper bound on � is imposed by themultiplication algorithm { we must ensure that �2 is exactly representable in a(single or double-precision)
oating-point word. In practice it is convenient toallow some slack { for example, we might require 8�2 to be exactly representable.On machines with IEEE standard arithmetic, we could use � = 224.2.4 Redundant representations mod NMany integer factorisation algorithms require operations to be performed moduloN , where N is the number to be factored. A straightforward implementationwould perform a multiple-precision operation and then perform a division byN to �nd the remainder. Since N is �xed, some precomputation involving N(e.g. reciprocal approximation) may be worthwhile. However, it may be fasterto avoid explicit divisions, by taking advantage of the fact that it is not usuallynecessary to represent the result uniquely.For example, consider the computation of x � ymod N . The result isr = x � y � q � N and it may be su�cient to choose q so that 0 � r < 2N(a weaker constraint than the usual 0 � r < N). To compute r we multiply xby the digits of y, most signi�cant digit �rst, but modify the standard \shiftand add" algorithm to subtract single-precision multiples of N in order to keepthe accumulated sum bounded by 2N . Formally, a partial sum s is updated bys � � s+ yj � x � qj �N , where qj is obtained by a division involving only afew leading digits of � � s+ yj � x and N .Alternatively, a technique of Montgomery [53] can be used to speed up mod-ular arithmetic.2.5 Computing inverses mod NIn some factorisation algorithms we need to compute inverses mod N . Supposethat x is given, 0 < x < N , and we want to compute z such that xz = 1 mod N .The extended Euclidean algorithm [38] applied to x and N gives u and v suchthat ux+ vN = GCD(x;N):If GCD(x;N) = 1 then ux = 1 mod N , so z = u. If GCD(x;N) > 1 thenGCD(x;N) is a nontrivial factor of N . This is a case where failure (in �ndingan inverse) implies success (in �nding a factor) !

63 Integer Factorisation AlgorithmsThere are many algorithms for �nding a nontrivial factor f of a composite inte-ger N . The most useful algorithms fall into one of two classes {A. The run time depends mainly on the size of N; and is not strongly dependenton the size of f . Examples are {� Lehman's algorithm [43], which has worst-case run time O(N1=3).� The Continued Fraction algorithm [61] and the Multiple PolynomialQuadratic Sieve (MPQS) algorithm [72, 89], which under plausible as-sumptions have expected run time O(exp(pc lnN ln lnN)); where c is aconstant (depending on details of the algorithm). For MPQS, c � 1.� The Number Field Sieve (NFS) algorithm [44, 45], which under plausi-ble assumptions has expected run time O(exp(c(lnN)1=3(ln lnN)2=3));where c is a constant (depending on details of the algorithm and on theform of N).B. The run time depends mainly on the size of f; the factor found. (We canassume that f � N1=2.) Examples are {� The trial division algorithm, which has run time O(f � (logN)2).� Pollard's \rho" algorithm [71], which under plausible assumptions hasexpected run time O(f1=2 � (logN)2).� Lenstra's Elliptic Curve (ECM) algorithm [49], which under plausible as-sumptions has expected run time O(exp(pc ln f ln ln f) �(logN)2); wherec � 2 is a constant.In these examples, the time bounds are for a sequential machine, and the term(logN)2 is a generous allowance for the cost of performing arithmetic operationson numbers which are O(N2). If N is very large, then fast integer multiplicationalgorithms [26, 38] can be used to reduce the (logN)2 term.Our survey of integer factorisation algorithms in xx4{10 below is necessarilycursory. For more information the reader is referred to the literature [7, 14, 56,74, 80].3.1 Quantum factorisation algorithmsIn 1994 Shor [86, 87] showed that it is possible to factor in polynomial expectedtime on a quantum computer [27, 28]. However, despite the best e�orts of severalresearch groups, such a computer has not yet been built, and it remains unclearwhether it will ever be feasible to build one. Thus, in this paper we restrict ourattention to algorithms which run on classical (serial or parallel) computers [93].The reader interested in quantum computers could start by reading [76, 94].

74 Pollard's \rho" AlgorithmPollard's \rho" algorithm [5, 71] uses an iteration of the formxi+1 = f(xi) mod N; i � 0;where N is the number to be factored, x0 is a random starting value, and f is anonlinear polynomial with integer coe�cients, for examplef(x) = x2 + a (a 6= 0;�2 mod N) :Let p be the smallest prime factor of N , and j the smallest positive indexsuch that x2j = xj (mod p). Making some plausible assumptions, it is easy toshow that the expected value of j is E(j) = O(p1=2). The argument is related tothe well-known \birthday" paradox { the probability that x0; x1; : : : ; xk are alldistinct mod p is approximately(1� 1=p) � (1� 2=p) � � � (1� k=p) � exp��k22p � ;and if x0; x1; : : : ; xk are not all distinct mod p then j � k.In practice we do not know p in advance, but we can detect xj by takinggreatest common divisors. We simply compute GCD (x2i�xi; N) for i = 1; 2; : : :and stop when a GCD greater than 1 is found.4.1 Pollard rho examplesAn early example of the success of a variation of the Pollard \rho" algorithmis the complete factorisation of the Fermat number F8 = 228 + 1 by Brent andPollard [12]. In fact F8 = 1238926361552897 � p62;where p62 is a 62-digit prime.The Cunningham project [13] is a collaborative e�ort to factor numbers ofthe form an � 1, where a � 12. The largest factor found by the Pollard \rho"algorithm during the Cunningham project is a 19-digit factor of 22386+1 (foundby Harvey Dubner on a Dubner Cruncher [15]). Larger factors could certainlybe found, but the discovery of ECM (x7) has made the Pollard \rho" algorithmuncompetitive for factors greater than about 10 decimal digits [6, Table 1].4.2 Parallel rhoParallel implementation of the \rho" algorithm does not give linear speedup3. Aplausible use of parallelism is to try several di�erent pseudo-random sequences3 Variants of the \rho" algorithm can be used to solve the discrete logarithm problem.Recently, van Oorschot and Wiener [68, 69] have shown that a linear speedup ispossible in this application.

8(generated by di�erent polynomials f). If we have P processors and use P di�er-ent sequences in parallel, the probability that the �rst k values in each sequenceare distinct mod p is approximately exp(�k2P=(2p)); so the speedup is �(P 1=2).Recently Crandall [25] has suggested that a speedup �(P=(logP)2) is possible,but his proposal has not yet been tested.5 The Advantages of a Group OperationThe Pollard rho algorithm takes xi+1 = f(xi) mod N where f is a polynomial.Computing xn requires n steps. Suppose instead that xi+1 = x0�xi where \�" isan associative operator, which for the moment we can think of as multiplication.We can compute xn in O(logn) steps by the binary powering method [38].Let m be some bound assigned in advance, and let E be the product of allmaximal prime powers qe, qe � m. Choose some starting value x0, and considerthe cyclic group <x0> consisting of all powers of x0 (under the associativeoperator \�"). If this group has order g whose prime power components arebounded by m, then gjE and xE0 = I; where I is the group identity.We may consider a group de�ned mod p but work mod N , where p is anunknown divisor of N . This amounts to using a redundant representation forthe group elements. When we compute the identity I , its representation modN may allow us to compute p via a GCD computation (compare Pollard's rhoalgorithm). We give two examples below: Pollard's p�1 algorithm and Lenstra'selliptic curve algorithm.6 Pollard's p� 1 AlgorithmPollard's \p� 1" algorithm [70] may be regarded as an attempt to generate theidentity in the multiplicative group GF(p)�. Here the group operation \�" isjust multiplication mod p, so (by Fermat's theorem) gjp� 1 andxE0 = I) xE0 = 1 (mod p)) pjGCD (xE0 � 1; N)6.1 p� 1 exampleThe largest factor found by the Pollard \p�1" algorithm during the Cunninghamproject is a 32-digit factorp32 = 49858990580788843054012690078841of 2977 � 1. In this casep32 � 1 = 23 � 5 � 13 � 19 � 977 � 1231 � 4643 � 74941 � 1045397 � 11535449

96.2 Parallel p� 1Parallel implementation of the \p� 1" algorithm is di�cult, because the innerloop seems inherently serial. At best, parallelism can speed up the multiple preci-sion operations by a small factor (depending on logN but not on p). Parallelismcan be used e�ectively for the second phase (see x7.2) but the �rst phase is aserial bottleneck.6.3 The worst case for p� 1In the worst case, when (p � 1)=2 is prime, the \p � 1" algorithm is no betterthan trial division. Since the group has �xed order p � 1 there is nothing tobe done except try a di�erent algorithm. In the next section we show that it ispossible to overcome the main handicaps of the \p� 1" algorithm, and obtainan algorithm which is easy to implement in parallel and does not depend on thefactorisation of p� 1.7 Lenstra's Elliptic Curve AlgorithmIf we can choose a \random" group G with order g close to p, we may be able toperform a computation similar to that involved in Pollard's \p� 1" algorithm,working in G rather than in GF(p)�. If all prime factors of g are less than thebound m then we �nd a factor of N . Otherwise, repeat with a di�erent G (andhence, usually, a di�erent g) until a factor is found. This is the motivation forH. W. Lenstra's elliptic curve algorithm (or method) (ECM).A curve of the form y2 = x3 + ax+ b (1)over some �eld F is known as an elliptic curve. A more general cubic in x and ycan be reduced to the form (1), which is known as the Weierstrass normal form,by rational transformations, provided char(F) 6= 2 or 3.There is a well-known way of de�ning an Abelian group (G; �) on an ellipticcurve over a �eld. Formally, if P1 = (x1; y1) and P2 = (x2; y2) are points on thecurve, then the point P3 = (x3; y3) = P1�P2 is de�ned by {(x3; y3) = (�2 � x1 � x2; �(x1 � x3)� y1); (2)where � = � (3x21 + a)=(2y1) if P1 = P2(y1 � y2)=(x1 � x2) otherwise.The identity element in G is the \point at in�nity", (1;1).From now on we write \�" as \+", since this is standard in the elliptic curveliterature. Thus (1;1) is the \zero" element of G, and is written as 0.The geometric interpretation of P1 + P2 is straightforward: the straight lineP1P2 intersects the elliptic curve at a third point P 03 = (x3;�y3), and P3 is the

10re
ection of P 03 in the x-axis. We refer the reader to a suitable text [20, 37, 42,88] for an introduction to the theory of elliptic curves.In Lenstra's algorithm [49] the �eld F is the �nite �eld GF(p) of p elements,where p is a prime factor of N . The multiplicative group GF(p)� of GF(p),used in Pollard's \p�1" algorithm, is replaced by the group G de�ned by (1{2).Since p is not known in advance, computation is performed in the ring Z=NZof integers modulo N rather than in GF(p)�. We can regard this as using aredundant group representation.A trial is the computation involving one random group G. The steps involvedare {1. Choose x0; y0 and a randomly in [0; N). This de�nes b = y20�(x30+ax0) modN . Set P P0 = (x0; y0).2. For prime q � m set P qeP in the group G de�ned by a and b, where e isan exponent chosen as in x5. If P = 0 then the trial succeeds as a factor ofN will have been found during an attempt to compute an inverse mod N .Otherwise the trial fails.The work involved in a trial is O(m) group operations. There is a tradeo�involved in the choice of m, as a trial with large m is expensive, but a trial withsmall m is unlikely to succeed.Given x 2 GF(p), there are at most two values of y 2 GF(p) satisfying (1).Thus, allowing for the identity element, we have g = jGj � 2p + 1. A muchstronger result, the Riemann hypothesis for �nite �elds, is known {jg � p� 1j < 2p1=2 :Making a plausible assumption about the distribution of prime divisors of g,one may show that the optimal choice of m is m = p1=�, where� � (2 ln p= ln ln p)1=2 :It follows that the expected run time isT = p2=�+o(1=�) : (3)For details, see Lenstra [49]. The exponent 2=� in (3) should be compared with 1(for trial division) or 1=2 (for Pollard's \rho" method). Because of the overheadsinvolved with ECM, a simpler algorithm such as Pollard's \rho" is preferable for�nding factors of size up to about 1010, but for larger factors the asymptotic ad-vantage of ECM becomes apparent. The following examples illustrate the powerof ECM.7.1 ECM examples1. In 1995 we completed the factorisation of the 309-decimal digit (1025-bit)Fermat number F10 = 2210 + 1. In factF10 = 45592577 � 6487031809 �4659775785220018543264560743076778192897 � p252

11where 46597 � � �92897 is a 40-digit prime and p252 = 13043 � � �24577 is a252-digit prime. The computation, which is described in detail in [10], tookabout 240 Mips-years.2. The largest factor known to have been found by ECM is the 53-digit factor53625112691923843508117942311516428173021903300344567of 2677 � 1, found by Conrad Curry in September 1998 using a programwritten by George Woltman and running on 16 Pentiums (for more detailssee [9]). Note that if the RSA system were used with 512-bit keys and thethree-prime variation, as described in x1.2, the smallest prime would be lessthan 53 decimal digits, so ECM could be used to break the system.7.2 The second phaseBoth the Pollard \p � 1" and Lenstra elliptic curve algorithms can be speededup by the addition of a second phase. The idea of the second phase is to �nd afactor in the case that the �rst phase terminates with a group element P 6= 0,such that jhP ij is reasonably small (say O(m2)). (Here hP i is the cyclic subgroupgenerated by P .) There are several possible implementations of the second phase.One of the simplest uses a pseudorandom walk in hP i. By the birthday paradoxargument, there is a good chance that two points in the random walk will coincideafter O(jhP ij1=2) steps, and when this occurs a nontrivial factor of N can usuallybe found. Details of this and other implementations of the second phase may befound in [6, 10, 30, 54, 55, 59, 90].The use of a second phase provides a signi�cant speedup in practice, but doesnot change the asymptotic time bound (3). Similar comments apply to otherimplementation details, such as ways of avoiding most divisions and speedingup group operations, ways of choosing good initial points, and ways of usingpreconditioned polynomial evaluation [6, 54, 55].7.3 Parallel/distributed implementation of ECMUnlike the Pollard \rho" and \p�1" methods, ECM is \embarrassingly parallel",because each trial is independent. So long as the expected number of trials ismuch larger than the number P of processors available, linear speedup is possibleby performing P trials in parallel. In fact, if T1 is the expected run time on oneprocessor, then the expected run time on a MIMD parallel machine with Pprocessors is TP = T1=P +O(T 1=2+�1) (4)The bound (4) applies on a SIMD machine if we use the Montgomery-Chudnovsky form [19, 54] by2 = x3 + ax2 + xinstead of the Weierstrass normal form (1) in order to avoid divisions.

12 In practice, it may be di�cult to perform P trials in parallel because ofstorage limitations. The second phase requires more storage than the �rst phase.Fortunately, there are several possibilities for making use of parallelism duringthe second phase of each trial. One parallel implementation performs the �rstphase of P trials in parallel, but the second phase of each trial sequentially, usingP processors to speed up the evaluation of the high-degree polynomials whichconstitute most of the work during the second phase.7.4 ECM Factoring Records

1990 1992 1994 1996 1998 2000384042
444648
505254 D

Figure 1: Size of factor found by ECM versus yearFigure 1 shows the size D (in decimal digits) of the largest factor found byECM against the year it was done, from 1991 (40D) to 1999 (53D) (historicaldata from [9]).7.5 Extrapolation of ECM RecordsLet D be the number of decimal digits in the largest factor found by ECM upto a given date. From the theoretical time bound for ECM, assuming Moore'slaw, we expect pD to be roughly a linear function of calendar year (in factpD lnD should be linear, but given the other uncertainties we have assumed forsimplicity that plnD is roughly a constant). Figure 2 shows pD versus year Y .

13

1990 1992 1994 1996 1998 20006.06.26.4
6.66.87.0
7.27.47.6 pD

Figure 2: pD versus year Y for ECMThe straight line shown in the Figure 2 ispD = Y � 1932:39:3 or equivalently Y = 9:3pD + 1932:3 ;and extrapolation gives D = 60 in the year Y = 2004 and D = 70 in the yearY = 2010.8 Quadratic Sieve AlgorithmsQuadratic sieve algorithms belong to a wide class of algorithms which try to �ndtwo integers x and y such that x 6= �y (mod N) butx2 = y2 (mod N) : (5)Once such x and y are found, then GCD (x� y;N) is a nontrivial factor of N .One way to �nd x and y satisfying (5) is to �nd a set of relations of the formu2i = v2i wi (mod N); (6)where the wi have all their prime factors in a moderately small set of primes(called the factor base). Each relation (6) gives a colunm in a matrix A whoserows correspond to the primes in the factor base. Once enough columns have beengenerated, we can use Gaussian elimination inGF(2) to �nd a linear dependency(mod 2) between a set of columns of A. Multiplying the corresponding relations

14now gives an expression of the form (5). With probability at least 1=2, we havex 6= �y mod N so a nontrivial factor of N will be found. If not, we need toobtain a di�erent linear dependency and try again.In quadratic sieve algorithms the numbers wi are the values of one (or more)quadratic polynomials with integer coe�cients. This makes it easy to factor thewi by sieving. For details of the process, we refer to [16, 47, 56, 72, 75, 79, 89]. Theinner loop of the sieving process has the formwhile j < bound dobegins[j] s[j] + c;j j + q;endHere bound depends on the size of the (single-precision real) sieve array s, q is asmall prime or prime power, and c is a single-precision real constant dependingon q (c = �(q) = log p if q = pe, p prime). The loop can be implementede�ciently on a pipelined vector processor. It is possible to use scaling to avoid
oating point additions, which is desirable on a small processor without
oating-point hardware.In order to minimise cache misses on a machine whose memory cache is toosmall to store the whole array s, it may be desirable to split the inner loop toperform sieving over cache-sized blocks.The best quadratic sieve algorithm (MPQS) can, under plausible assump-tions, factor a number N in time �(exp(c(lnN ln lnN)1=2)), where c � 1. Theconstants involved are such that MPQS is usually faster than ECM if N is theproduct of two primes which both exceed N1=3. This is because the inner loopof MPQS involves only single-precision operations.Use of \partial relations", i.e. incompletely factored wi, in MPQS is analogousto the second phase of ECM and gives a similar performance improvement [3]. Inthe \one large prime" (P-MPQS) variation wi is allowed to have one prime factorexceeding m (but not too much larger than m). In the \two large prime" (PP-MPQS) variationwi can have two prime factors exceedingm { this gives a furtherperformance improvement at the expense of higher storage requirements [48], anddoes not seem to have an analogue applicable to ECM.8.1 Parallel/distributed implementation of MPQSLike ECM, the sieving stage of MPQS is ideally suited to parallel implementa-tion. Di�erent processors may use di�erent polynomials, or sieve over di�erentintervals with the same polynomial. Thus, there is a linear speedup so long asthe number of processors is not much larger than the size of the factor base.The computation requires very little communication between processors. Eachprocessor can generate relations and forward them to some central collectionpoint. This was demonstrated by A. K. Lenstra and M. S. Manasse [47], who

15distributed their program and collected relations via electronic mail. The pro-cessors were scattered around the world { anyone with access to electronic mailand a C compiler could volunteer to contribute4. The �nal stage of MPQS {Gaussian elimination to combine the relations { was not so easily distributed. Inpractice it is only a small fraction of the overall computation, but it may becomea limitation if very large numbers are attempted by MPQS (a similar problemis discussed below in connection with NFS).8.2 MPQS examplesMPQS has been used to obtain many impressive factorisations [13, 79, 89]. ArjenLenstra and Mark Manasse [47] (with many assistants scattered around theworld) have factored several numbers larger than 10100. For example, a typicalfactorisation was the 116-decimal digit number (3329+1)=(known small factors)into a product of 50-digit and 67-digit primes. The �nal factorisation is3329 + 1 = 22 � 547 � 16921 � 256057 � 36913801 � 177140839 � 1534179947851 �24677078822840014266652779036768062918372697435241 � p67Such factorisations require many years of CPU time, but a real time of only amonth or so because of the number of di�erent processors which are working inparallel.At the time of writing (3 June 1999), the largest number factored by MPQSis the 129-digit \RSA Challenge" [81] number RSA129. It was factored in 1994by Atkins et al [2]. It is certainly feasible to factor larger numbers by MPQS, butfor numbers of more than about 110 decimal digits GNFS is faster [34{36]. Forexample, it is estimated in [22] that to factor RSA129 by MPQS required 5000Mips-years, but to factor the slightly larger number RSA130 by GNFS requiredonly 1000 Mips-years [24].9 The Special Number Field Sieve (SNFS)The number �eld sieve (NFS) algorithm was developed from the special number�eld sieve (SNFS), which we describe in this section. The general number �eldsieve (GNFS or simply NFS) is described in x10.Most of our numerical examples have involved numbers of the formae � b ; (7)for small a and b, although the ECM and MPQS factorisation algorithms do nottake advantage of this special form.The special number �eld sieve (SNFS) is a relatively new algorithm whichdoes take advantage of the special form (7). In concept it is similar to the4 This idea of using machines on the Internet as a \free" supercomputer has recentlybeen adopted by several other computation-intensive projects

16quadratic sieve algorithm, but it works over an algebraic number �eld de�ned bya, e and b. We refer the interested reader to Lenstra et al [44, 45] for details, andmerely give an example to show the power of the algorithm. For an introductionto the relevant concepts of algebraic number theory, see Stewart and Tall [91].9.1 SNFS examplesConsider the 155-decimal digit numberF9 = N = 229 + 1as a candidate for factoring by SNFS. Note that 8N = m5 +8, where m = 2103.We may work in the number �eld Q(�), where � satis�es�5 + 8 = 0;and in the ring of integers of Q(�). Becausem5 + 8 = 0 (mod N);the mapping � : � 7! m mod N is a ring homomorphism from Z[�] to Z=NZ.The idea is to search for pairs of small coprime integers u and v such that boththe algebraic integer u+ �v and the (rational) integer u+mv can be factored.(The factor base now includes prime ideals and units as well as rational primes.)Because �(u+ �v) = (u+mv) (mod N);each such pair gives a relation analogous to (6).The prime ideal factorisation of u+�v can be obtained from the factorisationof the norm u5�8v5 of u+�v. Thus, we have to factor simultaneously two integersu+mv and ju5� 8v5j. Note that, for moderate u and v, both these integers aremuch smaller than N , in fact they are O(N1=d), where d = 5 is the degree ofthe algebraic number �eld. (The optimal choice of d is discussed in x10.)Using these and related ideas, Lenstra et al [46] factored F9 in June 1990,obtainingF9 = 2424833 � 7455602825647884208337395736200454918783366342657 � p99;where p99 is an 99-digit prime, and the 7-digit factor was already known(although SNFS was unable to take advantage of this). The collection of re-lations took less than two months on a network of several hundred workstations.A sparse system of about 200,000 relations was reduced to a dense matrix withabout 72,000 rows. Using Gaussian elimination, dependencies (mod 2) betweenthe columns were found in three hours on a Connection Machine. These depen-dencies implied equations of the form x2 = y2 mod F9. The second such equationwas nontrivial and gave the desired factorisation of F9.

17More recently, considerably larger numbers have been factored by SNFS.The current record is the 211-digit number 10211 � 1, factored early in 1999 bya collaboration called \The Cabal" [18]. In fact, (10211�1)=9 = p93 �p118, wherep93 = 692624557324389620662782322677336711138108482588281739734375570506492391931849524636731866879and p118 may be found by division. The factorisation of N = 10211� 1 used twopolynomials f(x) = x� 1035and g(x) = 10x6 � 1with common root m = 1035 mod N . Details of the computation can be foundin [18]. To summarise: after sieving and reduction a sparse matrix over GF(2)was obtained with about 4:8� 106 rows and weight (number of nonzero entries)about 2:3� 108, an average of about 49 nonzeros per row. Montgomery's blockLanczos program (see x10) took 121 hours on a Cray C90 to �nd 64 dependenciesbetween the columns. Finally, the square root program needed 15.5 hours on oneCPU of an SGI Origin 2000, and three dependencies to �nd the two prime factors.10 The General Number Field Sieve (GNFS)The general number �eld sieve (GNFS or just NFS) is a logical extension of thespecial number �eld sieve (SNFS). When using SNFS to factor an integer N , werequire two polynomials f(x) and g(x) with a common root m mod N but nocommon root over the �eld of complex numbers. If N has the special form (7)then it is usually easy to write down suitable polynomials with small coe�cients,as illustrated by the two examples given in x9. If N has no special form, but isjust some given composite number, we can also �nd f(x) and g(x), but they nolonger have small coe�cients.Suppose that g(x) has degree d > 1 and f(x) is linear5. d is chosen empir-ically, but it is known from theoretical considerations that the optimum valueis d � � 3 lnNln lnN �1=3 :We choose m = bN1=(d+1)c and writeN = dXj=0 ajmj5 This is not necessary. For example, Montgomery found a clever way (describedin [34]) of choosing two quadratic polynomials.

18where the aj are \base m digits". Then, de�ningf(x) = x�m; g(x) = dXj=0 ajxj ;it is clear that f(x) and g(x) have a common root m mod N . This method ofpolynomial selection is called the \base m" method.In principle, we can proceed as in SNFS, but many di�culties arise becauseof the large coe�cients of g(x). For details, we refer the reader to [34, 35, 57,58, 64, 73, 74, 98]. Su�ce it to say that the di�culties can be overcome and themethod works! Due to the constant factors involved it is slower than MPQSfor numbers of less than about 110 decimal digits, but faster than MPQS forsu�ciently large numbers, as anticipated from the theoretical run times givenin x3.Some of the di�culties which had to be overcome to turn GNFS into apractical algorithm are:1. Polynomial selection. The \base m" method is not very good. Peter Mont-gomery and Brian Murphy [63{65] have shown how a very considerable im-provement (by a factor of more than ten for number of 140 digits) can beobtained.2. Linear algebra. After sieving a very large, sparse linear system over GF(2)is obtained, and we want to �nd dependencies amongst the columns. It isnot practical to do this by structured Gaussian elimination [40, x5] becausethe \�ll in" is too large. Odlyzko [66, 23] and Montgomery [58] showed thatthe Lanczos method [41] could be adapted for this purpose. (This is non-trivial because a nonzero vector x over GF(2) can be orthogonal to itself,i.e. xTx = 0.) To take advantage of bit-parallel operations, Montgomery'sprogram works with blocks of size dependent on the wordlength (e.g. 64).3. Square roots. The �nal stage of GNFS involves �nding the square root ofa (very large) product of algebraic numbers6. Once again, Montgomery [57]found a way to do this.At present, the main obstacle to a fully parallel and scalable implementationof GNFS is the linear algebra. Montgomery's block Lanczos program runs ona single processor and requires enough memory to store the sparse matrix. Inprinciple it should be possible to distribute the block Lanczos solution overseveral processors of a parallel machine, but the communication/computationratio will be high. There is a tradeo� here { by increasing the time spent onsieving we can reduce the size and weight of the resulting matrix.It should be noted that if special hardware is built for sieving, as pioneeredby Lehmer and recently proposed (in more modern form) by Shamir [85], thelinear algebra will become relatively more important7.6 An idea of Adleman, using quadratic characters, is essential to ensure that the desiredsquare root exists with high probability.7 The argument is similar to Amdahl's law: no matter how fast sieving is done, we cannot avoid the linear algebra.

1910.1 RSA140At the time of writing, the largest number factored by GNFS is the 140-digitRSA Challenge number RSA140. It was split into the product of two 70-digitprimes in February, 1999, by a team coordinated from CWI, Amsterdam. Fordetails see [17]. To summarise: the amount of computer time required to �nd thefactors was about 2000 Mips-years. The two polynomials used weref(x) = x� 34435657809242536951779007and g(x) = +439682082840x5+390315678538960x4�7387325293892994572x3�19027153243742988714824x2�63441025694464617913930613x+318553917071474350392223507494 :The polynomial g(x) was chosen to have a good combination of two proper-ties: being unusually small over the sieving region and having unusually manyroots modulo small primes (and prime powers). The e�ect of the second prop-erty alone makes g(x) as e�ective at generating relations as a polynomial chosenat random for an integer of 121 decimal digits (so in e�ect we have removed atleast 19 digits from RSA140 by judicious polynomial selection). The polynomialselection took 2000 CPU-hours on four 250 MHz SGI Origin 2000 processors.This is about 60 Mips-years, or about 3% of the total factorisation time. Sievingwas done on about 125 SGI and Sun workstations running at 175 MHz on aver-age, and on about 60 PCs running at 300 MHz on average. The total amount ofCPU time spent on sieving was 2000 Mips-years (8.9 CPU-years).The resulting matrix had about 4:7 � 106 rows and weight about 1:5 � 108(about 32 nonzeros per row). Using Montgomery's block Lanczos program, ittook almost 100 CPU-hours and 810 MB of memory on a Cray C916 to �nd 64dependencies among the columns of this matrix. Calendar time for this was �vedays.10.2 RSA155At the time of writing (3 June 1999), an attempt to factor the 512-bit numberRSA155 is well underway. We con�dently predict that it will be factored beforethe year 2000.8

20

1960 1970 1980 1990 200002040
6080100
120140160 D

Figure 3: Size of \general" number factored versus year10.3 Historical Factoring RecordsFigure 3 shows the size D (in decimal digits) of the largest \general" numberfactored against the year it was done, from 1964 (20D) to 1999 (155D) (historicaldata from [64, 67, 82]).10.4 Curve Fitting and ExtrapolationLet D be the number of decimal digits in the largest \general" number fac-tored by a given date. From the theoretical time bound for GNFS, assumingMoore's law, we expect D1=3 to be roughly a linear function of calendar year (infact D1=3(lnD)2=3 should be linear, but given the other uncertainties we haveassumed for simplicity that (lnD)2=3 is roughly a constant). Figure 4 showsD1=3versus year Y .The straight line shown in the Figure 4 isD1=3 = Y � 1928:613:24 or equivalently Y = 13:24D1=3 + 1928:6 ;and extrapolation, for what it is worth, gives D = 309 (i.e. 1024 bits) in the yearY = 2018.8 Postscript: The factorisation of RSA155 was completed on 22 August 1999. As pre-dicted by Brian Murphy [64, pg. 109], it took about 8000 Mips-years. For furtherdetails see the Appendix and [78].

21

1960 1970 1980 1990 20002.02.53.0
3.54.04.5
5.05.56.0 D1=3

Figure 4: D1=3 versus year Y10.5 PredictionsMoore's law predicts that circuit densities will double every 18 months or so.Thus, as long as Moore's law continues to apply and results in correspondinglymore powerful parallel computers, we expect to get 3{4 decimal digits per yearimprovement in the capabilities of GNFS, without any algorithmic improve-ments. The extrapolation from historical �gures is more optimistic: it predicts6{7 decimal digits per year in the near future.(When) Is RSA Doomed ?512-bit RSA keys are clearly insecure. 1024-bit RSA keys should remain securefor at least �fteen years, barring the unexpected (but unpredictable) discoveryof a completely new algorithm which is better than GNFS, or the developmentof a practical quantum computer.

2211 Summary and ConclusionsWe have sketched some algorithms for integer factorisation. The most importantare ECM, MPQS and NFS. The algorithms draw on results in elementary numbertheory, algebraic number theory and probability theory. As well as their inherentinterest and applicability to other areas of mathematics, advances in public keycryptography have lent them practical importance.Despite much progress in the development of e�cient algorithms, our knowl-edge of the complexity of factorisation is inadequate. We would like to �nd apolynomial time factorisation algorithm or else prove that one does not exist.Until a polynomial time algorithm is found or a quantum computer capableof running Shor's algorithm [86, 87] is built, large factorisations will remain aninteresting challenge.A survey similar to this one was written in 1990 (see [8]). Comparing theexamples there we see that signi�cant progress has been made. This is partlydue to Moore's law, partly due to the use of many machines on the Internet,and partly due to improvements in algorithms (especially GNFS). The largestnumber factored by MPQS at the time of writing [8] had 111 decimal digits.According to [22], the 110-digit number RSA110 was factored in 1992, RSA120in 1993, and RSA129 in 1994 (all by MPQS). In 1996 GNFS was used to factorRSA130, and in February 1999 GNFS also cracked RSA1409. Progress seemsto be accelerating. This is due in large part to algorithmic improvements whichseem unlikely to be repeated. On the other hand, it is very hard to anticipatealgorithmic improvements!From the predicted run time for GNFS, we would expect RSA155 to take 6.5times as long as RSA140. On the other hand, Moore's law [67, 83] predicts thatcircuit densities will double every 18 months or so. Thus, as long as Moore'slaw continues to apply and results in correspondingly more powerful parallelcomputers, we expect to get three to four decimal digits per year improvementin the capabilities of GNFS, without any algorithmic improvements.Similar arguments apply to ECM, for which we expect slightly more thanone decimal digit per year in the size of factor found [9].Regarding cryptographic consequences, we can say that 512-bit RSA keysare already insecure. 1024-bit RSA keys should remain secure for at least �fteenyears, barring the unexpected (but unpredictable) discovery of a completely newalgorithm which is better than GNFS, or the development of a practical quantumcomputer.AcknowledgementsThanks are due to Peter Montgomery, Brian Murphy, Andrew Odlyzko, JohnPollard, Herman te Riele, Sam Wagsta�, Jr. and Paul Zimmermann for theirassistance.9 Postscript: and now, in August 1999, RSA155.

23References1. A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math.Comp. 61 (1993), 29{68. Programs available from ftp://ftp.inria.fr/INRIA/ecpp.V3.4.1.tar.Z .2. D. Atkins, M. Gra�, A. K. Lenstra and P. C. Leyland, The magic words aresqueamish ossifrage, Advances in Cryptology: Proc. Asiacrypt'94, LNCS 917,Springer-Verlag, Berlin, 1995, 263{277.3. H. Boender and H. J. J. te Riele, Factoring integers with large prime variations ofthe quadratic sieve, Experimental Mathematics, 5 (1996), 257{273.4. R. P. Brent, A Fortran multiple-precision arithmetic package, ACM Trans. onMath. Software 4 (1978), 57{70.5. R. P. Brent, An improved Monte Carlo factorisation algorithm, BIT 20 (1980),176{184.6. R. P. Brent, Some integer factorisation algorithms using elliptic curves, Aus-tralian Computer Science Communications 8 (1986), 149{163. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/rpb102.dvi.gz .7. R. P. Brent, Parallel algorithms for integer factorisation, in Number Theory andCryptography (edited by J. H. Loxton), London Mathematical Society Lecture NoteSeries 154, Cambridge University Press, 1990, 26{37.8. R. P. Brent, Vector and parallel algorithms for integer factorisation, Proceed-ings Third Australian Supercomputer Conference University of Melbourne, De-cember 1990, 12 pp. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/rpb122.dvi.gz .9. R. P. Brent, Large factors found by ECM, Oxford University Computing Lab-oratory, May 1999. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/champs.txt .10. R. P. Brent, Factorization of the tenth Fermat number, Math. Comp. 68(1999), 429-451. Preliminary version available as Factorization of the tenthand eleventh Fermat numbers, Technical Report TR-CS-96-02, CSL, ANU,Feb. 1996, 25pp. ftp://ftp.comlab.ox.ac.uk:/pub/Documents/techpapers/Richard.Brent/rpb161tr.dvi.gz .11. R. P. Brent, Some parallel algorithms for integer factorisation Proc. Europar'99,Toulouse, Sept. 1999. LNCS 1685, Springer-Verlag, Berlin, 1{22. (A preliminaryand shorter version of this paper, written before the factorisation of RSA155.)12. R. P. Brent and J. M. Pollard, Factorisation of the eighth Fermat number, Math.Comp. 36 (1981), 627{630.13. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagsta�, Jr.,Factorisations of bn � 1; b = 2; 3; 5; 6; 7; 10; 11; 12 up to high powers, AmericanMathematical Society, Providence, Rhode Island, second edition, 1988. Updatesavailable from http://www/cs/purdue.edu/homes/ssw/cun/index.html .14. D. A. Buell, Factoring: algorithms, computations, and computers, J. Supercomput-ing 1 (1987), 191{216.15. C. Caldwell, The Dubner PC Cruncher { a microcomputer coprocessor card fordoing integer arithmetic, review in J. Rec. Math. 25 (1), 1993.16. T. R. Caron and R. D. Silverman, Parallel implementation of the quadratic sieve,J. Supercomputing 1 (1988), 273{290.17. S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery,B. Murphy, H. te Riele and P. Zimmermann, Factorization of RSA-140 using thenumber �eld sieve, announced 4 February 1999. Available from ftp://ftp.cwi.nl/pub/herman/NFSrecords/RSA-140 .

2418. S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery,H. te Riele and P. Zimmermann, 211-digit SNFS factorization, announced 25 April1999. Available from ftp://ftp.cwi.nl/pub/herman/NFSrecords/SNFS-211 .19. D. V. and G. V. Chudnovsky, Sequences of numbers generated by addition informal groups and new primality and factorization tests, Adv. in Appl. Math. 7(1986), 385{434.20. H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag,Berlin, 1993.21. H. Cohen and H. W. Lenstra, Jr., Primality testing and Jacobi sums,Math. Comp.42 (1984), 297{330.22. S. Contini, The factorization of RSA-140, RSA Laboratories Bulletin 10, 8 (March1999). Available from http://www.rsa.com/rsalabs/html/bulletins.html .23. D. Coppersmith, A. Odlyzko and R. Schroeppel, Discrete logarithms in GF (p),Algorithmica 1 (1986), 1{15.24. J. Cowie, B. Dodson, R. M. Elkenbracht-Huizing, A. K. Lenstra, P. L. Montgomeryand J. Zayer, A world wide number �eld sieve factoring record: on to 512 bits,Advances in Cryptology: Proc. Asiacrypt'96, LNCS 1163, Springer-Verlag, Berlin,1996, 382{394.25. R. E. Crandall, Parallelization of Pollard-rho factorization, preprint, 23 April 1999.26. R. Crandall and B. Fagin, Discrete weighted transforms and large-integer arith-metic, Math. Comp. 62 (1994), 305{324.27. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quan-tum computer, Proc. Roy. Soc. London, Ser. A 400 (1985), 97{117.28. D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London, Ser. A425 (1989), 73{90.29. W. Di�e and M. Hellman, New directions in cryptography, IEEE Trans. Inform.Theory 22 (1976), 472{492.30. B. Dixon and A. K. Lenstra, Massively parallel elliptic curve factoring, Proc. Eu-rocrypt '92, LNCS 658, Springer-Verlag, Berlin, 1993, 183{193.31. B. Dodson and A. K. Lenstra, NFS with four large primes: an explosive experiment,Proc. Crypto'95, LNCS 963, Springer-Verlag, Berlin, 1995, 372{385.32. T. El Gamal, A public-key cryptosystem and a signature scheme based on discretelogarithms, Advances in Cryptology: Proc. CRYPTO'84, Springer-Verlag, Berlin,1985, 10{18.33. T. El Gamal, A public-key cryptosystem and a signature scheme based on discretelogarithms, IEEE Trans. on Information Theory 31 (1985), 469{472.34. M. Elkenbracht-Huizing, An implementation of the number �eld sieve, Experimen-tal Mathematics, 5 (1996), 231{253.35. M. Elkenbracht-Huizing, Factoring integers with the number �eld sieve, Doctor'sthesis, Leiden University, 1997.36. M. Elkenbracht-Huizing, A multiple polynomial general number �eld sieve Algo-rithmic Number Theory { ANTS III, LNCS 1443, Springer-Verlag, Berlin, 1998,99{114.37. K. F. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,Springer-Verlag, Berlin, 1982.38. D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison Wesley, thirdedition, 1997.39. N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, NewYork, 1994.

2540. B. A. LaMacchia and A. M. Odlyzko, Solving large sparse systems over �nite �elds,Advances in Cryptology, CRYPTO '90 (A. J. Menezes and S. A. Vanstone, eds.),LNCS 537, Springer-Verlag, Berlin, 109{133.41. C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res.Nat. Bureau of Standards 49 (1952), 33{53.42. S. Lang, Elliptic Curves { Diophantine Analysis, Springer-Verlag, Berlin, 1978.43. R. S. Lehman, Factoring large integers, Math. Comp. 28 (1974), 637{646.44. A. K. Lenstra and H. W. Lenstra, Jr. (editors), The development of the number�eld sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.45. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard, The number�eld sieve, Proc. 22nd Annual ACM Conference on Theory of Computing, Balti-more, Maryland, May 1990, 564{572.46. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The factor-ization of the ninth Fermat number, Math. Comp. 61 (1993), 319{349.47. A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Proc. Eurocrypt'89, LNCS 434, Springer-Verlag, Berlin, 1990, 355{371.48. A. K. Lenstra and M. S. Manasse, Factoring with two large primes, Math. Comp.63 (1994), 785{798.49. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics(2) 126 (1987), 649{673.50. K. S. McCurley, The discrete logarithm problem, in Cryptography and Computa-tional Number Theory, C. Pomerance, ed., Proc. Symp. Appl. Math., Amer. Math.Soc., 1990.51. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publish-ers, Boston, 1993.52. A. Menezes, Elliptic curve cryptosystems, CryptoBytes 1, 2 (1995), 1{4. Availablefrom http://www.rsa.com/rsalabs/pubs/cryptobytes .53. P. L. Montgomery, Modular multiplication without trial division, Math. Comp. 44(1985), 519{521.54. P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorisation,Math. Comp. 48 (1987), 243{264.55. P. L. Montgomery, An FFT extension of the elliptic curve method of factorization,Ph. D. dissertation, Mathematics, University of California at Los Angeles, 1992.ftp://ftp.cwi.nl/pub/pmontgom/ucladissertation.psl.Z .56. P. L. Montgomery, A survey of modern integer factorization algorithms, CWI Quar-terly 7 (1994), 337{366. ftp://ftp.cwi.nl/pub/pmontgom/cwisurvey.psl.Z .57. P. L. Montgomery, Square roots of products of algebraic numbers, Mathematics ofComputation 1943 { 1993, Proc. Symp. Appl. Math. 48 (1994), 567{571.58. P. L. Montgomery, A block Lanczos algorithm for �nding dependencies over GF (2),Advances in Cryptology: Proc. Eurocrypt'95, LNCS 921, Springer-Verlag, Berlin,1995, 106{120. ftp://ftp.cwi.nl/pub/pmontgom/BlockLanczos.psa4.gz .59. P. L. Montgomery, Vectorization of the elliptic curve method, ftp://ftp.cwi.nl/pub/pmontgom/ecmvec.psa4.gz .60. F. Morain, Courbes elliptiques et tests de primalit�e, Ph. D. thesis, Univ. ClaudeBernard { Lyon I, France, 1990. ftp://ftp.inria.fr/INRIA/publication/Theses/TU-0144.tar.Z .61. M. A. Morrison and J. Brillhart, A method of factorisation and the factorisationof F7, Math. Comp. 29 (1975), 183{205.62. R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge UniversityPress, 1995.

2663. B. A. Murphy, Modelling the yield of number �eld sieve polynomials, AlgorithmicNumber Theory { ANTS III, LNCS 1443, Springer-Verlag, Berlin, 1998, 137{150.64. B. A. Murphy, Polynomial selection for the number �eld sieve integer factorisationalgorithm, Ph. D. thesis, Australian National University, July 1999.65. B. A. Murphy and R. P. Brent, On quadratic polynomials for the number �eldsieve, Australian Computer Science Communications 20 (1998), 199{213.66. A. M. Odlyzko, Discrete logarithms in �nite �elds and their cryptographic signif-icance, Advances in Cryptology: Proc. Eurocrypt '84, LNCS 209, Springer-Verlag,Berlin, 1985, 224{314.67. A. M. Odlyzko, The future of integer factorization, CryptoBytes 1, 2 (1995), 5{12.Available from http://www.rsa.com/rsalabs/pubs/cryptobytes .68. P. C. van Oorschot and M. J. Wiener, Parallel collision search with application tohash functions and discrete logarithms, Proc 2nd ACM Conference on Computerand Communications Security, ACM, New York, 1994, 210{218.69. P. C. van Oorschot and M. J. Wiener, Parallel collision search with cryptanalyticapplications, J. Cryptology 12 (1999), 1{28.70. J. M. Pollard, Theorems in factorisation and primality testing, Proc. CambridgePhilos. Soc. 76 (1974), 521{528.71. J. M. Pollard, A Monte Carlo method for factorisation, BIT 15 (1975), 331{334.72. C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology,Proc. Eurocrypt '84, LNCS 209, Springer-Verlag, Berlin, 1985, 169{182.73. C. Pomerance, The number �eld sieve, Proceedings of Symposia in Applied Math-ematics 48, Amer. Math. Soc., Providence, Rhode Island, 1994, 465{480.74. C. Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), 1473{1485.75. C. Pomerance, J. W. Smith and R. Tuler, A pipeline architecture for factoring largeintegers with the quadratic sieve algorithm, SIAM J. on Computing 17 (1988),387{403.76. J. Preskill, Lecture Notes for Physics 229: Quantum Information and Com-putation, California Institute of Technology, Los Angeles, Sept. 1998. http://www.theory.caltech.edu/people/preskill/ph229/ .77. M. O. Rabin, Probabilistic algorithms for testing primality, J. Number Theory 12(1980), 128{138.78. H. te Riele et al, Factorization of a 512-bits RSA key using the number �eld sieve,announcement of 26 August 1999, http://www.loria.fr/~zimmerma/records/RSA155 .79. H. J. J. te Riele, W. Lioen and D. Winter, Factoring with the quadratic sieve onlarge vector computers, Belgian J. Comp. Appl. Math. 27 (1989), 267{278.80. H. Riesel, Prime numbers and computer methods for factorization, 2nd edition,Birkh�auser, Boston, 1994.81. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signaturesand public-key cryptosystems, Comm. ACM 21 (1978), 120{126.82. RSA Laboratories, Information on the RSA challenge, http://www.rsa.com/rsalabs/html/challenges.html .83. R. S. Schaller, Moore's law: past, present and future, IEEE Spectrum 34, 6 (June1997), 52{59.84. B. Schneier, Applied Cryptography, second edition, John Wiley and Sons, 1996.85. A. Shamir, Factoring large numbers with the TWINKLE device (extended ab-stract), preprint, 1999. Announced at Eurocrypt'99.

2786. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factor-ing, Proc. 35th Annual Symposium on Foundations of Computer Science, IEEEComputer Society Press, Los Alamitos, California, 1994, 124{134. CMP 98:0687. P. W. Shor, Polynomial time algorithms for prime factorization and discrete loga-rithms on a quantum computer, SIAM J. Computing 26 (1997), 1484{1509.88. J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics106, Springer-Verlag, New York, 1986.89. R. D. Silverman, The multiple polynomial quadratic sieve,Math. Comp. 48 (1987),329{339.90. R. D. Silverman and S. S. Wagsta�, Jr., A practical analysis of the elliptic curvefactoring algorithm, Math. Comp. 61 (1993), 445{462.91. I. N. Stewart and D. O. Tall, Algebraic Number Theory, second edition, Chapmanand Hall, 1987.92. D. Stinson, Cryptography { Theory and Practice, CRC Press, Boca Raton, 1995.93. A. M. Turing, On computable numbers, with an application to the Entschei-dungsproblem, Proc. London Math. Soc. (2) 42 (1936), 230{265. Errata ibid 43(1937), 544{546.94. U. Vazirani, Introduction to special section on quantum computation, SIAM J.Computing 26 (1997), 1409{1410.95. D. Weber, Computing discrete logarithms with the number �eld sieve, AlgorithmicNumber Theory { ANTS II, LNCS 1122, Springer-Verlag, Berlin, 1996, 99{114.96. D. Weber, On the computation of discrete logarithms in �nite prime �elds, Ph. D.thesis, Universit�at des Saarlandes, 1997.97. D. H. Wiedemann, Solving sparse linear equations over �nite �elds, IEEE Trans.Inform. Theory 32 (1986), 54{62.98. J. Zayer, Faktorisieren mit dem Number Field Sieve, Ph. D. thesis, Universit�at desSaarlandes, 1995.Appendix: { RSA140 and RSA155Table 1 gives some statistics on the RSA140 and RSA155 factorisations.Table 1. RSA140 and RSA155 factorisationsRSA140 RSA155Total CPU time in mips-years 2000 8000Improvement due to polynomial selection 8 14Matrix rows 4:7� 106 6:7� 106Total nonzeros 1:5� 108 4:2� 108Nonzeros per row 32 62Matrix solution time (on Cray C916) 100 hours 224 hours

