
Word Spotting for Historical Documents

T. M. Rath and R. Manmatha∗

Multimedia Indexing and Retrieval Group

Center for Intelligent Information Retrieval

Dept. of Computer Science

University of Massachusetts Amherst

Amherst, MA 01003

Abstract

Searching and indexing historical handwritten collections is a very challenging

problem. We describe an approach called word spotting which involves grouping

word images into clusters of similar words by using image matching to find similarity.

By annotating “interesting” clusters, an index that links words to the locations where

they occur can be built automatically.

Image similarities computed using a number of different techniques including dy-

namic time warping are compared. The word similarities are then used for clustering

∗[trath,manmatha]@cs.umass.edu

1



using both K-means and agglomerative clustering techniques. It is shown on a sub-

set of the George Washington collection that such a word spotting technique can

outperform an HMM word-based recognition technique in terms of word error rates.

Traditional libraries contain an enormous amount of handwritten historical documents

that they would like to make available electronically on the Internet or on digital media.

Examples include the collections of Presidents like George Washington at the Library of

Congress and scientists like Isaac Newton at the University of Cambridge Library. Such

large collections (George Washington’s handwritten papers exceed 140,000 pages). can only

be accessed efficiently if a searchable or browsable index exists, just like in the back of a

book. The current state-of-the-art approach to this task is to manually create an index

for the collection. Since manual indexing is expensive, automation is desirable in order to

reduce costs.

Automatic handwriting recognition has seen great improvements over the last decades

and the error rates have dropped to a level that makes commercial applications feasible.

Offline handwriting recognition, where only an image of the produced writing is available,

has only been successful in domains with very limited vocabularies, such as automatic mail

sorting and check processing. In addition, these domains usually provide good quality

images, while the quality of historical documents is often significantly degraded due to

faded ink, stained paper, and other adverse factors (see Figure 1). Consequently, traditional

Optical Character Recognition (OCR) techniques that usually recognize words character-

by-character, fail when applied to historical manuscripts.

2



Figure 1: Part of a scanned document from the George Washington collection.

For collections of handwritten manuscripts written by a single author (or a few authors),

(for example the George Washington collection used in this paper), the images of multiple

instances of the same word are likely to look similar. Wordspotting, which was initially

proposed by Manmatha et al. [15], treats a collection of documents as a collection of word

images. First the document is segmented into word images. The idea of wordspotting

(see Figure 2) is to use image matching for calculating pairwise “distances” between word

images, which can be used to cluster all words occuring in a collection of handwritten

documents. Ideally, each cluster would contain all the words with a particular annotation.

Clusters that contain terms which are “interesting” for an index for the document collection,

are selected and labeled manually. By assigning the cluster labels to all word images

contained in a cluster, we get a partial transcription of the document collection. This in

turn allows us to create a partial index for the collection, which allows us to retrieve text

3



portions that contain only the manually assigned labels.

Figure 2: An illustration of the Wordspotting process. Documents are segmented, and
distances between word images are calculated. After clustering the word images, some
clusters are manually labeled and can be used as index terms.

Historical handwritten documents are often of poor quality and unlike printed doc-

uments, there is variation in the way the words are written. The George Washington

collection, for which we present results here, was not scanned from the originals, but from

microfilms which further decreases the quality. Thus, both segmentation of a page into

words and the matching of word images (i.e., finding similarity) are challenging problems

for such documents. Previous work by [17, 16] has dealt with the problem of segmenting

such images of historical documents. We, therefore, use the output of their algorithm as in-

put to our system. The image matching problem is difficult and has prompted a number of

publications that propose algorithms and features for the approach [14, 13, 24, 26, 25, 27].

In this paper, we discuss an approach to matching images using Dynamic Time Warping

(DTW) of profiles of the word images. DTW has been widely used to match 1-D signals in

4



the speech processing, bio-informatics, and also the online handwriting communities. DTW

can handle local distortions in word images and is not restricted to a single global transform.

DTW is compared with a number of other techniques including XOR, affine-corrected

Euclidean Distance Matching, shape context [2], intensity correlation using sum-of-squared

differences, an affine matching point matching algorithm due to Scott and Longuet-Higgins

[30] and a point correlation voting algorithm [27]. We show that for image matching DTW

outperforms all other algorithms (the point correlation voting algorithm comes close).

Previous work on word spotting has focused entirely on the matching process. We

go further in this paper and cluster the results of the matching algorithm. K-means and

a number of different agglomerative clustering algorithms are compared. We simulate the

cluster annotation process and show that in terms of word error rates this approach outper-

forms one previously published HMM word recognizer on a standard subset of the George

Washington collection. Dynamic time warping, while faster than many of the other algo-

rithms suggested, is computationally expensive. An alternative approach, which computes

a discrete Fourier representation from the profile features, overcomes this disadvantage.

The clustering is done directly using these DFT features. The results show that this ap-

proach can outperform even dynamic time warping while still being relatively fast. We

believe that this paper shows that the word spotting approach is practical and may be

used to create indices or even retrieve handwritten pages given text queries.

The rest of this paper is organized as follows. Section 1 discusses related work in this

area. This is followed by a discussion of which clusters are “interesting” to index based

5



on Luhn’s ideas [12]. Profile features are introduced in section 3, followed by section 4 on

word image matching. The dynamic time warping algorithm is explained and its results

compared with other techniques for matching word images. Clustering is discussed in

section 5 followed by the conclusion.

1 Related Work

There are at least three different ways of approach the problem of indexing/retrieving

historical documents.

As mentioned in the introduction, the word spotting approach for historical handwritten

documents was first proposed by Manmatha et al. [15], and a number of different word

matching algorithms were investigated in [14, 13, 24, 26, 25, 27]. Given the difficulty of the

image matching problem, it is understandable that none of these papers went beyond and

investigated the clustering of these word images. Segmentation for historical documents

was investigated in [17, 16].

Rath et al. [32] proposed the first automatic retrieval system for historical handwritten

documents using relevance models. Their dataset consisted of 1000 manuscript pages from

the George Washington collection. The word spotting approach would be an alternative

to building such a system. Results are not directly comparable since the aim of the paper

[32] was to do retrieval while the results reported here focus on word error rates (WER).

Another approach involves the use of handwriting recognition, followed by – say – a text

search engine. However, handwriting recognition of large vocabulary historical documents

6



is still a very challenging task. Nagy [19] discusses papers published in PAMI on document

analysis during the last 20 years. In recent years, research in handwriting recognition [22]

has advanced to a level that makes commercial applications (e.g. Tablet PCs) feasible.

However, this success has been mostly limited to the online handwriting recognition case,

where the pen movements are recorded as a user writes. Offline handwriting recognition,

that is, recognition of text from an image of the writing, has only been successful in small-

vocabulary and highly redundant domains such as automatic check processing and mail

sorting (e.g. [9]). Srihari and Kim [31] described an early system for reading unconstrained

handwriting. More recently, the community has started to look at large-vocabulary tasks

[36].

In [18], the authors discuss the application of a Hidden Markov model for recognizing

handwritten material that was produced specifically for this purpose. First, they asked

a number of subjects to write out a set of pages. To improve the quality of the writing,

the subjects were asked to use rulers and not to split words across lines. Recognition was

performed with a Hidden Markov model with 14 states for each character. These Markov

models were concatenated to produce word and line models. A statistical bigram language

model was used, and the authors showed that this improved the results by about 10%. The

authors showed a recognition rate of about 60% for vocabulary sizes ranging from 2703 to

7719 words. The paper also contains a discussion of recognition rates obtained by other

researchers - these varied from a recognition rate of 42.5% for a 525 word vocabulary and

37% for a 966 word vocabulary reported in [21], to a recognition rate of 55.6% in a 1600

7



word vocabulary reported by [8].

There is much less work on historical handwritten documents which are much more

challenging. Tomai et al. [33] have shown how difficult this can be: the authors aligned a

page of Thomas Jefferson with its manually generated transcript using recognition. Even

after restricting the lexicon to about 13 words, their alignment accuracy on this single page

was 83% (given a perfect transcript!). Govindaraju and Xie [3] also investigated the problem

of handwriting recognition in historical documents. Lavrenko et al. [10] trained an HMM

model on 19 pages of the dataset used in this paper and tested on the remaining page. With

20-fold cross validation they obtained a word error rate of 41% (excluding out of vocabulary

terms) and 50% (when including out of vocabulary terms). By including bigrams from a

Jefferson corpus and a Washington corpus (exluding the test set) they reduced the WER

to 35% and 45% respectively. We note that the best approach in this paper has an even

lower WER, showing that the word spotting approach is quite competitive.

2 Interesting Clusters

Early work in information retrieval by Luhn [12] lets us concretize the notion of “interest-

ing” clusters. A plot of term frequencies, where terms are ordered by decreasing frequency

of occurence, exhibits a distribution that is known as Zipf ’s law [37]. That is, the frequency

of the k-th most frequent term has a frequency that is f0/k, where f0 is the frequency of

the most frequent term. Luhn argued that index terms should be taken from the middle of

that distribution. Figure 3 shows an example of the actual distribution of term frequencies

8



and the distribution predicted by Zipf. Note the large amount of mass that is concentrated

in high-frequency terms and the long tail of the distribution to the right, which continues

beyond the shown range.

50 100 150 200 250
0

200

400

600

800

1000

1200

terms (ordered by frequency)

te
rm

 fr
eq

ue
nc

y

actual distribution
Zipf’s law

Figure 3: Zipf’s law: The plots show the actual distribution of term frequencies and the
prediction made with Zipf’s law based on the actual frequency of the most frequent term.
The collection size is 21324 words; only the left-hand portion of the graph is shown.

The reason is that terms with frequencies that are high (left side of the plot) are often

stop words, such as and/the/. . . , which do not carry any meaning. Terms with very low

frequencies are often sporadic, and are not descriptive of the content in the collection.

Terms that are descriptive of the content can often be found in the middle of the plot.

Their repeated, but not excessive use suggests that they are essential to describing the

content of the collection and should consequently be part of the index.

In the following sections we assume the output of a page segmentation algorithm and

describe approaches to matching pairs of word images and clustering experiments.

9



3 Features

The images we operate on are all grayscale with 256 levels of intensity [0..255]. Before

column features can be extracted from an image, inter-word variations such as skew and

slant angle have to be detected and normalized. All of the column features we describe in

the following are normalized to the range [0..1]. Specific pixel intensity values in an image

I ∈ Rh×w are referred to as I(r, c), where r and c indicate the row and column index of the

pixel. Our goal was to choose a variety of features presented in handwriting recognition

literature (e.g. [35]), such that an approximate reconstruction of a word from its features

would be possible.

3.1 Projection Profile

Projection profiles capture the distribution of ink along one of the two dimensions in a

word image. A vertical projection profile is computed by summing the intensity values1 in

each image column separately:

pp(I, c) =
h

∑

r=1

(255 − I(r, c)). (1)

Due to the variations in quality (e.g. contrast, faded ink) of the scanned images, different

projection profiles do not generally vary in the same range. To make them comparable,

the range of the projection profiles is normalized to the range [0..1] which gives f1(I, c).

1We chose to invert the pixel intensities, because the result is visually more intuitive (peaks for pro-
nounced vertical components in input word image). The descriptive capabilities of the feature however
remain the same.

10



(a) original image: slant/skew-normalized,
cleaned.

(b) normalized projection profile.

Figure 4: Original image and projection profile feature.

Figure 4 shows an example projection profile and the original image it was extracted from.

3.2 Word Profiles

Word profiles capture part of the outlining shape of a word. The current word matching

algorithm uses upper and lower word profiles: let is ink(I, r, c) be a function that returns

1 if the pixel I(r, c) is an “ink pixel”, and 0 if the pixel is a background pixel. This function

is currently realized using a thresholding technique which we have found to be sufficient for

our purposes. For more sophisticated foreground/background separation, see [11]. Using

is ink, the upper and lower word profiles can be calculated as follows:

up(I, c)=



























undefined, if ∀r (is ink(I, r, c) = 0)

argmin
r=1,...,h

(is ink(I, r, c) = 1), otherwise

(2)

lp(I, c)=



























undefined, if ∀r (is ink(I, r, c) = 0)

argmax
r=1,...,h

(is ink(I, r, c) = 1), otherwise

(3)

11



If a column does not contain ink pixels, up and lp will be undefined (no distance to the

Figure 5: Normalized upper word profile (original in Figure 4(a), negative feature value
displayed).

nearest ink pixel from top or bottom of word image bounding box). A number of factors,

such as pressure on the writing instrument and fading ink affect the occurrence of such

gaps, which is not consistent for multiple instances of the same word. Therefore, gaps

where up and lp are undefined were closed by linearly interpolating between the nearest

defined values:

up′(I, c)=



















interpolated value, if up(I, c) undefined

up(I, c), otherwise

(4)

f2 (and similarly f3 from lp′) can be obtained by normalizing up′ to the range [0..1]. Figure

5 shows an upper word profile feature, generated from the original in Figure 4(a).

3.3 Background/Ink Transitions

So far, the above features represent the distribution of ink in the columns of a word image

and the outlining shape of the word. To capture part of the “inner” structure of a word,

we chose to record the number of background to ink transitions nbit(I, c) in an image

column as the last feature. The range of this feature is normalized with a (conservatively

12



determined) constant that ensures a range of [0..1]:

f4(I, c) = nbit(I, c)/6. (5)

With this feature set at hand, we will now demonstrate its effectiveness when used within

the proposed DTW matching algorithm.

We tried other features, including Gaussian filter responses [25], but the above set

seemed to work the best.

4 Word Image Matching

One of the key parts of the wordspotting approach is the image matching technique for

comparing word images. Several techniques have been investigated [24, 26, 27], with the

best performing being Dynamic Time Warping matching [26], which we explain here in

detail.

For DTW matching, word images are represented by multidimensional profile features

(see section 3). These profiles are then matched using DTW, a dynamic programming

algorithm that is able to account for writing variations, which cause the profile features to

be compressed and stretched nonlinearly with respect to one another.

The advantage of DTW over simple distance measures such as linear scaling followed

by a Euclidean distance calculation is that it determines a common “time axis” (hence

the term time warping) for the compared signals, on which corresponding profile locations

13



samples

(a) Linear scaling alignment,

samples

(b) Dynamic Time Warping alignment.

Figure 6: Two profiles, aligned using linear scaling and Dynamic Time Warping. DTW
ensures that only corresponding locations will be compared.

appear at the same time. Due to the variations in handwriting, two profiles of the same

word do not generally line up very well if they are just scaled linearly (see Figure 6).

4.1 Dynamic Time Warping

When determining the DTW-distance2 dist(X,Y) between two time series X = (x1, . . . , xM)

and Y = (y1, . . . , yN), a matrix D ∈ IRM×N is built, where each entry D(i, j)(1 ≤ i ≤

M, 1 ≤ j ≤ N) is the cost of aligning the subsequences X1:i and Y1:j .

Each entry D(i, j) is calculated from some D(i′, j′) plus an additional cost d, which is

usually some distance between the samples xi and yi. For instance, our implementation of

the algorithm uses

D(i, j) = min































D(i, j − 1)

D(i − 1, j)

D(i − 1, j − 1)































+ d(xi, yi). (6)

2dist(·, ·) does not satisfy all metric axioms.

14



The recursive definition of D(i, j) based on the given three values is a local continuity con-

straint (cf. Figure 7(a)). It ensures smoothness of the recovered warping, e.g. no sample can

be left out in a warped sequence. For a more detailed discussion of continuity constraints

and alternatives to the one used in this work, we refer the reader to [29].

D(i−1, j−1) D(i−1, j)

D(i, j)

D(i, j−1)

(a) local continuity constraint.

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

(1, 1)

(M, N)

r

r

r

r

(b) global path constraint.

Figure 7: Constraints used in the current dynamic time warping implementation.

Table 1 contains pseudo-code of the DTW algorithm (adapted from [34]) using the local

continuity constraint from Figure 7(a). The algorithm determines a warping path composed

of index pairs ((i1, j1), (i2, j2), . . . , (iK , jK)), which aligns corresponding samples in the input

sequences X and Y. To prevent DTW from recovering pathological warpings that match

a small portion of one series to a large portion in the other, global path constraints are

used. They force the recovered paths to stay close to the diagonal of the DTW matrix.

Our implementation of DTW uses the Sakoe-Chiba band [28] (see Figure 7(b); the warping

path must lie in the shaded region), but the Itakura parallelogram [6] is also a popular

choice. As a side effect, the constraint speeds up the computation of the DTW matrix,

since it does not have to be entirely evaluated. Our implementation of the word matching

15



algorithm uses r = 15 samples. Recent work [23] shows that the size and shape of the

global path constraint can be adapted, leading to faster DTW computations and better

matching performance.

Input: X = (x1, . . . , xM) and Y = (y1, . . . , yN),
distance function d(·, ·)

Output: DTW matrix D
Algorithm:
1. D(1, 1) = d(x1, y1);
2. for m = 1 : M
3. D(m, 1) = D(m − 1, 1) + d(xm, y1);
4. for n = 1 : N
5. D(1, n) = D(1, n − 1) + d(x1, yn);
6. for m = 2 : M
7. for n = 2 : N

8. D(m,n)=min







D(i, j − 1)
D(i − 1, j)
D(i − 1, j − 1)







+ d(xm, yn);

Table 1: Pseudo code for the DTW algorithm.

Once all necessary values of D have been calculated, the warping path can be determined

by backtracking the minimum cost path starting from (M,N). We are just interested in

the accumulated cost along the warping path, which is stored in D(M,N). As it is, this

matching cost would be lower for shorter sequences, so we offset this bias by dividing the

total matching cost by the length K of the warping path, yielding

dist(X,Y) = D(M,N)/K. (7)

16



4.2 Matching Word Images with DTW

We represent word images with single- or multi-dimensional profile features. Single-dimen-

sional profiles that were extracted from the same word have the same length, and can be

“stacked” to create multidimensional profiles. Hence, when matching word images, the

sequences X and Y consist of samples of dimensionality d ≥ 1, i.e. xi, yi ∈ IRd.

In order to use DTW to match such profiles, we need to define a distance measure d(·, ·)

that determines the (local) distance of two samples in a profile. Our implementation uses

the square of the Euclidean distance

d(xi, yj) =
d

∑

k=1

(xi,k − yj,k)
2, (8)

where the index k is used to refer to the k-th dimension of xi and yj. With this distance

measure defined, we can now calculate the matching distance between two word images by

comparing their profile features using DTW and equation (7).

4.3 Experimental Setup

The performance of the DTW word image matching algorithm was evaluated in a retrieval-

by-example setup, where word images in a collection are ranked by decreasing similarity

to a given template. Experiments were conducted on two test sets of different quality,

both 10 pages in size (2381 and 3370 word images). The first set is of acceptable quality,

see Figure 8(a)). The second set is very degraded (see Figure 8(b)) - even people have

difficulties reading these documents. We used this data set to test how badly matching

17



algorithms perform on manuscripts of such poor quality. Each page in the two test sets

was segmented into words with an automatic page segmentation procedure. While the

quality of the segmentation algorithm has been improved in the meantime, we used the

same segmentation results as in [7], for comparability.

We conducted four experiments on the test sets and compared the performance of

various matching approaches. Each experiment involves selecting one of the above two data

sets and identifying a subset that will be used for querying. Each of the queries is used to

rank the images in the dataset according to their similarity to the query. The similarity

scores are determined by a matching algorithm. Four experiments were conducted (A and

C were initially proposed in [7]):

Experiment A: 15 images from test set 1 were selected as queries.

Experiment B: All images in test set 1 were used as queries. This yields a total of 2381

query images, 9 of which do not contain any letters.3

Experiment C: 32 images from test set 2 were selected as queries. 13 of these images

contain words that occur only once in the collection.

Experiment D: All images in test set 2 were used as queries. This yields a total of 3370

query images total, 108 of which do not contain any letters.3

Experiments A and C allow us to test algorithms which would otherwise take too long to

run on the entire dataset.

3These images are the result of segmentation errors.

18



(a) acceptable quality (set 1).

(b) significantly degraded (set 2).

Figure 8: Document samples from the Dynamic Time Warping testbeds, showing the
differing quality.

In order to reduce the number of pairwise comparisons that have to be made, we pruned

the total set of matches by comparing scalar features. If thresholding applied to the features

extracted from the query and a candidate image determines that the images are dissimilar,

we do not assign a similarity score to the candidate image (see [26] for details of this

process). Table 2 shows the reduction of candidates through pruning, and how many true

positives remain in the pruned candidate set.

Experiment Total #queries Pruned candidates Recall

A 15 87.29% 90.72%
B 2372 86.43% 71.11%
C 32 86.99% 56.49%
D 3262 85.74% 55.05%

Table 2: Pruning statistics, showing the reduction in the total number of matches to be
made and the percentage of remaining true positives (recall).

Each word in the data sets was labeled with its ASCII equivalent. In case of segmen-

tation errors, a tag corresponding to all visible characters in the segmented word image

19



was assigned. Based on this annotation, relevance judgments were produced for the data

sets. Two word images were considered relevant, if they have the same tags. For the eval-

uation, we used the trec eval program to compute mean average precision scores for all

experiments.

4.4 Experimental Results

Table 3 shows mean average precision results for all data sets obtained with a range of

different matching techniques:

1. XOR[7]: The images are aligned to compensate for shear and scale changes, binarized

and then a difference image is computed. The number of difference pixels is used as

the matching cost.

2. SSD[7]: This approach translates the query and candidate images relative to one

another to find the minimum cost based on the sum of squared differences of the

pixel intensities. This cost is used as the matching cost.

3. SLH[7]: Scott and Longuet-Higgins algorithm [30]. This algorithm recovers an affine

warping transform between sample points taken from the boundaries of the query

and candidate images. The residual between query points and the warped candidate

points is the matching cost.

4. SC [2]: Shape context matching. Sample points are taken from the outlines of the

query and candidate image. Each point is assigned a shape context histogram, which

20



is used to recover corresponding sample points in the query and the candidate image.

The matching is done in an iterative process, which successively warps the candidate

image. The matching cost is determined from the cost that is associated with the

chosen correspondences.

5. EDM[7]: Euclidean distance mapping. In the XOR image, difference pixels in larger

regions are weighted more heavily, because they are likely to result from structural

differences between the template and the candidate image, not from noise. The

matching cost is the cumulative weight of the difference pixels in the XOR image.

6. CORR[27]: This technique recovers similarities between a small number of corner

points in the query and candidate images. Points of interest are determined by

a corner detector. The matching cost is calculated from the number of recovered

correspondences and the relative location of corresponding points in the two images.

7. DTW[26]: Dynamic Time Warping word image matching as described above.

The obtained mean average precision scores for experiments A and B had to be cor-

rected, because of an evaluation problem in [7]. The reason is that Kane et al. ranked all

the images in the dataset, including the query image. Queries with only one single relevant

item (the query itself) produce average precision values of 1 (because the query image is

retrieved at rank 1), which artificially inflates the retrieval scores. To solve this problem

we have chosen to disregard 13 of the queries in set C and 960 queries in set D. Table 3

reflects the values after this correction.

21



Despite this correction, the remaining queries continue to retrieve the query image at

rank 1, still inflating the scores. Hence, in order to give the most accurate picture of

the actual matching performance, we have re-calculated the mean average precision scores

for test-runs that were available to us in ranked-list format. Table 4 shows the average

precision scores of four runs, where the top ranked image is removed from all ranked result

lists, effectively discarding each query image from their respective candidate set.

Algorithm Exper. A Exper. B Exper. C Exper. D
XOR 54.14% n/a n/a n/a
SSD 52.66% n/a n/a n/a
SLH 42.43% n/a n/a n/a
SC 48.67% n/a 48.11% n/a
EDM 72.61% n/a 15.05% n/a
CORR 73.95% 62.57% 59.96% 51.08%
DTW 73.71% 65.34% 58.81% 51.81%

Table 3: Mean average precision scores on all data sets (results for test set A and B have
been corrected, XOR: matching using difference images, SSD: sum of squared differences
technique, SLH: technique by Scott & Longuet-Higgins [30], SC: shape context matching
[2], EDM: euclidean distance mapping, CORR: corner-point correlation, DTW: dynamic
time warping matching).

For experiment A, results are available with all matching algorithms. EDM, DTW

and CORR clearly outperform any of the other techniques. SC was run with a number

of sample points proportional to the width of the words being matched, with about 100

sample points for a word like Alexandria. More sample points would probably improve the

effectiveness of the technique, but at the cost of further increasing the matching time (for

100 sample points it is already about 50 seconds, see Table 5).

22



The DTW and CORR algorithms were also used in experiment B (all images used as

templates). The other algorithms were too slow to realistically run on this dataset. On

query set B, the average precision scores for DTW and CORR are lower than on the smaller

subset A. We attribute this effect mostly to the pruning method, which works much better

on the smaller set A: while the pruning preserves about 91% of the relevant documents

for data set A, it only produces 71% recall on data set B. The lower recall on set B (due

to the pruning) then results in a lower average precision score after matching. While the

performance of DTW was slightly worse than CORR’s on the smaller query set A, DTW

outperforms CORR on query set B, which is much larger and makes for a better comparison.

We compared the results of the SC, CORR, EDM and DTW techniques on data set

C. While the performance of all approaches is generally low on data set C, DTW’s and

CORR’s performance is almost four times better than that of EDM (58.81% and 59.96%

vs. 15.05%). DTW also performs similarly on the rest of the data set (51.81% average

precision on data set D). This shows that the DTW and CORR matching techniques are

more robust to document degradation than EDM, with DTW - again - showing superior

performance to CORR on the exhaustive query set. We would expect the results to be

better, if a more careful pruning was applied: after pruning, the recall percentages have

already dropped to about 56% for sets C and D (see Table 2). This limits the maximum

average precision achievable with the matching algorithms.

These results show that DTW performs best amongst the set of algorithms tried. How-

ever, a look at Table 4 shows that significant efforts need to be made in order to perform

23



Algorithm Exper. A Exper. B Exper. C Exper. D
SC 40.58% n/a 9.46% n/a
EDM 67.67% n/a n/a n/a
CORR 69.69% 36.23% 14.84% 15.49%
DTW 67.92% 40.98% 13.04% 16.50%

Table 4: Mean average precision scores using the alternative evaluation measure for all test
results that were available to us in ranked list format. SC: shape context matching [2],
EDM: euclidean distance mapping, CORR: corner-point correlation, DTW: dynamic time
warping matching).

well on such challenging datasets as C and D. Whether this improvement will come from

the preprocessing or from the matching algorithm itself remains to be seen.

Algorithm: XOR SSD SLH SC EDM CORR DTW

Running time [s]: 13 72 121 ∼50 14 ∼1 ∼2

Table 5: Run times for the compared algorithms in Matlab on a 400MHz machine. The val-
ues include the time that is spent on normalization (e.g. relative scaling), feature extraction,
and similar processing steps.

Comparing the running times of the investigated algorithms (see Table 5) shows CORR

in the lead. CORR’s superior execution is a result of the very few corner points that

are considered for establishing correspondences between the query and a candidate image.

DTW is second in execution time, but we believe its performance can be improved sub-

stantially with optimization. The other algorithms (including our implementation of SLH)

all use the actual images (rather than the 1D profiles used by DTW) and hence are much

slower.

24



5 Word Image Clustering Experiments

All of the previous work on wordspotting has concentrated mostly on finding effective

similarity measures for word image matching, but the clustering of word images has not

been tackled. In this section, we perfom word image clustering experiments, followed by

simulated cluster annotations that are designed to imitate a human annotator.

Before we start clustering, we need to get a good estimate of the number of clusters

that our data will form. Heaps’ law, an empirical rule, provides the tool for the estimation,

which is discussed in the following section. With an accurate cluster estimate we then move

on to various clustering techniques that we apply to group word images.

5.1 Heaps’ Law

Many clustering algorithms often require that the number of clusters to be created is

known. In fact, all of the clustering algorithms that were used in our experiments have the

target number of clusters as an input parameter. In the ideal case, each cluster contains

all instances of a particular word, so there are as many clusters as there are distinct words

in the collection at hand. In other words, the number of clusters is equivalent to the

vocabulary size.

Early work in information retrieval by Heaps [5] provides an empirical estimate for the

vocabulary size of a collection from the size of the collection in words. The rule, which

is known to be quite effective [1], has become known as Heaps’ law. It predicts that the

25



vocabulary size of a collection of n words can be estimated to be

V (n) = K · nβ, (9)

where K and β are parameters that depend on the language of the collection.

We estimated K and β by fitting Heaps’ law to the ground truth transcription of a

collection of 100 pages (21324 word images) from George Washington’s letters, which does

not include our testing set on which we performed clustering experiments. We simulated

documents of sizes n = 1 to n = 21324 by only considering the first n transcription words.

For each n, we determined the vocabulary size and then fitted Heaps’ law to the resulting

curve. Figure 9 shows a plot of the vocabulary size V as a function of n and the fitted

curve.

0 0.5 1 1.5 2
x 10

4

0

500

1000

1500

2000

2500

3000

3500

collection size n

vo
ca

bu
la

ry
 s

iz
e 

V

actual vocabulary size
Heaps’ law fit

Figure 9: Actual vocabulary size as a function of the collection size and a fit of Heaps’ law
shown for collection sizes of up to 21324 words.

The fitting was performed with the “Nelder-Mead” optimization procedure [20], which

minimizes the sum of squared differences between the actual vocabulary sizes and the ones

26



predicted by Heaps’ law. For the collection at hand, we estimated the optimal parameter

settings to be K = 7.2416 and β = .6172, resulting in a tight fit.

We used these parameters to estimate the vocabulary size of a collection of 20 pages,

our testbed for the clustering experiments in the following section. The annotated data set

is publicly available and was originally used in [10] for doing recognition experiments. It

consists of 4860 word images. 4

#Images Voc. size Predicted Voc. size Est. error
4860 1187 1365 15%

Table 6: Accuracy of the vocabulary size prediction (with Heaps’ law), shown for two data
sets.

Table 6 shows the accuracy that Heaps’ law achieves when predicting the vocabulary

size of the data set. The vocabulary size of the collection is overestimated by 15%. This

appears acceptable, given the small size of the collection. It is also possible that a larger

text source for the parameter estimation could yield better prediction results.

5.2 Clustering

With the desired number of clusters at hand, we can now turn to grouping word images

based on pairwise similarity and then determine the accuracy of the generated clusters.

Two sets of experiments were performed using 2 different image similarity metrics. The

main difference between them lies in the features that are used for the representation:

4The original dataset had 4856 word images. Based on feedback, a small number of segmentation and
annotation mistakes were corrected.

27



α: The first experimental set consists of 4860 word images. This set does not consist of

feature vectors, but rather of a 4860×4860 sparse matrix with pairwise distances. The

distances were calculated using the Dynamic Time Warping word matching algorithm

described in section 4.2 above. The matrix is sparse, because pairwise distances were

only calculated if a word image pair was not ruled out by pruning. 76% of the matrix

entries were not computed and were filled with the default distance value ∞. The

calculation of the distance matrix required roughly one week on a multiprocessor

machine with 4 CPUs and 500MHz.

β: This set consists of all the 4860 word images in the dataset, solely represented with

DFT coefficients extracted from the upper-, lower-, and projection-profiles. 33 DFT

coefficients were used to represent each word image, which is the optimal number

that was determined for this dataset.

We experimented with both the K-means clustering algorithm and various agglomer-

ative clustering approaches on these data sets with one exception: Since dataset α is not

represented in feature space, but rather in terms of pairwise distances, K-means clustering

cannot be applied. K-means keeps track of cluster centers, a notion that does not exist in

pairwise distance space.

Numerous clustering techniques are described in the literature. The following is a brief

overview of the clustering approaches that were used in our experiments. More detailed

descriptions of clustering techniques can be found in relevant literature, e.g. [4]. Except for

K-means clustering, all others techniques are agglomerative bottom-up procedures, which

28



build a hierarchical cluster tree by successively linking clusters. For such clustering tech-

niques, we only list how inter-cluster dissimilarity is determined:

K-means: The algorithm is initialized with K randomly selected cluster centers. Then

each feature vector is assigned to the nearest cluster, and the cluster centers are

recalculated. This procedure is repeated until convergence.

Single linkage: The inter-cluster dissimilarity between two clusters is the distance be-

tween the closest items within the two clusters.

Complete linkage: The distance between the two furthest items in the clusters is used

as the cluster dissimilarity.

Average linkage: Here the distance between two clusters is the average distance between

all item pairs in the clusters.

Weighted linkage: A slight variation of the Average Linkage technique, which uses a

weighted average for the cluster distance calculation.

Ward’s linkage: This linkage uses the sum of squares measure to assess the similarity

between clusters. The sum of squares is the total squared distance of all items in

a cluster relative to the cluster centroid. The distance of two clusters is then taken

to be the increase in the sum of squares measure, before joining them and taken

together.

Each of our experiments involves selecting one of α and β and a clustering method.

First, the desired number of clusters is estimated using Heaps’ law. Then, we start the

29



clustering of the data. In the case of K-means clustering, the feature vectors form the input

for the clustering algorithm. All other clustering routines use a dendrogram as input, which

can be constructed from pairwise distances between word images or their feature vectors

(we used the Euclidean distance measure to calculate distances between feature vectors).

The output of the clustering is a vector of cluster labels, which assigns each word image to

a single cluster.

The accuracy of a particular clustering output is evaluated by simulating the task of

labeling clusters, which would be performed by a human annotator if we were to perform

wordspotting. For the purpose of the simulation, it is assumed that a human annotator

would label a cluster with the vocabulary term that occurs most frequently in a cluster.

This strategy is sound, because it minimizes the total number of wrong annotations, when

cluster labels are spread over all word images within a cluster. Ground truth data is

available for all word images, so this process can be easily simulated. Once all clusters

have been annotated in this fashion, we assign each cluster label to all word images within

the cluster, essentially transcribing the entire collection. In practice, one could imagine

a scenario where the user very quickly browses (overviews) a set of word images in a

cluster and then assigns a label to the cluster. Table 7 shows the word error rates of such

transcriptions obtained from various clustering approaches.

The clustering algorithms tend to perform quite well. Data set β yielded the best

overall result, with Ward linkage clustering. Interestingly, the DTW dissimilarity data (set

α) performs slightly worse using the Ward linkage, but otherwise consistently better than

30



Clustering algorithm α: WER β: WER
K-means n/a 41.58%
Single linkage 65.00% 65.10%
Complete linkage 36.11% 37.24%
Average linkage 34.12% 44.47%
Weighted linkage 34.77% 41.03%
Ward linkage 34.47% 31.50%

Table 7: Performance of the clustering algorithms in terms of word error rate (WER), after
simulated annotation of the entire collection.

set β, and consistently well with word error rates between 34% and 36% (except for the

single linkage algorithm). This suggests that the DTW distance measure captures different

aspects of word image similarity than the features used in set β. The matrix with DTW

distances has not been entirely computed due to pruning, which should have an adverse

effect on performance (the pruning assigns a distance of ∞ to a large portion of all possible

word image pairs). Without the pruning, it would be impossible to run the DTW algorithm

in a realistic amount of time on this dataset.

Figure 10 shows histograms of the sizes of clusters that have been generated with the

best performing methods on sets α and β (average linkage and Ward linkage), as well as

the output of a clustering technique with higher word error rate (K-means). The clustering

techniques with lower word error rates generate better matches for the actual distribution of

cluster sizes. This is also true of techniques for which no plots are provided. It is important

for a good clustering approach to produce clusters of a variety of sizes. The output of the

K-means clustering in Figure 10(d) shows that clusters which should have been large, were

broken down into smaller pieces.

31



0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

cluster size

fre
qu

en
cy

(a) from ground truth (sets α&β),

0 10 20 30 40 50 60
0

100

200

300

400

500

600

cluster size

fre
qu

en
cy

(b) set α, average linkage clusters

0 10 20 30 40 50 60
0

100

200

300

400

500

cluster size

fre
qu

en
cy

(c) set β, Ward linkage clusters

0 5 10 15 20
0

50

100

150

200

250

300

350

cluster size

fre
qu

en
cy

(d) set β, K-means clusters

Figure 10: Histograms of actual and automatically determined cluster sizes. Some cluster-
ing algorithms achieve a good match of the actual cluster size distribution (b),(c), while
others tend to produce clusters with a limited range of sizes (d).

Of course our goal is not to obtain labels for all word images in the collection. Following

Luhn’s line of thought, we can identify clusters that should make good candidates for an

index. We constrained the simulated annotation to clusters with at least 3 members, but

not more than 50, and calculated the word error rate for the simulated annotation that

is restricted only to the selected clusters. Table 8 shows the word error rates that were

achieved for such clusters and the number of word images in the collection that were

assigned a label.

32



Clustering alg. α: WER/#Img β: WER/#Img
K-means n/a 50.80%/2941
Single linkage 4.90%/715 3.83%/758
Complete linkage 42.58%/2790 39.64%/2422
Average linkage 41.66%/2787 37.92%/2070
Weighted linkage 41.72%/2656 40.87%/2273
Ward linkage 41.88%/2827 38.12%/2867

Actual #images #Img Set α #Img Set β
in sel. clusters 2567 2567

Table 8: Performance of the clustering algorithms, computed for clusters with a moderate
number of members. The word error rate was calculated for annotations from clusters with
at least 3 members, but not more than 50. #Img refers to the total number of images
that fall into such clusters. The last row of the table shows the correct value for #Img,
according to the ground truth annotations.

The results show increased word error rates (not including clusterings that significantly

underestimate #Img), indicating that the clustering performs slightly better on words that

were excluded from the word error rate calculation. Generally, the clusterings of sets α

and β come close to the desired number #Img. Further testing would have to be done to

reveal which words the clusters in these experiments correspond to.

6 Conclusion

Wordspotting appears as an attractive alternative to the seemingly obvious recognize-then-

retrieve approach to historical manuscript retrieval. With the capability to match word

images quickly and accurately, partial transcriptions of a collection can be achieved with

reasonable accuracy and little human intervention. Wordspotting has the capability to

automatically identify indexing terms, making it possible to use costly human labor more

33



sparingly than a full transcription would require. For example, using the Ward linkage

clustering on data set β, it would be possible to obtain 2867 word image labels with a

word error rate of 38.12%, by annotating just 291 clusters (cluster sizes between 3 and 50

members). That is, the wordspotting procedure would have reduced 2867 annotations to

about 10% of that. Even greater savings (in terms of percent) can be expected from larger

collections, since vocabularies grow sub-linearly in the size of the corresponding collections.

Acknowledgment

This work was supported in part by the Center for Intelligent Information Retrieval and in

part by the National Science Foundation under grant number IIS-9909073. Any opinions,

findings and conclusions or recommendations expressed in this material are the author(s)

and do not necessarily reflect those of the sponsor.

We would like to thank the Library of Congress for providing the digitized manuscript

images that were used in this work.

References

[1] Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information Retrieval. Addison-Wesley,

Reading, MA, 1999.

[2] Belongie, S., Malik, J., and Puzicha, J. Shape matching and object recognition using

shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 4

34



(2002), 509–522.

[3] Govindaraju, V., and Xue, H. Fast handwriting recognition for indexing historical

documents. In Proc. of the Int’l Workshop on Document Image Analysis for Libraries

(Palo Alto, CA, January 23-24 2004), pp. 314–320.

[4] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning:

Data Mining, Inference and Prediction. Springer-Verlag, New York, 2001.

[5] Heaps, H. S. Information Retrieval: Computational and Theoretical Aspects. Academic

Press, Orlando, FL, 1978.

[6] Itakura, F. Minimum prediction residual principle applied to speech recognition. IEEE

Trans. on Acoustics, Speech, and Signal Processing 23 (1975), 67–72.

[7] Kane, S., Lehman, A., and Partridge, E. Indexing george washington’s handwritten

manuscripts. Tech. rep., Center for Intelligent Information Retrieval, Univ. of Mas-

sachusetts Amherst, 2001.

[8] Kim, G., Govindaraju, V., and Srihari, S. N. An architecture for handwritten text

recognition systems. Int’l Journal on Document Analysis and Recognition 2, 1 (1999),

37–44.

[9] Kornai, A., Mohiuddin, K. M., and Connell, S. D. Recognition of cursive writing

on personal checks. In Proc. of the 5th Int’l Workshop on Frontiers in Handwriting

Recognition (Colchester, UK, September 2-5 1996).

35



[10] Lavrenko, V., Rath, T. M., and Manmatha, R. Holistic word recognition for handwrit-

ten historical documents. In Proc. of the Int’l Workshop on Document Image Analysis

for Libraries (Palo Alto, CA, January 23-24 2004), pp. 278–287.

[11] Leedham, G., Varma, S., Patankar, A., and Govindaraju, V. Separating text and

background in degraded documents images — a comparison of global thresholding

techniques for multi-stage thresholding. In Proc. of the 8th Int’l Workshop on Frontiers

in Handwriting Recognition (Niagara-on-the-Lake, Canada, August 6-8 2002), pp. 244–

249.

[12] Luhn, H. P. The automatic creation of literature abstracts. IBM Journal 2 (April

1958), 159–165.

[13] Manmatha, R., and Croft, W. B. Word spotting: Indexing handwritten manuscripts.

In Intelligent Multimedia Information Retrieval, Mark T. Maybury, Ed. MIT Press,

Cambridge, MA, 1997, pp. 43–64.

[14] Manmatha, R., Han, C., and Riseman, E. M. Word spotting: A new approach to

indexing handwriting. In Proc. of the Conf. on Computer Vision and Pattern Recog-

nition (1996), pp. 631–637.

[15] Manmatha, R., Han, C., Riseman, E. M., and Croft, W. B. Indexing handwriting using

word matching. In Digital Libraries ’96: 1st ACM Int’l Conf. on Digital Libraries

(Bethesda, MD, March 20-23 1996), pp. 151–159.

36



[16] Manmatha, R., and Rothfeder, J. A scale space approach for automatically segmenting

words from historical handwritten documents. IEEE Trans. on Pattern Analysis and

Machine Intelligence (2005). (to appear).

[17] Manmatha, R., and Srimal, N. Scale space technique for word segmentation in hand-

written manuscripts. In Proc. of the Second Int’l Conf. on Scale-Space Theories in

Computer Vision (Corfu, Greece, September 26-27 1999), pp. 22–33.

[18] Marti, U.-V., and Bunke, H. Using a statistical language model to improve the per-

formance of an HMM-based cursive handwriting recognition system. Int’l Journal of

Pattern Recognition and Artifical Intelligence 15, 1 (2001), 65–90.

[19] Nagy, G. Twenty years of document image analysis in pami. IEEE Trans. on Pattern

Analysis and Machine Intelligence 22, 1 (2000), 38–62.

[20] Nelder, J. A., and Mead, R. A simplex method for function minimization. Computer

Journal 7 (1965), 308–313.

[21] Pacquet, T., and Lecourtier, Y. Recognition of handwritten sentences using a restricted

lexicon. Pattern Recognition 26, 3 (1993), 391–407.

[22] Plamondon, R., and Srihari, S. N. On-line and off-line handwriting recognition: A

comprehensive survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 22

(2000), 63–84.

37



[23] Ratanamahatana, C. A., and Keogh, E. Making time-series classification more accu-

rate using learned constraints. In Proc. of the 4th SIAM Int’l Conf. on Data Mining

(Lake Buena Vista, FL, April 22-24 2004), pp. 11–22.

[24] Rath, T. M., Kane, S., Lehman, A., Partridge, E., and Manmatha, R. Indexing for a

digital library of George Washington’s manuscripts: A study of word matching tech-

niques. Tech. rep., Center for Intelligent Information Retrieval, Univ. of Massachusetts

Amherst, 2000.

[25] Rath, T. M., and Manmatha, R. Features for word spotting in historical manuscripts.

In Proc. of the 7th Int’l Conf. on Document Analysis and Recognition (Edinburgh,

Scotland, August 3-6 2003), vol. 1, pp. 218–222.

[26] Rath, T. M., and Manmatha, R. Word image matching using dynamic time warping.

In Proc. of the Conf. on Computer Vision and Pattern Recognition (Madison, WI,

June 18-20 2003), vol. 2, pp. 521–527.

[27] Rothfeder, J. L., Feng, S., and Rath, T. M. Using corner feature correspondences

to rank word images by similarity. In Proc. of the Workshop on Document Image

Analysis and Retrieval (electronically published) (Madison, WI, June 20 2003).

[28] Sakoe, H., and Chiba, S. Dynamic programming optimization for spoken word recog-

nition. IEEE Trans. on Acoustics, Speech and Signal Processing 26 (1980), 623–625.

[29] Sankoff, D., and Kruskal, J. B. Time Warps, String Edits, and Macromolecules: The

Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA, 1983.

38



[30] Scott, G. L., and Longuet-Higgins, H. C. An algorithm for associating the features of

two patterns. Proc. of the Royal Society of London B224 (1991), 21–26.

[31] Srihari, S., and Kim, G. Penman: A system for reading unconstrained handwritten

page images. In Symposium on document image understanding technology (SDIUT

97) (April 1997), pp. 142–153.

[32] T. M. Rath, V. Lavrenko, and Manmatha, R. A search engine for historical manuscript

images. In Proc. of the 27th Annual Int’l ACM SIGIR Conf. (Sheffield, UK, July 25-29

2004), pp. 369–376.

[33] Tomai, C. I., Zhang, B., and Govindaraju, V. Transcript mapping for historic hand-

written document images. In Proc. of the 8th Int’l Workshop on Frontiers in Hand-

writing Recognition (Niagara-on-the-Lake, ON, August 6-8 2002), pp. 413–418.

[34] Triebel, R. Automatische Erkennung von handgeschriebenen Worten mithilfe des

Level-building Algorithmus, December 1999. Student Thesis, Institut für Informatik,

Albert-Ludwigs-Universität Freiburg (in German).

[35] Trier, Ø. D., Jain, A. K., and Taxt, T. Feature extraction methods for character

recognition - a survey. Pattern Recognition 29, 4 (1996), 641–662.

[36] Vinciarelli, A., Bengio, S., and Bunke, H. Offline recognition of large vocabulary

cursive handwritten text. In Proc. of the 7th Int’l Conf. on Document Analysis and

Recognition (Edinburgh, Scotland, August 3-6 2003), vol. 1, pp. 1101–1105.

39



[37] Zipf, G. Human Behaviour and the Principle of Least Effort. Addison-Wesley, Cam-

bridge, MA, 1949.

40


