
Formalizing Design Patterns
(pp. 115{124, Proc. ICSE'98, IEEE Computer Society Press, 1998)

Tommi Mikkonen

Software Systems Laboratory

Tampere University of Technology

P.O. Box 553

FIN-33101 Tampere, Finland

+358 3 365 3815

tjm@cs.tut.�

ABSTRACT

Design patterns facilitate reuse of good design prac-
tices. They are typically given by using conventional
notations that lack well-de�ned semantics and, there-
fore reasoning about their behaviors requires formaliza-
tion. Even when formalized, conventional communica-
tion abstractions may lead to too laborious formaliza-
tions when addressing the temporal behavior of a pat-
tern as a whole instead of behaviors local to its compo-
nents. We show that rigorous reasoning can be eased
by formalizing temporal behaviors of patterns in terms
of high-level abstractions of communication, and that
by using property-preserving re�nements, speci�cations
can be naturally composed by using patterns as building
blocks.

KEYWORDS

Formal methods, temporal behaviors, design patterns

1 INTRODUCTION

Patterns [3, 7] facilitate reuse of well-established solu-
tions when known problems are encountered, by sup-
porting the use of abstractions that are above the level
of individual classes and instances [6]. Therefore, by us-
ing patterns, tried and approved decisions, applicable at
a level of abstraction higher than that of single objects,
are naturally adopted. In practice, this means that sys-
tems are based on well-de�ned components, o�ering an
option to use such components as building blocks for
more complex systems [6].

According to [3], Design patterns are a subset of pat-
terns that provide a scheme for re�ning subsystems or
components of software systems, or relationships be-
tween them, thus facilitating reuse of cooperation of sev-
eral components. In general, design patterns describe
commonly recurring structures of communicating com-

ponents that solve general design problems within par-
ticular contexts, and capture solutions that have been
developed and evolved over time [7]. They are typically
given in terms of programming-level abstractions, or by
using representations that lack rigorous de�nitions of
temporal behaviors. Therefore, temporal properties of
patterns cannot usually be reasoned about without go-
ing to the level of implementation details. Although
the act of writing a formal speci�cation is claimed to
catch errors, omissions, and ambiguities early in the
design process [5], we wish to provide a possibility to
reason about the temporal behavior of a system even
when the associated speci�cation is incomplete, or ab-
stract with respect to communication primitives. For
pattern-oriented development, a rigorous but practical
formalization, which pays special attention to behav-
ioral modularity, is therefore needed to express tempo-
ral behavior of patterns and systems utilizing patterns
as their skeletons. Steps to this direction have already
been proposed, for example in [8, 1].

The rest of this paper discusses a way to formalize tem-
poral behaviors of design patterns, paying special atten-
tion to their natural utilization when composing spec-
i�cations of complex systems. The method used for
the formalization allows rigorous reasoning, and also
supports a software engineering view to the develop-
ment. The focus is on the mechanisms facilitated by the
method, that enable formalization of patterns and their
usage. Although we approach the formalization in terms
of examples, the underlying principles are applicable to
any pattern that involves inter-object cooperation.

The way we proceed is the following. Sections 2 and 3
brie
y introduce the method used for formalization, and
use it to de�ne Observer pattern given in [7]. Section 4
demonstrates how to create more complex speci�cations
by combining patterns that have already been formal-
ized, using Managed Observer, a derivative of Observer
pattern, as an example. In Section 5, this combination
of patterns is instantiated into a form where concrete
data is used. Section 6 summarizes the properties that
allow us to consider the method as rigorous but practi-
cal for formalizing design patterns and their usage.



2 THE DISCO METHOD

DisCo is a speci�cation method [9] intended for speci-
�cation and modeling of interactions at a high-level of
abstraction [2]. The formal basis of the method is in
Temporal Logic of Actions [14], and many of the ideas
that are embedded in the method are similar to those of
UNITY [4]. The language used for composing speci�ca-
tions is textual, but graphical animation is provided by
the associated tool [16]. In this context, the goal is to
introduce the main principles of the method, and there-
fore, notations re
ect the underlying logic discussed in
[12], rather than the actual DisCo language.

2.1 Classes, Relations, and Actions

A DisCo speci�cation is a de�nition of (a pattern for)
a system. In each system, the developer can intro-
duce classes, relations and actions. Classes are formulas
de�ning the form for possible objects. For instance, a
class C can be de�ned as

class C = fxg,

where x is an untyped variable. With this de�nition,
each object o of class C contains a local variable denoted
as o.x.

Relations are used for associating objects with each
other. They are de�ned in the format

relation (n)�R�(m): C � D,

where relation R associates n instances of class C with
m instances of D. Asterisk (*) is a shorthand for any
possible number of instances.

Actions are atomic units of execution, which can be un-
derstood as multi-object methods. An action consists
of a list of required participants and parameters, an
enabling condition, and the de�nition of state changes
caused by an execution of the action. For example, an
action A can be given as

A(c:C; i):
i 6= c.x

! c.x0 = i,

where c is a role for an object in class C, and i denotes
an untyped value given as a parameter. Expression i 6=
c.x is the enabling condition under which the action can
be executed. Unprimed and primed variables refer to
the values of variables before and after the execution of
the action, respectively, thus de�ning the state change
caused by an execution of the action. The convention
is used that variables implicitly preserve their values,
unless otherwise explicitly denoted.

Participants, i.e., objects that take a role in an action,
and parameters, i.e., plain variables that denote individ-
ual values, are nondeterministically selected from those
that are suitable. For example, the above action is en-
abled for values of parameter i that are di�erent from
the value of c.x.

Actions are executed in an interleaving manner. If there
are several actions that could be executed, one is non-
deterministically selected from those that are enabled.
This model of execution liberates the developer from
de�ning who is responsible for initiating actions, and
sets the emphasis on the cooperation of objects.

Each DisCo speci�cation is a description of the temporal
behavior of a closed system, which can be observed but
not a�ected from outside. The behavior of the system
is thus completely de�ned by the speci�cation, without
any implicit 
ows of control. In order to facilitate gener-
icity with respect to objects, a speci�cation does not
require the developer to �x the numbers of objects that
are needed. For actions, genericity is achieved by stat-
ing that objects belonging to certain classes are needed
for an execution instead of identifying the actual objects
that are involved.

2.2 Modularity

DisCo modularity consists of applying superposition [9]
to existing speci�cations, ensuring by construction that
safety properties (`nothing bad will ever happen') are
preserved. Each re�nement step can introduce a rela-
tively small set of global aspects instead of a large num-
ber of aspects local to an object. Such a re�nement can
be understood as a system-wide layer that introduces
slices of objects, which resemble program slices [17].
However, unlike program slices, these slices of objects
aim at construction of a speci�cation, not at decompo-
sition of an existing system.

As the unit of modularity is a behavioral layer rather
than an individual object or class, the emphasis is on
the behavior of the system as a whole instead of local
behaviors of independent objects, which is the case in
conventional object-oriented approaches.

In practice this means that, when re�ning speci�cations,
new classes and variables can be introduced, and oper-
ations a�ecting the new variables can be added. New
operations are given as new actions, or as augmentations
to existing ones, with an option to add new conjuncts
to enabling guards as well.

Classes are extended by using the format

class C = C + fyg,

and action re�nements are given in the format



B(d:C; j):
re�nes A(c:C = d; i = j)

^ j � c.y

! c.y0 = c.y + j.

As new conjuncts can be added to enabling condi-
tion, liveness properties (`something good will eventu-
ally happen') are not guaranteed to be preserved by
construction. For them, proof obligations are obtained,
which can be checked either informally or by a formal
proof.

Composition of existing DisCo systems is a re�nement
of all the component systems, with a straightforward
interpretation in terms of layers.

The underlying closed-system philosophy o�ers a conve-
nient interpretation of layer-based speci�cation. Layers
that have been de�ned form a universe. This universe
can be extended by providing new layers, but these new
layers cannot assign new values to the variables de�ned
in the layers that already exist. Thus, each layer that
de�nes data must introduce operations needed for mod-
ifying its data. Operations may, however, assign non-
deterministic values, if the variables that determine the
assigned values are not available in the existing layers.

2.3 Inheritance

In DisCo, class re�nement is a special form of inheri-
tance. When extending a class, a new class is created,
that is a subclass of the original class. In a normal re-
�nement we then implicitly state that no instances of
the original class exist outside the extension. If this is
undesirable, inheritance can be used explicitly. A class
D derived from base class C can be introduced in the
format

class D = C + f: : :g.

Multiple inheritance is also allowed.

The adoption of inheritance implies a requirement to be
able to specialize actions for di�erent kinds of partici-
pants. For this purpose, an action B that specializes
action A for participants in subclass D can be given as

B(d:D; j):

re�nes A(c:C = d; i = j) for c 2 D.

This results in two actions. Action B(d:D; j) is available
for objects in class D, and A(c:C; i) is to be used by
instances of class C that do not belong to class D.

The closed-system interpretation of inheritance does not
di�er from that of standard re�nements.

Subject ObserverNotify

Attach

Update

Detach

Figure 1: An illustration of the Observer pattern

3 FORMALIZING A DESIGN PATTERN

This section discusses how design patterns can be for-
malized in terms of DisCo. The focus is on the use of
high-level abstractions of cooperation.

As an example, Observer pattern given in [7] is formal-
ized. Informally, this pattern can be described as fol-
lows. We have subjects and observers. Each subject
is a container of data whose contents can be modi�ed,
and each observer is an object that can be interested in
the contents of a subject. The pattern describes how
subjects and observers are connected with each other,
and how they communicate in order to preserve data
consistency. The pattern is illustrated in Figure 1. In-
tuitively, the characteristic property of the pattern is
that whenever an observer receives data, the subject
that the observer is attached to contains the same data.

3.1 Classes and Relations

Based on the description of the pattern, it is relatively
obvious that classes whose instances represent subjects
and observers are needed. Each such object may have
an internal state, yielding

class Subject = fDatag,

class Observer = fDatag.

In the formalization, Data is included in both classes
to model the temporal behavior related to the contents
of the associated objects. Obviously, by omitting the
data, an abstraction of this speci�cation is obtained.
However, as the role of the data is vital in Observer
pattern, its presence in the formalization is justi�ed.

Two instances of the above classes are associated with
each other whenever an observer is interested in the con-
tents of a subject. This relation, representing an attach-
ment of an observer to a subject, can be formalized as

relation (0..1)�Attached�(*): Subject � Observer.

In addition to the attached observers, each subject
needs to know to which observers its contents have been



Subject Observer

Attached

Updated

Figure 2: Class diagram of Observer pattern

delivered since the latest modi�cation. Thus, subjects
are associated with the observers that have already been
updated. This yields the following relation:

relation (0..1)�Updated�(*): Subject � Observer.

A diagram representing classes and their relations is
given in Figure 2.

3.2 Actions

In the pattern, an observer can become interested in
the contents of a subject, and may also cancel this in-
terest. In the formalization, actions Attach and Detach
are used for modeling arousal and cancelation of inter-
est, respectively. Action Attach sets Attached relation
between the subject and the observer that are involved.
Action Detach clears this relation, and ensures that pos-
sible Updated relation between these objects is cleared,
too. These actions are formalized as follows:

Attach(s:Subject; o:Observer):
:s�Attached�o

! s�Attached0 �o,

Detach(s:Subject; o:Observer):
s�Attached�o

! :s�Attached0 �o

^:s�Updated0 �o.

The formalism requires no initiators for actions. In-
stead, it is a design decision to de�ne who is responsible
for initiating exections.

Action Notify denotes that the contents of a subject
have been modi�ed. At this level of abstraction this is
interpreted as a need to update all observers that are
attached to the subject. Thus, upon executing Notify,
the subject must no longer be associated with any ob-
server by Updated relation. This results in the following
action:

Notify(s:Subject, d):
! :s�Updated0 �class Observer

^ s.Data0 = d,

where parameter d models the new value, set upon no-
ti�cation, and class Observer denotes all instances of
class Observer. As no restrictions are imposed on the

value of parameter d, its value is nondeterministically
selected at this level of abstraction.

Action Update represents a transmission of modi�ed
data from a subject to an observer. Thus, it sets Up-
dated relation for the subject and the observer that par-
ticipate in the action, yielding

Update(s:Subject; o�:Observer; d):
s�Attached�o

^ :s.Updated.o
^ d = s.Data

! s�Updated0 �o

^ o.Data0 = d.

Marking participant o with an asterisk denotes a fair-
ness requirement, stating that if an object could repeat-
edly take this role in this action, the action will be ex-
ecuted for the object. Such requirements are essential
for liveness properties.

4 COMBINING PATTERNS

In this section, we combine patterns to form speci�ca-
tions of more complex systems. The emphasis is on
how cooperation is re�ned to contain behaviors of pat-
terns, each of which is introduced in a behavioral layer
of its own. Of particular interest is that in many cases
operations of di�erent patterns need to take place syn-
chronously. Straightforward formalization of the tempo-
ral behavior results, because implementation-dependent
protocols or method invocations are omitted at this level
of abstraction.

In [7], Observer pattern is combined with Mediator pat-
tern, resulting in a special version of the original pat-
terns, where the information between subjects and ob-
servers is transmitted via a manager. This combination
is referred to as Managed Observer. In the following,
Managed Observer is formalized by using DisCo re�ne-
ments, starting from the formalizations of the underly-
ing patterns. Due to the nature of DisCo re�nements,
the resulting system is a correct combination of the pat-
terns in the sense that the characteristic properties of
both underlying patterns are preserved.

4.1 Mediator Pattern

Mediator pattern given in [7] can be informally de-
scribed as follows. There is a set of colleagues that
can connect to a mediator. Connected colleagues can
communicate with each other by putting messages into
the mediator, which then lets the colleagues get the
messages addressed to them. When a connection is no
longer needed, colleagues may disconnect from the me-
diator. Figure 3 illustrates the structure of the pattern.
Intuitively, the characteristic property of this pattern is
that whenever a colleague receives a message, the mes-
sage has been explicitly sent to it by a colleague who



Mediator Colleague

Connect

Put

Get

Disconnect

Figure 3: An illustration of the Mediator pattern

still is connected to the mediator.

Object identity is needed for each colleague, enabling a
particular colleague to act as the sender or a receiver of
a message. This is formalized as an empty class,

class Colleague.

Whenever colleagues communicate, messages are deliv-
ered by using mailboxes, formalized as follows:

class Mbox = fMessageg.

The sender and the receivers of a message are modeled
as relations that involve colleagues and a mailbox that
contains the message. This results in the following re-
lations:

relation (0..1)�Sender�(0..1): Mbox � Colleague,

relation (*)�Receiver�(*): Mbox � Colleague.

The mediator that supports the communication consists
of a set of mailboxes, resulting in the following class
de�nition:

class Mediator = f fBoxesg : Mboxg,

where fBoxesg denotes a set of instances of class Mbox.

An object of Mediator class is associated with those in-
stances of Colleague class that are connected to it. This
is de�ned as a relation,

relation (0..1)�Connected�(*):

Mediator � Colleague.

The above de�nitions imply a class diagram illustrated
in Figure 4.

From the behavioral point of view, colleagues need
be able to connect to and disconnect from mediators.

Mediator

ColleagueMbox

Connected

Sender

Receiver

Figure 4: Class diagram of Mediator pattern

When connecting, the associated colleague is given a
mailbox that it can use for sending messages, denoted
by Sender relation. When disconnecting, Sender rela-
tion is cleared, and messages involving the colleague are
canceled. Such actions are formalized as follows:

Connect(m:Mediator; mb:Mbox; c:Colleague):
:m�Connected�c

^ :mb�Sender�class Colleague

^ mb 2 m.Boxes

! m�Connected0 �c
^ mb�Sender0 �c,

Disconnect(m:Mediator; mb:Mbox; c:Colleague):
m�Connected�c

^ mb�Sender�c
^ mb 2 m.Boxes

! :m�Connected0 �c
^:mb�Sender0�c

^ :class Mbox�Receiver0 �c.

When a set of colleagues is connected to the same medi-
ator, they can send messages to each other. This mes-
sage transmission is supported by the associated media-
tor. Colleagues communicate by putting messages into
the mediator, and by getting the messages addressed to
them from it, resulting in the following formalizations:

Put(m:Mediator;
mb:Mbox;
from, ftog:Colleague;
d):
m�Connected�from

^ m�Connected�to
^ mb�Sender�from
^ mb 2 m.Boxes

! mb�Receiver0 �to
^ :mb�Receiver0 �(class Colleague - to)
^ mb.Message0 = d,

Get(m:Mediator; mb:Mbox; c�:Colleague; d):
m�Connected�c

^ mb�Receiver�c
^ mb 2 m.Boxes

^ mb.Message = d

! :mb�Receiver0 �c,

where ftog denotes a set of suitable receivers, and ex-
pression (class Colleague - to) refers to those instances



Subject Colleague Observer Mediator

Manager
Mgd

Subject

Mgd

Observer

Figure 5: Inheritance hierarchy in the combination

of class Colleague that do not belong to set to. A fair-
ness requirement is given to ensure that all colleagues
will eventually receive messages addressed to them.

This formalization restricts the number of messages be-
ing sent by each colleague to at most one, because when-
ever a colleague puts a new message into the mediator,
its previous message is overwritten. A message can,
however, be addressed to several receivers.

4.2 Combination of Patterns

Above, patterns needed for constructing Managed Ob-
server have been formalized. In the following we form
their combination, which de�nes how the internal state
of a subject is transmitted to the attached observers
by using messages supported by the mediator. In the
combination, the behavior of both underlying patterns
is guaranteed to be preserved because only property-
preserving re�nements are used. Thus, by restricting
to observations obtained from a layer that formalizes a
single pattern, the behavior of the combination can be
projected into the pattern.

In terms of Observer pattern, subjects and observers are
re�ned into a form where they are managed. The man-
ager of this data transmission behaves like the mediator
in Mediator pattern, yielding

class Manager = Mediator.

Managed subjects and observers are subjects and ob-
servers whose data transmissions take place as de�ned
by inter-colleague communication in Mediator pattern.
This results in the following class de�nitions:

class MgdSubject = Subject + Colleague,

class MgdObserver = Observer + Colleague.

These de�nitions result in the class hierarchy illustrated
in Figure 5.

Due to the use of inheritance, actions need to be spe-
cialized for di�erent types of participants. Actions that

connect or disconnect subjects and managers are simi-
lar to those de�ned by the mediator pattern, with the
exception that a subject cannot be disconnected if an
observer is attached to it through the associated man-
ager. Thus, the following actions result:

MgdConnect(mgr:Manager;
mb:Mbox;
ms:MgdSubject):

re�nes Connect(m:Mediator = mgr;
mb:Mbox = mb;
c:Colleague = ms)

for m 2 Manager, c 2 MgdSubject,

MgdDisonnect(mgr:Manager;
mb:Mbox;
ms:MgdSubject;):

re�nes Disconnect(m:Mediator = mgr;
mb:Mbox = mb;
c:Colleague = ms)

for m 2 Manager, c 2 MgdSubject

^ :ms�Attached�class MgdObserver.

The resulting actions formalize an important aspect.
After this de�nition, only action MgdConnect can con-
nect instances of class MgdSubject to Manager. Action
Connect is restricted to use objects that do not belong
to either of these subclasses. A similar di�erence exists
between actions MgdDisconnect and Disconnect.

For observers, the situation is more complicated. We
can no longer simply attach pairs of subjects and ob-
servers, or connect colleagues and mediators. Instead,
the task is to register triples that create an association
between a managed subject, a manager, and a managed
object. This results in an action that represents ac-
tion Attach for the managed subject and the managed
observer, and action Connect for the observer and the
manager. In addition, the associated manager and the
subject need to be connected with each other, as other-
wise the manager has no access to the contents of the
subject. This results in the following action:

Register(ms:MgdSubject;
mo:MgdObserver;
mb:Mbox;
mgr:Manager):

re�nes Attach(s:Subject = ms;
o:Observer = mo)

for s 2 MgdSubject, o 2 MgdObserver

&re�nes Connect(m:Mediator = mgr;
mb:Mbox = mb;
c:Colleague = mo)

for m 2 Manager, c 2 MgdObserver

^ mgr�Connected�ms.

Here, one action re�nes both Attach and Connect ac-
tions. In DisCo, this way of combining actions is a key



aspect in multiple inheritance. From the viewpoint of
the underlying patterns, the execution of Attach and
Connect is synchronized for the objects in the derived
classes.

Similar re�nement is given for canceling a registration,
yielding

Release(ms:MgdSubject;
mo:MgdObserver;
mb:Mbox;
mgr:Manager):

re�nes Detach(s:Subject = ms;
o:Observer = mo)

for s 2 MgdSubject, o 2 MgdObserver

&re�nes Disconnect(m:Mediator = mgr;
mb:Mbox = mb;
c:Colleague = mo)

for m 2 Manager, c 2 MgdObserver.

In the Observer pattern, a change of the value of a
subject causes only the corresponding modi�cation of
the internal state. For the managed version, however,
the associated manager need to be informed about the
change as well, as it must be able to cancel obsolete mes-
sages from being dispatched to the associated observers.
No explicit cancel action exists, but e�ectively the same
is accomplished by executing Put action, de�ned in Me-
diator pattern, with an empty set of receivers. This can
be formalized as follows:

Modify(ms:MgdSubject;
mb:Mbox;
mgr:Manager;
d):

re�nes Notify(s:Subject = ms; d = d)
for s 2 MgdSubject

&re�nes Put(m:Mediator = mgr;
mb:Mbox = mb;
from:Colleague = ms;
to:Colleague = fg;
d = d)

for m 2 Manager, from 2 MgdSubject.

Notice that it is essential that obsolete data is never de-
livered to observers, because such a speci�cation is not
a correct re�nement of Observer pattern. If the method
would not enforce such issues, they might be included
in an implementation unnoticed, possibly resulting in
misbehaviors.

When the state of a managed subject is modi�ed, Ob-
server pattern requires that all attached observers will
be informed about the new state of the subject. An
action is therefore needed that transmits the current
state of a subject to the manager, which is responsi-
ble for dispatching this data to those observers that are
attached to the subject. Thus, action Transmit re�nes

Put action in a manner where the managed subject is
the sender, and (some of) the receivers attached to it
are the receivers1. This results in the following formal-
ization:

Transmit(ms:MgdSubject;
fmog�:MgdObserver;
mb:Mbox;
mgr:Manager;
d):

re�nes Put(m:Mediator = mgr;
mb:Mbox = mb;
from:Colleague = ms;
to:Colleague = mo;
d = d)

for m 2 Manager,
from 2 MgdSubject,
to 2 MgdObserver

^ d = ms.Data

^ ms�Attached�mo

^:ms�Updated�mo.

Liveness properties are preserved by requiring fairness
with respect to possible observers, denoted by an as-
terisk. A tempting implementation, where the sub-
ject transmits its new value immediately upon modi-
�cation, is obtained by synchronizing the exection of
action Transmit with Modify operation.

In Observer pattern, when an observer notices that the
value of a subject it is attached to has been updated,
the observer modi�es its contents accordingly. In the
combination of patterns, the observer can notice such
a change only when it gets a message from a manager.
The following formalization therefore results:

Dispatch(ms:MgdSubject;
mo�:MgdObserver;
mb:Mbox;
mgr:Manager;
d):

re�nes Update(s:Subject = ms;
o:Observer = mo,
d = d)

for s 2 MgdSubject, o 2 MgdObserver

&re�nes Get(m:Mediator = mgr;
mb:Mbox = mb;
c:Colleague = mo;
d = d)

for m 2 Manager, c 2 MgdObserver

^ mb�Sender�ms.

A fairness requirement is again needed for satisfying the
liveness properties of the original patterns. Parameter d

1This formalization does not de�ne any update strategy.

Therefore, the speci�cation allows implementations where the new

data is broadcasted to all the attached observers as well as ones

where only one receiver per message is possible.



formalizes an important aspect, requiring that the val-
ues contained in the message and the subject need to
be identical. If it can be proved that the values are
always equal, the check may be ignored, possibly allow-
ing implementations where synchronizations with the
subject are omitted when dispatching the data. Such
proofs, liberating the implementation from unnecessary
synchronizations, are essential when deriving a speci�-
cation towards an implementation [15].

This completes the speci�cation, demonstrating that
the characteristic properties of both underlying patterns
are satis�ed by the combination. We have thus shown
the ability to combine patterns in a manner that pro-
duces speci�cations which are re�nements of all under-
lying patterns.

5 FORMALIZING AN INSTANTIATION

The focus of this section is on showing how to include
application-speci�c parts in the speci�cation. As an ex-
ample, Managed Observer de�ned above is instantiated,
using statistics as concrete data. Although this data
re�nement is relatively simple, it demonstrates that the
mechanisms used for combining patterns are applica-
ble to the speci�cation of complete systems that utilize
patterns as their skeletons. The approach is therefore
uniform with respect to patterns and systems built by
utilizing them. In addition, the use of layers gives the
speci�cation a structure where each individual pattern
can be identi�ed even when the speci�cation is com-
pleted, supporting the interpretation where patterns are
used as building blocks for more complex systems.

5.1 Classes

Concrete subjects and observers are based on their man-
aged counterparts described by Managed Observer,

class StatSubject = MgdSubject,

class StatObserver = MgdObserver.

As we wish to re�ne the speci�cation to a level where
concrete data exists, a representation for the data is re-
quired. The relation between the actual data and the
abstraction of it, referred to as Data in the original pat-
tern, must also be formalized. Assuming that pair ha,
bi denotes concrete statistics data included in each in-
stance of the new subclasses, we require it to be invari-
ably true that

8ss 2 StatSubject:: ss.Data = hss.a, ss.bi,

8so 2 StatObserver:: so.Data = hso.a, so.bi.

In other words, variable Data is given a structure that
corresponds to statistics data.

Subject Colleague Observer Mediator

Manager
Mgd

Subject

Mgd

Observer

Stat

Subject

Stat

Observer

Figure 6: Inheritance in the concrete system

These class de�nitions form a class hierarchy illustrated
in Figure 6.

5.2 Actions

As new classes were derived, actions re
ecting the oper-
ational di�erence between the instances of the original
and the derived classes need to be de�ned. Subjects
can be connected and disconnected as before, but only
statistics observers are registered to observe statistics
subjects. This results in the following formalization:

RegisterStat(ss:StatSubject;
so:StatObserver;
mb:Mbox;
mgr:Manager):

re�nes Register(ms:MgdSubject = ss;
mo:MgdObserver = so;
mb:Mbox = mb;
mgr:Manager = mgr)

for ms 2 StatSubject, so 2 StatObserver.

In order to preserve symmetry, we also specialize action
Release in a similar manner, although this specialization
is not absolutely necessary. The following formalization
results:

ReleaseStat(ss:StatSubject;
so:StatObserver;
mb:Mbox;
mgr:Manager):

re�nes Release(ms:MgdSubject = ss;
mo:MgdObserver = so;
mb:Mbox = mb;
mgr:Manager = sm)

for ms 2 StatSubject, mo 2 StatObserver.



When data is modi�ed, actual statistics values are
needed. ActionModify is therefore specialized to handle
real data, which is added to the action by using param-
eters. In addition, the actual data is required to be
more precise versions of the original data, thus ensuring
that the data re�nement is correct. In the formaliza-
tion, statistics data is represented by using parameters
a and b. The action is formalized as follows:

ModifyStat(ss:StatSubject;
mb:Mbox;
mgr:Manager;
a, b):

re�nes Modify(ms:MgdSubject = ss;
mb:Mbox = mb;
mgr:Manager = mgr;
d = ha, bi)

for ms 2 StatSubject.

Data re�nement only concerns those parts of the speci-
�cation that deal with the actual meaning of the data.
As action Transmit only sends the data, without pay-
ing any attention to its contents, the action need not
be specialized for statistics. The practical meaning of
this is that there is no need to give separate implemen-
tation for transmitting statistics data. Instead, all data
is transmitted in a similar manner. This decision is in-
tuitively well-justi�ed, as it seems natural to hide any
concerns regarding the meaning of the data from the
manager.

When an observer receives data, the data may be plain
data sent by a subject outside class StatSubject, or
statistics sent by an instance of this class. Due to
the specialized registration, observers in class StatOb-
server only obtain statistics, and the other observers
are restricted to receive plain data. Action Dispatch
can therefore be specialized for statistics. In addition
to formalizing data re�nement, specialization of action
Dispatch must also take into account associated fairness
requirements. Such a specialization can be formalized
as follows:

DispatchStat(ss:StatSubject;
so�:StatObserver;
mb:Mbox;
mgr:Manager;
a, b):

re�nes Dispatch(ms:MgdSubject = ss;
mo:MgdObserver = so;
mb:Mbox = mb;
mgr:Manager = mgr;
d = ha, bi)

for ms 2 StatSubject, mo 2 StatObserver.

Although the speci�cation is now instantiated, further
re�nements are still possible. Moreover, these re�ne-

ments can address the platform as well as application-
speci�c aspects. For example, additional re�nements
could introduce a message transmission strategy based
on priorities, or specialize StatObserver to introduce dif-
ferent kinds of observers, using data for di�erent pur-
poses.

6 CONCLUSIONS

When a pattern is formalized, it is little more than a for-
mal speci�cation that is generic with respect to aspects
that are not essential to be �xed. The main advantage
of the formalization of a pattern, or any formalization,
for that matter, is that there is no ambiguity. This ab-
sense of ambiguity allows us to rigorously address the
temporal behaviors of patterns. Reasoning enabled by
this rigorousness can be made either by using a theorem
prover [11] or by hand [10].

Formalization of patterns can be eased by using well-
de�ned units of modularity. Above, each pattern was
formalized as a behavioral layer, introducing slices of
objects that resemble program slices [17]. Therefore,
underlying patterns can be easily identi�ed in a com-
pleted speci�cation, enabling interpretations where pat-
terns are naturally used as building blocks for speci�-
cations of more complex systems. Moreover, use of lay-
ers enable projections of behaviors de�ned by complete
speci�cations to individual patterns. When formalizing
combinations of design patterns, an essential element
is multiple inheritance. Without it, the combination
of patterns resulting in Managed Observer would have
been di�cult, or impossible to formalize in a natural
manner.

Complicated communication between objects has been
simpli�ed by using an abstract notion of atomic ac-
tions. We have therefore been able to concentrate on
the bare essentials of the systems, placing the empha-
sis on inter-object cooperation instead of invocations of
single-object methods. This raises the level of abstrac-
tion above programming-level abstractions [13]. Stan-
dard re�nements can be used to derive abstract cooper-
ation into directly implementable communication [15].

Property-preserving re�nements supported by the
DisCo method provide a sophisticated way to com-
bine rigorous and pattern-oriented software develop-
ment. An implication of property-preserving re�ne-
ments is that the properties of a pattern can be val-
idated and veri�ed at pattern level, and when using
the pattern, re�nement steps enforce that the pattern
is correctly included in the resulting speci�cation. This
use of property-preserving re�nements is facilitated by
composing the speci�cation in terms of atomic actions
only, omitting implicit causality between them. Non-
determinism that facilitates this is therefore of crucial
importance for achieving genericity.



In brief, the DisCo method o�ers object-oriented mod-
eling capabilities that can be used for developing spec-
i�cations at a high level of abstraction, as well as well-
de�ned semantics that enable rigorous reasoning. Due
to appropriate units of modularity and adequate level of
abstraction, formalization of design patterns and speci-
�cation of systems obtained by utilizing them is rigorous
but practical.

REFERENCES

[1] P. S. C. Alencar, D. D. Cowan, C. J. P. Lucena.
A formal approach to architectural design patterns.
FME'96: Industrial Bene�t and Advances in Formal
Methods (Eds. M.-C. Gaudel, J. Woodcock), 576{
594, Springer-Verlag LNCS 1051, 1996.

[2] R. J. R. Back, R. Kurki-Suonio. Decentralization of
process nets with a centralized control. Distributed
Computing 3, 73{87, May 1989.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, M. Stal. A System of Patterns. John Wiley &
Sons, 1996.

[4] K. M. Chandy, J. Misra. Parallel Program Design,
A Foundation. Addison-Wesley, 1988.

[5] J. S. Fitzgerald, P. G. Larsen, T. M. Brookes,
and M. A. Green. Developing a security-critical
system using formal and conventional methods.
Applications of Formal Methods(Eds. M. Hinchey,
J. Bowen), 333{356, Prentice-Hall, 1995.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design patterns: Abstraction and reuse of object-
oriented design. In Proceedings of the 7th European
Conference on Object-Oriented Programming (Ed.
M. Nierstrasz), 406{431, Springer-Verlag LNCS 707,
1993.

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design Patterns - Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[8] D. Garlan. The role of formal frameworks. ACM
SIGSOFT Software Engineering Notes 15, 4, 42{44,
September 1990.

[9] H.-M. J�arvinen, R. Kurki-Suonio, M. Sakkinen, and
K. Syst�a. Object-oriented speci�cation of reactive
systems. In Proceedings of the 12th International
Conference on Software Engineering, 63{71, IEEE
Computer Society Press, 1990.

[10] P. Kellom�aki. Analysis of a Stabilizing Protocol.
Licentiate thesis, Tampere University of Technology,
1994.

[11] P. Kellom�aki. Veri�cation of reactive systems using
DisCo and PVS. FME'97: Industrial Applications
and Strengthened Foundations of Formal Methods,
(Eds. J. Fitzgerald, C. B. Jones, P. Lucas), 589{604,
Springer-Verlag LNCS 1313, 1997.

[12] R. Kurki-Suonio. Fundamentals of object-oriented
speci�cation and modeling of collective behaviors.
Object-Oriented Behavioral Speci�cations (Eds. H.
Kilov and W. Harvey), 101{120, Kluwer, 1996.

[13] R. Kurki-Suonio, T. Mikkonen. Liberating object-
oriented modeling from programming-level abstrac-
tions. Workshop on Precise Semantics for Object-
Oriented Models (ECOOP'97), to be published by
Springer-Verlag.

[14] L. Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Sys-
tems 16, 3, 872{923, May 1994.

[15] T. Mikkonen. Implementation of Reactive Systems
Based on Closed-System Speci�cations. Licentiate
thesis, Tampere University of Technology, 1995.

[16] K. Syst�a. A graphical tool for speci�cation of reac-
tive systems. In Proceedings of Euromicro'91 Work-
shop on Real-time Systems, 12{19, Paris, France,
June 12{14, 1991.

[17] M. Weiser. Program slicing. IEEE Transactions
on Software Engineering, Vol. SE-10, No 4, 352{357,
1984.


