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Abstract—Byzantine fault-tolerance is costly, both in terms of
increased latency and limited scalability. Most recent contribu-
tions in the area have addressed the latency aspect, leaving the
throughput scalability problem largely untouched. We propose
in this short paper to build scalable Byzantine fault-tolerant
storage systems based on the concept of mini-transactions. To
achieve this goal we propose a novel atomic commit protocol
that tolerates malicious clients and servers.
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I. INTRODUCTION

Byzantine fault-tolerance is a fundamental requirement
for many contemporary services [1]. Shorter development
cycles, bigger server exposure to attacks, and an inherently
hostile network have demonstrated the weaknesses of repli-
cation mechanisms designed for benign failures. Unfortu-
nately, Byzantine fault-tolerant (BFT) services usually have
increased latency, when compared to simple client-server
interactions, and limited scalability, in the sense that adding
replicas does not translate into higher throughput.

Except for a few exceptions [2], [3] discussed later, most
recent contributions in the area of BFT protocols have
sought to address the latency problem [4], [5], [6]. The
lack of scalability is derived from the fact that BFT services
rely either on state-machine replication or primary-backup
replication, and neither is scalable. With state-machine repli-
cation every operation must be executed by every replica;
thus, adding replicas does not increase throughput. With
primary-backup replication, the primary executes operations
first and then propagates the state changes to the backups;
system throughput is determined by the primary.

This paper addresses the scalability of BFT storage
systems. Our approach builds on the paradigm of mini-
transactions [7], developed in the context of fail-stop nodes.
We propose to partition the storage state among servers and
make each partition Byzantine fault-tolerant individually, by
means of state-machine replication. We handle operations
across partitions with a novel BFT atomic commit protocol.
Scalability stems from the fact that partitions can execute
mini-transactions in parallel.

The remainder of this paper is organized as follows:
Section II defines the system model and Section III details
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the novel BFT atomic commit protocol. Section IV briefly
evaluates the impact of contention. Section V reviews related
work and Section VI concludes with some future work.

II. SYSTEM MODEL AND DEFINITIONS

We assume an asynchronous distributed system where
nodes communicate by message passing. There are no
known bounds on processing times and message delays.
Links may fail to deliver, delay, or duplicate messages,
or deliver them out of order. However, links are fair: if
a message is sent infinitely often to a receiver, then it is
received infinitely often.

Nodes can be correct or faulty. A correct node follows
its specification whilst a faulty node can present Byzantine
(i.e., arbitrary) behavior. Byzantine nodes can be coordinated
by an adversary that can also inject spurious messages into
the network, or delay correct nodes in order to cause the
most damage to the replicated service. However, adversaries
cannot delay correct nodes indefinitely. We assume that it is
not computationally feasible for adversaries to subvert the
cryptographic primitives used for signing and authenticating
messages. There is an arbitrary number of client nodes and
a fixed number n of server nodes, where clients and servers
are disjoint. An undefined but limited number of clients can
be byzantine. We define the number of Byzantine servers
next.

We consider a storage system composed of (key, value)
entries, distributed among the server nodes and accessed
by the client nodes by means of mini-transactions. Mini-
transactions offer ACID properties, and were originally pro-
posed for the fail-stop failure model [7]. A mini-transaction
can contain any number of read(key), write(key, value),
and cmp(key,value) operations. Operations of type cmp
perform equality comparison and are executed first. If all
cmp operations of a mini-transaction are successful, then
read and write operations are executed. We assume that
both key and value are of arbitrary type and length.

We also assume the existence of a BFT total order broad-
cast protocol, defined by the primitives broadcast(g, m) and
deliver(m), where g is a group of servers and m is a
message. Total order broadcast ensures that (a) a message
broadcast by a correct client to group g will be delivered by
all correct servers in g; (b) if a correct server in g delivers
m, then all correct servers in g deliver m; and (c) any two



correct servers in g deliver messages in the same order.
While several BFT total order broadcast protocols satisfy the
properties above, we assume in this paper FaB [8]. FaB can
deliver messages in two communication steps and requires
ng = 5fg + 1 servers, where f; is the number of Byzantine
servers in g.

III. SCALABLE BFT STORAGE

The approach we propose is to partition the key space and
store each partition in a group of servers. Each group g of
size ny is implemented with state-machine replication and
can tolerate f, Byzantine failures.

Mini-transactions that involve multiple partitions are ter-
minated with an atomic commit protocol (see Figure 1). The
complexity of the approach lies in efficiently implementing
the atomic commit protocol in the presence of Byzantine
clients and servers.
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Figure 1. Overview of the scalable BFT protocol.

A. The normal case

A correct client broadcasts the operations of a mini-
transaction, say t, to all involved partitions, performing one
broadcast call per partition (Algorithm 1, lines 2-8). From
t’s operations, the node can determine the partitions involved
in ¢ (function part(t.ops) at line 6) and ¢’s unique identifier
after computing a digest of ¢’s operations (line 3). To ensure
identifier uniqueness, we require each mini-transaction to
be extended with a “nop” operation containing a random
number.

Each correct replica p involved in ¢ delivers it and
computes t’s unique id (lines 35-36). If p has not voted
for ¢ yet (line 37), p checks whether ¢ conflicts with any
pending mini-transaction v (line 38): ¢ conflicts with u if ¢
accesses some key that v modified. If there is no conflict, p
executes t (line 39); if there is a conflict, p aborts ¢ (line 42).
In either case, p sends a response to the client (lines 40
and 43). If p votes to commit ¢, ¢ becomes pending at p
(line 44); else if p votes to abort ¢, ¢ becomes a decided
mini-transaction (line 45). Finally, if p has already voted for
t (i.e., this is a client’s retransmission), p simply resends its
previous response (line 47).

The client receives the responses, and once it gathers
fg + 1 matching responses from replicas in partition g,
it determines the vote and result from ¢ (line 15). The

client uses the collected votes from ¢ to assemble a vote
certificate, that is, f, + 1 signatures per partition that will
be used to prove the partition’s vote (line 16). The outcome
of ¢ will be commit if the client collects commit votes
from all partitions (lines 18-19) and abort if at least one
partition votes to abort ¢ (line 21). Whatever ¢’s outcome,
the client sends the vote certificate proving ¢’s outcome to all
replicas in the concerned partitions (line 11) and notifies the
application (lines 12-13). Primitive sendall(g, m) (line 11)
sends message m to all members of group g.

When p receives a valid vote certificate for ¢ from the
client (line 49), p checks whether ¢ is a pending transaction
and has not been already terminated (line 50), determines the
outcome of ¢ from the vote certificate (line 51) and proceeds
accordingly: p either commits t’s writes (line 51) or rolls
back t’s operations (line 52). In either case, ¢ is no longer
a pending transaction (lines 53-54).

As shown in Figure 1, in the best case clients observe
a latency of three communication steps, as opposed to
two in the original mini-transaction protocol for fail-stop
failures [7].

B. Handling byzantine clients

Byzantine clients can attempt to subvert the mini-
transaction termination protocol in two ways: (a) by pre-
senting different partitions non-matching mini-transactions
(e.g., by broadcasting different mini-transaction bundles to
each partition) and (b) by not terminating or mis-terminating
the protocol (e.g., not sending the signed votes back).

To address scenario (a), recall from the previous sec-
tion that a mini-transaction is uniquely identified by its
contents. Thus, non-matching mini-transactions yield dif-
ferent identifiers and are considered different transactions
altogether by the partitions. Since to be terminated a mini-
transaction requires a valid vote certificate, non-matching
mini-transactions will lead to one or more unfinished mini-
transactions (i.e., forever in the pending state), which is
handled by scenario (b).

Our strategy to address scenario (b) is to rely on sub-
sequent correct clients to complete mini-transactions left
unfinished. To a certain extent, correct clients play the role
of “recovery coordinators”, as described in [7]. From the
previous section, if a mini-transaction ¢ conflicts with a
pending mini-transaction « in some replica p € g (line 41),
t is aborted by p (line 42). As part of the abort message
sent by p to the client (line 43), p also sends information
about u, so that the client can terminate w. The information
contains u’s identifier and the set of partitions concerned by
u. Notice that since the client will propose to abort w, it
does not need u’s operations.

When the client receives the above message from f, + 1
replicas in g (line 23), in addition to aborting ¢ (line 26),
the client starts the termination of u by contacting every
partition h that is accessed by u (line 28) and proposing to



Algorithm 1 Scalable BFT storage

1: Client-side algorithm:

2: To execute mini-transaction t with operations ops do:
3 t.id < digest(ops); t.ops < ops

4 t.cset < @ /I t.cset has all groups g willing to commit ¢

5:  t.status <— L /t.statws isa value in { L, commit, abort}

6 for all g € part(t.ops) do / for cach partition g in ¢

7 t.cert[g] <= L /o vote certificate for ¢ from g so far

8 broadcast(g, t.OpS) /I broadcast t.ops to g

9: Function finish(t, outcome)

10: t.status <— outcome i t.statwus is committed or aborted

11:  for all g € part(t) do sendall(g, t.id, t.cert)

12:  if outcome = commit then notify (COMMIT, t.res)
13:  else notify (ABORT)

14: Task 1 (client: receive votes from each partition)

15: upon receive({t.id, t.vote}, t.res)from fy+1 replicas in g
16:  t.cert[g] + {t.id, t.vote}pl,“_,pfngl 1//add g’s vote certificate

17:  if t.vote = commit then

18: t.cset <— t.cset U g //add g to t’s commit set

19: if ¢.cset=part(t.ops) then finish(¢,commit) 7 il voted
20:  else

21: if t.status=_L then finish(¢, abort) / one abort is enough

22: Task 2 (client: recovery path)
23: upon receive ({t.id, abort}, {u.id, u.part)}«)
from fg+1 replicas in g

24:  t.certlg] < {t.id, abort}]gl,m’pfq_'_1
25: if t.status = L theny i1 did not abort t yet...

26: finish(¢, abort) # ..do it, and..

27: u.cset < 0; u.status < L .ty to terminate

28: for all A € u.part do / for each parition h accessed by u

29: u.cert[h] <— L /1o vote certificate for w from h so far

30: broadcast(h, u.id, abort) 1 propose outcome, force termination of w in fu

31: Server-side algorithm:

32: Initialization:
33:  pending <+ 0; decided < 0

34: Task 3 (replica p: normal case)

35: upon deliver (g, t.ops), broadcast by client ¢

36:  t.id < digest(t.ops)

37:  if t.id & pending U decided theny if 1 did not vote for ¢ yet

38: if Fu.id € pending : t conflicts with v« then

39: (t.vote, t.result) < execute(t)

40: send({t.id, t.vote}p, t.result) to ¢

41: elses tere is a pending w that conflicts with ¢

42: t.vote <— abort

43: send({¢.id, abort}p, {u.id, part(u.ops)}p) to ¢

44: if t.vote = commit then pending < pending U t.id
45: else decided < decided U t.id 1 ¢ is decided with one abort
46: else if 1 voted for ¢ already...

47: send({¢.id, t.vote}p, t.result) to ¢ i .resend respone

48: Task 4 (replica p: termination)
49: upon receive (t.id, t.cert) from client ¢ and valid(t.cert)
50: if t.id € pending and t.id & decided then

51: if outcome(t.cert) = commit then commit(t)
52: else rollback(t)

53: pendzng < pendzng \ t.ad i tisno longer pending...
54: decided <+ decided U t.id /i .it was committed or aborted

55: Task 5 (replica p: recovery path)

56: upon deliver (h,u.id, abort), broadcast by client ¢

57:  if w.id & pending U decided theny ir 1 did not voe for u yet

58: w.vote <— abort / accept client’s proposal, force termination by voting s abort
59: decided <+ decided U u.id

60:  send({u.id, u.vote}p, u.result) to ¢

abort u (line 30). If a vote request for u was not previously
delivered in h (e.g., not broadcast by the client that created
u), then the members of h will vote abort (lines 58-59).
Otherwise, members of h will return the result of the
previous vote (line 60). In any case, eventually the client
will gather enough votes to complete the pending mini-
transaction, following the same steps as the normal case.

Byzantine clients can also try to prevent progress of
correct clients: (a) by submitting an unbounded number of
transactions simultaneously to the replicas (e.g., not waiting
for the termination of a transaction before submitting another
transaction) and (b) by proposing to abort transactions
of other clients before they are delivered to all involved
partitions.

Although Algorithm 1 does not currently address sce-
nario (a), a trivial way of tackling the problem is to limit
the number of pending transactions originating from a single
client. Each replica could keep track of how many transac-
tions have been submitted by a single client and immediately
abort any transactions beyond a system-dependent threshold
(e.g., a single transaction at a time).

Scenario (b) is a more subtle attack vector. The scenario
requires the collusion between a Byzantine server and a
Byzantine client, and can be described in this manner: after
a correct client submits a cross-partition mini-transaction
to one of the involved partitions, the Byzantine server in
that partition notifies the Byzantine client who then sends
recovery messages to all the other partitions before the
correct client is able to submit it to them. By doing so,
the Byzantine client forces the other partitions to vote abort
on the yet unseen transaction, leading them to believe that
the correct client is Byzantine.

It is important to notice that this attack is only possible
in mini-transactions that involve several partitions. Mini-
transactions limited to a single partition have their ordering
and delivery guaranteed by the BFT total order broadcast,
and as such, are impervious to this attack scenario. The
weakness here stems from the loose coupling between
partitions. Once delivered to all involved partitions, however,
a Byzantine client can no longer prevent progress since a
replica’s vote on the outcome of a transaction is final. This
weakness is still an open point in our protocol, but in our
implementation it has been mitigated by the usage of IP mul-
ticast to submit transactions to all partitions simultaneously.

C. Optimizations

The algorithm presented in the previous sections can be
optimized in a number of ways. For example, it has been
observed that it is possible to separate BFT agreement from
BFT execution [9]. Let n;‘ and nf denote the number
of servers in g for agreement and execution, respectively.
While FaB requires nqA > 5fy + 1, execution requires only
ngE > 2f4+1. For the special case of f = 1, we have ng‘ >6
and nf > 3, and therefore, we can divide the storage into



two execution partitions, each one with 3 replicas. While all
servers participate in the execution of FaB and every mini-
transaction is broadcast to both partitions (and discarded
by a partition if it does not contain relevant operations
to the partition), the execution of mini-transactions can be
parallelized.

Currently, a client tries to terminate an unfinished mini-
transaction by proposing to abort it. Alternatively, correct
clients could try to terminate a pending mini-transaction
by proposing to commit u. In order to do so, a correct client
would have to receive u from the replicas, instead of just
u’s id and involved partitions. This is needed because u may
be known only to a subset of its involved partitions.

IV. EVALUATION

To evaluate the impact of the partitioning technique, we
have implemented a prototype of the special dual-partition
case. We compared the throughput of a single pool of repli-
cas, executing all mini-transactions, versus a dual partition
layout, where we varied the number of cross-partition mini-
transactions.

Our baseline is the throughput of a single group con-
taining all replicas (see Table I, column “1 Partition™)
running the BFT mini-transaction protocol. This corresponds
to a traditional full state-machine replication system. The
values presented were taken at saturation point, where the
replicas in the baseline configuration were performing at
their maximum throughput.

2 Partitions
worst case [ best case

[ Throughput | 100% | 105% | 230% |

1 Partition

Table I
IMPROVEMENTS OF PARTITION ARRANGEMENTS.

We then split the six replicas in two partitions of three
replicas each (‘“2 Partitions” column in Table I), and con-
sidered two setups. In the first setup, we kept each mini-
transaction accessing both partitions, which corresponds to
the maximum number of cross-partition mini-transactions
(i.e., worst case). In this case we observed a 5% increase
in throughput, which shows that our approach is better than
the baseline, even in the worst case.

We then assigned mini-transactions to a single partition
only, corresponding to zero cross-partition mini-transactions
(i.e., best case). The throughput increase was significantly
higher, at 230%. This confirms that partitioning the replicas
in minimal execution quorums can yield significant perfor-
mance gains.

V. RELATED WORK

Although there are comprehensive comparisons of several
BFT protocols (e.g., [10]), very little literature exists on the

topic of scalable throughput BFT systems. In fact, most of
the work following Castro and Liskov’s seminal publication
(PBFT [11]) focus on state-machine replication and totally
ordering of requests.

Most optimizations have focused on reducing the latency
of state-machine replication, for example, by avoiding to
order requests in the critical path of the execution, opting
instead for speculative or optimistic execution [4], [5] or by
settling for eventual consistency [6]. In any case, as pointed
out in the introduction, state-machine is fundamentally non-
scalable (see [12] for a more complete discussion in the
crash-stop model).

Few works have addressed the problem of scalability in
BFT systems with the purpose of increasing the overall sys-
tem throughput. In [13] the authors introduce an application-
dependent framework to support parallel execution of inde-
pendent requests. In our system, this is done transparently
by means of mini-transactions.

Although the separation of agreement and execution is
presented in [9], it is only in [3] that we see the first appli-
cation of the reduction to an f+1 execution quorum coupled
with on-demand replica consistency. While the approach
does provide throughput improvements, it does not ensure
throughput scalability, and, as observed by the authors, may
decrease throughput when compared to a baseline if many
“cross-border” (i.e., inter-partition) requests are executed.

In [14] the authors present another take on the reduction
of agreement and execution quorums, by separating replicas
in tiers, and introducing delayed dissemination of updates.
Although it does support ACID semantics, it is based on an
update dissemination protocol that requires a complex model
of replicas containing both tentative and commited data. If
strong consistency is required, the system only executes as
fast as the primary tier.

In [15] the authors propose a way to improve the scalabil-
ity of the agreement protocol (i.e., the message ordering). As
the authors indicate themselves, scalability of the agreement
protocol does not imply scalability of the execution of
requests. Their work is orthogonal to ours, since our model
is agnostic to the underlying agreement protocol, and could
use another agreement protocol, more scalable than FaB,
without compromising on the execution scalability.

In [2] the authors propose the first solution focused on
throughput scalability. The idea is to implement a centralized
locking system that allows clients, once they acquired the
required locks, to submit an unlimited number of sequential
operations to a BFT quorum of log servers. BFT agreement
is only executed at the end to ensure the client submitted
the same operations in the same order to all log servers.
Scalability is achieved by dividing the application state
across several partitions of log servers. As pointed out by the
authors, their solution is optimized for the specific single-
client, low-contention, single-partition data scenario. It is
also important to point out that throughput of the whole



system is bound by the throughput of the centralized locking
system.

In [16] the first BFT two-phase commit protocol is
presented. The BFT agreement proposed only extends to a
subset of the participants in the transaction, and due to its
hierarchical nature, it is not throughput-oriented.

State partitioning is a tried and true approach to improving
scalability of data management systems [17], [18]. In [19]
BFT groups are used to store the metadata of a distributed
filesystem, while the data itself is replicated . Their approach
allows load-distribution, but does not offer atomic, transac-
tional execution across groups. Overall, our system is the
first to provide scalable throughput while offering strong
consistency and system-wide atomic operations without re-
lying on specific application behavior.

VI. FINAL REMARKS

The field of throughput-scalable BFT storage is surpris-
ingly unexplored. Recent works have attempted to address
some of the issues, such as the overhead in latency, the
replication cost, or even the throughput for specific sce-
narios. Our approach addresses the scalability problem for
overall system throughput without emphasizing on specific
application profiles.

In traditional BFT systems, the inclusion of an extra
replica usually means increased availability only, but not
necessarily increased throughput. We introduced state par-
titioning as the means to achieve greater throughput, while
still supporting inter-partition atomic operations. Our pre-
liminary evaluation indicates that throughput increases can
be obtained “for free,” just by reorganizing the replicas in
separate execution partitions within the agreement quorum.

The usage of FaB allows us to provide fast delivery
of messages within partitions, and the usage of mini-
transactions allows us to consistently execute requests across
several partitions. FaB totally orders all mini-transactions
in a partiton, but could be easily replaced by any other
agreement protocol, such as the one presented in [15].
More over, we are also investigating weaker ordering proto-
cols, which consider mini-transaction operations and provide
higher concurrency [20].
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