
ADMAD: Application-Driven Metadata Aware De-duplication Archival

Storage System

Chuanyi LIU
 1, 2

, Yingping Lu
 2

, Chunhui Shi
2
, Guanlin Lu

 2
, David H.C. Du

2
, Dong-Sheng WANG

 1

1(Department of Computer Science and Technology, Tsinghua University, Beijing, China)

2(Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA)

cy-liu04@mails.tsinghua.edu.cn; (lu, lv, du)@cs.umn.edu; wds@tsinghua.edu.cn

Abstract

 There is a huge amount of duplicated or redundant

data in current storage systems. So Data De-

duplication, which uses lossless data compression

schemes to minimize the duplicated data at the inter-

file level, has been receiving broad attention in recent

years. But there are still research challenges in current

approaches and storage systems, such as: how to

chunking the files more efficiently and better leverage

potential similarity and identity among dedicated

applications; how to store the chunks effectively and

reliably into secondary storage devices. In this paper,

we propose ADMAD: an Application-Driven Metadata

Aware De-duplication Archival Storage System, which

makes use of certain meta-data information of different

levels in the I/O path to direct the file partitioning into

more Meaningful data Chunks (MC) to maximally

reduce the inter-file level duplications. However, the

chunks may be with different lengths and variable

sizes, storing them into storage devices may result in a

lot of fragments and involve a high percentage of

random disk accesses, which is very inefficient.

Therefore, in ADMAD, chunks are further packaged

into fixed sized Objects as the storage units to speed up

the I/O performance as well as to ease the data

management. Preliminary experiments have

demonstrated that the proposed system can further

reduce the required storage space when compared with

current methods (from 20% to near 50% according to

several datasets), and largely improves the writing

performance (about 50%-70% in average).

1. Introduction and Motivations

It has been widely known that huge amount of

duplicated or redundant data existing in current storage

systems
 [1]

. Not only data duplications exist among

variants of the same file (e.g. backup files), it can also

occur among different files. The huge amounts of data

duplications result in extra storage spaces to be used

and much more power consumptions, greatly lowering

the storage utilization. They also impose extra burden

on the data management.

Thus Data De-duplication has received a broad

attention from both academia and industry. Data De-

duplication refers to the approaches that use lossless

data compression schemes to minimize the duplicated

data at the inter-file level. This de-duplication can also

help to reduce the amount of data sent over the network

when backing up from application servers to storage

servers.

To the extent of our best knowledge, almost all of

the current de-duplication schemes work on the binary

file level. That is, they consider the files to be archived

as bit strings and use typical chunking methods, such as

whole file chunking, fixed size dividing, or Hash

functions (e.g. Rabin fingerprinting algorithm). Each

file is firstly partitioned into non-overlapped chunks.

Only one instance of the same chunks is actually stored

in the secondary storage devices, and the others are

referenced to by a pointer pointing to the location of

this chunk.

There are many remaining research challenges for

the current Data De-duplication storage systems,

including:

(1) How to chunk the files more efficiently and

better leverage potential similarity and identity from

applications? For example, an HTML file consists of

several semantic segments embraced by certain tags as

<head> </head>, <title> </title>, <body> </body> and

so on. When using current de-duplication methods, e.g.

Rabin fingerprinting, to divide a file into chunks, a

break point
[3]

 may be within a tag, which will result in

the loss of semantic information associated with the

meaningful segments. What is worse, as most of the

chunk boundaries are semantic meaningless, it will

impose a further burden on the management and will

reduce the efficiency of future file retrievals.

Fifth IEEE International Workshop on Storage Network Architecture and Parallel I/Os

978-0-7695-3408-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SNAPI.2008.11

29

Authorized licensed use limited to: University of Minnesota. Downloaded on December 3, 2008 at 18:10 from IEEE Xplore. Restrictions apply.

(2) How to store the chunks more effectively and

reliably into secondary storage devices? As the chunks

may be of different lengths and variable sizes, storing

them directly in storage devices will result in a lot of

fragments and involve a high percentage of random

disk accesses which is very inefficient
 [11]

. Moreover,

how to distribute these chunks, especially among large-

scale distributed storage systems, is also a challenging

problem. For example, if we just randomly distribute

these chunks among storage devices, when we want to

retrieve archived files by a query, the archival system

should first index the relevant de-duplicated chunks

which may spread randomly among the storage devices,

reconstruct all the files one by one, then check if the

content of the file matches the query. This process is

expensive and usually degrades the performance of

many upper layer applications
 [24]

.

In this paper, we propose ADMAD: an

Application-Driven Metadata Aware De-duplication

Archival Storage System. It exploits certain meta-data

information from different levels in the I/O path to

direct the file partitioning into more Meaningful data

Chunks (MC for short in the following sections) that

are variable-sized, self-identifying and self-describing

logical units. These meta-data information of archived

files may include: 1) application metadata, such as

file type, file format, application software, etc., 2)

application or user tags, such as the tags used to

describe the characteristics of blogs, images or

multimedia, and 3) file system metadata, such as

directory entries, inode information of a file. Currently

ADMAD uses the file type and file format as the meta-

data information to direct the file partitioning besides

the currently used cryptographic hash functions, such as

MD5, SHA1, and chunking methods, such as Rabin

fingerprinting.

While the main goal of ADMAD is to reduce the

inter-file level duplications as much as possible, since

the MCs may be of different lengths and variable sizes,

as discussed above, storing them directly into storage

devices is very inefficient. Thus, we have also designed

an efficient way to store these MCs. We breakdown the

MCs into fixed sized objects with suitable object size

that better makes use of the performance characteristics

of commodity secondary storage disk devices (The

performance of a big sequential access is about one

magnitude faster than the small access or random

access requests). Note that an object may contain part

of, a whole or several logical MCs. Preliminary

experiments have demonstrated that the performance of

ADMAD can be comparable with the current

approaches.

The rest of this paper is organized as follows:

Section 2 introduces related approaches used to de-

duplicate the inter-file redundancies; the architecture of

ADMAD as well as the chunking algorithm and the

archival & restore protocol are presented in Section 3;

Section 4 gives the evaluation results of compression

ratio under some typical workloads and the

performance of ADMAD, then compares them with

current mainstream approaches; Section 5 draws the

conclusion.

2. Related Work

Data de-duplication, which is also called Inter-file

data compression, should be lossless compressions, i.e.

no information is lost when a file is compressed and

then uncompressed. Generally speaking, data de-

duplication consists of two phases: the first phase is the

file dividing, i.e. how to divide the files into chunks so

as to reduce the inter-file duplication to the furthest

possible extent; and the other part is data distribution

and storing, i.e. how to store the chunks into storage

devices.

So far there are two categories of file dividing

approaches: delta encoding based and chunking based.

Chunking based approach partitions each file into

a number of non-overlapping chunks and stores only

unique chunks into storage devices. In terms of the

chunk sizes and chunk boundaries, several algorithms

have been used and proposed: the simplest one takes

the whole file as a chunk, and calculates the hash of the

whole file’s content as the chunk identifier; CASPER
[4]

adopts a fixed-sized file dividing method, it divides

each file into predefined fixed size chunks; LBFS
 [3]

uses Rabin fingerprint algorithm to divide each file into

variable sized chunks based on the statistic information,

which can further reduce duplication.

Delta encoding based method generates the delta

file given the source file (a.k.a reference file) and the

target file. It is based on the resemblance detection

between data objects and uses delta encoding to store

only deltas instead of entire data objects
 [5]

. The de-

duplication is achieved since the size of delta file is

usually much smaller than the target file. Delta

encoding
 [6]

is a widely used resemblance compression

technique, which uses the first version of the file as the

base, and stores the deltas from the base for subsequent

versions of the same file. But this method requires

explicit version relationships between files to determine

which files are bases and which files are deltas; thus it

is usually used in versioning file systems. Recently,

there is another method named Fuzzy Block Matching

[7]
 that originates from CASPER

[4]
. In this method,

30

Authorized licensed use limited to: University of Minnesota. Downloaded on December 3, 2008 at 18:10 from IEEE Xplore. Restrictions apply.

every object has some features
[14]

. By comparing the

features of different objects, the resemblance

relationship can be determined. Then the method makes

use of ECC (Error Correcting Code) to generate the

difference of two objects, and stores the difference to

reduce redundancy.

By now there are also some commercial systems

based on de-duplication techniques, such as Data

Domain
[19]

, Centera
[30]

 by EMC, PureDisk
[31]

by

Symantec.

3. Overview of ADMAD

ADMAD is mainly designed for archival storage,

where the archival processes can run in the background

and be deployed on different application servers. In

current mainstream disk-based archival systems, the

response time should preferably be on-line or near-line

when archived files are retrieved, which indicates that

the distribution and organization of data in the storage

devices is very critical. ADMAD is a distributed

storage system, which fits for large-scale archival or

disaster recovery deployments.

3.1. System Architecture Overview

The architecture of ADMAD is depicted in Figure

1. The system consists of four main components:

Application Servers (AS), File Archival Servers (FAS),

Metadata Servers (MDS) and Intelligent Storage Nodes

(ISN). Application servers like email servers,

multimedia servers are deployed and run to support

associated applications. The main task of FAS is to

archive the files into the storage servers, and it is the

place where Application-Driven Metadata Aware De-

duplication is implemented (FAS can also deployed

onto ASes as background daemons). MDS takes charge

of metadata management, metadata operations

interactively with ASes, the deployment of security

mechanisms, token management and the control of

system-wide activities such as object allocation and

migration among ISNs. ISNs are based on commodity

elements such as off-the-shelf hardware, operating

systems, file systems (we use EXT3 file system in our

preliminary implementation). Distributed ISNs are

interconnected with high speed storage area network. In

our system, all the components are implemented in the

user space in Linux operating system based on

commodity hardware. In actual deployment, some of

the components can be deployed in the same physical

machine as long as resources and performance

requirements permit.

Metadata Servers (MDS)

To avoid detracting the main aspect of this paper,

we mainly focus on the typical functions in ADMAD:

namespace management and metadata. There are three

important data structures in MDS to support:

(1) File_Attibutes_Table, which is used to manage

the file system namespace and to map from hierarchical

pathnames of regular files used by AS to MC identifiers

used by ISNs (from MC identifiers we can further get

the mapping to the location of the object that holds the

very MCs).

(2) Object_Metadata_Table, which holds the

metadata of objects. The structure of an object stored

on the ISN is shown in Figure 2.

(3) Chunk_Object_Table, which holds a Reverse

Index
 [9]

 used for locating the object a MC belongs to.

In the current implementation, these tables are

finally stored as MySQL
[25]

 tables on disk. In order to

improve performance, they are cached in memory as

much as possible. We plan to use non-volatile RAM to

support reliability in real system deployment.

In order to avoid the single point of failure, we use

MySQL’s replication mechanism in our primary

system. MySQL replication is based on the master

server keeping track of all changes to the databases

(inserts, updates, deletes, etc.) in its binary logs
 [25]

.

Each slave server receives from the master the saved

updates that the master has recorded in its binary log,

so that the slave can execute the same updates on its

copy of the data.

File Divider

Meta-data parser and tag

extraction

File Archive/Restore Interface

File Archival Server

I

P
NETWO

RK

Storage

Area

Network

Metadata Server

Object

Metadata

Manager

File-Object

Mapping

Data Allocation

Manager (or

ISN manager)

Tapes

…
…

RAID
… …

MAID

…

…

…

Devices Array Controller

Intelligent Storage Nodes

Object Packager

File Metadata

Manager

Object Manager

Object Interface Interpreter

Devices Array Controller

Object Manager

Object Interface Interpreter

Devices Array Controller

Object Manager

Object Interface Interpreter

…

Application Servers

Figure 1. System Architecture of ADMAD

Object ID

Data Length

Access Control Mask

Object Metadata Chunk Index
Chunk

ID
Chunk Content

Chunk

ID
Chunk Content …

Entry 1

……

Entry 2

Entry n

Chunk ID

Offset in Object

Chunk Length

Figure 2. Structure of an object stored on the Intelligent

Storage Nodes (ISN)

31

Authorized licensed use limited to: University of Minnesota. Downloaded on December 3, 2008 at 18:10 from IEEE Xplore. Restrictions apply.

Intelligent Storage Nodes (ISN)

ISNs support a scalable, efficient and self-

manageable object-based storage model, which is the

prevailing system architecture for petabyte-scale

storage systems nowadays
 [16], [17], [18]

.

ISN is compliant to OSD T-10
1
 standard. It uses a

flat namespace management. Every object is uniquely

and globally identified by an object ID within the ISN.

However, some prior research and practices
 [10]

 have

demonstrated that using variable object size, especially

separating the real data, metadata, and attributes of an

object into three independent files of underlying file

systems will severely hinder the performance, and

dramatically increase the fragmentation within the

storage devices, which further reduces the access

bandwidth
[11]

. Considering the characteristics of

archival data workload, we adopt a fixed size object

scheme, and the object size can be configured based on

different and some related research and practice
 [17]

.

The structure of an object is shown in Figure 2, in

which chunk is the minimal access unit for application

servers, specified by a chunk ID and the byte range in

an object (Note that an object may contain part of, one

or several logical MCs according to the size of the

MCs).

As ISN is an autonomous system, it also can

perform other functions such as access control, garbage

collection, search optimization, etc., which are beyond

the focus of this paper.

3.2. Chunking Library and File Archival API

As ADMAD uses metadata information of the

archival files to direct the file dividing policy,

―Metadata parser and tag extraction‖ module and

―File Divider‖ module are dependent on the specific

applications. We adopt application specific chunking

libraries to implement chunking routines, and expose a

unified chunking API for FAS and AS.

3.3. Chunking Routines

We choose several typical applications to

demonstrate our system, including: (1) enterprise email

system archival; (2) web documents archival and (3)

multimedia data archival. In order to prove-of-concept,

1 OSD T10 standard has been ratified by ANSI in January 2005 as

SCSI Object-Based Storage Device command interface extension

based on object representation of underlying storage. It provides an

opportunity for the interested vendors/researchers to obtain hands-on

experience of what OSD can provide, and can serve as a

conformance point to test for interoperability when multiple OSD

products arrive on the market.

we simply use the file type and file format as the

metadata information. Due to the space limitation, we

only present the design for enterprise Email archival

and Flash Video files archival.

3.3.1 Enterprise Email Archival

In the current implementation, Extmail
 [29]

, a

widely used open source enterprise-level mail server, is

used as the email application server. Every standard

email file can be divided into 6 semantic parts (the

MIME format email can also be divided into MCs

using the same method), as: FROM address; TO

address; SUBJECT; TEXT; ATTACHMENT

FILENAME; and ATTACHMENT content. The

chunking procedure is depicted in Figure 3.

parse FROM

parse TO

parse SUBJECT

parse TEXT

parse FILENAME

parse INFO

load the file and

begin scan

Current position p

the end of file

Calculate the hash digest for the chunk ;

Output the pointer to the chunks

Figure 3. Chunking procedure for email files

3.3.2 Flash Video Archival

Flash Video (FLV) is a popular video format

proposed by Adobe
 [32]

, and it is mostly used to deliver

video over the Internet using Adobe Flash Player

(formerly known as Macromedia Flash Player). As web

2.0 has increasing in a fast speed, archival of FLV

videos becomes important for these web 2.0 websites,

multimedia repositories and Internet proxies.

We currently use the FLV format
 [33]

 metadata. A

typical FLV file consists of header part and body part,

depicted in Figure 4. After the FLV header, the body

part (the remainder of an FLV file) consists of

alternating back-pointers and tags, which encode

synchronized audio and video streams. Each tag type in

an FLV file constitutes a single stream. There can be, at

most, one audio and one video stream, synchronized

together, in an FLV file. The detailed header and tag

fields definition can be referred to in the FLV format

specification
 [33]

.

Figure 4. The structure of a typical Flash Video file

32

Authorized licensed use limited to: University of Minnesota. Downloaded on December 3, 2008 at 18:10 from IEEE Xplore. Restrictions apply.

Table 1. Comparison of compression ratio on Email archival system using different compress methods

Original Space (Megabytes) Robin Fingerprint Gzip ADMAD

161 10.3 11.8 9

Based on the file format, we divide each FLV into

several temporal MCs. The video segmentation

procedure for a FLV file is described as follows:

(1) parse the file, and extract the time-indexed

features of the frames

(2) sample the frames, and get the key frames

for each temporal scene (here we mainly

use the related segmentation algorithm

and Shot boundary detection technique
[34],

[35]
)

(3) restore every key frame, and generate the

image for each key frame

(4) generate a feature code for the image, and

take this feature code as the identifier for the

corresponding temporal scene

Suppose a FLV file 1, after the extraction of

its 7 frames, sampling the key frames for the 3

scenes, and generating the feature codes for the 3

key frames, we divide file 1 into 3 MCs, and use

the corresponding feature codes to identify the

MCs. This procedure is illustrated in Figure 5.

Feature CodeFrame #
0x000000110x00

File 1

0x000000120x01

0x000000130x02

0x000000210x03

0x000000220x04

0x000000310x05

0x000000320x06

0x000000330x07

Scene #

0

1

2

Feature CodeKey Frame #
0x000000110x00

File 1

0

0x000000210x03

0x000000310x05

Scene #

1

2

Figure 5. Illustration of dividing a FLV file into several

scenes as the MCs

3.4. Archival Procedure

The archival procedure for ADMAD is as follows:

every file to be archived is first divided into several

MCs according to the algorithms in the application

specific chunking library. While partitioning the file

into MCs, these algorithms maintain the structures

obtained from MDS. Then the MCs are packaged into

objects. Note that objects are flushed from the buffer to

storage devices periodically according to the flushing

policy of the host Operating System. There can be an

asynchronous completion message sent from the MDS

to the archival server to indicate the completion of

metadata operations, and there is also reply from ISN to

indicate the actually storing of objects if configured in

the synchronous mode.

4. Evaluation

4.1. Experimental Setup

In our implementation, iSCSI protocol
 [26]

 is used

as IP-SAN transport protocol. The chunk IDs are

generated using MD5

hash algorithm. The objects are

internally stored as files on the underlying ext3

filesystem with the object size of 4MB. We take an

experimental approach to compare it with the

performance of two other typical traditional IP-network

storage platforms: NFS
 [20]

and iSCSI based regular file

system
[28]

. We measure performance by a modified

IOmeter
[10]

. The testbed is deployed to consist of one

ISN and one archival server. A Sun Fire V40z server is

used as the ISN equipped with 4 AMD dual-core

processors at 2.4 GHz, 16 GB RAM, and 6 Ultra-320

SCSI disks (160 GB per disk). A SUN Workstation is

used as the archival server equipped with 2 AMD dual-

core processors at 1 GHz, 8 GB RAM, and a 200 GB

Ultra-320 SCSI disk. The nodes are connected with 1

Gb/s independent Ethernet network.

4.2. Workload Characteristics

While by now it is difficult for us to get the real

enterprise level dataset, we do collect some workloads

which are general enough to represent the

characteristics of the real massive data and to prove the

concept. The workloads include: 5498.33MB of web

documents; 6364MB of MP3 song files from Album

Series Collections of several Chinese pop stars; 590MB

of popular flash videos about the NBA games on a

video website; 161MB of email files collected from

personal archives of three colleagues in our research

group

We use the Teleport™ software to download some

set of news web pages from three web sites:

http://www.sohu.com, http://www.sina.com.cn/, and

http://www.tom.com/ with the same time period, and

recursively download the pages linked from them, up to

five levels. The MP3 files are collected from some ftp

servers shared among some individuals internally who

donate their MP3 collections to the ftp server. The FLV

files are sets of NBA games collected from several

web2.0 video websites within a month. Email files are

collected from parts of personal archives of three

colleagues in our research group, totaling to

approximately 3000 email files.

4.3. Results and Discussions

33

Authorized licensed use limited to: University of Minnesota. Downloaded on December 3, 2008 at 18:10 from IEEE Xplore. Restrictions apply.

The compression results of ADMAD compared

with other methods (we use Gzip and Rabin fingerprint

here) are described in Figure 6 and Table 1. Since the

absolute compression ratios are highly dependent on

the datasets used, e.g. the compression ratio on web

documents may be one or two orders of magnitude

larger due to the locality of encoded characters, while

the traditional compressions on multimedia files are

trivial or even worse, we calculate the relative

compression ratios to represent the comparisons

between different approaches at the same time to avoid

the impact from different datasets. From Figure 6 we

observe that, for MP3 file set, the compression ratio

improves 61% compared with Gzip, and 43.9%

compared with Rabin fingerprint. For flash video files,

the compression ratio improves 46% compared with

Gzip, and 27% compared with Rabin fingerprint. For

web HTML files, the compression ratio improves 48%

compared with Rabin fingerprint. And for the Email

files, the compression ratio improvement is 31% and

14.3% respectively.

Multimedia Data

0

500

1000

1500

2000

2500

3000

beyond Eagles 孙燕姿 周杰伦 Westlife 阿桑 FLV

files

Singer Album Series

St
or
ag
e
Sp
ac
e
(M
eg
ab
yt
es
)

Original Space

Robin Fingerprint

Gzip

ADMAD

web documents

0

500

1000

1500

2000

2500

3000

Sohu Tom Sina

Websites

S
t
o
r
a
g
e

S
p
a
c
e

(
K
i
l
o
b
y
t
e
s
)

Original Space

Robin Fingerprint

ADMAD

Figure 6. Comparison of compression ratio using different

compress methods

Figure 7 shows the bandwidth of read/write operations

for the three systems. It can be seen that the read

bandwidth of ADMAD is relatively higher than in other

systems when the data size is small (below about

400KB). This is because when deploying traditional

file systems, the inode blocks are separate from the

content blocks, which imposes random device access

overhead. When the data size is above 400KB, the read

bandwidth of ADMAD is comparable to others except

for iSCSI. This is because in ADMAD, the objects of a

file may be spread into different locations of a device,

which imposes additional disk head seek and rotational

time. As for the write bandwidth, we can see that

ADMAD is much better than others, improving about

50%-70%. This is because the storage unit in ADMAD

is object, with size of 4MB in our test configuration

which is much bigger than the mainstream block size of

512B. Writing an object continuously is more efficient

than writing many blocks with no guarantee of

sequential distribution in device
 [11]

. As ADMAD is on

top of a file system, it can take the advantages of the

underlying buffering and caching mechanisms of the

file system transparently.

5. Conclusion

This paper introduces ADMAD: an Application-

Driven Metadata Aware De-duplication Archival

Storage System, which leverages the metadata

information of different levels in the I/O path to guide

the dividing of each file into more Meaningful data

Chunks (MC). We also design the fixed size object

based storage scheme to store the MCs into devices. In

our current implementation, we only use file type and

file format as the metadata information. Preliminary

experiments on the collected representative workloads

of Email, HTML, MP3, FLV files show that ADMAD

has better compression ratio than some of the current

mainstream methods (from 20% to near 50% according

to different datasets), and the read bandwidth is

comparable with similar systems while the write

bandwidth is better than the other systems (about 50%-

70% in average).

Write Bandwidth with Different Data Transfer Size

0

10

20

30

40

50

60

70

80

90

100

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M

Data Unit Size

Ba
nd
wi
dt
h
(M
B/
S)

NFS(async)

iSCSI

NFS(sync)

ADMAD

Read Bandwidth with Different Data Transfer Size

0

20

40

60

80

100

120

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M

Data Unit Size

Ba
nd
wi
dt
h
(M
B/
S)

NFS(async)

iSCSI

NFS(sync)

ADMAD

Figure 7. Throughput in each of three systems in 1 Gb/s

IP-SAN network

34

Authorized licensed use limited to: University of Minnesota. Downloaded on December 3, 2008 at 18:10 from IEEE Xplore. Restrictions apply.

6. References

[1] J F Gantz, et al. The Expanding Digital Universe: A Forecast of

Worldwide Information Growth through 2010. IDC, March 2007.

[2] M. Mesnier, G. R. Ganger, and E. Riedel, Object-based storage,

IEEE Communications Magazine, Aug. 2003.

[3] A. Muthitacharoen, B. Chen, D. Mazières, and A. Rawat. A low

bandwidth network file system, SOSP 2001.

[4] N. Tolia, M. Kozuch, M. Satyanarayanan, et al. Opportunistic

Use of Content Addressable Storage for Distributed File Systems, In

Proc. of Usenix 2003 Annual Technical Conference, San Antonio,

TX, USA

[5] L. L. You and C. Karamanolis, Evaluation of Efficient Archival

Storage Techniques, 12th NASA Goddard, 21st IEEE Conference on

Mass Storage Systems and Technologies, April 2004.

[6] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stockmeyer,

Compactly encoding unstructured inputs with differential

compression, Journal of the ACM, 49(3):318–367, May 2002.

[7] B. Han and P. Keleher, Implementation and Performance

Evaluation of Fuzzy File Block Matching, 2007 USENIX Annual

Technical Conference, Santa Clara, CA, June 2007

[8] B. V. Rompay, On the security of dedicated hash functions, In

the 19th Symposium on Information Theory in the Benelux, 1998

[9] S. Brin and L. Page, The anatomy of a large-scale hypertextual

web search engine, In WWW Conference, volume 7, 1998.

[10] David Du, Dingshan He, et. al. "Experiences in Building an

Object-Based Storage System based on the OSD T-10 Standard,"

Submitted to 14th NASA Goddard — 23rd IEEE (MSST2006)

Conference on Mass Storage Systems and Technologies May, 2006.

[11] M. Rosenblum and J. K. Ousterhout, The design and

implementation of a log-structured file system, ACM Transactions

on Computer Systems (TOCS), 10(1), Feb. 1992.

[12] M. McMinnXAM, Architecture Specification (Working Draft)

of Storage Networking Industry Association. Aug. 2007,

http://www.snia-dmf.org/xam/index.shtml

[13] M. O. Rabin, Fingerprinting by random polynomials, Technical

Report TR-15-81, Center for Research in Computing Technology,

Harvard University, 1981.

[14] A. Z. Broder, S. C. Glassman, M. S. Manasse, G. Zweig.

Syntactic Clustering of the Web, Digital Equipment Corporation

Systems Research Center (SRC) Technical Note 1997-015, July

1997

[15] P. Lyman, H R Varian, et al. How much information?

http://www.sims.berkeley.edu/research/projects/how-much-

info-2003/, Oct. 2003.

[16] Storage Networking Solutions – Europe. Object Storage

Architecture: Defining a new generation of storage systems built on

distributed, intelligent storage devices, Oct. 2004, http://

www.snseurope.com/featuresfull.php?id=2193.

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung, ―The Google File

System,‖ Proc. SOSP’03, 2003.

[18] S. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, C. Maltzahn,

Ceph: A Scalable, High-Performance Distributed File System,

Proceedings of the 7th Conference on Operating Systems Design and

Implementation (OSDI '06), Nov. 2006.

[19] Benjamin Zhu; Kai Li; Hugo Patterson. Avoiding the Disk

Bottleneck in the Data Domain Deduplication File System.

Proceedings of the 6th USENIX Conference on File and Storage

Technologies (FAST '08), February 2008, Pages (269–282)

[20] R Sandberg, D Goldberg, S Kleiman, et al. Design and

Implementation of the Sun Network File System. In Proceedings of

the summer 1985 USENIX conference, June 1985, Pages:(119-130).

[21] Intel Server Architecture Lab, IOmeter: The I/O Performance

Analysis Tool for Servers.

http://www.intel.com/design/servers/devtools/iometer/index.htm

[22] HTML 5: A vocabulary and associated APIs for HTML and

XHTML. W3C Working Draft 22 January 2008. Accessed from

http://www.w3.org/TR/html5/

[23] D. Bhagwat, K. Pollack, D. D. E. Long, T. Schwarz, and E. L.

Miller, Providing High Reliability in a Minimum Redundancy

Archival Storage System, Proceedings of the 14th IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems (MASCOTS '06), Sep 2006

[24] B. Zhu, K. Li, and H. Patterson, Avoiding the Disk Bottleneck

in the Data Domain Deduplication File System, Proceedings of the

6th USENIX Conference on File and Storage Technologies (FAST

'08), February 2008, Page(s): 269-282

[25] MySQL. http://www.mysql.com.

[26] Meth, K.Z.; Satran, J. Design of the iSCSI protocol, Mass

Storage Systems and Technologies, 2003, April 2003, Page(s):116 –

122

[27] Intel's Open Storage Toolkit, Intel iSCSI reference

implementation, Sourceforge.net.

 [28] Y. Lu and D. Du, Performance Study of iSCSI-Based Storage

Subsystems, IEEE Communications Magazine, Aug. 2003.

[29] Extmail website. http://www.extmail.org/

[30] EMC Centera. Content Addressed Storage, product description.

http://www.emc.com/pdf/products/centera/centera guide.pdf.

2002

[31] Symantec Veritas NetBackup PureDisk Product Overview,

http://www.symantec.com/business/products/overview.jsp?pcid=

2244&pvid=1381_1

[32] Flash Video Introduction, From Wikipedia, the free

encyclopedia. http://en.wikipedia.org/wiki/Flash_video

[33] Adobe Player Licensing. Macromedia Flash (SWF) and

Flash Video (FLV) File Format Specification. Accessed in

http://www.adobe.com/licensing/developer/

[34] Ramin Zabih; Justin Miller; Kevin Mai. A feature-based

algorithm for detecting and classifying scene breaks.

Proceedings of the third ACM international conference on

Multimedia, San Francisco, California, United States, Pages:

189 - 200, 1995

[35] Silvio Jamil Ferzoli Guimares, Michel Couprie, Arnaldo

de Albuquerque Araújo, Neucimar Jerffnimo Leite; Video

segmentation based on 2D image analysis; Pattern

Recognition Letters, v.24 n.7, p.947-957, April 2003

35

Authorized licensed use limited to: University of Minnesota. Downloaded on December 3, 2008 at 18:10 from IEEE Xplore. Restrictions apply.

