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INTRODUCTION

Let X be a compact complex algebraic variety of pure dimension n whose Betti
numbers vanish in all odd degrees. Then the cohomology ring H*(X) with complex
coefficients is a commutative, positively graded algebra, of finite dimension as a
complex vector space. It is well-known that the dualizing module (in the sense of
commutative algebra, see e.g. [8]) of H*(X) is the homology H,(X); moreover, H*(X)
is Gorenstein if and only if X satisfies Poincaré duality. This holds if X is smooth
or, more generally, rationally smooth; that is, the local cohomology at any point
is the same as the local cohomology of complex affine n-space (see |17| for other
characterizations).

We shall generalize these observations to the richer setting of equivariant homology
and cohomology, with applications to Coxeter groups. Assume that a d-dimensional
torus T acts on X with isolated fixed points (examples include rationally smooth
projective varieties where a complex reductive group acts with finitely many orbits,
Schubert varieties, and varieties of complete flags fixed by a given linear transfor-
mation.) Then the equivariant cohomology ring H;(X) with complex coefficients is
positively graded, commutative and reduced; it is a free module of finite rank over the
equivariant cohomology ring of the point. The latter is a polynomial ring in d vari-
ables. Thus, the ring H;.(X) is Cohen-Macaulay. We show that several topological
invariants of the T-variety X can be read off that ring.

Specifically, restriction to the T-fixed point set H;(X) — H;(XT) is the normaliza-
tion of Hj(X). It follows that the complex affine algebraic variety V' (X) associated
to H3(X) is a finite union of copies of the Lie algebra of T', glued along rational
hyperplanes (Proposition 2). The dualizing module of H;(X) turns out to be the
equivariant Borel-Moore homology H! (X)) (Proposition 1); it admits a more concrete
description in terms of regular differential forms on V(X) (Proposition 3). On the
other hand, the conductor of Hx(X) in its normalization Hx(X™) is closely related to
equivariant cohomology with support in X7, and also to equivariant multiplicities;
the latter are uniquely determined by the abstract ring Hj.(X), up to a common
scalar multiple (Section 3).

These considerations yield the following linear inequalities for the Betti numbers
of a variety X as above, if all equivariant multiplicities are non-zero:

(1) By + byt (X) + 4 Bo(X) < o (X) + by (X) 4 -+ b (X)
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for ¢ = 0,1,...,n — 1 (Theorem 2; recall that the Betti numbers are assumed to
vanish in all odd degrees.) It follows easily that
(2) 269 (X) + 4by(X) + -+ - + 2nby, (X) > ny(X)

where x(X) denotes the Euler characteristic. Moreover, equality in (2) is equivalent
t0 by(X) = bay—q(X) for ¢ = 0,1,... ,n — 1 and, in turn, to Poincaré duality for X
(Theorem 1).

The assumptions of Theorem 2 are satisfied if X is the disjoint union of locally
closed T-stable subvarieties (“cells”) isomorphic to complex affine spaces. Moreover,
the ratio
o(X) = bo(X) + 2b4(X) + - - - + nbyy, (X)

’ bo(X) + ba(X) + -+ - + by (X)

is just the average dimension of cells. In this setting, (2) translates into the inequality

o(X) > 3 dim(X),

with equality if and only if X satisfies Poincaré duality.

The latter result was discovered by Carrell and Peterson (|4]) for Schubert varieties
in the flag variety of a Kac-Moody group (these have a natural decomposition into
Schubert cells.) Finding an explanation and generalization of this result in terms of
equivariant cohomology was the main motivation for the present article.

When applied to Schubert varieties, the sharper inequalities (1) yield the following
purely combinatorial statement on the repartition of lengths of elements in a Bruhat
interval [1,w] of a crystallographic Coxeter group W:

#{x € [L,w], l(z) <q} <#{z e [l,w], l(x)>l(w)—q}
for 1 < g < 3¢(w) (Corollary 2; it extends to arbitrary Coxeter groups).

Acknowledgments. Many thanks to Jim Carrell, Stéphane Guillermou, Shrawan Ku-
mar and especially Alexis Marin for useful discussions or e-mail exchanges.

1. EQUIVARIANT HOMOLOGY AND COHOMOLOGY

Throughout this article, we consider a complex algebraic variety X of pure (com-
plex) dimension n, endowed with an algebraic action of a torus 7' 2 (C*)¢ of dimen-
sion d. We denote by t = C? the Lie algebra of 7.

In this situation, we review the definitions and some properties of equivariant
cohomology (see e.g. |12]) and of equivariant Borel-Moore homology (see [9] Chapter
19 for Borel-Moore homology, and [6], [11] for its equivariant version); both will be
considered with complex coefficients. For any positive integer m, consider the space

ETvm — (Cm—l—l _ O)d

where T acts by (t1,... ,tq) - (v1,...,v4) = (t1v1,... ,tqvq4). This action is free, and
the quotient

Pm : Erp = (C™T' —0) = (P™)* = Br,,
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is a principal T-bundle. The maps p,, : Er, — Bp, define a direct system for
the obvious inclusions By, C By n,41; the direct limit p : By — By is a universal
principal T-bundle, with the Ep,, as algebraic approximations.

For a T-variety X, let X x” E; be the quotient of X x F by the diagonal T-action;
then we have a map

px : X x'' Er — Er/T = Br,
a fibration with fiber X. The cohomology ring of X x* Er is the equivariant coho-
mology ring of X, denoted by H}.(X). It is a graded algebra over the equivariant
cohomology ring of the point, H;(pt) = H*(Bry).

Each character x of T" defines a line bundle on By, whence an element c¢(y) of
H?*(Br). The map x — c(x) extends to an isomorphism of the symmetric algebra
over C of the character group of 7', onto H*(By); this isomorphism doubles degrees.
Assigning to each character its differential at the identity element, we identify the
character group with a discrete subgroup of t*. This identifies H*(BT') to the ring of
polynomial functions C[t], where the non-zero linear forms have degree 2. Restriction
to a fiber of px defines a map H;(X) — H*(X) that vanishes on t*H}(X).

One checks that, for a fixed degree g, we have H%(X) = HY(X x” Ep,,) when
m > n—q/2. The g-th equivariant Borel-Moore homology group is defined similarly,
as the Borel-Moore homology group Hy oma(X X Ep,) for m > n—q/2. This group
is independent of m; it will be denoted by H;F(X) (specifically, for m' > m > n—q/2,
the Gysin map Hyyoma(X X Er ) = Hyroma(X x* Er,,) is an isomorphism.) The
space

HI(X) =D H, (X)
qEL
is a graded H;.(X)-module via the cap product

HY(X) x H (X) — H] (X), (a,f)—anp.

In particular, H! (X) is a graded C[t]-module where t* acts with degree —2.
Any closed T-stable subvariety Y of X defines a class [Y]r € Hgdim(y) (X). This
yields the equivariant Poincaré duality map

HY(X)— Hy (X), a—an[X]p.

2n—q

This map is an isomorphism if X is rationally smooth. In particular, HI (pt) is iso-
morphic to C[t] (with the opposite grading.) The Gysin maps H 4 9ma(X X7 Er.) —
H,(X) fit into a map H!(X) — H.(X) that vanishes on t*H!(X) and sends each
Y]r to [Y].

The following version of the localization theorem ([12], [10]) will be our main tool:

Lemma 1. Let T' be a subtorus of T and let i : X*' — X be the inclusion of the
fized point set, then both C[t|-linear maps

i HA(X) = HSY(X™), 4, H'(XT) - H'(X)

become isomorphisms after inverting finitely many characters of T that restrict non-
trivially to T".
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In particular, let y be an indivisible character of 7. Then ker(x) is a subtorus
of codimension 1; the maps H:(X) — HA(X*)) and HI'(X*0)) - HI'(X) are
isomorphisms at the generic point of the hyperplane (x = 0) of t. The union of the
subsets X*"®) ig the union of all T-orbits of dimension < 1.

The indivisible character y will be called singular if X*") £ X7 Note that the
kernels and cokernels of the maps Hi(X) — H:(X?) and HI (XT) — HI'(X) have
support in the union of singular hyperplanes and of a subset of codimension at least
2 in t.

For compact X, the map px : X x¥ Ep — By is proper and yields a C[t]-linear
map px, : H'(X) — HI'(pt) = C[t]. In turn, this defines a C[t]-linear map

/X : HI'(X) = Homgy (Hj(X),Clt]),  a— (B px.(BNa)).

This map is the equivariant version of the usual map from homology to the dual of
cohomology. The latter is an isomorphism, but fx may be trivial. In fact, it follows
from the localization theorem that fx is non-zero if and only if X contains T-fixed
points.

We shall see that fx is an isomorphism if X is equivariantly formal in the sense
of |10], that is, the cohomology spectral sequence associated with the fibration py :
X x* Er — Br collapses. Equivalently, the C[t|-module H;(X) is free and the map
Hi(X)/t'H3(X) — H*(X) is an isomorphism. First of all, we record the following
well-known

Lemma 2. Consider the following conditions for a T-variety X :
(1) X is equivariantly formal.

(1) The Clt]-module H;(X) is free.

(111) The Betti numbers of X wvanish in odd degrees.

Then (i)& (i1)< (iii).

If X7 is finite, then all these conditions are equivalent; moreover, they hold for
rationally smooth X.

If X is equivariantly formal as a T-variety, then it is as a T -variety for any
subtorus T' of T, and the natural map Clt'|@cg H}.(X) — H7.,(X) is an isomorphism.
Moreover, X™" is equivariantly formal as a T-variety and as a T/T'-variety, and the
Clt]-algebra H3:(X™") is isomorphic to Clt] ®cyyv H}/T,(XT').

Proof. (i)=-(ii)<=(iii) are obvious, and (ii)=(i) follows e.g. from the Eilenberg-Moore
spectral sequence (12| p. 38.)

Assuming that X7 is finite, we check that (ii)=-(iii). Recall that the restriction
H:(X) = HX(XT) = C[]oc H*(X") becomes an isomorphism after inverting finitely
many non-zero elements of t*. Since the C[t}-module H;(X) is free and X7 is finite,
it follows that H7.(X) = 0 for all odd ¢, whence (iii).

If X7 is finite and X is rationally smooth, then it is equivariantly formal by [10]
Theorem 14.1.
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If the T-variety X is equivariantly formal, then the Eilenberg-Moore spectral se-
quence yields the isomorphism C[t'| ®¢q H;(X) = Hj,(X); it follows that the 7"-
variety X is equivariantly formal. Choose another subtorus 7" such that the product
map 7" x T" — T is an isomorphism. Then X7 xp Ep = By x (X7 xpn Egn).
Thus, with obvious notation, H:(X"") = C[t'] ®c H:.(X™"). This implies the latter
isomorphism of the lemma. The C[t}-module H:(X"") becomes free after inverting
finitely many elements of t* that restrict nontrivially to t', that is, this module is
locally free in a neighborhood of t in t. It follows that the C[t]-module H%,(X"") is
locally free at 0, and thus free because it is positively graded. O

Proposition 1. Let X be a compact, equivariantly formal T-variety. Then the C[t]-
module HY (X) is free, and the map H! (X)/t"HI'(X) — H,(X) is an isomorphism.
Moreover, [, : HI (X) — Homey (H7.(X), Clt]) is an isomorphism as well.

Proof. The main ingredient is the following

Lemma 3. Let E be a compact topological space and let p : E — B be a fibration
where B is an orientable topological manifold with orientation class ug € H"(B). Let
i . F — E be the inclusion of a fiber of p and let i* : H,(E) — H,(F)(—r) be the
corresponding Gysin map. Then we have for any o € HY(E) and f € Hy (E):

(i, i!ﬁ>F = (up,p«(aN B))p

where (,)p denotes the pairing between H*(F) and H,(F).
If moreover i* : H*(E) — H*(F) is surjective, then so isi' : H,(E) — H.(F)(-r).

Proof. For the first assertion, note that

("o, fﬁ)F = (a, i*i!ﬁ>E = (o, pup N B)p = (p*up,a N B)p = (up, p.(aN B)) .
Assume that * is surjective, but that 7' is not. Then there exists a homogeneous

non-zero v € H*(F) such that (v,7'8)r = 0 for all 8 € H.(E). Let a € H*(E) be a
homogeneous element such that :*a = . Then we have

0= (i*a,i'B)p = {a,pup N B)g = (a Up*ug, B) .
Thus, a U p*up = 0. Let M be a subspace of H*(E) such that the restriction
i* ©+ M — H*(F) is an isomorphism. Let (o = 1,9,...,ay) be a homogeneous

basis of H*(B). By the Leray-Hirsch theorem, we can write o = Z;\; m; Up*a; with

uniquely defined homogeneous my,... ,my in M. Thus, Z;V:] m; Up*(a; Uup) =0,
that is, m; = 0. Moreover, i*p*a; = 0 for 7 > 2, because the degrees of these f3; are

at least 1. Then we have i*a = Z;VZQ i*m; Ui*p*a; = 0, a contradiction. O

We return to the proof of Proposition 1. The first assertion is a consequence of
Lemma 3 together with the Leray-Hirsch theorem, applied to the fibration X xp
Erm — Br,, for sufficiently large m.

For the remaining assertions, note that the C[t]-module Homgyg (H7.(X), C[t]) is
free, because X is equivariantly formal. By the graded Nakayama lemma, it suffices
to check that the map

H(X) ®cq ClY/t" Clt] — Homey (H7(X), Clt]) @y Clt]/"ClY
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is an isomorphism. But
Homeyg (H}(X), Ct]) @y C[/¢ Clt) = Home(Hy(X)/t H} (X),©)
is isomorphic to Hom¢ (H*(X), C), because X is equivariantly formal. And the map
HY(X) @erg O/ Tl = HY(X) /¢ HT(X) — H,(X)
is an isomorphism. Thus, it suffices to check that the diagram
H;(X) — Homey(Hp(X), Clt])

{ {
H.(X) —  Home(H*(X),C)

commutes. In a fixed degree ¢ and for large m, this amounts to the commutativity
of the diagram

Hyyoma(X x* Epp) — Home(HY(X x* Epp), C)

\ !
H,y(X) = Home (H(X), C)

where the top horizontal map sends § to the map (a — (px.(a N B3),up,, )). But
this follows again from Lemma 3. O

2. EQUIVARIANT HOMOLOGY AND REGULAR DIFFERENTIAL FORMS

We assume from now on that X is a compact, equivariantly formal T-variety with
isolated fixed points. By Lemma 1, we then have HY(X) = 0 = H%(X) for all odd q.
Thus, the algebras H*(X) and H}.(X) are commutative. We shall obtain geometric
interpretations of Hj;(X) and H! (X).

Let 7 be the number of T-fixed points in X, then the algebra H}(X") identifies
to C[t]" = C[t] x --- x C[t] (r factors.) By Lemmas 2 and 3, the C[t]-module H}.(X)
is free of rank r and the inclusion i : X7 — X defines an injective C[t]-algebra
homomorphism

i H(X) = Clt]", a— (ap)zexr
that becomes an isomorphism after inverting all singular characters. As a conse-
quence, the algebra HJ.(X) is finitely generated, Cohen-Macaulay of dimension d
and reduced. Let V(X)) be the corresponding complex affine algebraic variety (de-
fined over the rationals.)

Proposition 2. The map i* : H;(X) — C[t|" is the normalization. In other words,
the normalization of V(X)) is a union of disjoint copies t, of t, indexed by the T-fized
points.

Moreover, the set V(X)) is obtained as follows: for any singular character x and
for any T-fized points x, y in the same connected component of X*"X)  we identify
the hyperplanes (x = 0) in t, and t,.

Proof. The algebra C[t]" is integrally closed in its total ring of fractions, and it is a
finite module over C[t], hence over H}.(X). Moreover, H}(X) and C[t]" have the same
total ring of fractions by the localization theorem. Thus, * is the normalization.
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For the second assertion, consider firstly the case where X is connected and T" = C*.
Then the C[t|-algebra structure of Hj(X) yields a finite flat map V(X) — A'. The
fiber at 0 is the spectrum of H*(X), whereas the other fibers consist of r distinct
points. Since X is connected, the set-theoretical fiber at 0 is a unique point. Thus,
V(X)) is a union of r affine lines with the origins identified.

The general case follows by induction on d, using Lemmas 1 and 2. O

Note that this description of V(X)) as a set does not determine H}.(X) uniquely.
For example, if X is connected and 7' = C*, then the set V(X)) only depends on the
number of fixed points.

We now turn to a description of H! (X) in terms of regular differential forms. These
were defined in [18] for curves, and in [16] for arbitrary schemes. This definition
simplifies as follows in the present setting.

Define the space w of regular differential forms on t as the set of all polynomial
differential forms of degree d on that affine space. Then wy is a free module of rank
1 over C[t]; tensoring with its quotient field C(t), we obtain the space of rational
differential forms. Now a regular differential form on V(X) is a r-tuple (w;)qexr
of rational differential forms on t, such that the form Z%XT Qg w, is regular for all
a € Hi(X).

By the localization theorem, the latter condition is equivalent to the following:
For any character y of T and for any connected component Y of X*'X)  the form
Y eyt O Wy has no pole along the hyperplane (x = 0). In particular, the poles of
the w, are contained in the finite union of the singular hyperplanes.

The set of all regular differential forms on V(X) is stable under multiplication by
any element of i*H}(X): it is a graded H7.(X)-module that we denote by wy(x).

Proposition 3. With notation as above, wy(x) s the dualizing module of the graded
Cohen-Macaulay ring H3(X). Moreover, the graded H;(X)-module HT (X) is iso-
morphic to wy(x)(2d) with the opposite grading.

Under this isomorphism, the image of the class [x]r of any T-fized point has value
a generator of wy on ty, and 0 on the other t,. If X is irreducible, then the image of
the fundamental class [X|r generates the space of homogeneous elements of minimal
degree in wy(x).

Proof. We have
H(X) = Homey (H7(X), C[t]) 2 Homeyg (H7(X), w()(2d)
because w¢ = C[t](—2d). Moreover, Homgy (H7(X),w,) is the dualizing module of
H7(X), see e.g. [8] Theorem 21.15. And Homgy (H7(X),w) is mapped injectively to
Homgyy (H7(X) Qcg C(t), we @cpg C(1)) = wi Qg C(1),

with image being wy(x) by definition.
The assertion on the images of classes of T-fixed points is obvious. For the latter
assertion, observe that [X]; is non-zero, since the same holds for [X]. Thus, [X]

generates the space of homogeneous elements of maximal degree in H! (X) = C[t| ®c
H.(X). O
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Let Y be another compact, equivariantly formal T-space with isolated fixed points
and let f : X — Y be an equivariant morphism. Then f defines a ring homomorphism

f* o Hp(Y) — Hp(X)
together with a Hj.(X)-linear map
for HU(X) = HU(Y).
This yields a finite morphism V(X) — V(Y), whence a trace map
Tr: wyx) = wy ).

By [8] Theorem 21.15, we can view wy (x) as Homp (v)(H7(X), wy(v)); then the trace
map becomes evaluation at 1.

Proposition 4. With notation as above, Tr identifies with f,. Moreover, we have

Tr((wm)meXT) = ( Z wm)yey'r.

zeXT, f(x)=y

Proof. By Proposition 3, both assertions hold for the inclusion i : X7 — X. Using
functoriality of the trace map, we reduce to the case where X and Y are finite sets;
then the statements are obvious. O

This description of H!(X) becomes much more precise if X contains only finitely
many 7T-orbits of dimension 1; equivalently, the fixed point set of any subtorus of
codimension 1 contains only finitely many T-orbits. By |10] Theorem 7.1, the image
of i* : H3(X) — C[t]” consists then of all r-tuples (f;).exr of polynomial functions
on t such that: f, — f, is divisible by x whenever x, y are fixed points in the closure
of an orbit of dimension 1 where T" acts through the character y. Here we obtain the
following dual statement.

Corollary 1. Let X be a compact, equivariantly formal T-variety containing only
finitely many orbits of dimension < 1. Then H! (X) consists of all tuples (wy)zexr
of rational differential forms on t satisfying the following conditions:

(i) The poles of each w, are contained in the union of singular hyperplanes and their
order is at most 1.

(ii) For any singular character x and for any connected component Y of X0 the
sum of residues of the w, (x € YT ) along the hyperplane (x = 0) is zero.

Proof. By Lemmas 1 and 2, we may assume that d = 1 and that X is connected of
dimension 1. Then the normalization of X is a disjoint union of copies of complex
projective line P!. Since the cohomology of X vanishes in degree 1, the Mayer-
Vietoris exact sequence implies that each irreducible component C' of X contains 2
fixed points; moreover, the union of all other components is either disconnected, or it
meets C' in a unique fixed point. In other words, X is a tree of curves homeomorphic
to P'. Now the statement follows easily from an explicit description of HS (P!)
together with induction on the number of irreducible components. O

This will be applied to Schubert varieties in Section 4.
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3. EQUIVARIANT MULTIPLICITIES AND THE CONDUCTOR

We still assume that X is a compact, equivariantly formal T-variety, with finite
T-fixed point set that we denote by F'. By the localization theorem, we can assign
to each x € F' a rational function ey (z, X) on t (the T-equivariant multiplicity of X
at x), such that we have

(X]p =) er(w, X) [2]r
TeF
in H!(X) ®cjg C(t). Then ep(x, X) is zero or a homogeneous rational function of
degree —2n, with denominator a product of singular characters (this definition makes
sense, more generally, for an isolated fixed point in a T-variety; see [7], [3].)

For irreducible X, note that the equivariant multiplicities depend only on the
algebra H;.(X), up to multiplication by a common non-zero complex number (this
follows from Proposition 3.)

The equivariant multiplicity is related with the equivariant Euler class of [2], as
follows. Let z € F and let Hy ,(X) denote equivariant cohomology of X with support
in {z}. By the localization theorem again, the restriction map

Hyp o (X) = Hp(x) 2 Clt, a—a,

is an isomorphism after inverting finitely many non-trivial characters of 7. Thus, we
may choose a non-C[t]-torsion o € H7 ,(X). Then we have a, # 0 and

/onﬁ X7 =er(z, X) ay.

Therefore, the equivariant Euler class Eup(z, X) is the inverse of ep(z, X) if the
latter is non-zero. This holds, e.g., if X is rationally smooth at z; then Eup(z, X) is
a scalar multiple of a product of singular characters, see [2| §2.

Note that equivariant multiplicity may well be zero in our setting. Consider, for
example, the action of T = C* on P* defined by its linear action on A® with weights 0,

1, =1, 1, —1; let 2p, ..., z4 be the corresponding homogeneous coordinates, then the
T-fixed points are the coordinate points zg, ... ,z4. The subvariety X C P* defined
by 2129 — 2324 = 0 is T-stable and equivariantly formal; moreover, X7 = {xq,... , 24}

and e (zq, X) = 0.
Let now ¢ be the conductor of Hy(X) into H}(F'), that is,

c={ac Hy(X) |i"faUpei"H(X) VBe€ Hi(F)}.
In other words, i*c is the greatest ideal of Hj.(F) contained in i* H;.(X). Thus, we

have
i'c = H Cx

el
where the ¢, are ideals of C[t]. Note that the map

Hom g, (x)(H7.(F), Hi (X)) = ¢, u s u(l)

is an isomorphism.
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We construct elements of ¢ as follows. Denote by Hj. -(X) equivariant cohomology
with support in F', and by r : Hj, n(X) — H7(X) the natural map. Set

0 = r(Hjp(X)) = S r(Hj, (X)),
el
a C[t]-submodule of H}(X). Note that i*0 =[], 0, where 0, denotes the image of
the natural map Hy (X) — Hp(z) = C[t]. Moreover, each 0, is an ideal of C[t]. As
a consequence, 0 is contained in ¢; in other words, each 0, is contained in c,.
In fact, ¢, and 0, are closely related to each other and to the equivariant multiplicity
at x, as shown by the following

Proposition 5. (i) Fach ideal ¢, is generated by a monomial in the singular char-
acters, and satisfies er(z, X)c, C C[t].

(11) If X is rationally smooth at x, then d, equals ¢, and is generated by Eur(z, X).
(iii) If X*er00 is rationally smooth at x for all singular characters x of T, then the
rational function ep(x, X) is non-zero, and its denominator generates the ideal c,.
Moreover, the support of the C[t|-module ¢, /0, has codimension at least 2 in t.

Proof. (i) Let («1,...,q,) be a basis of the free C[t]-module H;(X). Write F =
{z1,...,2,} and

ifoy, = (g1, ..., ax) € ClY]"

for 1 <k <r. Let f = (f1,...,f) € C[t]", then f € i*c if and only if: for
1 < j < r, there exists 3; € Hy(X) such that (3;),, = f; and that (§;),, = 0 for
all k # j. Writing 8; = >, _, fireu with fj; € C[t], the latter condition translates
into the system of linear equalities: ZZ:] ap fir = f; if | = 7, and = 0 otherwise.
Solving this system yields Af;, = (—=1)7"FAf; for 1 < j,k < r, where A denotes
the determinant of the matrix (ag), and Ajg its principal (j, k)-minor. Therefore,
fj € ¢ if and only if f; is divisible by all A/(A, Aj;) for k =1,...,r, where (A, Aj)
denotes the greatest common divisor of these polynomial functions. This shows that
¢; is generated by the least common multiple of the A/(A,Aj) (1 <k <r). On
the other hand, ¢; contains a monomial in the singular characters, by the localization
theorem. This proves the first assertion.

Let f € c,, then there exists & € H;.(X) such that: a, = f and a, = 0 for all
yeF,y#x Nowep(z,X)f = [, an[X]pis in C[t].

(ii) By [2] 2.3, the C[t}-module H7  (X) is freely generated by a homogeneous el-
ement « of degree 2n. Moreover, the image of o in Hj.(x) = C[t] equals Eur(z, X),
the inverse of er(z,X). Thus, Eur(z, X) generates 0,, and ¢, is contained in
Euy(z, X)C[t] = 0, whence 0, = ¢,.

(iii) By the localization theorem, er(z, X) is the product of ep(x, X*"0)) (a con-
stant multiple of a power of the singular character x) with a rational function defined
along the hyperplane (xy = 0). It follows that the denominator of er(x, X) is the
product of the denominators of the ep(x, X**®)) where y runs over the singular
characters up to multiple. Now the assertion follows from (ii) together with the
localization theorem. O
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Next we obtain sufficient conditions for equality ¢, = 0, to hold (we do not know
any example where ¢, # 0,.)

Recall that = is called attractive if all weights of T" in the Zariski tangent space
of X at x are contained in an open half-space. Equivalently, there exist an open
affine T-stable neighborhood X, and a one-parameter subgroup A of 7', such that
lim, o A(t)y = x for all y € X,. Then such a neighborhhod X, is unique and, setting
X, = X, — {z}, the quotient X,/\(C*) is a projective T-variety that we denote by
P(X,) (see e.g. [3]). Finally, the rational function ey (x, X) is defined at A (identified
with its differential at 1), and its value is a positive rational number; in particular,
er(xz, X) is non-zero.

Proposition 6. Assume that x is attractive, X*** X is rationally smooth at = for all
singular characters x, and P(X,) is equivariantly formal. Then ¢, = 0,.

Proof. Let f € ¢, be homogeneous of degree ¢. Then there exists a unique o € HJ.(X)
such that a, = f and o, = 0 for all y € F', y # x. We check that « is in the image of
the natural map Hj, ,(X) — Hi}(X); equivalently, f is in the image of the composition

Hy (X)) = Hp(X) = Hp(z).
By excision, the latter identifies with the image of the composition
Hy ,(Xs) = Hp(Xz) = Hy().

Moreover, the map H;(X,) — Hj(x) is an isomorphism, because z is attractive.
Since the sequence
Hy ,(Xe) = Hp(X.) = Hy(X)

is exact, we have to check that o maps to zero in H7(X,).

Note that the T-fixed points in P(X,) are the IP’(X,quer(X)) where x runs over all
singular characters. Since P(X,) is equivariantly formal, the restriction map

H;(XI) s H H;: ((Xm)ker(x))
X
is injective. Now we conclude by Proposition 5 (ii). a

4. POINCARE DUALITY AND BETTI NUMBERS

Combining the results of the previous sections, we obtain the following criterion
for Poincaré duality.

Theorem 1. For a compact, equivariantly formal T-variety X of dimension n with
isolated fized points, the following conditions are equivalent:
(i) X satisfies Poincaré duality.
(ii) The algebra H3(X) is Gorenstein.
(i1i) The Betti numbers of X satisfy by(X) = bay—o(X) for 0 < ¢ < n, and all
equivariant multiplicities are non-zero.

If one of them holds, then all equivariant multiplicities are in fact inverses of
polynomial functions.
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Proof. (i)<(ii) By Proposition 3, the algebra H;(X) is Gorenstein if and only if the
H(X)-module H!(X) is freely generated by [X]r. But this amounts to Poincaré
duality for X, by Proposition 1 and the graded Nakayama lemma.

(ii)=(iii) The algebra H*(X) is Gorenstein as the quotient of the Gorenstein al-
gebra H;.(X) by the ideal t*H}.(X) generated by a regular sequence. It follows that
by(X) = bay—o(X) for all ¢ € Z (see e.g. [8] p. 551). Morever, the proof of (i)<(ii)
shows that the dualizing module wy (x) is freely generated by [X]r, a homogeneous
element of degree 2(d — n). Thus, the conductor ¢ satisfies

c= Homy%(x) (H}(F), H}(X)) = Homy%(x)(H}(F),wV(x)) ®H%(X) w;‘/(x)
= Wur) B (x) W (x):

where w{‘/(x) denotes the inverse of the canonical module; the third isomorphism
follows from |8] Theorem 21.15. But the dualizing module wy (s of H(X) = C[t]" is
freely generated in degree 2d. Therefore, the C[t|"-module i*c is freely generated in
degree 2n, by (say) (fs)zep. For a fixed x € F, there exists o € H¥*(X) such that
ay = fyand oy, =0 for all y € F, y # x. Thus,

er(e. X) 0, = [ a0 (X,
Jx
is in C[t]. But a, and ey (z, X) are homogeneous of opposite degrees, so that e (z, X)
is the inverse of a polynomial.
(iii)=(ii) We claim that the equivariant Poincaré duality map

N[X]p: HL(X) = Hy, (X)

2n—q

is injective for all ¢ € Z. Let o € H;(X) such that a N [X]|r = 0. Then

[(ausnixi=o
Jx
for all 5 € H}.(X). Thus, we have

ZeT(:r,X)amﬁm =0

TeEF

in C(t). By the localization theorem, this equality holds for all sequences (0;)zer in
C(t). Since no er(x, X) vanishes, we must have a, = 0 for all x € F, and a = 0.
This proves our claim.

On the other hand, the assumption on Betti numbers combined with the isomor-

phisms

Hi(X) 2 Ol @c H'(X),  HT(X) 2 Clf @c HY(X)
implies that the dimension of Hf(X) equals that of Hj, (X), for all ¢ € Z. Thus,
the equivariant Poincaré duality map is an isomorphism, and the same holds for the
usual one. O

We now come to our main result.
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Theorem 2. Let X be a compact, equivariantly formal T-variety of dimension n
with isolated fized points. If all equivariant multiplicities are non-zero (e.g., if all
fized points are attractive), then the following inequalities hold for the Betti numbers:

bo(X) 4+ by 1 (X) + -+ 4+ 0o (X) < bopg(X) + bop g1 (X) + -+ + o (X)
for0<g<n-—1, and
2b9(X) 4+ 4b4(X) + - - - + 2nbg, (X)) > ny(X)

where x(X) = bo(X) 4+ ba(X) +- - +bo,(X) is the Euler characteristic. Moreover, X
satisfies Poincaré duality if and only if 2bo(X) 4+ 4by(X) + - - - + 2nbey, (X) = nx(X).

Proof. Since e (z, X) is a non-zero rational function for all z € F, we may choose
a one-dimensional subtorus T" of T such that X*" = F and that each e (z, X) is
non-zero as well. As in the proof of Theorem 1, it follows that the map

N[X]y : HL(X) = HY (X)

2n—q
is injective for all ¢ € Z. Moreover, since X is equivariantly formal as a T'-variety by
Lemma 2, we have H3 (X) 2 C[t)®c H*(X) and H" (X) = C[t]®c H.(X) as graded
vector spaces, where ¢ is an indeterminate of degree 2. It follows that
dim H{, (X) =) byo;(X),  dim Hy, ((X) =) ban_gs0i(X).
Jj>0 >0

Together with vanishing of Betti numbers in odd degrees, this implies the first in-
equalities. Summing them up for ¢ = 0,... ,n — 1, we obtain

nbo(X) + -+ 2b, 2(X) 4+ by 1(X) < b1 (X) +2b,02(X) + -+ - + nbop (X)

which is equivalent to the second inequality.
If X satisfies Poincaré duality, then b,(X) = by,,_,(X) for all ¢ € Z, whence

209(X) 4+ 4by(X) + - - - 4 2nby, (X) = nx(X).
Conversely, if the latter equality holds, then we have
bq(X) + bqfl(X) +oet bO(X) = anfq(X) + b2n7q+1(X) +oet bQH(X)

for 0 < ¢ < n — 1, by the arguments above. This in turn implies b,(X) = by, 4(X).
Thus, X satisfies Poincaré duality by Theorem 1. O

Next let (W, S) be a Coxeter system with length function ¢ and Bruhat order
< (|13]). We assume that W is crystallographic, that is, the product of any two
distinct elements of S has order 2, 3, 4, 6 or oc. Equivalently, W is the Weyl
group of a complex Kac-Moody Lie algebra g with Cartan subalgebra t, the reflection
representation (|19]).

To each w € W is associated the Schubert variety X (w), a complex projective
variety of dimension ¢(w). The maximal torus 7" of the Kac-Moody group associated
to g acts on X (w) with isolated fixed points, indexed by the Bruhat interval

1, w] ={z e W,z <w}.
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Each such fixed point is attractive, and X (w) is the disjoint union of Schubert cells
X°x) (z € [1,w]), where X°(z) is T-stable and isomorphic to complex affine space
of dimension ¢(x). Thus, X (w) satisfies our assumptions.

The T-equivariant cohomology ring of X (w) is determined in [1| and [14], see also
[11] §4. An alternative description follows readily from [10| Theorem 7.1, because
X (w) contains only finitely many T-orbit closures of dimension 1. Each such curve
is uniquely determined by its T-fixed points x and sz where x € W, s is a reflection
of W and x,sr < w; moreover, T acts on that curve through a character y such
that (x = 0) is the hyperplane fixed by s ([4] Theorem F.) Thus, the image of the
restriction map i* : Hj (X (w)) — Hj(X(w)") is the set of all tuples (f,)ze1,0] in C[4]
such that: f, — fs. . is divisible by «, whenever s, € W is a reflection with hyperplane
(a=0), and z, spx < w.

Similarly, the equivariant homology H! (X (w)) is determined by Corollary 1: it
consists of all tuples (wg)ge1,0) of rational differential forms on t with at most simple
poles on reflection hyperplanes, satisfying

Resa—q(wy + ws, ) =0
whenever s, is a reflection and z, s,z < w. And Theorem 2 yields

Corollary 2. For any Bruhat interval [1,w] in a crystallographic Coxeter group W,
we have

#{x € [1,w], L(z) < q} <#{x e [l,w], {(z) > l(w)—q}
for 1 < q < 3l(w).

Moreover, the second inequality in Theorem 2 yields the inequality a(w) > 1¢(w)
for the average length a(w) of elements of [1,w], with equality if and only if X (w)
satisfies Poincaré duality. This statement is due to Carrell and Peterson ([4]), together
with equivalence of Poincaré duality and rational smoothness for Schubert varieties.
The latter result be recovered from Theorem 1 combined with the characterization
of rational smoothness in terms of equivariant multiplicities, see [15], [2], [3].

Note finally that Corollary 2 actually holds for an arbitrary Coxeter group W:
although Schubert varieties do not exist any more in this setting, all ingredients of
the proof of Theorem 2 still make sense (see [14] (4.35) and [5]; the non-vanishing of
“equivariant multiplicities” follows from [5] Proposition 1.)
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