
POINCARÉ DUALITY AND EQUIVARIANT (CO)HOMOLOGYMICHEL BRIONTo Bill Fulton for his 60th birthdayIntroductionLet X be a compact complex algebraic variety of pure dimension n whose Bettinumbers vanish in all odd degrees. Then the cohomology ring H�(X) with complexcoe�cients is a commutative, positively graded algebra, of �nite dimension as acomplex vector space. It is well-known that the dualizing module (in the sense ofcommutative algebra, see e.g. [8]) ofH�(X) is the homologyH�(X); moreover, H�(X)is Gorenstein if and only if X satis�es Poincaré duality. This holds if X is smoothor, more generally, rationally smooth; that is, the local cohomology at any pointis the same as the local cohomology of complex a�ne n-space (see [17] for othercharacterizations).We shall generalize these observations to the richer setting of equivariant homologyand cohomology, with applications to Coxeter groups. Assume that a d-dimensionaltorus T acts on X with isolated �xed points (examples include rationally smoothprojective varieties where a complex reductive group acts with �nitely many orbits,Schubert varieties, and varieties of complete �ags �xed by a given linear transfor-mation.) Then the equivariant cohomology ring H�T (X) with complex coe�cients ispositively graded, commutative and reduced; it is a free module of �nite rank over theequivariant cohomology ring of the point. The latter is a polynomial ring in d vari-ables. Thus, the ring H�T (X) is Cohen-Macaulay. We show that several topologicalinvariants of the T -variety X can be read o� that ring.Speci�cally, restriction to the T -�xed point setH�T (X)! H�T (XT ) is the normaliza-tion of H�T (X). It follows that the complex a�ne algebraic variety V (X) associatedto H�T (X) is a �nite union of copies of the Lie algebra of T , glued along rationalhyperplanes (Proposition 2). The dualizing module of H�T (X) turns out to be theequivariant Borel-Moore homologyHT� (X) (Proposition 1); it admits a more concretedescription in terms of regular di�erential forms on V (X) (Proposition 3). On theother hand, the conductor of H�T (X) in its normalizationH�T (XT ) is closely related toequivariant cohomology with support in XT , and also to equivariant multiplicities;the latter are uniquely determined by the abstract ring H�T (X), up to a commonscalar multiple (Section 3).These considerations yield the following linear inequalities for the Betti numbersof a variety X as above, if all equivariant multiplicities are non-zero:(1) bq(X) + bq�1(X) + � � �+ b0(X) � b2n�q(X) + b2n�q+1(X) + � � �+ b2n(X)1



2 MICHEL BRIONfor q = 0; 1; : : : ; n � 1 (Theorem 2; recall that the Betti numbers are assumed tovanish in all odd degrees.) It follows easily that(2) 2b2(X) + 4b4(X) + � � �+ 2nb2n(X) � n�(X)where �(X) denotes the Euler characteristic. Moreover, equality in (2) is equivalentto bq(X) = b2n�q(X) for q = 0; 1; : : : ; n � 1 and, in turn, to Poincaré duality for X(Theorem 1).The assumptions of Theorem 2 are satis�ed if X is the disjoint union of locallyclosed T -stable subvarieties (�cells�) isomorphic to complex a�ne spaces. Moreover,the ratio a(X) = b2(X) + 2b4(X) + � � �+ nb2n(X)b0(X) + b2(X) + � � �+ b2n(X)is just the average dimension of cells. In this setting, (2) translates into the inequalitya(X) � 12 dim(X);with equality if and only if X satis�es Poincaré duality.The latter result was discovered by Carrell and Peterson ([4]) for Schubert varietiesin the �ag variety of a Kac-Moody group (these have a natural decomposition intoSchubert cells.) Finding an explanation and generalization of this result in terms ofequivariant cohomology was the main motivation for the present article.When applied to Schubert varieties, the sharper inequalities (1) yield the followingpurely combinatorial statement on the repartition of lengths of elements in a Bruhatinterval [1; w] of a crystallographic Coxeter group W :#fx 2 [1; w]; `(x) � qg � #fx 2 [1; w]; `(x) � `(w)� qgfor 1 � q < 12`(w) (Corollary 2; it extends to arbitrary Coxeter groups).Acknowledgments. Many thanks to Jim Carrell, Stéphane Guillermou, Shrawan Ku-mar and especially Alexis Marin for useful discussions or e-mail exchanges.1. Equivariant homology and cohomologyThroughout this article, we consider a complex algebraic variety X of pure (com-plex) dimension n, endowed with an algebraic action of a torus T �= (C �)d of dimen-sion d. We denote by t �= C d the Lie algebra of T .In this situation, we review the de�nitions and some properties of equivariantcohomology (see e.g. [12]) and of equivariant Borel-Moore homology (see [9] Chapter19 for Borel-Moore homology, and [6], [11] for its equivariant version); both will beconsidered with complex coe�cients. For any positive integer m, consider the spaceET;m = (C m+1 � 0)dwhere T acts by (t1; : : : ; td) � (v1; : : : ; vd) = (t1v1; : : : ; tdvd). This action is free, andthe quotient pm : ET;m = (C m+1 � 0)d ! (Pm)d = BT;m



POINCARÉ DUALITY AND EQUIVARIANT (CO)HOMOLOGY 3is a principal T -bundle. The maps pm : ET;m ! BT;m de�ne a direct system forthe obvious inclusions BT;m � BT;m+1; the direct limit p : ET ! BT is a universalprincipal T -bundle, with the ET;m as algebraic approximations.For a T -varietyX, let X�TET be the quotient of X�ET by the diagonal T -action;then we have a map pX : X �T ET ! ET=T = BT ;a �bration with �ber X. The cohomology ring of X �T ET is the equivariant coho-mology ring of X, denoted by H�T (X). It is a graded algebra over the equivariantcohomology ring of the point, H�T (pt) = H�(BT ).Each character � of T de�nes a line bundle on BT , whence an element c(�) ofH2(BT ). The map � 7! c(�) extends to an isomorphism of the symmetric algebraover C of the character group of T , onto H�(BT ); this isomorphism doubles degrees.Assigning to each character its di�erential at the identity element, we identify thecharacter group with a discrete subgroup of t�. This identi�es H�(BT ) to the ring ofpolynomial functions C [t], where the non-zero linear forms have degree 2. Restrictionto a �ber of pX de�nes a map H�T (X)! H�(X) that vanishes on t�H�T (X).One checks that, for a �xed degree q, we have HqT (X) = Hq(X �T ET;m) whenm � n� q=2. The q-th equivariant Borel-Moore homology group is de�ned similarly,as the Borel-Moore homology group Hq+2md(X�T ET;m) for m � n�q=2. This groupis independent of m; it will be denoted by HTq (X) (speci�cally, for m0 � m � n�q=2,the Gysin map Hq+2m0d(X�T ET;m0)! Hq+2md(X�T ET;m) is an isomorphism.) Thespace HT� (X) =Mq2Z HTq (X)is a graded H�T (X)-module via the cap productHpT (X)�HTq (X)! HTq�p(X); (�; �) 7! � \ �:In particular, HT� (X) is a graded C [t]-module where t� acts with degree �2.Any closed T -stable subvariety Y of X de�nes a class [Y ]T 2 HT2 dim(Y )(X). Thisyields the equivariant Poincaré duality mapHqT (X)! HT2n�q(X); � 7! � \ [X]T :This map is an isomorphism if X is rationally smooth. In particular, HT� (pt) is iso-morphic to C [t] (with the opposite grading.) The Gysin maps Hq+2md(X�T ET;m)!Hq(X) �t into a map HT� (X) ! H�(X) that vanishes on t�HT� (X) and sends each[Y ]T to [Y ].The following version of the localization theorem ([12], [10]) will be our main tool:Lemma 1. Let T 0 be a subtorus of T and let i : XT 0 ! X be the inclusion of the�xed point set, then both C [t]-linear mapsi� : H�T (X)! H�T (XT 0); i� : HT� (XT 0)! HT� (X)become isomorphisms after inverting �nitely many characters of T that restrict non-trivially to T 0.



4 MICHEL BRIONIn particular, let � be an indivisible character of T . Then ker(�) is a subtorusof codimension 1; the maps H�T (X) ! H�T (Xker(�)) and HT� (Xker(�)) ! HT� (X) areisomorphisms at the generic point of the hyperplane (� = 0) of t. The union of thesubsets Xker(�) is the union of all T -orbits of dimension � 1.The indivisible character � will be called singular if Xker(�) 6= XT . Note that thekernels and cokernels of the maps H�T (X) ! H�T (XT ) and HT� (XT ) ! HT� (X) havesupport in the union of singular hyperplanes and of a subset of codimension at least2 in t.For compact X, the map pX : X �T ET ! BT is proper and yields a C [t]-linearmap pX� : HT� (X)! HT� (pt) = C [t]. In turn, this de�nes a C [t]-linear mapZX : HT� (X)! HomC [t](H�T (X); C [t]); � 7! (� 7! pX�(� \ �)):This map is the equivariant version of the usual map from homology to the dual ofcohomology. The latter is an isomorphism, but RX may be trivial. In fact, it followsfrom the localization theorem that RX is non-zero if and only if X contains T -�xedpoints.We shall see that RX is an isomorphism if X is equivariantly formal in the senseof [10], that is, the cohomology spectral sequence associated with the �bration pX :X �T ET ! BT collapses. Equivalently, the C [t]-module H�T (X) is free and the mapH�T (X)=t�H�T (X) ! H�(X) is an isomorphism. First of all, we record the followingwell-knownLemma 2. Consider the following conditions for a T -variety X:(i) X is equivariantly formal.(ii) The C [t]-module H�T (X) is free.(iii) The Betti numbers of X vanish in odd degrees.Then (i),(ii)((iii).If XT is �nite, then all these conditions are equivalent; moreover, they hold forrationally smooth X.If X is equivariantly formal as a T -variety, then it is as a T 0-variety for anysubtorus T 0 of T , and the natural map C [t0 ]
C [t]H�T (X)! H�T 0(X) is an isomorphism.Moreover, XT 0 is equivariantly formal as a T -variety and as a T=T 0-variety, and theC [t]-algebra H�T (XT 0) is isomorphic to C [t] 
C [t=t0 ] H�T=T 0(XT 0).Proof. (i))(ii)((iii) are obvious, and (ii))(i) follows e.g. from the Eilenberg-Moorespectral sequence ([12] p. 38.)Assuming that XT is �nite, we check that (ii))(iii). Recall that the restrictionH�T (X)! H�T (XT ) = C [t]
C H�(XT ) becomes an isomorphism after inverting �nitelymany non-zero elements of t�. Since the C [t]-module H�T (X) is free and XT is �nite,it follows that HqT (X) = 0 for all odd q, whence (iii).If XT is �nite and X is rationally smooth, then it is equivariantly formal by [10]Theorem 14.1.



POINCARÉ DUALITY AND EQUIVARIANT (CO)HOMOLOGY 5If the T -variety X is equivariantly formal, then the Eilenberg-Moore spectral se-quence yields the isomorphism C [t0 ] 
C [t] H�T (X) �= H�T 0(X); it follows that the T 0-variety X is equivariantly formal. Choose another subtorus T 00 such that the productmap T 0 � T 00 ! T is an isomorphism. Then XT 0 �T ET �= BT 0 � (XT 0 �T 00 ET 00).Thus, with obvious notation, H�T (XT 0) �= C [t0 ]
C H�T 00(XT 0). This implies the latterisomorphism of the lemma. The C [t]-module H�T (XT 0) becomes free after inverting�nitely many elements of t� that restrict nontrivially to t0, that is, this module islocally free in a neighborhood of t0 in t. It follows that the C [t0 0]-module H�T 00(XT 0) islocally free at 0, and thus free because it is positively graded.Proposition 1. Let X be a compact, equivariantly formal T -variety. Then the C [t]-module HT� (X) is free, and the map HT� (X)=t�HT� (X)! H�(X) is an isomorphism.Moreover, RX : HT� (X)! HomC [t](H�T (X); C [t]) is an isomorphism as well.Proof. The main ingredient is the followingLemma 3. Let E be a compact topological space and let p : E ! B be a �brationwhere B is an orientable topological manifold with orientation class uB 2 Hr(B). Leti : F ! E be the inclusion of a �ber of p and let i! : H�(E) ! H�(F )(�r) be thecorresponding Gysin map. Then we have for any � 2 Hq(E) and � 2 Hq+r(E):hi��; i!�iF = huB; p�(� \ �)iBwhere h; iF denotes the pairing between H�(F ) and H�(F ).If moreover i� : H�(E)! H�(F ) is surjective, then so is i! : H�(E)! H�(F )(�r).Proof. For the �rst assertion, note thathi��; i!�iF = h�; i�i!�iE = h�; p�uB \ �iE = hp�uB; � \ �iE = huB; p�(� \ �)iB:Assume that i� is surjective, but that i! is not. Then there exists a homogeneousnon-zero 
 2 H�(F ) such that h
; i!�iF = 0 for all � 2 H�(E). Let � 2 H�(E) be ahomogeneous element such that i�� = 
. Then we have0 = hi��; i!�iF = h�; p�uB \ �iE = h� [ p�uB; �iE:Thus, � [ p�uB = 0. Let M be a subspace of H�(E) such that the restrictioni� : M ! H�(F ) is an isomorphism. Let (�1 = 1; �2; : : : ; �N) be a homogeneousbasis of H�(B). By the Leray-Hirsch theorem, we can write � =PNj=1mj[p��j withuniquely de�ned homogeneous m1; : : : ; mN in M . Thus, PNj=1mj [ p�(�j [ uB) = 0,that is, m1 = 0. Moreover, i�p��j = 0 for j � 2, because the degrees of these �j areat least 1. Then we have i�� =PNj=2 i�mj [ i�p��j = 0, a contradiction.We return to the proof of Proposition 1. The �rst assertion is a consequence ofLemma 3 together with the Leray-Hirsch theorem, applied to the �bration X �TET;m ! BT;m for su�ciently large m.For the remaining assertions, note that the C [t]-module HomC [t](H�T (X); C [t]) isfree, because X is equivariantly formal. By the graded Nakayama lemma, it su�cesto check that the mapHT� (X)
C [t] C [t]=t�C [t] ! HomC [t](H�T (X); C [t]) 
C [t] C [t]=t�C [t]



6 MICHEL BRIONis an isomorphism. ButHomC [t](H�T (X); C [t]) 
C [t] C [t]=t�C [t] �= HomC (H�T (X)=t�H�T (X); C )is isomorphic to HomC (H�(X); C ), because X is equivariantly formal. And the mapHT� (X)
C [t] C [t]=t�C [t] = HT� (X)=t�HT� (X)! H�(X)is an isomorphism. Thus, it su�ces to check that the diagramHT� (X) ! HomC [t](H�T (X); C [t])# #H�(X) ! HomC (H�(X); C )commutes. In a �xed degree q and for large m, this amounts to the commutativityof the diagram Hq+2md(X �T ET;m) ! HomC (Hq(X �T ET;m); C )# #Hq(X) ! HomC (Hq(X); C )where the top horizontal map sends � to the map (� 7! hpX�(� \ �); uBT;mi). Butthis follows again from Lemma 3.2. Equivariant homology and regular differential formsWe assume from now on that X is a compact, equivariantly formal T -variety withisolated �xed points. By Lemma 1, we then have Hq(X) = 0 = HqT (X) for all odd q.Thus, the algebras H�(X) and H�T (X) are commutative. We shall obtain geometricinterpretations of H�T (X) and HT� (X).Let r be the number of T -�xed points in X, then the algebra H�T (XT ) identi�esto C [t]r = C [t] � � � � � C [t] (r factors.) By Lemmas 2 and 3, the C [t]-module H�T (X)is free of rank r and the inclusion i : XT ! X de�nes an injective C [t]-algebrahomomorphism i� : H�T (X)! C [t]r ; � 7! (�x)x2XTthat becomes an isomorphism after inverting all singular characters. As a conse-quence, the algebra H�T (X) is �nitely generated, Cohen-Macaulay of dimension dand reduced. Let V (X) be the corresponding complex a�ne algebraic variety (de-�ned over the rationals.)Proposition 2. The map i� : H�T (X)! C [t]r is the normalization. In other words,the normalization of V (X) is a union of disjoint copies tx of t, indexed by the T -�xedpoints.Moreover, the set V (X) is obtained as follows: for any singular character � andfor any T -�xed points x, y in the same connected component of Xker(�), we identifythe hyperplanes (� = 0) in tx and ty.Proof. The algebra C [t]r is integrally closed in its total ring of fractions, and it is a�nite module over C [t], hence over H�T (X). Moreover, H�T (X) and C [t]r have the sametotal ring of fractions by the localization theorem. Thus, i� is the normalization.



POINCARÉ DUALITY AND EQUIVARIANT (CO)HOMOLOGY 7For the second assertion, consider �rstly the case whereX is connected and T �= C � .Then the C [t]-algebra structure of H�T (X) yields a �nite �at map V (X)! A 1 . The�ber at 0 is the spectrum of H�(X), whereas the other �bers consist of r distinctpoints. Since X is connected, the set-theoretical �ber at 0 is a unique point. Thus,V (X) is a union of r a�ne lines with the origins identi�ed.The general case follows by induction on d, using Lemmas 1 and 2.Note that this description of V (X) as a set does not determine H�T (X) uniquely.For example, if X is connected and T �= C � , then the set V (X) only depends on thenumber of �xed points.We now turn to a description ofHT� (X) in terms of regular di�erential forms. Thesewere de�ned in [18] for curves, and in [16] for arbitrary schemes. This de�nitionsimpli�es as follows in the present setting.De�ne the space !t of regular di�erential forms on t as the set of all polynomialdi�erential forms of degree d on that a�ne space. Then !t is a free module of rank1 over C [t]; tensoring with its quotient �eld C (t), we obtain the space of rationaldi�erential forms. Now a regular di�erential form on V (X) is a r-tuple (!x)x2XTof rational di�erential forms on t, such that the form Px2XT �x !x is regular for all� 2 H�T (X).By the localization theorem, the latter condition is equivalent to the following:For any character � of T and for any connected component Y of Xker(�), the formPx2Y T �x !x has no pole along the hyperplane (� = 0). In particular, the poles ofthe !x are contained in the �nite union of the singular hyperplanes.The set of all regular di�erential forms on V (X) is stable under multiplication byany element of i�H�T (X): it is a graded H�T (X)-module that we denote by !V (X).Proposition 3. With notation as above, !V (X) is the dualizing module of the gradedCohen-Macaulay ring H�T (X). Moreover, the graded H�T (X)-module HT� (X) is iso-morphic to !V (X)(2d) with the opposite grading.Under this isomorphism, the image of the class [x]T of any T -�xed point has valuea generator of !t on tx, and 0 on the other ty. If X is irreducible, then the image ofthe fundamental class [X]T generates the space of homogeneous elements of minimaldegree in !V (X).Proof. We haveHT� (X) �= HomC [t](H�T (X); C [t]) �= HomC [t](H�T (X); !t)(2d)because !t �= C [t](�2d). Moreover, HomC [t](H�T (X); !t) is the dualizing module ofH�T (X), see e.g. [8] Theorem 21.15. And HomC [t](H�T (X); !t) is mapped injectively toHomC (t)(H�T (X)
C [t] C (t); !t 
C [t] C (t)) �= !rt 
C [t] C (t);with image being !V (X) by de�nition.The assertion on the images of classes of T -�xed points is obvious. For the latterassertion, observe that [X]T is non-zero, since the same holds for [X]. Thus, [X]Tgenerates the space of homogeneous elements of maximal degree in HT� (X) �= C [t]
CH�(X).



8 MICHEL BRIONLet Y be another compact, equivariantly formal T -space with isolated �xed pointsand let f : X ! Y be an equivariant morphism. Then f de�nes a ring homomorphismf � : H�T (Y )! H�T (X)together with a H�T (X)-linear mapf� : HT� (X)! HT� (Y ):This yields a �nite morphism V (X)! V (Y ), whence a trace mapTr : !V (X) ! !V (Y ):By [8] Theorem 21.15, we can view !V (X) as HomH�T (Y )(H�T (X); !V (Y )); then the tracemap becomes evaluation at 1.Proposition 4. With notation as above, Tr identi�es with f�. Moreover, we haveTr((!x)x2XT ) = ( Xx2XT ;f(x)=y !x)y2Y T :Proof. By Proposition 3, both assertions hold for the inclusion i : XT ! X. Usingfunctoriality of the trace map, we reduce to the case where X and Y are �nite sets;then the statements are obvious.This description of HT� (X) becomes much more precise if X contains only �nitelymany T -orbits of dimension 1; equivalently, the �xed point set of any subtorus ofcodimension 1 contains only �nitely many T -orbits. By [10] Theorem 7.1, the imageof i� : H�T (X) ! C [t]r consists then of all r-tuples (fx)x2XT of polynomial functionson t such that: fx� fy is divisible by � whenever x, y are �xed points in the closureof an orbit of dimension 1 where T acts through the character �. Here we obtain thefollowing dual statement.Corollary 1. Let X be a compact, equivariantly formal T -variety containing only�nitely many orbits of dimension � 1. Then HT� (X) consists of all tuples (!x)x2XTof rational di�erential forms on t satisfying the following conditions:(i) The poles of each !x are contained in the union of singular hyperplanes and theirorder is at most 1.(ii) For any singular character � and for any connected component Y of Xker(�), thesum of residues of the !x (x 2 Y T ) along the hyperplane (� = 0) is zero.Proof. By Lemmas 1 and 2, we may assume that d = 1 and that X is connected ofdimension 1. Then the normalization of X is a disjoint union of copies of complexprojective line P1. Since the cohomology of X vanishes in degree 1, the Mayer-Vietoris exact sequence implies that each irreducible component C of X contains 2�xed points; moreover, the union of all other components is either disconnected, or itmeets C in a unique �xed point. In other words, X is a tree of curves homeomorphicto P1. Now the statement follows easily from an explicit description of HC�� (P1)together with induction on the number of irreducible components.This will be applied to Schubert varieties in Section 4.



POINCARÉ DUALITY AND EQUIVARIANT (CO)HOMOLOGY 93. Equivariant multiplicities and the conductorWe still assume that X is a compact, equivariantly formal T -variety, with �niteT -�xed point set that we denote by F . By the localization theorem, we can assignto each x 2 F a rational function eT (x;X) on t (the T -equivariant multiplicity of Xat x), such that we have [X]T =Xx2F eT (x;X) [x]Tin HT� (X) 
C [t] C (t). Then eT (x;X) is zero or a homogeneous rational function ofdegree �2n, with denominator a product of singular characters (this de�nition makessense, more generally, for an isolated �xed point in a T -variety; see [7], [3].)For irreducible X, note that the equivariant multiplicities depend only on thealgebra H�T (X), up to multiplication by a common non-zero complex number (thisfollows from Proposition 3.)The equivariant multiplicity is related with the equivariant Euler class of [2], asfollows. Let x 2 F and letH�T;x(X) denote equivariant cohomology of X with supportin fxg. By the localization theorem again, the restriction mapH�T;x(X)! H�T (x) �= C [t]; � 7! �xis an isomorphism after inverting �nitely many non-trivial characters of T . Thus, wemay choose a non-C [t]-torsion � 2 H�T;x(X). Then we have �x 6= 0 andZX � \ [X]T = eT (x;X)�x:Therefore, the equivariant Euler class EuT (x;X) is the inverse of eT (x;X) if thelatter is non-zero. This holds, e.g., if X is rationally smooth at x; then EuT (x;X) isa scalar multiple of a product of singular characters, see [2] �2.Note that equivariant multiplicity may well be zero in our setting. Consider, forexample, the action of T = C � on P4 de�ned by its linear action on A 5 with weights 0,1, �1, 1, �1; let z0; : : : ; z4 be the corresponding homogeneous coordinates, then theT -�xed points are the coordinate points x0; : : : ; x4. The subvariety X � P4 de�nedby z1z2�z3z4 = 0 is T -stable and equivariantly formal; moreover, XT = fx0; : : : ; x4gand eT (x0; X) = 0.Let now c be the conductor of H�T (X) into H�T (F ), that is,c = f� 2 H�T (X) j i�� [ � 2 i�H�T (X) 8� 2 H�T (F )g:In other words, i�c is the greatest ideal of H�T (F ) contained in i�H�T (X). Thus, wehave i�c =Yx2F cxwhere the cx are ideals of C [t]. Note that the mapHomH�T (X)(H�T (F ); H�T (X))! c; u 7! u(1)is an isomorphism.



10 MICHEL BRIONWe construct elements of c as follows. Denote by H�T;F (X) equivariant cohomologywith support in F , and by r : H�T;F (X)! H�T (X) the natural map. Setd = r(H�T;F (X)) =Xx2F r(H�T;x(X));a C [t]-submodule of H�T (X). Note that i�d =Qx2F dx where dx denotes the image ofthe natural map H�T;x(X)! H�T (x) �= C [t]. Moreover, each dx is an ideal of C [t]. Asa consequence, d is contained in c; in other words, each dx is contained in cx.In fact, cx and dx are closely related to each other and to the equivariant multiplicityat x, as shown by the followingProposition 5. (i) Each ideal cx is generated by a monomial in the singular char-acters, and satis�es eT (x;X)cx � C [t].(ii) If X is rationally smooth at x, then dx equals cx and is generated by EuT (x;X).(iii) If Xker(�) is rationally smooth at x for all singular characters � of T , then therational function eT (x;X) is non-zero, and its denominator generates the ideal cx.Moreover, the support of the C [t]-module cx=dx has codimension at least 2 in t.Proof. (i) Let (�1; : : : ; �r) be a basis of the free C [t]-module H�T (X). Write F =fx1; : : : ; xrg and i��k = (ak1; : : : ; akr) 2 C [t]rfor 1 � k � r. Let f = (f1; : : : ; fr) 2 C [t]r , then f 2 i�c if and only if: for1 � j � r, there exists �j 2 H�T (X) such that (�j)xj = fj and that (�j)xk = 0 forall k 6= j. Writing �j = Prk=1 fjk�k with fjk 2 C [t], the latter condition translatesinto the system of linear equalities: Prk=1 aklfjk = fj if l = j, and = 0 otherwise.Solving this system yields �fjk = (�1)j+k�jkfj for 1 � j; k � r, where � denotesthe determinant of the matrix (akl), and �jk its principal (j; k)-minor. Therefore,fj 2 cj if and only if fj is divisible by all �=(�;�jk) for k = 1; : : : ; r, where (�;�jk)denotes the greatest common divisor of these polynomial functions. This shows thatcj is generated by the least common multiple of the �=(�;�jk) (1 � k � r). Onthe other hand, cj contains a monomial in the singular characters, by the localizationtheorem. This proves the �rst assertion.Let f 2 cx, then there exists � 2 H�T (X) such that: �x = f and �y = 0 for ally 2 F , y 6= x. Now eT (x;X)f = RX � \ [X]T is in C [t].(ii) By [2] 2.3, the C [t]-module H�T;x(X) is freely generated by a homogeneous el-ement � of degree 2n. Moreover, the image of � in H�T (x) = C [t] equals EuT (x;X),the inverse of eT (x;X). Thus, EuT (x;X) generates dx, and cx is contained inEuT (x;X)C [t] = dx whence dx = cx.(iii) By the localization theorem, eT (x;X) is the product of eT (x;Xker(�)) (a con-stant multiple of a power of the singular character �) with a rational function de�nedalong the hyperplane (� = 0). It follows that the denominator of eT (x;X) is theproduct of the denominators of the eT (x;Xker(�)) where � runs over the singularcharacters up to multiple. Now the assertion follows from (ii) together with thelocalization theorem.



POINCARÉ DUALITY AND EQUIVARIANT (CO)HOMOLOGY 11Next we obtain su�cient conditions for equality cx = dx to hold (we do not knowany example where cx 6= dx.)Recall that x is called attractive if all weights of T in the Zariski tangent spaceof X at x are contained in an open half-space. Equivalently, there exist an opena�ne T -stable neighborhood Xx and a one-parameter subgroup � of T , such thatlimt!0 �(t)y = x for all y 2 Xx. Then such a neighborhhod Xx is unique and, setting_Xx = Xx � fxg, the quotient _Xx=�(C �) is a projective T -variety that we denote byP(Xx) (see e.g. [3]). Finally, the rational function eT (x;X) is de�ned at � (identi�edwith its di�erential at 1), and its value is a positive rational number; in particular,eT (x;X) is non-zero.Proposition 6. Assume that x is attractive, Xker(�) is rationally smooth at x for allsingular characters �, and P(Xx) is equivariantly formal. Then cx = dx.Proof. Let f 2 cx be homogeneous of degree q. Then there exists a unique � 2 HqT (X)such that �x = f and �y = 0 for all y 2 F , y 6= x. We check that � is in the image ofthe natural mapHqT;x(X)! HqT (X); equivalently, f is in the image of the compositionHqT;x(X)! HqT (X)! HqT (x):By excision, the latter identi�es with the image of the compositionHqT;x(Xx)! HqT (Xx)! HqT (x):Moreover, the map H�T (Xx) ! H�T (x) is an isomorphism, because x is attractive.Since the sequence HqT;x(Xx)! HqT (Xx)! HqT ( _Xx)is exact, we have to check that � maps to zero in H�T ( _Xx).Note that the T -�xed points in P(Xx) are the P(Xker(�)x ) where � runs over allsingular characters. Since P(Xx) is equivariantly formal, the restriction mapH�T ( _Xx)!Y� H�T �( _Xx)ker(�)�is injective. Now we conclude by Proposition 5 (ii).4. Poincaré duality and Betti numbersCombining the results of the previous sections, we obtain the following criterionfor Poincaré duality.Theorem 1. For a compact, equivariantly formal T -variety X of dimension n withisolated �xed points, the following conditions are equivalent:(i) X satis�es Poincaré duality.(ii) The algebra H�T (X) is Gorenstein.(iii) The Betti numbers of X satisfy bq(X) = b2n�q(X) for 0 � q � n, and allequivariant multiplicities are non-zero.If one of them holds, then all equivariant multiplicities are in fact inverses ofpolynomial functions.



12 MICHEL BRIONProof. (i),(ii) By Proposition 3, the algebra H�T (X) is Gorenstein if and only if theH�T (X)-module HT� (X) is freely generated by [X]T . But this amounts to Poincaréduality for X, by Proposition 1 and the graded Nakayama lemma.(ii))(iii) The algebra H�(X) is Gorenstein as the quotient of the Gorenstein al-gebra H�T (X) by the ideal t�H�T (X) generated by a regular sequence. It follows thatbq(X) = b2n�q(X) for all q 2 Z (see e.g. [8] p. 551). Morever, the proof of (i),(ii)shows that the dualizing module !V (X) is freely generated by [X]T , a homogeneouselement of degree 2(d� n). Thus, the conductor c satis�esc �= HomH�T (X)(H�T (F ); H�T (X)) �= HomH�T (X)(H�T (F ); !V (X))
H�T (X) !�V (X)�= !V (F ) 
H�T (X) !�V (X):where !�V (X) denotes the inverse of the canonical module; the third isomorphismfollows from [8] Theorem 21.15. But the dualizing module !V (F ) of H�T (X) �= C [t]r isfreely generated in degree 2d. Therefore, the C [t]r -module i�c is freely generated indegree 2n, by (say) (fx)x2F . For a �xed x 2 F , there exists � 2 H2nT (X) such that�x = fx and �y = 0 for all y 2 F , y 6= x. Thus,eT (x;X)�x = ZX �(x) \ [X]Tis in C [t]. But �x and eT (x;X) are homogeneous of opposite degrees, so that eT (x;X)is the inverse of a polynomial.(iii))(ii) We claim that the equivariant Poincaré duality map\[X]T : HqT (X)! HT2n�q(X)is injective for all q 2 Z. Let � 2 H�T (X) such that � \ [X]T = 0. ThenZX(� [ �) \ [X]T = 0for all � 2 H�T (X). Thus, we haveXx2F eT (x;X)�x �x = 0in C (t). By the localization theorem, this equality holds for all sequences (�x)x2F inC (t). Since no eT (x;X) vanishes, we must have �x = 0 for all x 2 F , and � = 0.This proves our claim.On the other hand, the assumption on Betti numbers combined with the isomor-phisms H�T (X) �= C [t] 
C H�(X); HT� (X) �= C [t] 
C HT� (X)implies that the dimension of HqT (X) equals that of HT2n�q(X), for all q 2 Z. Thus,the equivariant Poincaré duality map is an isomorphism, and the same holds for theusual one.We now come to our main result.



POINCARÉ DUALITY AND EQUIVARIANT (CO)HOMOLOGY 13Theorem 2. Let X be a compact, equivariantly formal T -variety of dimension nwith isolated �xed points. If all equivariant multiplicities are non-zero (e.g., if all�xed points are attractive), then the following inequalities hold for the Betti numbers:bq(X) + bq�1(X) + � � �+ b0(X) � b2n�q(X) + b2n�q+1(X) + � � �+ b2n(X)for 0 � q � n� 1, and2b2(X) + 4b4(X) + � � �+ 2nb2n(X) � n�(X)where �(X) = b0(X)+ b2(X)+ � � �+ b2n(X) is the Euler characteristic. Moreover, Xsatis�es Poincaré duality if and only if 2b2(X) + 4b4(X) + � � �+ 2nb2n(X) = n�(X).Proof. Since eT (x;X) is a non-zero rational function for all x 2 F , we may choosea one-dimensional subtorus T 0 of T such that XT 0 = F and that each eT 0(x;X) isnon-zero as well. As in the proof of Theorem 1, it follows that the map\[X]T 0 : HqT 0(X)! HT 02n�q(X)is injective for all q 2 Z. Moreover, since X is equivariantly formal as a T 0-variety byLemma 2, we have H�T 0(X) �= C [t]
C H�(X) and HT 0� (X) �= C [t]
C H�(X) as gradedvector spaces, where t is an indeterminate of degree 2. It follows thatdimHqT 0(X) =Xj�0 bq�2j(X); dimHT 02n�q(X) =Xj�0 b2n�q+2j(X):Together with vanishing of Betti numbers in odd degrees, this implies the �rst in-equalities. Summing them up for q = 0; : : : ; n� 1, we obtainnb0(X) + � � �+ 2bn�2(X) + bn�1(X) � bn+1(X) + 2bn+2(X) + � � �+ nb2n(X)which is equivalent to the second inequality.If X satis�es Poincaré duality, then bq(X) = b2n�q(X) for all q 2 Z, whence2b2(X) + 4b4(X) + � � �+ 2nb2n(X) = n�(X):Conversely, if the latter equality holds, then we havebq(X) + bq�1(X) + � � �+ b0(X) = b2n�q(X) + b2n�q+1(X) + � � �+ b2n(X)for 0 � q � n� 1, by the arguments above. This in turn implies bq(X) = b2n�q(X).Thus, X satis�es Poincaré duality by Theorem 1.Next let (W;S) be a Coxeter system with length function ` and Bruhat order� ([13]). We assume that W is crystallographic, that is, the product of any twodistinct elements of S has order 2, 3, 4, 6 or 1. Equivalently, W is the Weylgroup of a complex Kac-Moody Lie algebra g with Cartan subalgebra t, the re�ectionrepresentation ([19]).To each w 2 W is associated the Schubert variety X(w), a complex projectivevariety of dimension `(w). The maximal torus T of the Kac-Moody group associatedto g acts on X(w) with isolated �xed points, indexed by the Bruhat interval[1; w] = fx 2 W;x � wg:



14 MICHEL BRIONEach such �xed point is attractive, and X(w) is the disjoint union of Schubert cellsX0(x) (x 2 [1; w]), where X0(x) is T -stable and isomorphic to complex a�ne spaceof dimension `(x). Thus, X(w) satis�es our assumptions.The T -equivariant cohomology ring of X(w) is determined in [1] and [14], see also[11] �4. An alternative description follows readily from [10] Theorem 7.1, becauseX(w) contains only �nitely many T -orbit closures of dimension 1. Each such curveis uniquely determined by its T -�xed points x and sx where x 2 W , s is a re�ectionof W and x; sx � w; moreover, T acts on that curve through a character � suchthat (� = 0) is the hyperplane �xed by s ([4] Theorem F.) Thus, the image of therestriction map i� : H�T (X(w))! H�T (X(w)T ) is the set of all tuples (fx)x2[1;w] in C [t]such that: fx�fs�x is divisible by �, whenever s� 2 W is a re�ection with hyperplane(� = 0), and x; s�x � w.Similarly, the equivariant homology HT� (X(w)) is determined by Corollary 1: itconsists of all tuples (!x)x2[1;w] of rational di�erential forms on t with at most simplepoles on re�ection hyperplanes, satisfyingRes�=0(!x + !s�x) = 0whenever s� is a re�ection and x; s�x � w. And Theorem 2 yieldsCorollary 2. For any Bruhat interval [1; w] in a crystallographic Coxeter group W ,we have #fx 2 [1; w]; `(x) � qg � #fx 2 [1; w]; `(x) � `(w)� qgfor 1 � q < 12`(w).Moreover, the second inequality in Theorem 2 yields the inequality a(w) � 12`(w)for the average length a(w) of elements of [1; w], with equality if and only if X(w)satis�es Poincaré duality. This statement is due to Carrell and Peterson ([4]), togetherwith equivalence of Poincaré duality and rational smoothness for Schubert varieties.The latter result be recovered from Theorem 1 combined with the characterizationof rational smoothness in terms of equivariant multiplicities, see [15], [2], [3].Note �nally that Corollary 2 actually holds for an arbitrary Coxeter group W :although Schubert varieties do not exist any more in this setting, all ingredients ofthe proof of Theorem 2 still make sense (see [14] (4.35) and [5]; the non-vanishing of�equivariant multiplicities� follows from [5] Proposition 1.)References[1] A. Arabia: Cohomologie T -équivariante de la variété des drapeaux d'un groupe de Kac-Moody,Bull. Soc. math. France 117 (1989), 129-165.[2] A. Arabia: Classes d'Euler équivariantes et points rationnellement lisses, Ann. Inst. Fourier(Grenoble) 48 (1998), 861-912.[3] M. Brion: Equivariant cohomology and equivariant intersection theory, in: Representationtheories and algebraic geometry (A. Broer, ed.), 1-37, Kluwer, Dordrecht 1998.[4] J. Carrell: The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smooth-ness of Schubert varieties, in: Algebraic groups and their generalizations: classical methods(W. Haboush and B. Parshall, eds), 53-62, Proc. Symp. Pure Math. 56, AMS, Providence1994.
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