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Abstract—To provide a variety of new and advanced communications services, computer networks are required to perform
increasingly complex packet processing. This processing typically takes place on network routers and their associated components.
An increasingly central component in router design is a chip-multiprocessor (CMP) referred to as “network processor” or NP. In
addition to multiple processors, NPs have multiple forms of on-chip memory, various network and off-chip memory interfaces, and
other specialized logic components such as CAMs (Content Addressable Memories). The design space for NPs (e.g., number of
processors, caches, cache sizes, etc.) is large due to the diverse workload, application requirements, and system characteristics.
System design constraints relate to the maximum chip area and the power consumption that are permissible while achieving defined
line rates and executing required packet functions. In this paper, an analytic performance model that captures the processing
performance, chip area, and power consumption for a prototypical NP is developed and used to provide quantitative insights into
system design trade offs. The model, parameterized with a networking application benchmark, provides the basis for the design of a
scalable, high-performance network processor and presents insights into how best to configure the numerous design elements
associated with NPs.

Index Terms—Network processor design, performance model, design optimization, power optimization, network processor

benchmark.
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1 INTRODUCTION

OVER the last several years, network processors (NPs) have
become important components in router designs. By

providing for programmability of the data path, they permit
adaptation to new functional requirements and standards.
Additionally, network processors provide a powerful chip-
multiprocessor architecture, typically containing logic com-
ponents and instructions specialized to the networking
environment to satisfy a range of performance requirements.
At this point, there are a number of companies producing a
variety of network processors, such as the Intel IXP2800 [1],
the Hifn 5NP4G (formerly IBM PowerNP [2]), the AMCC
np7510 [3], and the EZchip NP-1 [4].

1.1 Motivation

At the hardware level, there are four key concerns in the
design of NPs. These have a direct impact on the system
architecture and the configuration of a particular network
processor.

. Line Speed Maintenance: The NP must perform the
required computational tasks fast enough to keep up
with input communication line speeds.

. Functional Power: The NP must be able to perform
the required functional tasks associated with its
targeted environment (e.g., process packets or cells
by implementing IPv4, IPv6, MPLS, etc.).

. Cost: The cost of the chip should be reasonable. In
this paper, we deal with only manufacturing costs
and consider chip area to be a proxy for these costs.

. Electrical Power Dissipation: The NP must not
consume an excessive amount of power. Limitations
here are associated with the individual router line
card on which the NP resides and extends to power
constraints on racks and cabinets containing such
line cards.

The principal contribution of this paper is in providing an
analytic model that quantifies the relationships between the
four elements listed above and relates them both to specific
design elements (e.g., number of processors on the NP, caches
sizes, multithreading level, memory I/O interfaces, etc.) and
to the anticipated application workload. With this model, the
NP architecture design space can be explored and an
understanding of design trade offs derived. Additionally,
the impact of new applications on NP performance char-
acteristics can be evaluated. In contrast with complex
simulation-based models, providing an analytic model
permits such design studies to be done quickly and permits
fast exploration of “optimal” designs.

1.2 System Architecture

We consider the prototypical NP architecture shown in
Fig. 1, which is a generalization of various commercial
designs. It contains a number of identical multithreaded
general-purpose processor cores, each having its own
instruction and data caches. To satisfy off-chip memory
bandwidth requirements, groups of processors are clus-
tered together and share a memory interface. A scheduler
assigns packets from independent flows to the different
processors. Thus, after assignment of a flow to a processor,
all packets of the same flow are routed to the same
processor. Speedup and computational power is achieved
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by exploiting parallelism at the flow level. Note that
additional speedup can be obtained by also exploiting
packet level parallelism, however, this is not considered
here. All of the processors are assumed to be identical and
capable of executing the programs necessary for imple-
menting NP functions.

Commercial network processors typically contain a few
additional units to implement queue memory management,
hardware support for checksum and hash computations,
and other specialized coprocessors. These components help
speed-up certain tasks, but complicate a general compar-
ison of design trade offs. Practice has also shown that
simpler, more uniform architectures are often easier to
program. Our system architecture is therefore intentionally
kept general without considering any product-specific
components.

1.3 Methodology

The methodology used in exploration of the network
processor design space is shown in Fig. 2. The main
components are the analytic processing performance and
cost models shown in the center of the figure. Three elements
are present: a model for processing power that yields the
performance of a particular configuration in terms of IPS
(instructions per second), a cost model that estimates power
consumption in terms of Watts, and a cost model that
evaluates chip area in terms of square millimeters required
for implementation. In order to derive results from these
models (either in the form of one optimal design for a given
set of parameters or more general design trade offs), a number
of input parameters must be specified. Workload parameters
(e.g., cache miss rates) and power parameters (e.g., cache
power requirements) depend on the application workload.
These parameters are derived from simulations that utilize
well-established tools (e.g., SimpleScalar [5], Wattch [6], and
CACTI [7]). The workload itself, an input to these simulators,
is generated from an NP benchmark, CommBench, that has

been developed by the authors and is reported in [8]. The
system configuration parameters correspond to the various
elements shown in Fig. 1 (e.g., number of processor cores, size
of memory caches, etc.). These parameters are varied to
explore a broad design space and results are derived as part of
this iterative process. The processor core simulation environ-
ment is also used to verify the accuracy of the analytic power
model.

The remainder of this paper presents the processing
performance, power, and area cost models, the benchmark,
and selected results and associated insights into the
NP design process. Section 2 begins with a review of selected
related work. The analytic models are presented in Section 3.
Section 4 introduces CommBench, the NP application bench-
mark used in obtaining workload parameters. Section 5
presents a verification of the models and the design results
that we have obtained. Section 6 summarizes and concludes
the paper.

2 RELATED WORK

Processing of traffic on a network node includes a range of
functions that go beyond simple packet forwarding. For
example, it is common for routers to perform firewalling [9],
network address translation (NAT) [10], Web switching [11],
IP traceback [12], and other functions. With increasingly
heterogeneous end-systems (e.g., mobile devices and “thin”
clients), computationally more demanding services have
been moved into the network. Examples of these are content
transcoding, advertisement insertion, and cryptographic
processing. As customers demand more services, it is likely
that this trend toward including more functionality on the
router will continue. The IETF OPES (Open Pluggable Edge
Services working group) is working to define such advanced
networking service platforms.
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Fig. 1. Overall network processor architecture.

Fig. 2. Model development and optimization process.



In response to these demands for increasing flexibility
and processing performance, the general trend has been to
use network processors [1], [2], [3], [4]. These CMPs
typically follow advanced RISC design principles for the
core processors, but also often provide for some specializa-
tion. Specialization features include memory organization
(e.g., cache size, associativity, design), word size (e.g., 16,
24, 32 bit register/instruction size), functional components
and coprocessors [13] (e.g., floating point, timers, special
logic blocks [14]), and new instructions (e.g., ability to
define new processor instructions [15]). This set of alter-
natives represents the first generation of choices associated
with the development of NP designs and is currently being
considered.

A key design issue is just how to select from the numerous
alternatives, given the available chip area and processing
performance implications of each decision. Crowley et al.
have evaluated different processor architectures for their
performance under networking workloads [16]. This work
primarily focuses on the trade offs between RISC, super-
scalar, and multithreaded architectures. In more recent work,
a modeling framework is proposed that considers the data
flow through the system [17]. Thiele et al. have proposed a
general processing performance model for NPs [18] that takes
into account the system workload in terms of data traffic
streams, the performance of a processor under different
scenarios, and effects of the queueing system. In our work, we
provide a very broad, analytically based performance model
that can be quickly solved and that includes the key attributes
of computational performance, chip area, and electrical
power consumption. It provides a systematic approach to
developing a quantitative understanding of the design
choices. This work has recently been extended to consider
applications that are partitioned over multiple processor
cores [19] and their implications on design trade offs between
parallel and pipelined NP topologies [20].

In conjunction with performance models, it is necessary
to obtain realistic system and workload parameters. Tradi-
tional benchmarks (e.g., SPEC [21]) do not reflect the
simplicity and repetitiveness of networking processing
environments. Another significant shortcoming is the
missing focus on clearly defined I/O. We therefore
developed a new benchmark, CommBench, that matches
the workload characteristics of a network processor.
CommBench includes streaming data flow-based applica-
tions and packet-based processing tasks. Memik et al. have
proposed NetBench [22] and Lee and John have proposed
NpBench [23], both of which have been published more
recently. A commercial benchmark for network processors
is the networking benchmark by the Embedded Micro-
processor Benchmarking Consortium (EEMBC) [24]. This
benchmark focuses on both data-plane and control-plane
operations.

3 ANALYTIC PERFORMANCE AND COST MODELS

In this section, analytic models for both processing
performance (i.e., instructions per second) and cost (i.e.,
power consumption in Watts and area in square milli-
meters) are developed. The models are based on the system

configuration of Fig. 1 and use the parameters and notations
shown in Table 1.

The network processor considered has m clusters with
n RISC processors in each cluster. Each cluster has a single
memory interface that is shared among the processors of each
cluster. The entire chip has one I/O interface through which
packet data is both received and transmitted. Each processor
has its own instruction and data caches of size ci and cd bytes.
The caches are shared among the t threads that can be
supported in hardware by each processor. We assume that
context-switching is done in hardware with zero cycle
overhead. Thus, if one thread stalls on a memory miss,
another thread can immediately start executing with zero
cycle delay. The processor is taken to be a typical RISC
processor that ideally executes one instruction per cycle when
no hazards are present. We also assume that the on-chip
memory cache can be accessed in a single cycle.

3.1 Processing Performance

For a single processor, processing power can be expressed
as the product of the processor’s utilization, �p, and its clock
frequency, clkp. The processing power of the entire NP,
IPSNP , can be expressed as the sum of processing power of
all the processors on the chip. Thus, with m clusters of
processors and n processors per cluster:

IPSNP ¼
Xm
j¼1

Xn
k¼1

�pj;k � clkpj;k : ð1Þ

If all processors are identical and execute the same
workload, then, on average, the processing power is:

IPSNP ¼ m � n � �p � clkp: ð2Þ

A key question is how to determine processor utilization.
In the extreme case where there are a large number of
threads per processor, for large caches that reduce memory
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misses and low memory miss penalties, the utilization
approaches 1. However, a large number of thread contexts
and larger caches require more chip area. Other stalls due to
hazards, such as branch misprediction, are not considered
here. Our model targets processors with shallow pipelines
where branch mispredictions generally have a relatively
small effect compared to the effects of cache misses.

Using the model proposed and verified by Agarwal [25],
the utilization �pðtÞ of a multithreaded processor is given as
a function of the cache miss rate pmiss, the off-chip memory
access time �mem, and the number of threads t as:

�pðtÞ ¼ 1� 1Pt
i¼0

1
pmiss��mem

� �i
t!
ðt�iÞ!

: ð3Þ

To illustrate the overall trend in this equation, we can
simplify (3) by ignoring the second and higher order terms
of the summation. Thus:

�pðtÞ ¼
t

ðtþ �mem � pmissÞ
: ð4Þ

Note from this expression that, as expected, the utilization
decreases with increasing miss rates and with increasing
miss penalties for off-chip memory accesses. However, the
larger the number of threads, t, the less the impact of �mem
and pmiss, since more threads are available for processing
and processor stalls are less likely. In the limit as t!1,
�pðtÞ ¼ 1. While it is desirable to run processors at high
utilization, there is an area and power cost associated with
large numbers of thread contexts. This impacts overall
processing performance since the additional processor area
leads to less area available for caches and, thus, higher miss
rates. On the other hand, more threads can also help mask
cache misses and, thus, can be beneficial. This design trade
off can be understood more fully only after expressions for
the memory access time, �mem, and the cache miss rate, pmiss,
are obtained.

3.1.1 Off-Chip Memory Access

We assume the memory channel implements a FIFO service
order on the memory requests and that the requests are
interleaved in a split transaction fashion. It is assumed that
the memory controller can generate an ideal job schedule
and the system does not use multiple memory banks. The
total off-chip memory request time, �mem, thus has three
components: the bus access time, �Q, the physical memory
access time, �DRAM , and the cache line transmission time,
�transmit (all expressed in terms of processor clock cycles):

�mem ¼ �Q þ �DRAM þ �transmit: ð5Þ

The DRAM access time and the cache line transmission time
are straightforward to determine. The queuing time,
however, depends on the memory channel load which, in
turn, depends on the number of processors that share the
memory channel, the number of threads per processor, and
the cache miss rates.

The queuing time can be approximately modeled as a
single server M/D/1 queuing system with n processors
each generating requests at a mean rate of pmiss, for a total
mean request rate of n � pmiss. While the request distribution

can be modeled as geometrically distributed random
variables (suggested in [25]) with the distribution parameter
pmiss, for simplicity, we use a continuous exponential
distribution with this same mean request rate.

Note that the system is more accurately modeled as a
finite source system, the machine repairman model, since
there are a finite number of processor sources and threads
(n � t). However, comparing the M/D/1 model with a more
realistic simulation-based finite source model indicates that
the M/D/1 model is reasonably accurate. This is shown in
Fig. 3, where the average queue length for both models
(t ¼ 8, n ¼ 4, and �transmit ¼ 40) are presented. For typical
loads of �mchl ¼ 0:5 . . . 0:9, the difference between the two
models is relatively small and, below 50 percent load, the
queue length is small enough so that the M/D/1 model is
an acceptable model component in determining overall
memory channel performance.

The bus access time, �Q, is now expressed as the queuing
time of an M/D/1 system as:

�Q ¼
�2
mchl

2ð1� �mchlÞ
� linesize
widthmchl

� clkp
clkmchl

: ð6Þ

With a fixed DRAM access time, �DRAM , and a transmission
time of

�transmit ¼
linesize

widthmchl
� clkp
clkmchl

; ð7Þ

we can substitute in (5) to obtain the memory access time:

�mem ¼ �DRAM þ 1þ �2
mchl

2ð1� �mchlÞ

� �
� linesize
widthmchl

� clkp
clkmchl

:

ð8Þ

3.1.2 On-Chip Cache

The remaining component needed to evaluate the utiliza-
tion expression (3) is the cache miss rate pmiss. For a simple
RISC-style load-store processor running application a, the
miss probability is given as [26]:

pmiss;a ¼ mic;a þ ðfloada þ fstoreaÞ �mdc;a; ð9Þ

where mic;a and mdc;a are the instruction and data cache
miss rates and floada and fstorea are the frequency of
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occurrence of load and store instructions associated with
application a. The instruction and data cache miss rates
depend on the application, the cache sizes that have been
implemented, and the effects of cache pollution due to
multithreading.

Cache pollution from multithreading reduces the effec-
tive cache size that is available to each thread. On every
memory stall, a thread gets to request one new cache line
(replacing the least recently used line). While the thread is
stalled, t� 1 other threads can replace one line and, in
steady-state, each thread can use on average 1

t of the
available cache. If the working set size of a thread is very
small, its effective cache usage could be less than 1

t (and the
other threads use slightly more). In a network processor,
due to chip area constraints, cache sizes are expected to be
smaller than the working set size. This leads to equal
sharing of the available cache between threads. Thus, the
effective cache size that is available to a thread is:

ci;eff ¼
ci
t
; cd;eff ¼

cd
t
: ð10Þ

This is a conservative estimate for the effective instruction
cache as it is also possible that positive cache pollution
occurs when multiple threads execute the same code. The
application characteristics that are necessary for evaluating
(9) are derived from our network processing benchmark
that is discussed in Section 4.

3.1.3 Memory and I/O Channels

The expression for miss rate, pmiss, (9) and for total memory
access time, �mem, (5) can now be substituted into (3) to
obtain processor utilization. In order to do this, we need to
fix the memory channel load, �mchl, since �Q depends on
�mchl. Thus, with the memory channel load given, we can
determine the utilization of a single processor. This yields
the memory bandwidth, bwmchl;1, required by a single
processor:

bwmchl;1 ¼ �p � clkp � linesize � ðmic þ ðfload þ fstoreÞ �mdc
� ð1þ dirtycÞÞ:

ð11Þ

Note that, through use of the parameter dirtyc, the
probability of the dirty bit being set, this equation models
the situation where a dirty cache line needs to be written
back to memory. In (9), considering dirty cache lines was
not necessary, since a write-back does not stall the
processor. If write-back can be ignored, (5) can be
approximated by:

bw�mchl;1 ¼ �p � clkp � linesize � pmiss: ð12Þ

The number of processors, n, in a cluster is then the
number of processors that can share the memory channel
without exceeding the specified load:

n ¼ widthmchl � clkmchl � �mchl
bwmchl;1

� �
: ð13Þ

This provides a cluster configuration model for all ranges
of cache sizes and thread contexts. Finally, however, for a
complete model, an expression of the I/O channel
bandwidth is required. The I/O channel transmits packets

both to and from the processing engines and, thus, each
packet traverses the channel twice. What is needed next is a
relation between the number of instructions executed in
processing a packet and the size of the packet. We define a
parameter, compla, as the “complexity” of an application. It
is expressed as the number of processing instructions that
are necessary per byte of packet data (the formal definition
is found in (30) in Section 4). The I/O channel is operated at
a load of �IO; thus, the I/O channel bandwidth for the entire
network processor is:

bwIO ¼ 2 � IPS

compla � �IO
: ð14Þ

With the processing performance of the system deter-
mined by IPS, we can now turn toward the power

consumption and chip area cost.

3.2 Power Consumption

Overall power consumption can be derived by determining

the consumption of each major component of the system

and adding them together. The principal components
considered in the power model are:

1. Processor ALUs,
2. processor clock,
3. register files,
4. processor instruction and data caches (level 1, on-

chip), and
5. off-chip memory and I/O bus.

Since we are interested in relative performance of
alternative configurations for the architecture of Fig. 1, power
associated with off-chip components and with driving the
chip pins are not considered. Additionally, the contributions
of branch predictors, etc., are ignored since, for simple NP
RISC cores, it is not necessary to consider such complex
components as the overall system power consumption is
dominated by memory accesses and I/O operations. Thus,
the overall network processor power consumption, PNP , is
modeled as a sum of the five components listed above (scaled
to the appropriate number of processors and cache sizes).
This constitutes 94 percent to 97 percent of overall power
consumption with the remaining 3 percent to 6 percent being
consumed miscellaneous other components.

For CMOS technology, dynamic power consumption Pd
is defined as:

Pd ¼ C � V 2
dd � a � f; ð15Þ

where C is the aggregate load capacitance associated with
each component, Vdd is the supply voltage, a is the

switching activity for each clock tick (0 � a � 1 and can

be considered to be the utilization of the component) and f

is the clock frequency. The energy expended per cycle is:

Ed ¼ C � V 2
dd � a: ð16Þ

By obtaining parameter values for (15) and (16), the
power consumption models for each of the components is
determined. Power becomes more important as feature
sizes shrink below :18�m. For these cases, a more accurate
power modeling tool than the one used here is necessary in
order to account for leakage currents. However, the general
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results and design trends are not expected to not change
significantly.

3.2.1 ALU Power Model

ALU power depends on the voltage, Vdd, processor clock
frequency, f , the ALU utilization, aALU , and its capacitance:

PALU ¼ CALU � V 2
dd � aALU � f: ð17Þ

The capacitance for the ALU can be derived with the Wattch
toolkit as discussed in Section 4. The ALU utilization is set to
aALU ¼ 1 since the processors are continuously active. Even
when stalled, the processor needs to check if a thread is
reactivated. If the processor could sleep during stalls, the
ALU utilization could be obtained from (3) (aALU ¼ �p),
however, this design is not considered here.

3.2.2 Clock Power Model

In a similar fashion, clock power consumption can be
obtained:

Pclk ¼ Cclk � V 2
dd � aclk � f: ð18Þ

Since the clock is changing state in every cycle, aclk ¼ 1.
With differing cache configurations, the clock power
consumption in Wattch can vary by up to �8 percent,
however the model does not consider this effect. As will be
shown in Section 5, overall power consumption that is
predicted corresponds well to that obtained with Wattch.

3.2.3 Register File Power Model

The register file of a processor must maintain state for each
of the t threads. We assume that the power consumption of
the register file scales proportionally with the number of
threads. The per-thread power consumption, Pregt , is

Pregt ¼ Creg � V 2
dd � areg � f: ð19Þ

The capacitance of the register file for one thread can be
derived with the Wattch toolkit as discussed in Section 4.
The register file utilization is equal to the ALU utilization
(areg ¼ aALU ).

3.2.4 Cache Power Model

The power consumption of caches can be modeled by
considering the different cache subcomponents (tag arrays,
data arrays, etc.). This has been done in the CACTI 3.0
toolkit [7]. With this toolkit, the energy consumption of a
cache access, Ec, on a cache of particular size and
associativity can be derived. The power consumption
depends on the frequency of the such accesses and is

Pc ¼ Ec � ac � f: ð20Þ

The dynamic power consumption of caches is due to
memory accesses. In addition to instruction accesses that
result in a hit, pipeline stalls are present due to i-cache
misses or branch misprediction (we do not consider
misprediction effects on cache power in this analysis).
Adding in the effects of cache usage occurring after a miss,
one obtains:

aci ¼ �p � ð1þmici;aÞ; ð21Þ

where mici;a is the instruction cache miss probability
associated with application a and instruction cache size ci.

The data cache is accessed for each read/write (load/
store) instruction and for each d-cache miss, thus:

acd ¼ �p � ððfloada þ fstoreaÞ � ð1þmdcd;aÞÞ: ð22Þ

3.2.5 Memory and I/O Bus Power Model

Based on (15), the power consumption of the memory and
I/O busses can now be calculated. The memory channel is
characterized by its width, widthmchl, its physical length on
the chip, lengthmchl, its clock frequency, fmchl, and its
utilization amchl ¼ �mchl:

Pmchl ¼ Cmchl � V 2
dd � amchl � fmchl: ð23Þ

The capacitance, Cmchl, is based on the width and the length
parameters and is given by:

Cmchl ¼ 2 � Ctech � widthmchl � lengthmchl: ð24Þ

The factor of 2 is due to the coupling capacitance between
wires. Ctech is the wire capacitance for a particular CMOS
technology. Similarly, the power consumption of the I/O bus,
PIO, can be determined.

3.2.6 Total Power Consumption

The overall power consumption of the network processor
can then be computed to be

PNP ¼ PIO þm � ðPmchl þ n � ðPALU þ t � Pregt þ Pci þ PcdÞÞ:
ð25Þ

3.3 Chip Area

With each network processor component, there is an
associated chip area cost. Each processor uses an area of
Ap for its core, and At for each thread context:

Ap;t ¼ Ap þ t � At: ð26Þ

The instruction and data caches use Aci and Acd , which can
be derived from CACTI 3.0 [7]. The size of a memory or I/O
bus consists of a basis area for the bus logic plus the on-chip
area of the pin drivers and pads. The total size depends on
the width of the bus:

Amchl;width ¼ Amchl þ widthmchl �Apin: ð27Þ

The on-chip area equation for a NP configuration in our
general architecture is the summation over all the system
component areas:

ANP ¼ AIO þm � ðAmchl;width þ n � ðAp;t þAci þAcdÞÞ: ð28Þ

3.4 Performance Metrics

Several performance metrics are used to evaluate alter-
native design choices. With an expression for processing
performance (IPS), power consumption (P ), and chip area
(A), performance metrics of the following form can be
derived:

Performance ¼ IPS� � P� � A�: ð29Þ

In particular, we are interested in the metrics that
consider processing performance as a benefit (� > 0) and
area and power consumption as a cost (�; � � 0). Several
common processor performance metrics are possible:
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. Processing/area or IPS �A�1: This metric considers
only area and no power consumption.

. Processing/power or IPS � P�1: This metric assumes
an equal weight to processing performance and
power consumption.

. Processing/(power)2 or IPS � P�2: This metric is
similar to the above, however, power consumption
is given a higher weight.

. Processing/(area � power) or IPS �A�1 � P�1: This
metric combines both area and power costs.

. Processing/(area � power)
1
2 or IPS � A�1

2 � P�1
2: This

metric also combines both area and power costs, but
balances the overall cost with the processing
performance.

For the design results in Section 5, the first two metrics
are explored; however, with the model equations provided,
all can be evaluated. To complete the evaluation process, a
set of realistic workload-based parameters are needed. The
next section discusses how these parameters are obtained.

4 MODEL PARAMETERIZATION AND VALIDATION

4.1 Application Parameters

The performance and cost models require several parameters
which depend on the system workload (e.g., cache miss rates,
load, and store frequency). In order to derive realistic values
that are typical of network processing workloads, we have
developed a benchmark called CommBench.

4.1.1 CommBench Network Processor Benchmark

A desirable property of any application in a benchmark is
its representativeness of a wider application class in the
domain of interest. CommBench applications have been
chosen with this in mind. A detailed description of all eight
applications can be found in the Appendix. CommBench
contains common lookup algorithms to represent typical
routing lookups as well as more complex data transcoding
algorithms (Header-Processing Applications (HPA) and Pay-
load-Processing Applications (PPA)).

4.1.2 Data and Tools

To collect application parameters, all the benchmark
programs were run on the SimpleScalar [27] simulator
using the ARM target. SimpleScalar was configured to
simulate a typical embedded RISC core. The C compiler
used was gcc 2.8.1 (optimization level O2). The O2 level was
selected because the compiler only performs optimizations
that are independent of the target processor and does not
exploit particular architectural features (e.g., loop unrolling
for superscalar machines).

4.1.3 Application Parameters

For each application, the properties required for the
performance model have been measured experimentally:
computational complexity (compla), load and store instruc-
tion frequencies (floada ; fstorea ), instruction cache and data
cache miss rate (mici;a;mdcd;a), and dirty bit probability
(dirtycd;a). The application complexity is defined as

compla ¼
instructions executed in application a

packet size
: ð30Þ

These parameter values were obtained with SimpleScalar
for cache sizes ranging from 1kB to 1MB. A 2-way
associative write-back cache with a linesize of 32 bytes
was simulated. The cache miss rates were measured such
that cold cache misses were amortized over a long program
run. Thus, they can be assumed to represent the steady-
state miss rates of these applications.

4.1.4 Workloads

To simplify the analysis of the results from our model, we
aggregate the CommBench applications into two work-
loads, W1 and W2. Workload W1 is a combination of the
four header-processing applications and workload W2
consists of the four payload processing applications. The
applications within the workloads are weighted such that
each application processes an equal number of instructions
over time. W1 applications process only packet headers and
are generally less computationally demanding than W2
applications that process all of the data in a packet.

The average values for the model parameters were
obtained for each of the benchmarks (W1 and W2) by
averaging over the benchmark application values assuming
equal probabilities for each application. Table 2 shows the
aggregate complexity and load and store frequencies of the
workloads. Note that the complexity of payload processing
is significantly higher than for header processing. This is
due to the fact that payload processing actually touches
every byte of the packet payload (e.g., transcoding,
encryption).

The aggregate cache miss rates for instruction and data
cache are shown in Fig. 4. Both workloads achieve
instruction miss rates below 1 percent for cache sizes of
above 8kB. The data cache miss rates for the workloads
drops below 2 percent for 32kB.

4.2 Power Parameters

Most of the power model parameters are based on usage of
the Wattch toolkit [6] and CACTI [28], [7]. These values
correspond to the use of an Alpha 21264 [29] processor and
a :35�m technology. Since we are primarily interested in
comparative NP configurations and what they illustrate
about NP design, smaller feature size technologies are not
initially considered. However, the analytic models pre-
sented apply, with parameter value adjustments, to other
technologies (e.g., :18�m and Vdd ¼ 2:0V).

Using Wattch, the capacitance of the ALU simulated by
Wattch can be obtained as CALU ¼ 310pF. Vdd for this case is
2.5 volts. Similarly, the capacitance of the register file is
Creg ¼ 142pF (per thread). The cache access energy, Eci and
Ecd , is shown in Table 3. These numbers are given by the
CACTI tool [7] for :35�m technology. The cache line size is
32 bytes and associativity level is 2. For instruction caches, one
read/write port and one read port are assumed. For data
caches, two read/write ports are assumed. Cache sizes up to
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TABLE 2
Average Computational Complexity and Load and Store

Frequencies of Workloads



1MB are considered, but only 1kB to 64kB are shown. The
capacitance parameter associated with using :35�m technol-
ogy is obtained from scaling the capacitance associated with
Wattch’s “result bus,” yielding C:35�m ¼ 0:275fF/�m. The
processor clock frequency is clkp ¼ 600MHz.

4.3 Area Parameters

The area required for a processor core is taken to be
Ap ¼ 3mm2 with each register bank for a thread adding
At ¼ 0:5mm2. The base area for a memory or I/O channel is
Amchl ¼ 20mm2 plus an area of Apin ¼ 0:25mm2 for each pin
pad. Area parameters for caches are obtained from CACTI.

The length of the memory channel depends on the
number of processors that share the memory channel and
the size of each processor and its caches. The length of the
memory channel is taken to be lengthmchl ¼ 5mm, which is
the expected distance to a processor from the edge of a chip.
We also explored a larger channel length of 20mm. This,
however, only affects the overall results shown below by
about 1 percent. The width is set to 32 bits.

4.4 Validation

To compare the validity of the above power model, the
energy results obtained with Wattch are compared with the
model results. In the validation experiment, all applications
in the benchmark were executed for cache configurations
ranging from 1kB to 64kB. Fig. 5 shows the Wattch results
versus the model results. Ideally, each cross point would lie
on the dashed line which corresponds to the model and

Wattch having the same results. It should be noted that
Wattch simulates a complex superscalar processor. To make
a reasonable comparison to the RISC core that we are
modeling, only the ALU, clock, and cache access power
from Wattch was considered. Since there is no shared
memory bus modeled in Wattch, we cannot compare the
results for this component.

The maximum error is 15.8 percent for the smallest cache
size. This is due to differences in the results from the CACTI
toolkit versus the Wattch toolkit. For larger caches, the
differences are much smaller. With an average error of only
8 percent, the analytic approximation of power consump-
tion is a useful tool for NP design space exploration.

5 RESULTS

The design space has been exhaustively explored over a
wide range of parameter configurations (number of threads,

cache sizes, memory channel load, etc.). The simplicity of
analytic performance modeling makes this approach fea-

sible and the results are presented in the following sections.

5.1 Trends of Metrics

Fig. 6 illustrates the basic trends for the components of the
performance metrics from (29). To illustrate basic trends,
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Fig. 4. Aggregate cache performance of workloads. Cache sizes up to 1MB are considered, but only 1kB to 64kB are shown. (a) Instruction cache.
(b) Data cache.

TABLE 3
Cache Access Energy and Area for .35 �m Technology

Fig. 5. Comparison of benchmark application execution energy for

wattch toolkit and analytic model.



the cache sizes in this figure are set to 8kB for both the
instruction and data caches. The number of processors, n,
(Fig. 6a) that share a memory channel (i.e., processors in a
cluster) and the number of threads per processors, t,
(Fig. 6b) are shown on the x-axis. The y-axis shows the
increase in processing performance, power consumption,
and area relative to a configuration with a single processor
(n ¼ 1) or single thread (t ¼ 1).

As expected, the area cost A increases linearly with the
number of processors (the offset and slope depend on the
proportion of processor and cache sizes to the memory
channel). The instructions per second curve, IPS, initially
increases more rapidly than A, however levels out after six
processors. This is due to increasing contention on the shared
memory channel and an increase in the memory channel load,
�mchl. At saturation, the memory system responds to requests
at its maximum rate and, hence, the IPS remains steady. The
trends in Fig. 6a show that power consumption grows faster
than other metrics. This is related to memory channel
contention. If more processors share a memory channel, the
processor stall time on a cache miss increases. During stall
times, the processor does no useful computation, but the
memory interface consumes energy. As a result, the total
processing performance does not increase very much, but
power consumption does. These trends are very similar for all
cache configurations. The plateaus for processing perfor-
mance are higher for larger caches since miss rates are lower
and, thereby, contention on the memory channel is less. In all
cases, however, power consumption grows faster than
processing performance.

For an increasing number of threads, processing perfor-
mance and power consumption at first increase and then
drop. The increase in processing performance and power
consumption is due to a higher utilization of the processor,
which peaks in this example for t ¼ 4 as the processor is fully
utilized. The processing performance decrease for a larger
number of threads is due to cache pollution. Since threads
compete for cache memory, the effective memory per thread
decreases (see (10)). As a result, there are more cache misses
and this leads to more memory accesses and lower processor
utilization. Note that, due to processor idling, processing
power also decreases. The area increase is continuous and

due to the additional area required for thread states. This
indicates that relatively low multithreading levels (t ¼ 2 or
t ¼ 4) can significantly improve processor utilization while
requiring only a small amount of additional area. For
configurations with large numbers of threads, it is important
to have enough memory available to avoid the processing
performance decrease from cache pollution.

The trends of combined metrics, processing per power and
processing per area as defined in (29), are shown in Fig. 7.
From Fig. 6a, we see that with more processors, power
increases faster than processing performance. Thus, the
combined processing and power metric drops with higher
number of processors. This means that, from the point of view
of power consumption, fewer processors per memory
channel are preferable. Looking at the impact of area in
Fig. 7a, however, fewer processors are not necessarily best.
There is a clear optimum for three (workload W1) or five
(workload W2) processors. The differences between the
workloads are due to different cache miss rates. For different
numbers of threads (Fig. 7b), the processing performance per
power shows little difference across the number of threads as
processing power and power consumption show similar
trends in Fig. 6b. For the metric that considers area, there is a
peak at about two to four threads, where good processor
utilization is achieved with little area cost for thread contexts.

5.2 Impact of Design Parameters

The following results show “slices” through the design
space to explore the impact of a particular design
parameter. One key question for system-on-a-chip design
is how to find a good balance between processing logic and
on-chip memory. NP designs are constrained by the
maximum chip size. More processing engines mean more
processing cycles, but also smaller caches, higher cache miss
rates, more memory contention, and higher energy con-
sumption. Using our model, we can find the optimal cache
configuration for a given metric. Figs. 8a, 8b, 8c, and 8d
show the performance of various cache configurations for
the different performance metrics.

The most important observation in Figs. 8a, 8b, 8c, and
8d is that the performance of an NP system is extremely
sensitive to the cache size. A change in cache size by a factor
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Fig. 6. Trends of processing performance, area, and power. The workload is W1 and cache sizes are ci=8kB and cd=8kB. The trend for a different
number of processors per memory channel is shown in (a), and the trend for different numbers of threads is shown in (b).



two to four from the optimum configuration can cut the
performance in half.

When considering processing per area, the optimal value
of the instruction cache is 32kB for workload W1 and 16kB for
workload W2. With two threads, this yields an effective
instruction cache size of 16kB and 8kB per thread. The cache
miss rates for this size instruction cache are very small (less

than 1 percent, see Fig. 4). The optimal data cache size is 16kB
for both workloads. Even though this cache size leads to more
data cache misses (around 4 percent), the absolute number of
data cache misses is less than the number of instruction cache
misses because only one of four instruction is a load/store
operation. This shows that the optimal configuration bal-
ances the ratio of instruction and data misses.

WOLF AND FRANKLIN: PERFORMANCE MODELS FOR NETWORK PROCESSOR DESIGN 557

Fig. 7. Trends of combined metrics. The workload is W1 and cache sizes are ci=8kB and cd=8kB. The trend for a different number of processors per
memory channel is shown in (a), and the trend for different numbers of threads is shown in (b).

Fig. 8. Performance of cache configurations for various performance metrics and workloads. The number of processors per memory channel is set to
four, and the number of threads per processor is two. (a) IPS=A (W1). (b) IPS=A (W2). (c) IPS=P (W1). (d) IPS=P (W2).



When considering processing per power (i.e., MIPS per
Watt), the optimization results in a configuration with 16kB
instruction caches for both workloads and a 64kB data cache
for workload W1 and a 16kB data cache for workload W2. The
increase in the data cache for workload W1 is due to the
significant drop of data miss rates at this size. Even though the
power cost of a cache does depend somewhat on the size of
the cache, the benefit of fewer stalls yield this solution.

While the trends shown in these optimization results
apply generally to all configurations, the optimal cache sizes
are different depending on other system parameters. Figs. 9a,
9b, 9c, and 9d show the optimal configurations for different
numbers of processors per memory channel and threads per
processor. One very interesting observation is the distinct
jump in cache size for configurations with many threads
when increasing the number of processors (e.g., for t ¼ 16 and
IPS=A, ciopt ¼ 1kB forn ¼ 1 . . . 7 and ciopt ¼ 512kB forn ¼ 8).
Small cache configurations incur a large number of cache
misses, especially when many threads share the same
memory. At the same time, the latency hiding due to
multithreading manages to avoid processor stalls. However,
when the number of processors on one memory interface
exceeds a certain limit, the queuing delay increases the

memory access times by so much that this approach does not
work anymore. Instead, larger caches are used to reduce the
number of cache misses. For configurations with fewer
threads, this transition is smoother. Even when the queuing
delay is minimal (few processors per memory channel), the
limited number of threads cannot hide the latency completely
and, thus, larger caches are better for such configurations.

5.3 Optimal Configuration

With an understanding of the different system design trade
offs, we now focus on the overall optimal configuration
results.

5.3.1 Single Cluster Optimization

Table 4 shows optimal cluster configurations for both
workloads and the IPS=A and IPS=P metric. There is no
optimal result for the IPS metric since it would be the
configuration with maximum size caches, threads, etc. in
the design space.

For the IPS=A metric, the optimal configuration uses a
small number of processors (n ¼ 3; 4) with a single thread.
The single thread ensures that there is no cache pollution
occurring on the caches of size ci ¼ 16kB, 8kB, and
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Fig. 9. Optimal instruction and data cache configuration for different numbers of threads per processor and different numbers of processors per
memory channel. The workload is W1. (a) Optimal instruction cache size (IPS=A). (b) Optimal data cache size (IPS=A). (c) Optimal instruction
cache size (IPS=P ). (d) Optimal data cache size (IPS=P ).



cd ¼ 8kB. Due to the low miss rates at this cache size,
multiple processors can share the memory channel without
causing too much contention.

For the IPS=P metric, the cluster configuration is scaled
in a different dimension. Instead of having multiple
processors share one memory channel, a single processor
is used with a larger number of threads t ¼ 16 and t ¼ 2.
More processors per memory interface increases the relative
power consumption for the network processors. This comes
from power dissipation that occurs during stall cycles while
waiting for memory access. Thus, the best configuration is a
single processor per memory interface with a larger number
of threads to ensure full utilization. This reduces the overall
power consumption to about one quarter of that of the
IPS=A optimized cluster. The area is however only reduced
to one half.

These results indicate that the different optimization
goals (area versus power) lead to different system designs.
In practice, both area and power need to be considered and,
thus, the best configuration lies between the two extremes
presented here. Using our performance model, such
intermediate results can be derived by using, for example,
the IPS �A�1

2 � P�1
2 metrics, which combine both optimiza-

tion goals.

5.3.2 NP System Optimization

The results presented above focus on optimal cluster
configurations. Table 5 shows optimal configurations that
focus on the entire chip where there is a chip area constraint
A � 400mm2. The table shows the optimal configurations in
terms of number of memory interfaces, m, and processors
per memory channel, n. For all metrics and workloads, the
overall throughput of such a system is also shown, which is
determined by the complexity of the workload and the
overall processing power (IPS=compl). Note that the
complexity for workload W2 is about 50 times higher than
that of W1, which results in the large differences in
throughput. Even within a workload, there are significant
differences between applications. For workload W1 and
IPS=A, the throughput varies from 0.299 Gbps for the TCP
application to 19.3 Gbps for the DRR application. While
header processing applications can achieve throughput
rates of several gigabits per second, payload processing

applications have rates well under that for all performance
metrics. This is consistent with the notion that these types of
applications (e.g., encryption) often require special purpose
coprocessors to achieve high throughput rates.

For power-related metrics, the trends in Fig. 6 result in
optimal configurations with only one processor per interface.
This, however, yields a lower throughput than when
optimizing for area only. On the other hand, power
consumption for the area-optimized configuration is about
twice as high as that for power-optimized configurations. The
overall power consumption of the optimal configurations, 15
to 35 watts, is higher than current commercial systems, which
consume on the order of 10W. This is due to commercial NPs
using more advanced CMOS technologies with smaller
feature and overall chip sizes (e.g., Intel IXP2400: :18�m
versus :35�m and 1:3V versus 2:5V [1]). The model and
optimization results can be adapted to other CMOS technol-
ogies by using different power models (e.g., one that consider
leakage current for :18�m CMOS and below).

5.4 General System Design Results

From the above results, there are several general “rules of
thumb” for network processor system design that can be
derived. These are:

. The shared memory interface poses a significant
bottleneck when increasing the number of processors
per interface (Fig. 6a). To achieve scalability, larger
instruction and data caches are necessary to reduce the
number of off-chip memory accesses per processor.

. System performance is very sensitive to caches
configurations (Fig. 8). Small caches can lead to
memory system bottlenecks; large caches use area
that could be used more effectively for additional
processors.

. Multithreaded configurations with two or four
threads per processor are satisfactory (Fig. 6b). They
achieve better processor utilization at only slightly
higher area and power consumption. Configurations
with more threads are limited in processing perfor-
mance due to cache pollution. Some current NPs
have higher multithreading levels, however, this
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TABLE 4
Optimal Cluster Configurations for Different Optimization Metrics

TABLE 5
Optimal System Configurations for Different Optimization Metrics



may be appropriate with their particular technology
parameters.

. The system configurations suggest that an optimal
NP design involves several memory channels, uses
small number of processors per memory channels,
and implements a small level of multithreading
(Table 5). The cache configurations are small and do
not exceed 16kB for any cache.

These general, qualitative observations can be explored
in a quantitative way using our analytic performance model
as shown above. Further, it is possible to parameterize the
model for other CMOS technology generations. This makes
our approach a useful tool for projecting design trade offs
for future network processor systems.

6 SUMMARY AND CONCLUSIONS

In this work, we have presented a methodology to explore the
design space of network processors using analytic perfor-
mance modeling that is parameterized by realistic workload
and technology parameters. The performance model con-
siders the key aspects of a highly parallel NP system:
multithreaded processors, on-chip memory, and shared
memory and I/O channel for off-chip communication. The
quantitative results obtained through the model provide an
in-depth understanding of the design trade offs and the
impact of different system components on the overall
performance. To derive realistic results, the model was
parameterized with workload parameters that were obtained
from our network processing benchmark. The technology
parameters were obtained from state-of-the-art power and
area estimation tools. The detailed consideration of work-
load, power, and area parameters in our performance model
ensures that it can be used for future generations of NP
workloads and CMOS technologies.

APPENDIX

BENCHMARK APPLICATIONS

The header-processing applications represent operations that
are done on a per-packet basis and are mainly independent of
the size and type of the packet payload. These applications
involve a good deal of “random” logic, header field
interrogation and processing, table lookup, and control. We
have selected the public domain programs listed below,
which are likely to be operationally similar to proprietary
programs. The “kernel” of each application is the part of the
code that contributes the majority of dynamic instructions.

. RTR is a Radix-Tree Routing table lookup program.
Routing table lookups are important operations
performed on every packet in a datagram-based
network and on every connection in a connection-
based network. RTR is the radix-tree routing algo-
rithm from the public domain NetBSD distribution.
Kernel: lookup operations on tree data structure.

. FRAG is a IP packet fragmentation application. IP
packets are split into multiple fragments for which
some header fields have to be adjusted and a header
checksum computed. The checksum computation
that dominates this application is performed as part
of all IP packet application programs other than just
forwarding. Kernel: packet header modifications and
checksum computation.

. DRR is a Deficit Round Robin fair scheduling
algorithm [30] that is commonly used for bandwidth
scheduling on network links. The algorithm is
implemented in one form or another in various
switches currently available (e.g., Cisco 12000 series).
Kernel: queue maintenance and packet scheduling
for fair resource utilization.

. TCP is a TCP traffic monitoring application that is
representative of the class of monitoring and
management applications. We use tcpdump, a widely
used tool, that is standard in BSD distributions and
is based on the BSD packet filter [31]. Kernel: pattern-
matching on header data fields.

Payload-processing applications access and possibly

modify the contents of a packet during network node
processing. The applications are typically executed on a
stream of packets. Note that each of these applications has

an encoding and a decoding section. While each of these
sections is executed separately, they are considered together

as a single program unless they have significantly different
processing performance characteristics.

. CAST is a program based on the CAST-128 block
cipher algorithm that uses a 128 bit key to encrypt
data for secure transmission [32]. CAST-128 operates
similar to other block cipher algorithms used in
current networks, such as IDEA and RC5, however,
CAST is in the public domain. Kernel: encryption
arithmetic.

. ZIP is a data compression program based on the
commonly used Lempel-Ziv (LZ77) algorithm [33].
The implementation can achieve different levels of
data compression by varying the algorithm’s com-
putational complexity and exemplifies applications
that permit trade offs between computational power
and bandwidth. Kernel: data compression.

. REED is an implementation of the Reed-Solomon
Forward Error Correction scheme that adds redun-
dancy to data to allow recovery from transmission
errors [34]. This is commonly used on unreliable
data links which can be found in wireless networks.
Kernel: redundancy coding.

. JPEG is a lossy compression algorithm [35] for image
data. It represents the class of media transcoding
applications. Kernel: discrete cosine transform (DCT)
and Huffmann coding.
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