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Abstract—This paper presents a new multi-objective microgrid
reconfiguration problem formulation. Unlike existing distribution
system or microgrid reconfiguration algorithms, we consider
the effect of uncertainty arising from the renewable energy
generation and investigate the tradeoff between the invented
index measuring the reliability of reconfiguration and the total
load served. The resulting optimization problem is computa-
tionally prohibitive due to the binary circuit breaker variables
and the probability constraint accounting for the uncertainty of
renewable generation. Nevertheless, a semidefinite programming
(SDP) reformulation is developed based on convex relaxation
techniques and the scenario-based approximation. Furthermore,
weighted-sum method is applied in the reformulation and we
eventually obtain the Pareto solution points of the microgrid
reconfiguration. Numerical tests validate the intrinsic tradeoff
between the two objectives and demonstrate the effectiveness of
the proposed solution methodology.

Keywords—Microgrid, Multi-Objective optimization, Convex
relaxation, Semidefinite Programming, Weighted-Sum Method.

I. INTRODUCTION

The evolving next generation power grid, so-named Smart
Grid has attracted considerable attention in academic and
industry communities. As an important content of smart grid,
the concept of smart microgrid has been proposed recently.
Unlike traditional power grid, microgrid has three important
features. First, it owns a small-scale group of generation
resources and local customers itself. Second, microgrid is able
to manage its energy system in a cooperative fashion based on
two-way communications and bidirectional electricity paths.
Third, microgrid is a promising way to integrate distributed
generations (DGs) (i.e., renewable energy resources (RES))
on the local community in order to diversify energy supply
and improve efficiency [1].

Microgrids belong to an area where the cyber and physical
worlds meet. It is an application of the Cyber-Physical System
(CPS) in which sensing, networking, and computing are tightly
coupled with the control of the physical power grid. In
the cyber-layer, one of the challenges is distributed resource
management. Fortunately, the advances in information infras-
tructure such as “smart sensors” provide opportunities to better
cope with this issue [2]. Based on the collected information on
loads, generators and transmission lines, etc., system operator
can have the potential of continuous decision-making and
monitoring over the grid.

Although smart grid has been featured by a series of
important functionalities, the capability of self-reconfiguration

takes a leading role [3]. The self-reconfiguration enables smart
grids to redirect their power flows in an appropriate way, e.g.,
via changing topologies, shedding loads, and other control
measures, to achieve certain desirable objectives. Considering
the great penetration of RES in smart microgrids, the self-
reconfiguration of smart microgirds needs a careful design to
address the volatility in the RES generations [4], [5].

II. RELATED WORK

At present, a lot of research efforts have been conducted
on conventional distribution system and microgrid reconfigu-
ration. In [6], [7], [8], [9], minimizing the active power loss
(or total power loss) was considered as the sole objective.
Multi-objective formulation of the reconfiguration problem
was investigated in [10]. Besides the objective of minimization
of the total power loss, [10] also considers minimizing both the
nodes voltage deviation and the violation of line current limit.
Consequently, it is a more advanced and realistic formulation
comparing to the single-objective ones. However, in case of an
emergency, power accessibility is a more important issue than
economical reasons. Thus, the main goal in such scenarios
should be to serve as much critical total loads as possible in
the system. Recent work of reconfiguration for quick service
restoration in distribution systems or microgrids were dis-
cussed in [11], [12], [13]. However, like all the aforementioned
frameworks, they are not suitable for microgrids since the
presence of RES is not considered, which is an important
feature of future smart microgrids.

Motivation of using SDP: The ideal Pareto front is usually
not known. Therefore, the Pareto solution set generated by
any algorithm is considered as an estimate of the ideal
Pareto set. Most multi-objective formulations are based on
evolutionary algorithms [10], [14], which are population-based
and can generate the Pareto front estimate in a single run.
Due to the stochastic nature of evolutionary algorithms, the
attainment of the ideal Pareto front may be difficult or even
impossible. In comparison, the SDP-based weighted sum is
not a population-based algorithm. It is convex and will provide
globally optimum Pareto solutions when the relaxation is tight.

Considering all the issues above, we are thus motivated to
design a new microgrid restoration framework through SDP.
The main contributions of this paper can be summarized as
follows.

• A novel multi-objective microgrid reconfiguration prob-
lem formulation is proposed in which we consider both



Fig. 1. An example microgrid CPS required for self-reconfiguration.

the objectives of total loads served and a new index
measuring the reliability of reconfiguration operation.

• Since the volatility of RES generations has not been
considered in existing reconfiguration algorithms, this
paper proposes an extended formulation containing the
constraint for such volatility.

• The resultant optimization problem is computationally
prohibitive. Nevertheless, a convex semidefinite program-
ming (SDP) reformulation is developed, which outper-
forms NSGA-II in several respects.

We organize the rest of this paper in the following way. The
system architecture and the multi-objective problem formula-
tion are described in Section III. Next in Section IV, we present
the derivation of the computationally tractable reformulation
of the microgrid reconfiguration problem. Section V focuses
on the conversion of the reformulated multi-objective problem
into its scalar equivalent via the weighted-sum method. In
Section VI, the effectiveness of the proposed approach is eval-
uated. Section VII provides the conclusion and final remarks.

III. SYSTEM ARCHITECTURE AND PROBLEM STATEMENT

A. System Architecture

Fig. 1 depicts the system architecture for the microgrid
reconfiguration. The houses can be residential households
or other consumers (i.e., hospitals). The green arrows are
bidirectional energy paths between two neighboring units.
There are conventional DERs and renewable energy for the
power supply. More importantly, microgrid “controllers” (e.g.
various smart sensors) are installed in the physical units
across the grid. For example, the microgrid control center can
adjust the wind turbine based on the wind profile (captured
by its controller) to achieve higher efficiency. In short, the
control center can perform grid resource management (such
as grid reconfiguration, load balancing) based on the timely
information provided by this cyber system.

B. Problem Description

We consider a microgrid as a graph in this paper. The
vertices represent the buses in the power grid. Each bus
has load and generation units (i.e., conventional distributed

generation units and renewable energy generators). The set of
edges denotes the branches in the microgrid. It is assumed that
all branches have circuit breakers. The load in each bus is also
assumed to have circuit breaker attached modeling the possible
action of load shedding. The loads in the system have different
priorities. This means that some loads (i.e., medical services)
are more critical than others (i.e., residential households). Our
reconfiguration scheme is expected to guarantee these critical
loads served first. The reconfiguration is modeled as a decision
problem simultaneously maximizing the loads served and the
operation reliability. Relevant notations are listed in TABLE
I.

TABLE I
NOTATIONS

P
Gi conventional DG units power generation on i-th bus.

P
Ri RES power generation on i-th bus (random variable).

P
Li actual power consumption on i-th bus.

P
tij power flow between i-th bus and j-th bus.

S
li

circuit breaker status at the load of i-th bus.

�
Mi weighting factor for the load of i-th bus.

N the set of buses in the microgrid.

B the set of branches in the microgrid.

N
i

the set of neighboring buses to i-th bus.

c
ij

the power flow limit in branch (i, j).

Pmin

Gi
minimum amount of DG units power generation on i-th bus.

Pmax

Gi
maximum amount of DG units power generation on i-th bus.

Pmin

Li
minimum required actual power consumption on i-th bus.

Pmax

Li
maximum actual power consumption on i-th bus.

C. Objectives in the Problem Formulation

We first describe the two different objectives adopted in the
presenting paper.

1) Total Loads Served: We consider the microgrid reconfig-
uration for service restoration. It is usually taken place after
the fault occurrence. Hence an important goal is to restore
the power supply service to the loads in the system [9],
[12]. Specifically, the objective of total loads served can be
expressed as:

|N |X

i=1

�
MiSliPLi (1)

where the parameter �
Mi accounts for the priority of load i.

Specifically, in objective (1), the set of �
Mi helps put the loads

with high priority to be supplied first.

2) Reliability of Reconfiguration Operation: In the recon-
figuration process, it is reasonable and meaningful to take the
operating reliability into account since it is highly required to
avoid service interruption again in a short period. We define the
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Fig. 2. Illustration of measuring the reliability of reconfiguration operation
under two different cases. The power generation source needs to supply 100
MW to the appliance loads and there are two transmission lines between them.
The upper case solution has reliability value 0 MW while the bottom one has
reliability value 50 MW based on the definition in (2). It is stated that the
upper one is more vulnerable than the bottom one since one of the lines in
upper case is reaching the line flow limit.

reliability of reconfiguration operation using the mathematical
expression as follows.

min
(i,j)2B

�
c
ij

�
��P

tij

�� (2)

Equation (2) is to first compute the distance of actual power
flow to its limit for each branch, and find the minimum
distance among them. This measure is important since op-
erating power flow close to its limit will greatly increase the
probability of failure and be more vulnerable to contingencies.
A simple example in Fig. 2 shows cases with different values
of operation reliability.

D. Uncertainty in Renewable Energy Generation

Another distinct assumption made in our reconfiguration
problem is that renewable energy generators are involved in
supplying power to the grid. They are considered to be widely
used and installed in each bus. Unfortunately, the energy
output of renewable generators (denoted as random variables
P
Ri in this paper) will fluctuate around its forecasted values

due to e.g., fast-varying weather conditions [4], [5]. Thus, at
some time, the power supply available at some buses might
not satisfy their power required. As a result, it is essential to
perform a grid reconfiguration that is capable of limiting this
kind of risk.

E. Microgrid Reconfiguration Formulation

Based on the system model described above, we formulate
the microgrid reconfiguration as the optimization problem (P1)

as follows.

(P1) max
V

 |N |P
i=1

�
MiSliPLi , min

(i,j)2B

�
c
ij

�
��P

tij

�� 
�
T

(3a)

s.t. � c
ij

 P
tij  c

ij

, (i, j) 2 B (3b)
� S

tij ⇥ c
ij

 P
tij  S

tij ⇥ c
ij

, (i, j) 2 B (3c)
Pmin

Gi
 P

Gi  Pmax

Gi
, 8i 2 N (3d)

S
li ⇥ Pmin

Li
 P

Li  S
li ⇥ Pmax

Li
, 8i 2 N (3e)

S
li 2 {0, 1}, 8i 2 N (3f)

S
tij 2 {0, 1}, (i, j) 2 B (3g)

Pr

0

@P
Gi + P

Ri �
X

j2Ni

P
tij � P

Li , 8i 2 N

1

A � 1� ✏

(3h)

where V := {P
Gi , PLi , Ptij , Sli , Stij} contains all the deci-

sion variables. Specifically, the objective function (3a) takes
accounts of two different aspects, namely, the total power
served and the index of operational reliability; Constraint
(3b) illustrates that the power flow along the lines should
conform with their line limits; Constraint (3c) ensures that
the power will flow through the bus pair (i, j) only when the
breaker on this branch is closed; Constraint (3d) represents
the generator capacity in each bus; Constraint (3e) models the
possible action of load curtailment by the system operator.
Furthermore, constraints (3f) and (3g) represent the binary
state of circuit breakers in the buses (for the loads) and the
branches respectively; Finally, constraint (3h) requires that the
actual power supply at each bus satisfies its demand with
probability no less than 1 � ✏, where ✏ is a pre-selected
threshold.

Unfortunately, solving (P1) is computationally difficult for
the following reasons:

r1: The bilinear term S
liPLi in (3a) renders (P1) non-

convex, which implies that (P1) is difficult to solve
optimally and efficiently in general;

r2: Due to the binary variables {S
li , Stij}, solving (P1)

is NP-hard;
r3: The probabilistic constraint (3h) is generally in a

computationally intractable form.
We propose an approach to cope with r1-r3 in the ensuing

section with a computationally tractable reformulation of (P1).

IV. COMPUTATIONALLY TRACTABLE REFORMULATION

We first derive an alternative problem formulation of (P1)
that has linear objectives as follows.

(P2) minimize
V0

h
t1 , t2

i
T

(4a)

subject to: (3b) - (3h) and (4b)
|N |X

i=1

�
MiSliPLi � �t1 (4c)

� (c
ij

+ t2)  P
tij  (c

ij

+ t2), (i, j) 2 B (4d)



where V 0 := {P
Gi , PLi , Ptij , Sli , Stij , t1, t2} collects the

reconfiguration decision variables.
A closer look into (P1) and (P2) reveals the following

proposition.

Proposition 1. The problems in (P1) and (P2) are equivalent.

Proof. In the first place, the objective in (3a) is equivalent to
the following:

min


�
|N |P
i=1

�
MiSliPLi ,� min

(i,j)2B

�
c
ij

�
��P

tij

�� 
�
T

Second, we start with the trick of introducing two auxiliary
variables t1 and t2 that serve as the upper bounds on the two
objectives respectively. Thus, the above objective can be cast
as (4a) with two extra constraints as follows:

�
|N |X

i=1

�
MiSliPLi  t1

� min
(i,j)2B

�
c
ij

�
��P

tij

��  t2

Here, the first constraint is the same as (4c). The second
constraint means that the minimum value of c

ij

�
��P

tij

�� among
all branches (i, j) 2 B is at least �t2. In other words, every
branch (i, j) 2 B satisfies the condition that c

ij

�
��P

tij

�� is
greater or equal to �t2, that is c

ij

�
��P

tij

�� � �t2, (i, j) 2 B.
It can become (4d) after several steps of algebraic manipula-
tions.

Note that the vector optimization problem (P2) can be
decomposed into two single-objective problems. The first
single-objective problem in (P2) has objective function t1
and the second problem has objective function t2, which are
linear objectives. Besides, the two problems have the same
constraints. Thus, in this section, which is dealing with difficult
constraints arising from r1-r3 of the optimization program, all
the involving implicit objective functions are linear.

A. Convex Relaxation of Bilinear Inequalities (for r1)

Bilinear inequalities such as (4c) can be categoized into
the form of so-called Bilinear Matrix Inequalities (BMIs).
Problems involving BMIs have been a focus in mathematical
programming as wells as the robust control theory. Unfortu-
nately, BMIs are known to be nonconvex constraints. They
are computationally complex and hard to be solve [15]. The
BMI Feasibility Problem is even shown to be NP-hard [16]. To
relax this problem, one way is to search for a convex set which
includes BMIs and closely approximates the BMIs. Replacing
BMIs by such a set, the optimization problem becomes convex
and therefore tractable [17].

To address r1, we adopt the convex relaxation method
in [15] to approximate the non-convex set specified by the
constraint in (4c).

We first define a new variable Q
i

= P
LiSli , 8i 2 N . Then

(4c) is equivalent to the following:
|N |X

i=1

�
MiQi

� �t1 (5a)

Q
i

= P
LiSli , 8i 2 N (5b)

By applying the convex relaxation advance in [15], (5b) is
replaced by:

Q
i

 P
LiSli + P

LiSli � P
LiSli , 8i 2 N (6a)

Q
i

 P
LiSli + P

LiSli � P
LiSli , 8i 2 N (6b)

Q
i

� P
LiSli + P

LiSli � P
Li S

li , 8i 2 N (6c)

Q
i

� P
LiSli + P

LiSli � P
Li S

li , 8i 2 N (6d)

where P
Li , PLi are the minimum and maximum values of vari-

able P
Li respectively. Similarly, S

li , Sli are the minimum and
maximum values of variable S

li , which are known constants.
In our problem, according to the formulation in previous,
P
Li = 0, P

Li = Pmax

Li
, S

li = 0, S
li = 1. Putting those

facts into constraints (6a)-(6d) yields:

Q
i

 P
Li , 8i 2 N (7a)

Q
i

 Pmax

Li
S
li , 8i 2 N (7b)

Q
i

� 0, 8i 2 N (7c)
Q

i

� P
Li + Pmax

Li
(S

li � 1), 8i 2 N (7d)

Now, the constraint in (4c) containing bilinear term is
replaced by (5a) and (7a)-(7d). Note that (5a) and (7a)-
(7d) are linear constraints with respect to decision variables
{Q

i

, P
Li , Sli}.

B. SDP Relaxation of 0-1 Integer Constraint (for r2)
Regarding the issues in r2, we use the semidefinite relax-

ation technique in [18] to obtain a convex-relaxed version of
binary variable constraints in (3f) and (3g). In the following,
we will present the detailed derivation of the aforementioned
conversion.

1) Background on SDP Relaxations: In general, SDP relax-
ation is a subfield of convex relaxation techniques. Particularly,
it has been applied to many difficult problems in combinato-
rial optimization, signal processing, and control theory. SDP
relaxation is proven to provide a very tight bound for several
classes of nonconvex problems [18].

To briefly illustrate the SDP relaxation technique, we con-
sider the binary quadratic problem as follows.

minimize sTWs

subject to s = {0, 1}n
(8)

where matrix W is semidefinite. The 0-1 quadratic program is
a well-known difficult optimization problem since it is shown
to be equivalent to Max-Cut [19], which is in the class of
NP-hard problems (many of its problem instances would be
intractable).

The cost function in (8) can be rewritten as:

sTWs = hW, ssT i (9)



where h·i indicates inner product operation. Following the idea
of linearization, we introduce a matrix variable S to take the
role of ssT . The binary constraint in (8) is equivalent to:

s2
i

= s
i

, 8i 2 N (10)

It implies that the main diagonal of matrix S is equal to s.
Then the binary constraint can be expressed as follows:

diag(S) = s (11a)
S = ssT (11b)

Further, it can be proved that (11b) is equivalent to the
following [18]:

S ⌫ 0, rank(S) = 1 (12)

Here, A ⌫ B is meant that matrix A�B is positive
semidefinite. The first constraint in (12) is linear with respect
to variable S while the rank constraint is not. In fact, the
difficulty in r2 arises from the nonconvexity of the rank
constraint. By dropping it, we obtain the following relaxed
version of the original quadratic program:

minimize
s,S

hW,Si

subject to diag(S) = s

S ⌫ 0

(13)

2) Relaxation for r2: Now, we go back to our problem.
Define s =

⇥
S
l1 , · · · , Sli , · · · , Sl|N|

⇤
T as a |N |⇥1 vector and

introduce a new matrix SL = ssT . Then the binary constraint
in (3f) can be relaxed to:

SL

ii

� s
i

= 0, 8i 2 N

SL ⌫ 0
(14)

Constraint (3g) can be addressed in a similar manner.
We order the transmission lines and define vector t =⇥
t1, · · · , ti, · · · , t|B|⇤T , where ti is the circuit breaker’s status

on i-th transmission line, and |B| is the number of transmis-
sion lines in the system. Let matrix variable St = ttT . Then
constraint (3g) can be replaced by:

St

ii

� t
i

= 0, i = 1, 2, . . . , |B|
St ⌫ 0

(15)

Notice that (3f) and (3g) are replaced by (14) and (15)
respectively which contain only linear and semidefinite cone
constraints. These constraints are known to be convex and
are conformed with the formulation of SDP [20]. For now,
the only issue left is r3 (since we have approximated the
constraints in r1, r2 with convex ones). As long as we have a
tight approximation of probability constraint in (3d) by using
linear constraint, the original problem formulation (P1) can be
relaxed into a SDP 1. In addition, it is known that several off-
the-shelf efficient interior point methods can be used to solve
SDPs [21].

1Please note that all the other constraints are linear.

C. Approximation of Probability Constraint (for r3)

We aim to deal with r3 in the next step, based on the so-
called scenario-based convex approximation [22]. In the first
place, (3h) can be rewritten as:

Pr

8
<

:P
Li � P

Gi � P
Ri +

X

j2Ni

P
tij  0, 8i 2 N

9
=

; � 1� ✏

(16)
To briefly describe the general scenario-based convex approxi-
mation method, consider the prototype probability-constrained
problem:

minimize
�2⇤

cT�

subject to Pr {� 2 � : f(�,�)  0} � 1� ✏
(17)

Here � is the “design parameter” and � denotes the “un-
certainty factor” which is a random variable. To be specific,
in our problem (in (16)), the set of design parameters � =�
P
Gi , PLi , Ptij

 
, uncertainty factor � = {P

Ri}. In this case,
notice that f(�,�) : ⇤⇥� ! Rn is convex in �, for any fixed
value of � 2 �. Thus, the Assumption 1 in [22] is met. Then
(17) can be approximated by the scenario-based approximation
method as follows.

minimize
�2⇤

cT�

subject to f(�,�k)  0, k = 1, . . . ,M
(18)

where �1,�2, . . . ,�M are M independently generated sam-
ples of �. To apply the scenario-based convex approxima-
tion method, we first independently generate M samples
P 1
Ri
, P 2

Ri
, . . . , PM

Ri
, and replace the chance-constraint (16)

with the linear constraints as follows.

P
Li � P

Gi � P k

Ri
+

X

j2Ni

P
tij  0, k = 1, . . . ,M, 8i 2 N

(19)
Notice that we select the constraints f(�,�k)  0 in a
random manner, thus the optimal solution �̂ depending on the
multi-sample extraction (�1,�2, . . . ,�M ) is actually a random
variable. Therefore, �̂ can be a ✏-level solution for a given
random extraction and not for another. Let parameter � bounds
the probability that �̂ is not a ✏-level solution (feasible for
problem in (17)). Thus, � can be seen as the risk of failure
associated to the randomized solution algorithm. It is said that
if M (specified by the following condition) random scenarios
are drawn, the optimal solution in the approximated prob-
lem achieves ✏-level feasibility for the original probability-
constrained one with probability no less than 1� � [22].

M �
⇠
2

✏
ln

1

�
+ 2n

�

+
2n

�

✏
ln

2

✏

⇡
(20)

where n
�

is the number of design variables, and d·e denotes
the ceil function. Tailoring (20) to our problem, the minimum
sample size M̃ can be provided based on the proposition as
follows.



Proposition 2. Given the power imbalance probability thresh-
old ✏, and the lower bound

M � M̃ :=

⇠
2

✏
ln

1

�
+ 2(2|N |+ |B|) + 2(2|N |+ |B|)

✏
ln

2

✏

⇡

then the solution to the reformulated problem with constraint
(19) is feasible for the original problem with constraint (16),
with probability at least as 1� �.

At this point, a convex-relaxed program of (P2) can be
obtained. For simplification, we define:

PG |N |-dimensional vector where P
Gi is the i-th element.

PL |N |-dimensional vector where P
Li is the i-th element.

Pt |B|-dimensional vector collecting power flows on all lines.

A |N |⇥ |B| oriented incidence matrix of the grid graph.

c |B|-dimensional vector collects power flow limits on all lines.

C |B|⇥ |B| matrix equals diag(c).

Pmin

G

|N |-dimensional vector where Pmin

Gi
is the i-th element.

Pmax

G

|N |-dimensional vector where Pmax

Gi
is the i-th element.

Pmin

L

|N |-dimensional vector where Pmin

Li
is the i-th element.

Pmax

L

|N |-dimensional vector where Pmax

Li
is the i-th element.

P
L

min

|N |⇥ |N | matrix equals diag(Pmin

L

).

P
L

max

|N |⇥ |N | matrix equals diag(Pmax

L

).

�
M

|N |-dimensional vector where �
Mi is the i-th element.

Q |N |-dimensional vector where Q
i

is the i-th entry.

P
R

k |N |-dimensional vector where Pk

Ri
is the i-th entry.

Now we can express our computationally tractable reformu-
lation as follows.

(P3) minimize
D

h
t1 , t2

i
T

(21a)

subject to: (14) - (15) and (21b)
�c � Pt � c (21c)
�Ct � Pt � Ct (21d)
Pmin

G

� PG � Pmax

G

(21e)
P

L

min

s � PL � P
L

max

s (21f)

�
M

TQ � �t1 (21g)
0 � Q � PL (21h)

PL +P
L

max

s�Pmax

L

� Q � P
L

max

s (21i)
� c� t21

T � Pt � c+ t21
T (21j)

PL �P
R

k �PG +APt � 0, k = 1, . . . ,M (21k)

where D := {PG,PL,Pt,Q, t, s,SL,St, t1, t2} contains all
the decision variables (for convenience, “�” is a component-
wise operator in 21b-21k). For a practical use, (21k) can be
replaced by the following to reduce the number of constraints.

PL �PG +APt � min
k=1,...,M

P
R

k (22)

where min
k=1,...,M

P
R

k is the vector that its i-th element corre-
sponds to the minimum value of P

Ri among the M samples.
Note that (P3) is a SDP relaxed reformulation for our proposed

microgrid reconfiguration. To solve (P3), a weighted-sum
method based scheme is presented next.
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Fig. 3. Flowchart of the Solution Methodology

V. MULTI-OBJECTIVE OPTIMIZATION AND ROUNDING
MECHANISM

Multi-objective programming is concerned with optimiza-
tion problems seeking to optimize more than one objective
function simultaneously. A general form is casted as follows.

minimize C(u) = [c1(u), c2(u), . . . , cm(u)]T

subject to: u 2 ⌦
(23)

where ⌦ = {u 2 Rn : f(u)  0, l(u) = 0} denotes the fea-
sible solution region. c

i

(u) represents the i-th objective, u is
the unknown variable, m is the number of the objectives, and
f(u) and l(u) account for the involving constraints (inequality
and equality) in the problem. Note that, the objectives in the
problem have tradeoffs among them (otherwise it becomes a
single-objective program), thus no unique best decision exists.
Specifically, the so-called Pareto optimal solution is used to
represent the set of “optimal” solutions of the multi-objective
problem. A formal definition is introduced below.

Pareto optimal solution: A feasible solution u⇤ of the op-
timization program (23) with no any another feasible solution
u 2 ⌦ satisfying c

i

(u) � c
i

(u⇤) for every index i, and for at
least an index j that c

j

(u) > c
j

(u⇤) .

A. Solving the multi-objective problem (P3)

We used the weighted-sum method in this paper to solve
(P3). It naturally transforms the vector of objectives into a



scalar form, which can be posed as follows.

minimize
u2⌦

mX

i=1

w
i

c0
i

(u)

subject to
mX

i=1

w
i

= 1, w
i

� 0, i = 1, 2, . . . ,m

(24)

where w
i

denotes the preference of the i-th objective, and
c0
i

(u) is the normalized version of objective function c
i

(u). It
has been proved that if c

i

(u), i = 1, 2, . . . ,m and ⌦ are all
convex, then applying the weighted-sum method in (24) can
generate any Parteo solution of (23) [23].

Based on the facts above, the optimization problem (P3) can
be converted in an alternative way as follows.

(P4) minimize
D

w1

N1
t1 +

w2

N2
t2

subject to: (21b) - (21k) and
w1 + w2 = 1, w1, w2 � 0

where N1, N2 are the known normalization factors of objec-
tives t1 and t2 respectively.

We see that (P4) is our final SDP-based microgrid reconfig-
uration formulation. However, in the results of (P4), the binary
variables s⇤ and t⇤ denoting the status of the circuit breaks
might have values between 0 and 1. Thus the next step is
to convert these solutions to obtain the valid Boolean status,
often referred to as “rounding”.

B. Variable Threshold Rounding

Regard s⇤ and t⇤ as the values of s and t in the optimal
solution of (P4) respectively. Let sr and tr represent the
solutions after rounding. Then we adopt a simple rounding
mechanism as follows.

We drop the obtained matrices
�
SL

�⇤ and (St)
⇤, keeping

only the vectors s⇤ and t⇤, and round their elements to 0 or
1. It is stated as:

sr
i

=sign(s⇤ � µ), i = 1, 2, . . . , |N |
tr
i

=sign(t⇤ � µ), i = 1, 2, . . . , |B|
(25)

where µ 2 (0, 1) is a predefined threshold and the function
sign is:

sign(y) =

8
<

:
+1, y � 0;

�1, y < 0.
(26)

After the rounding process for the breakers status variables s
and t, we can plug them into (P4) and run the optimization
again to obtain the rest of the decision variables in D.

VI. PRELIMINARY NUMERICAL TESTS

In this section, a modified 7-node test feeder (shown in
Fig. 4) [13] was considered to study the performance and
properties of the proposed approach. The grid reconfiguration
problem formulated in (P4) was solved by the package CVX
( [24]) in MATLAB. The power imbalance probability is set
to ✏ = 0.01(1%), and the parameter � in proposition 2 is
0.05. According to proposition 2, approximately at least 2183
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Fig. 4. Example of 7-node Test Feeder

TABLE II
PARAMETER SETTING OF 7-NODE TEST FEEDER (INITIAL CASE)

Parameter Initial Setting

c [2, 2, 2, 2, 2, 2]T (kW)

Pmin

G

[0, 0, 0, 0, 0, 0, 0]T (kW)

Pmax

G

[1, 0, 2, 6, 6, 6, 6]T (kW)

Pmin

L

[2, 2, 2, 2, 2, 2, 2]T (kW)

Pmax

L

[5, 5, 5, 5, 5, 5, 5]T (kW)

�
M

[1, 0.8, 0.7, 0.6, 0.5, 0.2, 0.1]T

samples are required. In this study, we used 5000 samples of
renewable energy generation for each P

Ri at i-th node. The
renewable energy generation P

Ri is modeled as a Gaussian
distributed random variable for each node i following distri-
bution N (2, 0.2). The threshold µ is set to 0.6. The matrix
A can be formed based on the connectivity topology in Fig.
4. The other parameter settings are illustrated in the ensuing
context. We first study an initial case with the parameter setting
in TABLE II. Fig. 5 shows the pareto points generated from
the solution of (P4). The average number of iterations for the
interior-point solver of CVX were 20 and the computation
time was 1.2 seconds on a machine with Intel Duo Core
1.8GHZ. For the system operator, if the objective of total loads
served has higher preference than the reconfiguration operation
reliability, then the points around the right lower corner of Fig.
5 might be good choices. In contrast, if the operation reliability
is seen more important than the total loads served, then the
points around the left upper corner become right options.

TABLE III-IV illustrate the best solutions obtained by SDP
approach for minimizing the negative of total loads served (t1)
and the negative of reconfiguration operation reliability (t2),
respectively under the initial setting case. From TABLE III-
IV, it can be observed that the tradeoff between objectives of
total loads served and reconfiguration reliability do exist. In
particular, the value of t2 in TABLE III is extremely close
to zero, which means at least one branch almost reaches its
power flow limit. This verifies our concern that if only the
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Fig. 5. Pareto points of reconfiguration problem with initial setting

TABLE III
BEST SOLUTION FOR THE NEGATIVE OF TOTAL LOADS SERVED

Results Min. t1
PG [1.00, 0.00, 1.79, 5.79, 5.80, 5.49, 5.47]T

PL [4.27, 5.00, 5.00, 5.00, 5.00, 5.00, 5.00]T

Pt [�2.00,�1.92,�1.90,�1.90,�1.12,�1.13]T

[t1, t2] [�18.77, 1.02E-08]T

TABLE IV
BEST SOLUTION FOR THE NEGATIVE OF RECONFIGURATION RELIABILITY

Results Min. t2
PG [1.00, 0.00, 2.00, 5.12, 5.12, 5.15, 5.14]T

PL [2.10, 2.00, 3.55, 5.00, 5.00, 5.00, 5.00]T

Pt [0.17,�0.17,�0.17,�0.17,�0.17,�0.17]T

[t1, t2] [�13.19,�1.83]T

objective of total loads served is considered, the power flows
in branches might reach their limits which will significantly
increase the risk of power-line fault/outage.

A. The effect of changing parameter Pmax

G

For investigating the impact of variation of parameter Pmax

G

on the pareto points, we consider the second test case. We use
the same parameters as in the initial case except that Pmax

G

=
[1, 0, 2, 4, 4, 4, 4]T . The resulting solution is depicted in Fig.
6. We find that the value of t1 in the right lower extreme point
is higher than its counterpart in Fig. 5. It implies that the best
solution for total loads served in case 2 is inferior to the best
solution in the initial case. This phenomenon can be expected
since the parameters of maximum power generations of DGs
in node 4� 7 have been reduced in case 2.

B. The effect of changing parameter Pmin

L

Fig. 7 illustrates the pareto optimal points obtained through
various values of vector Pmin

L

. Lmin=1.5 means the minimum
load required for each node is 1.5 kW (every component of
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Fig. 6. Pareto points of reconfiguration problem (case 2)
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Fig. 7. Comparison of Pareto points with different values of Pmin

L

Pmin

L

equals 1.5). We first note that the generated points
belong to a same pareto front. This is because in these
scenarios, the amount of minimum loads required is relatively
small comparing to the power generations. For each node,
the “actual” load supplied can always be greater than the
minimum limit (Lmin=3.0). Thus, cases with Lmin=2.0, 2.5,
3.0 are within the solution set of Lmin=1.5. Fig. 7 also implies
that when each node wants more energy for its minimum
consumption, the reconfiguration operation would be less
reliable.

Another thing can be expected is that, for example, if node
1 and node 2 do not have enough generations to satisfy their
own minimum loads and the lines connecting node 1 and node
2 with the rest of the network do not have enough capacity
to transmit power for satisfying at least their minimum loads,
these two nodes might isolate themselves from the network 2.
Due to space limitation, we omit the detailed results on this
scenario.

2The breakers status are all obtained to be closed in this paper.
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Fig. 8. Comparison of Pareto fronts with different values of Pmax

L

C. The effect of changing parameter Pmax

L

In a similar way as section VI-B, we perform tests on
different values of vector Pmax

L

. In Fig. 8, we notice that
with larger value of maximum load needed for each node, the
pareto front is lower. We observe that if the system can supply
at least some nodes with their maximum loads wanted (most
satisfied situation for the nodes), the total objective value with
larger Lmax is superior to its counterpart with smaller one.
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Fig. 9. Comparison of Pareto fronts with different variances of RES
generation

D. The effect of RES generation uncertainty

We also study the effect of RES generation uncertainty
on the Pareto front. The variances of the renewable energy
generation P

Ri for each node i are set to 0.2, 0.15, 0.05, 0.002
(the mean value is kept the same). The other settings are
the same as the initial case in TABLE II. The simulated
results in Fig. 9 show that larger variance of RES generation
results in less efficient reconfiguration operation. The reason
for that might be as follows. If the variance of RES generation
is large, the optimal operation would be “conservative” to

use RES (since the algorithm is “very unsure” on the RES
generation and its amount might be underestimated), which
will decrease the total efficiency. Nevertheless, the proposed
algorithm would rather sacrifice the efficiency to reduce the
probability of power imbalance.
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Fig. 10. Comparison of Pareto fronts with various levels of RES penetration

E. The level of RES penetration in total power generation

In this section, we assess the effect of changing the level
of RES penetration in each node. To this end, we fixed
the maximum power generation capacities of the 7 nodes to
[4, 3, 5, 7, 7, 7, 7], respectively. The statistical means of RES
generation are set to 0.2, 1, 2, 3, and the maximum conven-
tional DG generation vector Pmax

G

is changed accordingly.
The variances are set to 5% of their means. As shown
in Fig. 10, an interesting fact is that as the level of RES
penetration grows, the efficiency measured by the total objec-
tives decreases. In other words, in these reliability-concerned
microgrid restoration problems, the proposed algorithm might
prefer more “reliable” power sources (i.e. conventional DG)
to RES.
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Fig. 11. Comparison of Pareto points of the SDP-based method and NSGA-II



F. Comparison of the SDP-based method and NSGA-II

Finally, in Fig. 11, we do compare our proposed SDP-based
approach with a widely used multi-objective evolutionary
algorithm, called Nondominated Sorting Genetic Algorithm
II (NSGA-II) [25] on the initial case (described in TABLE
II). We test NSGA-II with population size 100 and obtain the
pareto fronts at generation 100, 500, and 1000 respectively.
It is observed in Fig. 11 that the SDP-based method generate
slightly less number of solutions than NSGA-II. Nevertheless,
our proposed method has better solutions in general (also
reaches two extreme points). And it avoids the problem of
the clustering of the solution points appearing in NSGA-II.

VII. CONCLUSION

A novel multi-objective microgrid reconfiguration scheme
was proposed in this paper. To overcome the difficulties
in solving the resultant optimization problem, the convex
relaxation techniques and the scenario approximation approach
were adopted to obtain a computationally tractable SDP re-
formulation. The generated Pareto-optimal points from the
SDP reformulation in various tests illustrated its correctness
and meliority in providing critical planning information to
system decision-makers. Studying the proposed scheme on
more complicating and practical microgrid power networks
are currently under investigation.
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