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Abstract

Transition matrices are an important determinant for risk man-
agement and VaR calculations in credit portfolios. It is well known
that rating migration behavior is not constant through time. It shows
cyclicality and significant changes over the years. We investigate the
effect of changes in migration matrices on credit portfolio risk in terms
of Expected Loss and Value-at-Risk figures for exemplary loan port-
folios. The estimates are based on historical transition matrices for
different time horizons and a continuous-time simulation procedure.
We further determine confidence sets for the probability of default
(PD) in different rating classes by a bootstrapping methodology. Our
findings are substantial changes in VaR as well as for the width of
estimated PD confidence intervals.
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1 Introduction

It is widely accepted that rating migrations and default probabilities show
significant changes through time that have impact on the loss distribution of
a credit portfolio. However, despite this observed relationship the literature
is rather sparse on modeling the issue. In many existing models default
and transition probabilities are considered by using an average historical
migration matrix without including a variable determining the state of the
economy.

In the last decade, especially rating based models in credit risk manage-
ment have become very popular. These systems use the rating of a company
as the decisive variable to evaluate the default risk of a bond or loan. The
popularity is due to the straightforwardness of the approach but also to the
upcoming new capital accord (Basel II) of the Basel committee on banking
supervision (6), a regulatory body under the bank of international settle-
ments. Basel II allows banks to base their capital requirements on internal
as well as external rating systems. Thus, sophisticated credit risk models
are being developed or demanded by banks to assess the risk of their credit
portfolio better by recognizing the different underlying sources of risk. As a
consequence, default probabilities for certain rating categories but also the
probabilities for moving from one rating state to another are important issues
in such models for risk management and pricing.

Systematic changes in migration matrices have substantial effects on credit
Value-at-Risk (VaR) of a portfolio or prices of credit derivatives like Collater-
ized Debt Obligations (CDOs). Macroeconomic conditions and the business
cycle may be a reason for such systematic changes. Still, despite the obvious
importance of recognizing the impact of business cycles on rating transi-
tions, the literature is rather sparse on this issue. Helwege and Kleiman
(24) as well as Alessandrini (1) have shown respectively that default rates
and credit spreads clearly depend on the stage of the business cycle. An ex-
tensive study on differences in migration matrices was conducted by Bangia
et al (5). Examining the stability of Standard & Poor’s migration matrices
through the business cycle they found time inhomogeneity and second order
Markov behavior. Further, by separating the economy into two states or
regimes, expansion and contraction, and conditioning the migration matrix
on these states, Bangia et al. the authors show significant differences in the
loss distribution of credit portfolios. A summary on the topic of business
cycle effects on credit ratings and defaults is given in Allen and Saunders
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Ba B C
Ba 1.0000 0.7477 0.4980
B 0.7477 1.0000 0.5865
C 0.4980 0.5865 1.0000

Table 1: Correlation between Default Frequencies for Moody’s Speculative
Grade Rating Classes Ba-C, 1984-2001

(2).
In this paper we consider the effects of changes in migration behavior on

Value-at-Risk and PD confidence sets for credit portfolios. We also investi-
gate the link between the state of the economy and default risk or migration
behavior in the industry. Intuition gives the following view: When the econ-
omy worsens both downgrades as well as defaults will increase. The contrary
should be true when the economy becomes stronger. Figures 1 shows Moody’s
historical default frequencies for non-investment grade bonds of rating class
B for the years from 1984 to 2001. Clearly for several years there is a high
deviation from the average default probablity. For B rated bonds the de-
fault frequencies range from 2.5% in 1993 in high market times to more than
14% in 1991 where there was a deep recession in the American economy.
We conclude that taking average default probabilities of a longer time hori-
zon as estimators for future default probabilities might not give correct risk
estimates for a portfolio.

Investigating the question of default correlation for speculative rating
classes we also get significant results. Correlations are between 0.5 and 0.74,
indicating that speculative grade issuers tend to show the same tendency in
default behavior. This default correlation could be interpreted as a concerted
reaction of sub-investment grade bonds and loans to changes to the macroe-
conomic situation. Since defaults in speculative grade loans or bonds have a
tendency to be clustered, this might have substantial effects on the risk of a
portfolio.

For investment grade issuers variations in PDs are less significant. This is
illustrated by figure 2 where Moody’s historical default frequencies for rating
class A issues are reported. We find that only for five years of the considered
time horizon defaults could be observed. Empirical studies (29) have shown
that the link between defaults or changes in migration between investment
grade issuers and the cycle is less obvious than for speculative grade issuers.
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Figure 1: Moody’s historical defaults rates for rating class B and time horizon
1984-2001.
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Figure 2: Moody’s historical defaults rates for rating class A and time horizon
1984-2001.
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In this paper, we want to investigate the substantial effects of changes in
migration behavior on expected loss, VaR and also on confidence intervals for
PDs. We will consider the influence of such changes in migration behavior on
capital requirements in terms of expected losses and VaR figures for an ex-
emplary loan portfolio. We provide evidence that for the considered portfolio
these numbers vary substantially and that the effect of different migration
behavior through the cycle should not be ignored in credit risk management.

We also address the issue of how to estimate the probability of default
with publicly available credit ratings and compare the behavior of confidence
intervals for such default probabilities through time. Especially for invest-
ment grade rating classes, since default is a very rare event, PDs are rather
noisy through time and it is difficult to obtain confidence levels for PDs.
Using a bootstrap method suggested by Christensen et al (15) we are able
to get tighter confidence intervals than with the standard Wald estimator.

Section two gives a review on the rating based approach to credit risk
with focus on continuous-time modeling of rating migrations. Section three
provides evidence on the substantial effect on different migration behavior
for credit VaR. Section four illustrates how confidence sets for rare PD events
can be determined using a bootstrap methodology and investigates changes
in PD volatility estimates thorough time. Section five concludes.

2 Modeling of Rating Migrations

In later sections we will deal with continuous-time Markov chains in order to
determine the Value-at-Risk of a credit portfolio for arbitrary time horizons
or bootstrapping of PD confidence sets. Therefore this section is dedicated
to rating-based modeling with focus on continuous-time modeling of rating
transitions and generator matrices.

2.1 Discrete versus Continuous-Time Modeling

Jarrow, Lando and Turnbull (JLT) model default and transition probabilities
by using a discrete, time-homogeneous Markov chain on a finite state space
S = {1, ......, K} (28). The state space S represents the different rating
classes. While state S = 1 denotes the best credit rating, state K represents
the default case. Hence, the (KxK) one-period transition matrix is denoted
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by:

P =













p11 p12 · · · p1K
p21 p12 · · · p2K
· · · · · · · · · · · ·
pK−1,1 pK−1,2 · · · pK−1,K
0 0 · · · 1













, (2.1)

where pij ≥ 0 for all i, j, i 6= j, and pii ≡ 1−
∑K

j=1

j 6=i

pij for all i. The variable

pij represents the actual probability of going to state j from initial rating
state i in one time step.

Thus, rating based models can be seen as a special case of the so-called
’intensity model framework’ (18) where randomness in the default arrival is
simply modeled via a Markov chain.

For practical purposes, e.g. Lando and Skodeberg (33) recommend to
model rating migrations via a continous-time Markov chain using a generator
matrix. Following Noris (36) we provide the definition of a generator:

Definition 2.1 A generator of a time-continuous Markov chain is given by
a matrix Λ = (λij)1≤i,j≤K satisfying the following properties:

1.
K

∑

j=1

λij = 0 for every i = 1, · · · , K;

2. 0 ≤ −λii ≤ ∞ for every i = 1, · · · , K;

3. λij ≥ 0 for all i, j = 1, · · · , K with i 6= j.

Thus, a continuous-time time-homogeneous Markov chain is specified via
a KxK generator matrix of the following form:

Λ =













λ11 λ12 · · · λ1K
λ21 λ22 · · · λ2K
· · · · · · · · · · · ·
λK−1,1 λK−1,2 · · · λK−1,K
0 0 · · · 0













, (2.2)

whith negative diagonal elements λii = −
∑K

j=1

j 6=i

λij, for i = 1, .....K repre-

senting the intensities of jumping from rating i to rating j. Further, default
K is considered to be an absorbing state.

Noris (36) shows that for a generator the following theorem holds:
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Theorem 2.2 The following two properties are equivalent for the matrix
Λ ∈ R

k×k satisfying the following properties:

1. Λ satisfies the Properties in Definition 2.1.

2. exp(tΛ) is a transition matrix for every t ≥ 0.

Hence, given a KxK generator matrix Λ the discrete-time t-period tran-
sition matrix P (t) is given by:

P (t) = etΛ =
∞

∑

k=0

(tΛ)k

k!
= I + (tΛ) +

(tΛ)2

2!
+

(tΛ3)

3!
+ · · · (2.3)

For example consider the transition matrix P

P A B D
A 0.90 0.08 0.02
B 0.10 0.80 0.10
D 0 0 1

where the corresponding generator matrix is of the form:

Λ A B D
A -0.1107 0.0946 0.0163
B 0.1182 -0.2289 0.1107
D 0 0 0

The use of generator matrices in credit risk is manifold. A main issue
is for example the construction of so-called credit curves, giving information
about cumulative default rates for arbitrary time horizons, see e.g. (28). For
a given generator matrix Λ the cumulative default rate PDi

t for rating class
i is given by the K-th entry of the vector:

pit = exp(tΛ)xti (2.4)

where xti denotes the row of the corresponding transition matrix to the
given rating i. Figure 2.1 shows a chart of the credit curves based on the
generator matrix Λ of our example.
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Figure 3: Credit curves for exemplary transition matrix with three rating
states. Cumulative PDs for rating class A (dashed) and B.

Lando and Skodeberg (33) as well as Christensen et al (15) focus on the
advantages of the continuous-time modeling over the discrete-time approach
used by rating agencies in order to analyze rating transition data. Gener-
ally, rating agencies estimate transition probabilities using the multinomial
method by computing

p̂ij =
Nij

Ni

(2.5)

for j 6= i. Where Ni is the number of firms in rating class i at the beginning
of the year and Nij is the number of firms that migrated from class i to rating
class j during the considered year.

The authors argue that these transition probabilities do not capture rare
events such as a transition from rating e.g. AA to default as they may not
be observed. However, it is possible that a firm reaches default through
subsequent downgrades from AA - even within one year and the probability
of moving from AA to default must be non-zero. Following Küchler and
Sorensen (30), a maximum-likelihood estimator for the continuous-time gen-
erator matrix is given by:

λ̂ij =
Nij(T )

∫ T

0
Yi(s)ds

. (2.6)
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The variable Yi(s) denotes the number of firms in rating class i at time
s and Nij(T ) is the total number of transitions over the period from i to
j, where i 6= j. Based on the estimated generator under the assumption of
time-homogeneity over the considered period the transition matrix for a time
interval t can be computed by the formula P (t) = etΛ.

Lando and Skodeberg point out that with the continuous-time approach
one obtains strictly positive default probabilities also for rating classes where
no direct default could be observed in the considered periods. However,
this makes sense as for example default may happen through a consecutive
downgrade of a company usually rated in the investment grade area. Thus,
also for investment grade issuers default probabilities should be non-zero.

We conclude that one of the advantages of the continuous-time estimation
technique is that it leads to more realistic non-zero estimates for probabilities
of rare events, whereas the multinomial method often leads to zero estimates
for investment grade rating classes. Further, using generator matrices it is
also possible to obtain transition matrices and cumulative PDs for arbitrary
time horizons. We will see in the sequel that using the continuous-time mi-
gration framework also permits to generate confidence sets for default prob-
abilities in higher rating classes. Finally, in the continuous-time approach we
do not have to worry which yearly periods we consider. Using a discrete-time
approach may lead to quite different results depending on the starting point
of the estimation period. However, the last issue is also a critical point for
the estimation of generator matrices. In internal rating systems it is often
the case that rating changes are reported only once a year and that the ex-
act time of the change is not provided. Then, due to the rating changes in
discrete time, it is not appropriate to use the maximum-likelihood estimator
suggested in 2.6.

2.2 Applications of Generator Matrices

So far we have described the basic ideas of rating based credit risk evaluation
methods and the advantages of continuous-time transition modeling over the
discrete-time case. Despite these advantages of continuous-time modeling,
there are also some problems to deal with, like the existence, uniqueness or
adjustment of the generator matrix to a corresponding discrete transition
matrix.

In many cases, in the internal rating system of a bank only discrete-time
historical transition matrices are reported. To benefit from the advantages
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of continuous-time modeling we might still be interested in finding the cor-
respondent generator matrix. In this case an important issue is whether for
a given discrete one-year transition matrix a so-called ’true’ generator ex-
ists. For some discrete transition matrices there is no generator matrix at
all while for some there exists a generator that has negative off-diagonal el-
ements. Examining the question of existence of a true generator and finding
approximations of such matrices we review some results obtained by Israel,
Rosenthal and Wei (26).

Let’s asssume that given the one-year N ×N transition matrix P we are
interested in finding a generator matrix Λ such that:

P = eΛ =
∞

∑

k=0

Λk

k!
= I + Λ+

Λ2

2!
+

Λ3

3!
+ · · · (2.7)

Dealing with the question whether such a generator matrix exists we can
use the following theorem (36):

Theorem 2.3 If a migration matrix P = (pij) i, j = 1, · · · , K is strictly
diagonal dominant, i.e. pii > 0.5 for every i, then the log-expansion

Λn =
n

∑

k=1

(−1)k+1 (P − I)k

k
(n ∈ N) (2.8)

converges to a matrix Λ = (λij), i, j = 1, · · · , K satisfying

1.
8

∑

j=1

λij = 0 for every i = 1, · · · , K;

2. exp(Λ) = P.

The convergence Λn → Λ is geometrically fast and denotes a N × N
matrix having row-sums of zero and satisfying P = eΛ

∗

exactly. For the
proof, see (26). We point out that even if the series Λ∗ does not converge or
converges to a matrix that cannot be a true generator, P may still have a
true generator (26).

However, often there remains another problem: The main disadvantage of
series (2.8) is that Λn may converge but does not have to be a true generator
matrix in economic sense, particularly it is possible that some off-diagonal
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elements are negative. From an economic viewpoint this is not acceptable
because a negative entry in the generator for short time intervals may lead
to negative transition probabilities for very short time intervals. Israel et al.
show the possibilty that there exists more than one corresponding generator.
They provide conditions for the existence or non-existence of a valid generator
matrix and further a numerical algorithm for finding this matrix.

Investigating the existence or non-existence of a valid generator matrix
with only positive off-diagonal elements we start with another result obtained
by Singer and Spilerman (41):

Proposition 2.4 Let P be a transition matrix that has real distinct eigen-
values.

If all eigenvalues of P are positive, then the matrix obtained by (2.8)
is the only real matrix Λ such that exp(Λ) = P .

If P has any negative eigenvalues, then there exists no real matrix Λ
such that exp(Λ) = P .

Thus, using the conditions above we can conclude for the non-existence
of a valid generator.

Proposition 2.5 Let P be a transition matrix such that the series (2.8)
converges to a matrix Λ with negative off-diagonal elements. If at least one
of the following three conditions hold

1. det(P ) > 1/2 and |P − I| < 1/2 or

2. P has distinct eigenvalues and det(P ) > e−π or

3. P has distinct real eigenvalues.

then there does not exist a valid generator for P .

Israel et al. also provide a search algorithm for a valid generator if the se-
ries (2.8) fails to converge or converges to a matrix that has some off-diagonal
terms but it not unique. For a further description we refer to (26) since in
the case of non-existence of a true generator we used some approximation
methods.
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Despite the manifold advantages of continuous-time transition modeling
the non-existence of a valid generator matrix to a given discrete-time tran-
sition may lead to some difficulties in practical implementations. In this
case, some approximation methods can be used to determine an adequate
generator matrix. To illustrate these methods let us consider the historical
migration matrices from 1982-2001 provided my Moody’s that will be used in
the empirical analysis. Unfortunately, the considered data does not contain
the exact date in terms of day or month of the rating changes for the consid-
ered time horizon. So based on historical one-year transition matrices from
Moody’s we will have to calculate the corresponding generators. Further, for
several of the considered migration matrices, the series (2.8) converges to a
generator with negative off-diagonal elements being the only valid generator
matrix. For example, considering the historical transition matrix P1996 we
get

P1996 =























0.9492 0.0457 0.0051 0.0000 0.0000 0.0000 0.0000 0.0000
0.0019 0.9437 0.0544 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0300 0.9497 0.0193 0.0010 0.0000 0.0000 0.0000
0.0015 0.0000 0.0596 0.9190 0.0185 0.0015 0.0000 0.0000
0.0000 0.0000 0.0091 0.0793 0.8503 0.0476 0.0068 0.0068
0.0000 0.0000 0.0027 0.0053 0.0904 0.8538 0.0159 0.0319
0.0000 0.0000 0.0000 0.0000 0.0870 0.1304 0.7391 0.0435
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000























and for the corresponding generator matrix Λ1996:
Λ1996 =






















−0.052 0.048 0.004 0.000 0.000 0.000 0.000 0.000
0.002 −0.059 0.058 −0.001 0.000 0.000 0.000 0.000

−0.000 0.032 −0.053 0.021 0.001 0.000 0.000 0.000
0.002 −0.001 0.064 −0.086 0.021 0.001 0.000 0.000

−0.000 −0.000 0.007 0.090 −0.167 0.055 0.008 0.006
0.000 −0.000 0.003 0.001 0.105 −0.163 0.020 0.034
0.000 0.000 −0.001 −0.005 0.101 0.161 −0.304 0.047
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000























.

Obviously, in row seven there are negative off-diagonal entries in the gen-
erator that may lead to negative transition probabilities for very short time
intervals. Thus, we will have to use some approximation methods to deter-
mine a valid generator. The result may lead to a generator not providing
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exactly P = eΛ
∗

but only an approximation of the original transition ma-
trix P . Instead the necessary condition from an economic viewpoint will be
guaranteed and all off-diagonal row entries in the generator are non-negative.

The literature, suggests different methods to deal with this problem if
calculating Λ, e.g. Jarrow et al. (28) or Israel et al. (26). Comparing the
suggested methods, Trück and Özturkmen (42) find that the latter give better
adjustments to the original migration matrix. Therefore, following Israel et
al. (26) we used the following method for determining an approximation of
the generator matrix:

For each year by using (2.8) for the original migration matrix the associ-
ated generator is calculated. If there are negative off-diagonal elements the
generator is changed according to the following procedure:

Replace the negative entries by zero and add the appropriate value back
into all entries of the corresponding row proportional to their absolute
values. Let Gi be the sum of the absolute values of the diagonal and
nonnegative off-diagonal elements and Bi the sum of the absolute values
of the negative off-diagonal elements:

Gi = |λii|+
∑

j 6=i

max(λij, 0); Bi =
∑

j 6=i

max(−λij, 0)

Then set the modified entries

λij =







0, i 6= j and λij < 0

λij − Bi|λij |

Gi
otherwise ifGi > 0

λij, otherwise ifGi = 0

In our example where the associated generator was Λ1996 applying this
method, e.g. in the seventh row we have to set λ73 and λ74 to zero and then
’redistribute’ −0.006 to the positive entries λ75, λ76, λ78 and to the diagonal
element λ77. This gives us the adjusted generator Λ1996,approx =























−0.052 0.048 0.004 0.000 0.000 0.000 0.000 0.000
0.002 −0.059 0.057 0.000 0.000 0.000 0.000 0.000
0.000 0.032 −0.053 0.021 0.001 0.000 0.000 0.000
0.002 0.000 0.063 −0.087 0.021 0.001 0.000 0.000
0.000 0.000 0.007 0.090 −0.167 0.055 0.008 0.006
0.000 0.000 0.003 0.001 0.105 −0.163 0.020 0.034
0.000 0.000 0.000 0.000 0.100 0.160 −0.307 0.047
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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and the associated one-year transition matrix P1996,approx =























0.9492 0.0457 0.0051 0.0000 0.0000 0.0000 0.0000 0.0000
0.0019 0.9434 0.0541 0.0006 0.0000 0.0000 0.0000 0.0000
0.0000 0.0300 0.9496 0.0193 0.0010 0.0000 0.0000 0.0000
0.0015 0.0010 0.0592 0.9184 0.0183 0.0015 0.0001 0.0001
0.0001 0.0001 0.0091 0.0793 0.8502 0.0476 0.0068 0.0068
0.0000 0.0000 0.0027 0.0053 0.0903 0.8538 0.0159 0.0319
0.0000 0.0000 0.0006 0.0040 0.0861 0.1290 0.7371 0.0431
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000























Obviously, the obtained approximate migration matrix is very close to
the original one. To compare the goodness of our approximations more thor-
oughly, we would have to use some difference measures for the distances
from the original transition matrix to the calculated approximations. For an
extensive discussion on such distance measures see (27) and (44). In the fol-
lowing we will consider the approximations to Moody’s historical transition
matrices as ’close enough’ for our purpose.

Ensuring that only valid generator matrices are used, we will now illus-
trate the simulation procedure that is used for estimating risk figures and
confidence intervals for PDs for an exemplary portfolio of an international
operating bank. The procedure for simulation follows a method suggested by
Christensen et al. (15). Based on historical observed transition matrices and
the corresponding generator matrix we investigate the effect on risk capital
for the credit portfolio. Technically, for each year we sample the time of a
credit event using the generator matrix of the Markov process. If a credit
event takes place we further sample the nature of the event - migration to
another state or default - also based on the generator matrix. In the event of
default, we calculate the recovery payment according to the expected recov-
ery rate. The simulation procedure will briefly be described in this section.

Recall that a continuous-time, time-homogeneous Markov chain is speci-
fied via the (KxK) generator matrix:

Λ =













λ11 λ12 · · · λ1K
λ21 λ22 · · · λ2K
· · · · · · · · · · · ·
λK−1,1 λK−1,2 · · · λK−1,K
0 0 · · · 0













(2.9)
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where λij ≥ 0, for all i, j and λii = −
∑K

j=1

j 6=i

λij, for i = 1, .....K. Recall also

that the off-diagonal elements represent the intensities of jumping to rating
j from rating i. Again the default state K is considered to be absorbing.

As the waiting time for leaving state i has an exponential distribution
with the mean 1

−λii
we draw an exponentially-distributed random variable t1

with the density function

f(t1) = −λiieλiit1

for each company with initial rating i. Depending on the considered time
horizon T for t1 > T , the company stays in its current class during the entire
period T . If we get t1 < T , we have to determine to which rating class the
company migrates.

Hence, the interval [0,1] is divided into sub-intervals according to the mi-

gration intensities calculated via
λij

−λii
. Then a a uniform distributed random

variable between 0 and 1 is drawn. Depending on which sub-interval the
random variable lies in we determine the new rating class j the company
migrates to. Then we draw again from an exponentially-distributed random
variable t2 - this time with parameter λjj from the generator matrix. If we
find that t1 + t2 > T the considered company stays in the new rating class
and the simulation is completed for this firm. If t1+ t2 < T we have to deter-
mine the new rating class. The procedure is repeated until we get

∑

tk > T
or the company migrates to the absorbing default state where it will remain
for the rest of the considered time period.

This simulation procedure is conducted for every company in the portfo-
lio. Thus, each company has a simulated rating history including all rating
changes and dates for the considered time period. The results can be used for
determining the number and size of losses for a loan portfolio for arbitrary
time horizons. Following Lando and Christensen (31) using equation (2.6)
and the simulated rating histories for all companies in the portfolio we can
also calculate the estimator for the generator matrix Λ. We will see in sec-
tion 4 that these estimates can also be used to calculate so-called ’bootstrap’
confidence intervals for the different rating classes.

3 Migration Matrices and Credit VaR

We consider an internal loan portfolio of an international operating major
bank consisting of 1120 companies. The average exposure is dependent on its
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Rating Aaa Aa A Baa Ba B Caa

No. 11 106 260 299 241 95 148
Average Exposure (Mio. Euro) 20 15 15 10 10 5 5

Table 2: Ratings and exposures for the considered Credit Portfolio

rating class. In the considered portfolio higher exposures could be observed
in higher rating classes while companies with a non-investment grade rating
Baa, B or Caa the average exposures were between 5 Mio. and 10 Mio. Euro.
The distribution of ratings and average exposures in the considered rating
classes of the loan portfolio is displayed in table 2.

We further make the following assumptions for the loans. For each of
the simulated years we use the same rating distribution for the portfolio
to keep the figures comparable. We also used an average yearly recovery
rate of R = 0.45 for all companies. This is clearly a simplification of real
recovery rates, however due to not having any information on the seniority of
the considered loans this is an adequate assumptions for empirical recovery
rates.

For the investigation we use credit rating histories from Moody’s from
a twenty-year period from 1982-2001 and a continuous-time approach for
determining VaR figures based on simulations. To illustrate the differences
in migration behavior we show the credit curves of two years belonging to
two different phases of the business cycle. The year 2001 was a year of
economic turmoil with high default rates and many downgrades while in
1997 the macroeconomic situation was stable and the economy was growing.
Lower default probabilities and more upgrade than downgrades were the
consequences.

Both for investment grade issuers and speculative grade issuers we find
completely different credit curves. The graphs were plotted for a ten year
time horizon, Clearly it is rather unrealistic that the macroeconomic situation
stays in a recession or expansion state for such a long time. However, in the
sequel we will illustrate that even in a considered time horizon of one-year
the effects can be substantial.

Further the effect of on risk figures was considered for different time hori-
zons of six months, one year and a three year period. Two typical loss
distributions for the years 1998 and 2001 are displayed in figure 6. The
distributions have an expected loss of µ = 148.55 Mio. with a standard de-
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Figure 4: Credit curves for speculative grade issuers according to Moody’s
migration matrix 1997 and 2001 (dashed).
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Figure 5: Credit curves for investment grade issuers according to Moody’s
migration matrix 1997 and 2001 (dashed).
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Figure 6: Typical shape of simulated loss distributions for the years 1998
and 2001.

viation of σ = 16.67 Mio. for 1998 and µ = 223.15 Mio. Euro σ = 21.15
Mio. for 2001. Both distributions were slightly skewed to the right with
γ = 0.1217 for the year 1998 and γ = 0.1084 for 2001. The kurtosis for the
loss distributions is with k = 2.99 for 1998 and k = 2.97 for 2001 very close
to the kurtosis of the normal distribution.

Comparing loss distributions for different years we find that in many
cases the distributions do not even coincide. We plotted a comparison of
the simulated loss distributions for the 2000 and 2001 in figure 8 and for the
years with minimal (1996) and maximal (2001) portfolio risk in the consid-
ered period in figure 7. While for the subsequent years 2000 and 2001 the
distributions at least coincide at very low (respectively high) quantiles, we
find no intersection at all for the years 1996 and 2001. This points out the
substantial effect of migration behavior on risk figures for a credit portfolio.

A closer picture of the significant changes in the Value-at-Risk for the
considered credit portfolio through the consider period is provided in figure
9 and 10.

We find that simulated VaR and Expected Shortfall figures show great
variation through the business cycle. While in the years 1983 and 1996 the
average expected loss for the portfolio would be only 31.29 Mio. or 28.84
Mio. Euro in a one-year period, during the recession years 1991 and 2001,
the simulated average loss for the portfolio would be 227.25 Mio. or 258.75
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Figure 7: Simulated loss distributions for the years 2000 and 2001.
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Figure 8: Simulated loss distributions for the years 1996 and 2001.
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Figure 9: Simulated VaR alpha=0.95 for a one-year periods.
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Figure 10: Simulated mean loss and VaR for alpha=0.99 for a considered one
year period.
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Mio. Euro. The maximum of the simulated average losses for the portfolio
is about eight times higher than the minimum amount in the considered pe-
riod. Similar numbers are obtained for considering Value-at-Risk or expected
shortfall. The one-year 95%-VaR varies between 45 Mio. and 258.75 Mio.
Euro, while the one-year 99%-VaR lies between a minimum of 56.25 Mio. in
1996 and 273.37 Mio. in the year 2001. This illustrates the enormous effect
the business cycle might have on migration behavior and thus, ob the risk of
a credit portfolio. Ignoring these effects may lead to completely wrong esti-
mates of credit VaR and capital requirements for a loan or bond portfolio.
This points out the necessity to use credit models that include variables mea-
suring the state of the business cycle or use conditional migration matrices.
In the next section we will further investigate the effect of the macroeconomic
behavior on confidence sets for PDs.

4 Confidence Sets for Default Probabilities

Another main issue of credit risk modeling is the behavior of probabilities
of default (PDs). In the internal rating based approach of the new Basel
capital accord, PDs are the main input variables for determining the risk
and the necessary regulatory capital for a portfolio. Of course, regulators
are not the only constituency interested in the properties of PD estimates.
PDs are inputs to the pricing of credit assets, from bonds and loans to more
sophisticated instruments such as credit derivatives. However, especially for
companies with an investment grade rating default is a rare event. Often high
credit quality firms make up the bulk of the large corporate segment in any
large bank’s portfolio. But with only little information on actual defaulted
companies in an internal credit portfolio, observed PDs for the investment
grade categories are likely to be very noisy. The question rises how one
should go about estimating reliable confidence intervals for PDs. This is of
particular importance, since similar to the VaR or expected shortfall of a
credit portfolio, PDs may also vary systematically with the business cycle.
Thus, also investment grade ratings PDs are rather unlikely to be stable over
time. Therefore, in this section we tackle the question of obtaining reliable
estimates for PDs also in the investment grade sector and compare these PDs
for the considered time period from 1982-2001.

Lando and Christensen (31) estimate transition and default probabilities
and set confidence intervals for default probabilities for each rating class by
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using the continuous-time approach of the previous section. They find that a
continuous-time bootstrap method can be more appropriate than using the
estimates based on actual default observations. This is especially true for
higher rating classes where defaults are very rare events.

To illustrate the advantages of the bootstrap method let us first consider
a binomial random variable X ∼ B(pi, ni) where pi denotes the probability of
default for rating class i and ni the number of companies in the rating class.
Now assume that there is a investment grade rating class in the internal
rating system where no actual defaults was observed in the considered time-
period. Clearly, the corresponding estimator for the PD in this rating class
is then pi = 0. However, for VaR calculations a bank is also interested in
confidence intervals for PDs of the investment grade rating classes. Based on
the considered binomial distribution one could compute the largest default
probability for a given confidence level α that cannot be rejected by solving
the following equation:

(1− pi)
ni = α

Therefore, the corresponding upper value pmax of a confidence interval for
a rating class with no observed defaults is:

p̂max(ni, α) = 1− ni
√
α

The main disadvantage of the binomial method becomes obvious imme-
diately. The confidence intervals are dependent on the number of firms ni
in the considered rating class. The lower ni, the wider becomes the confi-
dence interval what is illustrated in table 4 for an exemplary portfolio with
50 companies in the rating class Aaa and 500 companies in rating class Aa.
We further assume that for both rating classes in the considered period no
defaults could be observed. We find that using the binomial distribution
to estimate 95% and 99% confidence intervals, the intervals for rating class
Aaa are about ten times wider than those for Aa. From an economic point
of view this is questionable and simply a consequence of the fact that more
companies were assigned with the lower rating.

Of course, the binomial distribution can also be used for calculating two-
sided confidence intervals for lower rating classes where also transition to
defaults were observed. What is needed is the total number of firms with
certain rating i at the beginning of the period and the number of firms among
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ni Xi KIα=0.05 KIα=0.01
Aaa 50 0 [0, 0.0582] [0, 0.0880]
Aa 500 0 [0, 0.0060] [0, 0.0092]

Table 3: Example for PD confidence interval estimated based on the binomial
distribution.

them that defaulted until the end of the considered period. Then, for a given
confidence level α the standard Wald confidence interval is

p̂i,max/min = p̂i ± qα

√

p̂i(1− p̂i)

ni
(4.1)

where ni is the total number of firms in rating class i and qα is the α-
quantile of the standard normal distribution. Unfortunately the estimates
for confidence intervals obtained by the Wald estimator are not very tight,
see e.g. (40). Christensen et al. (15) as well as Schürmann and Hanson (40)
point out that the obtained confidence sets by a so-called continuous-time
bootstrap method are much tighter than those obtained by the standard
Wald estimator. Christensen et al. (15) state that the only advantage in
the binomial case is that using this method one is able to derive genuine
confidence sets, i.e. to analyze the set of parameters which an associated
test would not reject based on the given observations.

To compare confidence intervals through the business cycle we therefore
used the bootstrap method described in (15). An introduction to boot-
strapping can be found in Efron and Tibshirani (19), so we will only briefly
describe the idea of the bootstrap and our simulation algorithm. The same
simulation procedure as in section 2.2 is used to obtain histories for each of
the considered companies. We simulate N = 5000 fake datasets for each time
window. We used a fake dataset with a number of 1000 issuers in each rating
category. Then the issuers history background Markov process is simulated
using the observed historical transition matrix for each year. The simulated
rating changes are translated into a history of observed rating transitions. For
each replication the generator matrix of the hidden Markov chain model is
then reestimated, using the fake dataset history and the maximum-likelihood
estimator
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Figure 11: Mean and 95% Confidence Levels for Rating Class A from 1982-
2001.
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2001.
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λ̂ij =
Nij(T )

∫ T

0
Yi(s)ds

.

From the estimated transition structure we calculate the one-year default
probability for each true state. Exponentiating this matrix gives an estimator
of the one-year migration matrix and the last column of the transition matrix
provides the vector of estimated default probabilities for each replication.
We end up with N of these vectors. Thus, for each year or following (31)
- each true state of the background process - we have N one-year default
probabilities.

Another possibility to find confidence sets would have been to develop
asymptotic expressions for the distribution of test statistics in the continuous-
time formulation and use those for building approximate confidence sets.
However, in practice the bootstrap method seems both easier to understand
and to implement. Note that the maximum-likelihood estimator does not
have a simple closed form expression for its variance/covariance matrix. This
makes it difficult to provide information about the confidence sets for esti-
mated parameters. In fact, we would need to use asymptotics twice. First
to find the variance of the estimated generator Λ̂ and additionally finding an
expression for the variance of exp(Λ̂). The second step again only seems fea-
sible using an asymptotic argument. Unfortunately the asymptotic variance
of Λ̂ is hardly a good estimator, since many types of transitions occur only
rarely in the data set. Thus, the bootstrap method provides tighter intervals
and is also more understandable.

Based on all replications for each year 1982-2001 the relevant quantiles
and the distribution of the PDs is obtained. Efron and Tibshirani (19) sug-
gest for confidence intervals to use bootstrap replications of 1000. To be on
the safe side, for each rating class and each considered year from 1982-2001
we ran 5000 replications. Thus, for each year and for each rating class we
obtained a distribution based on 5000 simulated PDs. The results for invest-
ment grade rating classes Aa and A can be found in figure 13 and 14 where
we plotted boxplots of the PDs for the whole considered period.

It becomes obvious that confidence intervals vary substantially through
time. This includes not only the level of the mean of the bootstrapped PDs
but also the width of the confidence interval. Comparing for example the
95% interval for rating class A we find that the interval in 1993 KIA,1993 =
[0.000, 0.0001] compared to the 2001 interval KIA,2001 = [0.0005, 0.0054] is
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Figure 13: Boxplot for Bootstrapped Confidence Intervals for Rating Class
Aa from 1982-2001.

about 50 times wider. The variation of the lower and upper boundary of the
intervals is illustrated for rating classes Ba and A in the figures 11 and 12.
We find that for investment grade ratings with the level also the width of an
estimated confidence set for the PD increases substantially. Histograms for
the same rating class Ba but for different periods - 1991 and 1996 - can be
found in figure 15. Obviously the plotted histograms for the two periods do
not even coincide.

For non-investment grade ratings the variations in the level of average PDs
is also extreme. However, as it can be seen in table 4, we find that the width
of the intervals does not show the extreme variations as for the investment
grade ratings. This is best illustrated by the coefficient of variation v = σ

mean

comparing the standard deviation of the width of the confidence intervals to
its mean. We find a decreasing coefficient of variation for lower rating classes.
Thus, we conclude that the fraction PD to the volatility of PD decreases with
an increasing PD. This could be an interesting finding for credit derivative
modeling where also the volatility of PDs is an important input variable.
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Rating Aaa Aa A Baa Ba B Caa

mean 0.0001 0.0006 0.0019 0.0049 0.0126 0.0262 0.0473
σ 0.0002 0.0009 0.0017 0.0030 0.0053 0.0065 0.0140

min 0.0000 0.0000 0.0000 0.0002 0.0049 0.0172 0.0021
max 0.0007 0.0040 0.0057 0.0095 0.0246 0.0424 0.0605

v = σ
mean 1.5994 1.6162 0.9361 0.6125 0.4210 0.2493 0.2955

Table 4: Descriptive Statistics of the width of confidence intervals for different
rating classes.
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Figure 14: Boxplot for Bootstrapped Confidence Intervals for Rating Class
A from 1982-2001.
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Figure 15: Histogram of bootstrap PDs for Rating Class Ba in 1991 (left)
and 1996 (right).

5 Conclusion

This paper investigated the effect of different migration matrices on an ex-
emplary portfolio through the business cycle. We also calculated confidence
intervals based on a bootstrap method introduced in Lando and Christensen
(31) and 20-year history of Moody’s migration matrices. To determine Value-
at-Risk for the portfolio as well as PD confidence sets, a continuous-time
simulation and bootstrap method was used. Therefore, following Israel et al
(26) we illustrated how from an original discrete transition matrix the corre-
sponding generator can be derived. Then using an approach by Christensen
and Lando (15) credit VaR and PD confidence intervals were determined.
The results point out the substantial effect of variations in the economy on
the expected loss, VaR or expected shortfall for a credit portfolio if a rat-
ing based credit risk system is used. The estimated one-year-VaR of the
considered portfolio was about six times higher for the dramatic recession
period in 2001 than for example in 1996 and more than twice of the average
one-year VaR. The effect on confidence sets for default probabilities is even
more dramatic. Variations in the width and level of confidence intervals for
investment grade rating classes were significant and did not even coincide
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in periods of economic expansion or recession. We further found a decreas-
ing coefficient of variation with increasing PD what could be an interesting
finding for credit derivative modeling where also the volatility of PDs is an
important determinant. We conclude that it cannot be considered as an ap-
propriate approach to use average transition matrix as an input for rating
based credit risk modeling. The effect of the business cycle on changes of mi-
gration behavior and therefore also on Value-at-Risk and PDs is too eminent
to be neglected. Migration behavior and PDs in credit risk models should be
adjusted or forecasted with respect to the macroeconomic situation.
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6 Appendix

Year Aaa Aa A Baa

1982 [0.0000, 0.0005] [0.0000, 0.0010] [0.0000, 0.0057] [0.0019, 0.0062]
1983 [0.0000, 0.0000] [0.0000, 0.0001] [0.0000, 0.0007] [0.0004, 0.0073]
1984 [0.0000, 0.0001] [0.0000, 0.0003] [0.0000, 0.0010] [0.0026, 0.0121]
1985 [0.0000, 0.0001] [0.0000, 0.0014] [0.0000, 0.0010] [0.0008, 0.0034]
1986 [0.0000, 0.0001] [0.0000, 0.0010] [0.0001, 0.0050] [0.0014, 0.0069]
1987 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0011] [0.0001, 0.0015]
1988 [0.0000, 0.0003] [0.0000, 0.0004] [0.0000, 0.0007] [0.0008, 0.0032]
1989 [0.0000, 0.0000] [0.0000, 0.0001] [0.0000, 0.0014] [0.0026, 0.0106]
1990 [0.0000, 0.0000] [0.0000, 0.0010] [0.0000, 0.0018] [0.0023, 0.0101]
1991 [0.0000, 0.0000] [0.0000, 0.0002] [0.0000, 0.0015] [0.0042, 0.0128]
1992 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0004] [0.0002, 0.0015]
1993 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0001] [0.0001, 0.0010]
1994 [0.0000, 0.0002] [0.0000, 0.0009] [0.0000, 0.0039] [0.0000, 0.0006]
1995 [0.0000, 0.0000] [0.0000, 0.0001] [0.0000, 0.0006] [0.0002, 0.0074]
1996 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0002]
1997 [0.0000, 0.0000] [0.0000, 0.0004] [0.0000, 0.0007] [0.0002, 0.0058]
1998 [0.0000, 0.0002] [0.0000, 0.0001] [0.0000, 0.0008] [0.0012, 0.0090]
1999 [0.0000, 0.0007] [0.0000, 0.0040] [0.0000, 0.0030] [0.0002, 0.0052]
2000 [0.0000, 0.0000] [0.0000, 0.0002] [0.0000, 0.0029] [0.0008, 0.0072]
2001 [0.0000, 0.0000] [0.0000, 0.0003] [0.0005, 0.0054] [0.0024, 0.0075]

Table 5: Bootstrap-95%-confidence intervals for invstment grade ratings.
Figures based on Moody’s Historical Transition Matrices 1982-2001.
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Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
Mean, 6months 83.48 14.46 44.05 34.66 52.50 27.07 57.42 87.58 97.30 102.21
Mean, 1year 157.83 31.29 84.67 69.71 105.96 53.03 108.13 158.47 183.59 191.93
Mean, 3years 343.50 88.95 198.83 178.30 275.23 127.73 233.95 314.05 413.67 411.20
Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Mean, 6months 60.05 35.13 42.50 61.57 14.11 30.66 85.91 79.89 79.56 121.17
Mean, 1year 111.60 61.30 81.54 113.48 28.84 58.05 148.55 146.30 148.84 223.15
Mean, 3years 240.16 113.84 176.37 235.14 68.33 129.68 280.51 305.39 312.74 477.26

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
V aR0.95,6months 108.00 27.00 63.00 51.75 72.00 40.50 76.50 110.25 123.75 128.25
V aR0.95,1year 191.25 49.50 108.00 92.25 132.75 72.00 135.00 185.62 217.12 227.25
V aR0.95,3years 393.75 119.25 234.00 216.00 321.75 157.50 272.25 353.25 463.50 461.25
Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
V aR0.95,6months 78.75 50.62 58.50 81.00 24.75 45.00 108.00 101.25 101.25 148.50
V aR0.95,1year 135.00 81.00 101.25 139.50 45.00 76.50 175.50 174.37 177.75 258.75
V aR0.95,3years 274.50 139.50 207.00 270.00 90.00 157.50 317.25 343.12 351.00 531.00

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
V aR0.99,6months 120.37 33.75 74.25 58.50 83.25 47.25 84.37 119.25 132.75 139.50
V aR0.99,1year 209.25 58.50 120.37 105.75 148.50 79.87 148.50 200.25 231.75 243.00
V aR0.99,3years 421.87 132.75 253.12 236.25 338.62 171.00 285.75 370.12 487.12 482.62
Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
V aR0.99,6months 85.50 56.25 65.25 90.00 31.50 51.75 115.87 112.50 110.25 164.25
V aR0.99,1year 147.37 87.75 112.50 150.75 56.25 87.75 186.75 187.87 190.12 273.37
V aR0.99,3years 288.00 153.00 218.25 283.50 99.00 172.12 333.00 357.75 371.25 553.50

Table 6: Simulated average loss, 95%- and 99%-VaR for the exemplary portfolio for 1982-2001. Considered
was a 6-month, 1-year and 3-year time horizon.
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