
An Economic Approach to Adaptive Resource Management

Neil Stratford and Richard Mortier�
November 1998

Resource management is a fundamental concept in operating
system design. In recent years it has become fashionable to
consider the problem as an aspect of heterogeneous support for
Quality of Service (‘QoS’). Several authors have advocatedthe
construction of an “oracle”-like entity, with the effect ofab-
stracting the fundamental problems into oblivion. In this pa-
per we propose a radically different approach that attemptsto
address the underlying issues in a uniform and fundamentally
scalable manner.

1 Motivation

Resource management is the task undertaken by an operating
system to provide timely and correct allocation of limited re-
sources to applications, according to some user defined policy.
Considering this as an optimisation task, one can see that the
operating system has the dual goals of global (system) and lo-
cal (application) optimisation across multiple resources.

Global optimisationcorresponds to running an efficient sys-
tem, with the aim of maximising the user’s utility, where a
user’s utility is considered to be the sum of the utilities ofeach
of their applications. In the case of a multi-user system, wecon-
sider the global optimum to be similarly the sum of the optima
of each user.Local optimisationis performed per-application,
and attempts to enable an application to provide the highest
quality output possible whilst fulfilling the user’s requirements,
and remaining within the constraint of the system’s finite re-
source.

Managing the system’s resources in order to achieve global
and local optima is clearly a hard problem. The desire to sup-
port Quality of Service exacerbates this problem by introducing
requirements of timeliness, along with the desire to avoid cross-
talk between applications. Further complications arise with the
presence of adaptive applications which may respond to their
current resource allocation by adjusting their behaviour in or-
der to better fulfil the user’s requests.

1.1 Application Adaptation

The key to solving the resource allocation problem is to pro-
vide support for both those applications which requireQoS-
Assurance, and those that are able to performQoS-Adaptation.
QoS-Assuredapplications are those that require guaranteed lev-
els of a variety of resources, where these levels do not vary
over time. The alternative is to developQoS-Adaptiveapplica-
tions that are structured with multiple modes of operation,to�fNeil.Stratford,Richard.Mortierg@cl.cam.ac.uk. University of Cambridge
Computer Laboratory, Cambridge CB2 3QG, U.K.

be switched between dependent on the current resource alloca-
tion. There exist two distinct classes of application adaptation:
user-triggered adaptation and cross-resource adaptation. In this
paper we consider the class of applications that respond to re-
source availability in order to meet a fixed user utility.

Currently the majority of adaptive applications only adaptin
reaction to variation in a single resource (e.g. network band-
width). These applications typically attempt to maximise user
utility functions by reducing quality in one dimension (e.g. pic-
ture quality) to increase a perceptually more important metric
(e.g. frame-rate). However, in an end-system where all re-
sources are limited, it becomes advantageous to develop appli-
cations that can adapt with respect to multiple resources; this
can give rise to complex tradeoffs.

Consider for example a ‘Movie Player’ application, playing
video from a CD-ROM and displaying it on the screen. A tradi-
tionally adaptive application–see, for example [3]–mightadapt
solely with respect to the CPU bandwidth available. However, if
the format of the video on the disc is carefully chosen, multiple
resource adaptation becomes possible, between disc bandwidth,
CPU bandwidth and the buffer memory required to decode the
video. This allows for a spectrum of operation modes, each of
possibly similar utility to the user.

In this case, resource management is then the task of se-
lecting from these multiple operation modes, with the aim of
achieving the user’s desired utility,andmaximising the amount
of useful work that other applications may carry out whilst this
is occurring.

More generally, the primary goals of a multi-service resource
management system are maintaining system efficiency and pro-
viding support for differing types of application. Broadly
speaking applications can be divided into several classes:� Batch. For example, compiler jobs.� Interactive. For example, text editors and shells.� Assured real-time. These applications require guaranteed

access to their resources for their complete lifetime. Ex-
amples include CD-ROM writing.� Adaptive real-time. These applications can adapt to their
resource allocation. Examples include video and audio
players utilising suitably scalable data coding schemes.

Each of these application classes requires quality of service
support of one form or another. Batch applications require
guarantees of progress, while interactive applications require
bounds on latency. In Section 6 we consider how our architec-
ture may be employed to attempt to meet the demands of these
application classes.

1



1.2 Conventional Approach

Traditional systems, such as variants of Unix, attempt to solve
only the global optimisation problem through policies embed-
ded in the kernel. Recently in the literature the resource allo-
cation problem has been approached by the introduction of a
centralQuality of Service Manager[10, 8, 4, 12]. This entity
is made responsible for both the global and local optimisation
of resource allocation, requiring accurate, detailed models of
application behaviour. Various approximations to the solution
are then obtained according to user policies. In general, this
approach has several major drawbacks:� Application model description is complex and it is hard to

find a model that is suitable for current applications. Ex-
perience suggests that it isnot possible to predict a model
suitable for future applications. In addition, it is desirable
to present as simple an interface to the user as possible,
ideally through reduction of requirements to a single, sim-
ple parameter.� Centralised QoS management attempts to solve a hard op-
timisation problem given constraints not only unknown to
the system, but also inherently incomplete.� Centralised management does not scale well across multi-
ple cooperating hosts.� Co-scheduling artifacts make resource demand hard to pre-
dict; an application’s demand depends not only on the ap-
plication itself, but also on inter-resource scheduling arti-
facts.� Resource demand depends on inputs that are under exter-
nal control.

In this paper we present a new resource management archi-
tecture that enables the resource allocation and management
task to be distributed among applicationsand the resources
themselvesin a secure and scalable manner. This work is very
much in progress and presents many research challenges. We
present our current thoughts in the area.

2 Architecture Overview

We believe that there should be a clear distinction between local
and global optimisation. Rather than approaching the resource
allocation problem by considering the system as a whole, we
propose to break the system up into activeapplicationsandre-
source managers; these are then responsible for their own local
optimisation. By correctly setting up these local optimisation
problems, it should be possible to achieve an approximationto
global optimisation as a side-effect of the local optimisations.

The basic mechanism that we propose to use is that ofre-
source pricing[5, 7, 6]. Each resource manager is responsible
for maximising its revenue, which is generated by sellingre-
source contractsto applications. Applications are responsible
for maximising their utility (and thus the user-perceived util-
ity) by purchasing and trading1 resource contracts. Applications
are provided withcreditsfrom aUser Agent, renewable over a

1A form of resource trading is used to support adaptation.

Adaptive
Application

Resource Scheduler

Resource
Manager

Scheduler
Parameters

Resource
Contract

User Agent

Negotiation
Library

Resource Scheduler

Resource
Manager

Scheduler
Parameters

Resource
Contract

Current
Price

Current
Price

Policy

User
Interface User

Contract

Current
Price

QoS
Translation

Library

Figure 1: Architecture Overview

given time-scale. User agents are responsible for implementing
the policy of a particular user of the system. In a multi-user
system there may exist system-wide policy which imposes lim-
its on the credits allocated to particular user agents. Figure 1
depicts an overview of the architecture.

The separation between local and global optimisation has
several clear advantages over the traditional centralisedap-
proach. Each application in this model is responsible for its
own utility function, hence there is no requirement to specify a
limited form of this function to any external agent (e.g. a central
QoS-Manager). This enables applications to enter into applica-
tion specific forms of adaptation that may be developed on a
per-application basis, by the application writer. It is ourbelief
that only application writers are in a position to develop the def-
inition and understanding of user-perceived utility, and how this
maps into platform independent requirements. This is definitely
not a task that can be carried out by an external agent such as a
QoS-Manager. Translation into platform specific requirements
is carried out by a QoS-Translation library provided by the sys-
tem.

Section 3 provides a detailed description of contracts and
Section 4 discusses the function of user agents in the archi-
tecture. The time-scales over which applications’ creditsare
renewed, and at which they buy and sell contracts are important
system control factors and are discussed in the relevant sec-
tions. Sections 6.3 and 6.4 give examples of how the system
may be used to support the dual goals of QoS-Assurance and
QoS-Adaptation.

3 Contracts

The basic unit of negotiation in this system is thecontract. Con-
tracts come in two flavours:

User Contract These are between the user agent (on behalf of
the user), and an application. They are specified in terms
of a credit allocation (Cuser) and a time-period over which
that allocation will be renewed (Tuser).

Resource Contract These are between an application and a re-
source manager. They are specified in some resource spe-
cific manner.

2



3.1 Resource Contract Specification

A resource contractspecifies a set of parameters in a platform
and resource specific manner (following translation from the
user contract), and a time span over which that contract willre-
main valid. An example [9] is use of a 3-tuple contract,(p; s; t),
for the CPU resource, wherep is a scheduling period measured
in milliseconds during which the application is guaranteeds
milliseconds (theslice) of CPU time, repeated over the length
of the contract,t seconds. The slice of time that the application
is guaranteed may be allocated at any point within the period,
and this time of allocation may change between periods; only
the amount of allocation is guaranteed.

The resource manager is responsible for setting the price of
the contract to reflect the load that it will inflict on the resource
for the full duration of the contract. Longer term contracts(ef-
fectively reservations) would be expected to cost more to pur-
chase, due to the problem of unforeseen future demand. This
will encourage applications to renegotiate.

The resource manager is then responsible for setting the un-
derlying resource scheduler parameters, based on contracts that
it has entered into. We do not impose a parameter set for the re-
source schedulers since this is highly dependent on the schedul-
ing algorithm chosen, and the the resource in question. We
therefore feel that it can be abstracted into a QoS-Translation
library.

Contract renewal will occur at various time-scales. We ex-
pect user contracts to be renewed at time-scales the order ofsec-
onds and resource contracts to be re-negotiated approximately
every 100 milliseconds. Scheduling is likely to take place at
time-scales of single milliseconds. It is important that weim-
pose a minimum length of resource contracts to avoid wasting
resources through excessive re-negotiation.

3.2 Contract Translation

User contracts are translated by the application, from platform
independent specification of requirements into the specificde-
mands on the local system by the use of aQoS-Translation li-
brary. There are many possibilities for development of such a
library, with varying degrees of autonomy from application/user
involvement. In general a translation library will employ some
form of measurement and feedback mechanism. One such pos-
sible translation scheme borrows from the field of call admis-
sion control in ATM networks and is based on observations of
past application behaviour [1].

3.3 Contract Pricing

Resource managers are required to price resource contracts
when they are presented with requests from applications. Ap-
plications may present requests periodically, either for the re-
newal of contracts, or as probes for the current price, pending
adaptation.

Any suitable resource pricing algorithm therefore must sat-
isfy the following properties:� Efficiency. It will be activated relatively often and thus

should not consume excessive resource.

� Stability. It is highly desirable that the system remain sta-
ble with respect to pricing fluctuations. Inflation is a sit-
uation that probably should be avoided, although it may
prove useful as an indication to the user that it is time to
expand their system.� Variable time-scales. It is essential that the algorithm is
able to compute prices for contracts whose length depends
on the application and resource involved. This may be
done by considering past behaviour observations, or by ap-
plying some well known model.

In general, the idea behind resource pricing is to provide
the user/application with incentives to act in a correct manner.
This is achieved through the feedback mechanism of dynamic
pricing—as a resource becomes more congested, its price rises,
encouraging users to move to less congested resources (and,po-
tentially, providing a revenue stream for increasing the capacity
of the congested resource).

3.4 Contract Trading

In order to support adaptation, applications may be allowed
to sell contracts back to the relevant Resource Manager, at a
given price, for the remaining part of the contract. Applications
that wish to enter into fine-grained adaptation over multiple re-
sources will track the current contract prices and trade their con-
tracts to maximise their utility functions. With a suitablepric-
ing structure this should result in applications moving, where
possible, from congested resources to less congested resources,
since the less congested resources should be cheaper. To those
applications that cannot adapt in any meaningful sense, trading
is unlikely to be of any use, and the effect will be of a simple
admission control system. This aspect is discussed furtherin
Section 6.

We envisage the use of third-party resource traders for vari-
ous purposes. The provision of shared disk block caches, shared
library code and shared data needs to be charged for in some
way. One possibility is to assign ownership of these resources
to a third-party, and have that third-party charge for use ofthose
shared resources through applying somead hocpricing algo-
rithm.

4 User Agent

Theuser agentis an entity that acts on behalf of a user with the
aim of implementing policy decisions. A user agent supplies
credits periodically to each of the applications that it overlooks.
To reflect user policy it may change both the amount of cred-
its allocated to the application and the period over which this
allocation is renewed. The user agent can effect application be-
haviour in a variety of ways.

Reducing the allocation of credits has the effect of reducing
the importance of the application in the system. This may result
in the application adapting its behaviour, possibly decreasing
the quality of its output with respect to other applications. The
application is responsible for communicating the cost of its cur-
rent quality level to the user agent, providing informationthat
can be used in policy decision making.

3



Adjusting the period (Tuser) over which new credits (Cuser)
are allocated to an application effects the length and type of con-
tract the application is willing to purchase. If this periodis long,
an application may purchase long-term contracts and therefore
not need to adapt as resource conditions vary (it may however
choose to trade contracts to increase its utility). Alternatively
if this period is short, the application will be forced to adapt
more frequently, reflecting the user’s preference concerning the
stability of output quality.

These parameters provide mechanisms for the user agent to
apply policy, while still enabling applications to respondin ap-
plication specific ways—ultimate control remains with the ap-
plication writer, within given bounds. Applications are free
to renegotiate individual resource contracts at any periodTapp
and at any level of resourceCapp, subject to the constraintTapp � Tuser.

In general a user agent will be extremely simplistic. Many
users may prefer to make the policy decisions themselves and
act as their own agent. The user agent in our architecture is a
placeholder for experimentation with the issues involved.As
a simple example, using this architecture it is easy to develop a
user-agent that takes into account certain user-preferences when
allocating credits. Such preferences could include the applica-
tion with window-focus receiving more resource, and those that
are occluded receiving less. We intend to experiment with some
of these user interface issues in future work.

5 Negotiation Library

Highly adaptive applications will obviously wish to enter into
negotiation with resource managers in some application spe-
cific manner. However, many applications will either not re-
quire complex adaptation support, or they will be legacy appli-
cations that have been written to some other QoS-Negotiation
interface. We provide support for such applications by provid-
ing a set of negotiation libraries that will enter into negotiation
with resources on the application’s behalf.

A negotiation library is responsible for tracking the current
price of all resources and reacting in accordance with appli-
cation supplied parameters. In the case where communication
with the resource manager is costly it may be sensible to have
the resource manager interrupt those applications with which
it currently has contracts, to inform them of the new price,
but only when it has undergone a sufficiently large (application
specified) change.

As an example, consider an application written for a system
with an ‘oracle’-like QoS-Manager that accepts quality mode
definitions from applications (for instance [12]). A suitable
negotiation library will provide the interface traditionally pre-
sented by the QoS-Manager to the application, and will be in-
formed of the operating modes. The application may then pur-
chase resources to enable it to achieve the best mode available to
it at the present time. The user-agent’s credit allocation is effec-
tively mapped onto the old-style modal definition by the QoS-
Negotiation library. Using similar techniques we can support
many types of legacy applications, including those that have no
concept of adaptation or operation modes.

6 Quality of Service Provision

6.1 Batch Applications

Batch applications can be allocated a credit rate accordingto
their importance to the user. The period of credit allocation
should be set relatively short. This is to prevent the application
reserving resources in times of congestion, when real-timeor
interactive applications might require immediate access,where
the batch application can afford to wait. The application will
use the credits from its allocation to buy a contract for the allo-
cation period with as high a resource level as possible. In the
case where the application is an unimportant background task,
it may be allocated no credits, and therefore only be allowedto
run when resource is free (i.e. congestion is non-existent).

6.2 Interactive Applications

Interactive applications require low latency access to resources
for short periods of time. This can be achieved by purchas-
ing specialised contracts from resource managers. Resource
managers may offer a variety of different contracts, with as-
sociated statistical guarantees. These guarantees differfrom
conventional hard guarantees in that they provide a statistical
bound on the likely-hood of violating some parameter, such as
delay. Such guarantees enable the system to exploit the gains of
statistical multiplexing while providing some predictable level
of service. The resource manager will price such contracts ac-
cording to some measure of the load that they will place on
the resource. We also envisage the possibility of co-scheduled
contracts/guarantees from multiple-resource managers, possi-
bly through the use of a third-party trader. These contractswill
similarly be priced appropriately.

6.3 Assured real-time Applications

Applications that require real-time assurance will purchase
long-term contracts for the desired resource level. The user
agent should use a very long period of allocation for such appli-
cations. This will give the application the (almost) hard guaran-
tee it requires to achieve the desired quality of service.

6.4 Adaptive real-time Applications

Adaptive applications can make the most of this system. They
will initially buy contracts for the maximum length of the al-
location period, and then trade them as resource prices varyin
order to increase their utility. This will allow them to makebet-
ter use of the resources that the system currently has available,
whilst still providing the user with the quality of service they
require.

7 Related Work

Resource management for Quality of Service has received a lot
of attention in recent years. Examples include AQUA [8], the
QoS-Broker [11], the Resource Planner in Rialto [10] and Q-
RAM [13]. A good overview of work in this area is given in [2].
Our work differs from the majority of these architectures inthat
we advocate a distributed solution to the problem, rather than

4



attempting to fully specify application requirements to a central
QoS-Manager.

Various market-based approaches to distributed resource
management have been proposed in the literature–a good
overview is given in [5]. Our work shares motivation with that
presented in [15] but differs through the use of a contract based
architecture.

8 Conclusions

This paper has presented a novel approach to the problem of re-
source management in a modern resource controlled operating
system. We believe that the distribution of work between the
applications and the individual resources leads to a scalable and
functional solution. The application of resource pricing pro-
vides incentives for adaptation algorithms by giving feedback
on the current levels of congestion for each resource. We are
currently developing multimedia applications that can react to
such information.

We believe the concept of a timed contract to be central in
provision of an experimental test-bed on which to carry out
further research. The system can be reduced to a simple rate-
based credit allocation system by imposing a global time scale
for contracts, whilst still allowing experimentation withmore
speculative pricing algorithms.

Although initial use of this architecture is in the end-system,
we believe that similar ideas could be applied to server sys-
tems, such as Xenoservers [14] providing accountable execu-
tion of untrusted code in a network, where real customers will
be paying real money for real resource. The concept of con-
tracts will be essential in such a system to enable the provision
of predictable levels of service. Individual dynamic-pricing of
resources should provide incentives for clients to make efficient
use of the system and should also maximise the revenue of the
owners. In essence we have generalised resource pricing as car-
ried out on multi-user mainframe systems.

This work is far from complete and introduces many new
research challenges. The key to a successful system will be in
obtaining a sensible balance between efficiency and complexity.

References
[1] Paul Barham, Simon Crosby, Tim Granger, Neil Stratford,Meriel

Huggard, and Fergal Toomey. Measurement based resource al-
location for multimedia applications. InProceedings of the Mul-
timedia Computing and Networking Conference, SPIE Volume
3310, 1998.

[2] Andrew Campbell, Cristina Aurrecoechea, and Linda Hauw. A
review of QoS architectures.ACM Multimedia Systems Journal,
1996.

[3] David L. Tennenhouse Charles L. Compton. Collaborativeload
shedding for media-based applications. InProceedings of the
Workshop on the Role of Real-Time in Multimedia/Interactive
Computing Systems, November 1993.

[4] S. Chatterjee, J. Sydir, and B. Sabata. Modeling applications for
adaptive QoS-based resource management. InProceedings of
High Assurance Systems Engineering Workshop, August 1997.

[5] Scott H. Clearwater, editor.Market-Based Control, A Paradigm
for Distributed Resource Allocation. World Scientific, 1996.

[6] Costas Courcoubetis and Vasilios A. Siris. An evaluation of pric-
ing schemes that are based on effective usage. Technical Re-
port 214, Institute of Computer Science (ICS), Foundation for
Research and Technology, Hellas (FORTH), February 1998.

[7] F. P. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33–37, 1997.

[8] K. Laksham and Raj Yavatkar. Integrated CPU and network-I/O
QoS management in an endsystem. InProceedings of the Fifth
International Workshop on Quality of Service, 1997.

[9] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Ev-
ers, R. Fairbairns, and E. Hyden. The design and implemen-
tation of an operating system to support distributed multimedia
applications. IEEE Journal on Selected Areas In Communica-
tions, 14(7):1280–1297, September 1996. Article describes state
in May 1995.

[10] R. Draves J. Barrera M. Jones, P. Leach. Modular real-time re-
source management in the Rialto operating system. InProceed-
ings of HotOS-V, May 1995.

[11] Klara Nahrstedt and Jonathan M. Smith. The QoS Broker.IEEE
Multimedia, 1995.

[12] D. Oparah. Adaptive resource management in a multimedia op-
erating system. InProceedings of the 8th International Workshop
on Network and Operating System Support for Digital Audio and
Video, July 1998.

[13] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource
allocation model for QoS management. InProceedings of The
18th IEEE Real-Time Systems Symposium, 1997.

[14] Dickon Reed, Ian Pratt, Stephen Early, Paul Menage, andNeil
Stratford. Xenoservers: Accountable execution of untrusted pro-
grams. Submitted to HotOS’99, November 1999.

[15] Carl A. Waldspurger and William E. Weihl. An object-oriented
framework for modular resource management. InProceedings of
the Fifth Workshop on Object-Orientation in Operating Systems
(IWOOOS ’96), October 1996.

5


