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Abstract— We consider a scheduled orthogonal frequency di-
vision multiplexed (OFDM) wireless cellular network where the
channels from the base-station to then mobile users undergo
flat fading. Spectral resources are to be divided among the
users in order to maximize total user utility. We show that this
problem can be cast as a nonlinear convex optimization problem,
and describe an O(n) algorithm to solve it. Computational
experiments show that the algorithm typically converges in
around 25 iterations, where each iteration has a cost that isO(n),
with a modest constant. When the algorithm starts from an initial
resource allocation that is close to optimal, convergence typically
takes even fewer iterations. Thus, the algorithm can efficiently
track the optimal resource allocation as the channel conditions
change due to fading. We also show how our techniques can
be extended to solve resource allocation problems that arise in
wideband networks with frequency selective fading and when the
utility of a user is also a function of the resource allocations in
the past.

Index Terms—Fast computation, resource allocation, schedul-
ing, wireless cellular networks.

I. I NTRODUCTION

Resource allocation in wireless networks is fundamentally
different than that in wireline networks due to the time-varying
nature of the wireless channel [1]. There has been much prior
work on scheduling policies in wireless networks to allocate
resources among different flows based on the channels they
see and the flow state [1], [2]. The flow state can consist
of the average rate seen by the flow in the past [3], [4],
the delay of the head-of-line packet [5], or the length of the
queue [6]. Much prior work in this area can be divided into
two categories:
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1) Scheduling for elastic (non real-time) flows:The end-
user experience for a elastic flow is modeled by a con-
cave increasing utility function of the rate experienced
by the flow [7]. The proportional fair algorithm (see,
for example, [8]) where all the resources are allocated
to the flow with the maximum ratio of instantaneous
spectral efficiency (which depends on the channel gain)
to the average rate has been analyzed in [9], [10], [3];
roughly speaking this algorithm maximizes the sum of
log utilities of average rates over an asymptotically large
time horizon. A more general scheduling rule where po-
tentially multiple users can be scheduled simultaneously
has been considered in [11], [12]. Most of the above
work assumes that the queues have infinite backlogs,
i.e., packets are always available in the buffers of all
the queues; extensions to finite queues are provided
in, for example, [3]. Joint design of scheduling and
congestion control with modeling of queue dynamics has
been considered in, for example, [13], [14], [15], [4]; in
this case, packets are always assumed to be available at
the congestion controller.

2) Scheduling for Real-Time Flows:Real-time flows are
typically modeled by a predetermined but unknown
arrival process and a delay deadline for each packet. For
such flows, we can roughly define thestability region
as follows: The stability region for a set of queues is
defined as the set of arrival rates at the queues for which
there exists a scheduling policy such that the length of
any queue does not grow without bound over time (see,
for example, [16]). Astabilizing policyis one which en-
sures that the queue lengths do not grow without bound.
Stabilizing policies for a vector of arrival rates within
the stability region for different wireless network models
have been characterized in, for example, [17], [18], [19],
[6], [5], [16]. The scheduling policy in [5] minimizes the
percentage of packets lost because of deadline expiry,
while the delay performance of theexponential rule
(introduced in [6]) was empirically studied in [20].
Work on providing throughput guarantees for such flows
includes [21] and [22], and references therein.

We note that policies to schedule a mixture of elastic (non real-
time) and real-time flows have been considered in [20]. Dis-
tributed algorithms for interference management to maximize
the sum utilities of user signal-to-noise ratios (SNR) in cellular
networks have been studied in [23], [24]. Also, related cross-
layer optimization problems for resource allocation in wireless
networks with different objectives have been analyzed in,



974 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 3, JUNE 2010

for example, [25], [26], [27]. Resource allocation algorithms
which focus on maximizing sum rate (without fairness or
with minimum rate guarantees) for OFDM systems include
[28], [29], [30], [31], [32]. The above summary is only a
representative sample of the work in the general area of
resource allocation in wireless networks. For a more complete
description of prior work, we refer the reader to [6], [2], and
the references therein.

In this paper, we focus on elastic flows with infinite back-
logs; an extension to model constraints of finite backlogs
due to congestion control (which can be modeled as an
upper bound on bandwidth allocated to a user) is straight-
forward. We study the problem of resource allocation in
wideband OFDM wireless cellular networks like Ultra Mobile
Broadband (UMB) [33] and Long Term Evolution path for
3GPP [34]. In particular, we study the assignment of power
and spectral resources to maximize the sum-utility of the
achieved data rates. The user utility can be a function of instan-
taneous rate or average rate over time. For both these cases,the
solution in general can result in the distribution of resources
to multiple flowsat the same time. We show that the problem
is a convex optimization problem. Hence, it can be solved in
O(n3) time forn users using a general-purpose barrier method
(see, for example, [35]). However, the time-varying natureof
wireless channels necessitates re-computation of an optimal
resource allocation in an online manner. This requires the
design of faster computational algorithms to track the optimal
resource allocation. We exploit the underlying structure of
the problem to derive a specialized barrier method that has
a complexity of O(n). We also illustrate the generality of
our computational techniques through extensions to frequency
selective fading, where we exploit frequency diversity.

We note that our work focusses on computational algorithms
and is complementary to that in [9], [10], [3], [11]. The focus
of those papers is on the asymptotic analysis when the user
utility is a function of the rate averaged over a very long time.

A. Organization

The rest of the paper is organized as follows. We first
consider the utility for each flow to be a function of the
instantaneous rate. We describe the mathematical model and
problem formulation, and prove the existence of a unique
positive solution in Sec. II. We exploit the structure of the
underlying optimization problem to obtain anO(n) algorithm
and illustrate its typical behavior through computationalresults
in Sec. III. In Sections IV and V, we consider frequency
selective fading and the case where the utility of a user
is a function of its average rate, respectively. In Sec. VI,
we compare our algorithm with other standard computational
approaches.

II. PROBLEM FORMULATION

A. System Model

We model an OFDM wireless cellular network where spec-
trum and power need to be divided between communication
flows (users) onn links in a cell. We formulate an optimization
problem which is applicable to the downlink; as we show later,

extensions to the uplink can be similarly obtained. We assume
an M-Quadrature Amplitude Modulation (MQAM) scheme
for transmission and a total system bandwidth,B. Then, the
maximum rate (in nats/sec) at which a user,i, can transmit is
given by

Ri = Bi log

(

1 +
KPiGi

N0Bi

)

,

wherePi is the transmit power,Gi is the channel gain over the
link to useri, Bi is the bandwidth allocated to useri, N0 is
the noise power spectral density, andK = −1.5/ log(5BER),
where BER is the desired (constant) bit error rate [36].

We denote the effective flow rate in nats/s/Hz for useri by
ri = Ri/Bi ≥ 0, and the fraction of bandwidth allocated to
it by bi ≥ 0. We denote the associated vectors of rates and
bandwidth-fractions asr ∈ R

n and b ∈ R
n, respectively. The

power consumption to support flowri > 0 can be modeled as

pi(ri, bi) = aibi

(

eri/bi − 1
)

, ai = N0B/(GiK).

Whenri = 0, the power required is0. The power consumption
of useri as a function ofri and bi has the formaif(ri, bi),
where the functionf : S → R is defined as follows:

f(x, y) =

{

y(ex/y − 1) if y > 0,

0 otherwise.

The setS ⊂ R
2 is given by

S = {0} ∪ { (x, y) ∈ R
2 | x ≥ 0, y > 0 }.

We assume that each cell has a (weighted) total power
constraint of the form

P (r, b) =

n
∑

i=1

wiaifi(ri, bi) ≤ Pmax,

where P (r, b) is the (weighted) total power,Pmax > 0 is
the given maximum (weighted) total power, andwi > 0 are
the weights. This constraint can be used to model a sum-
power constraint, withwi = 1, for the downlink in a cell. For
the uplink, it can also be used to model the requirement that
the total interference at a neighboring interfering base-station
should be kept below some threshold1. The weights then
represent the power gains to the neighboring base-station2. We
will normalize the power constraint by defining the normalized
power p : Sn → R by p(r, b) =

∑n
i=1 cif(ri, bi) where

ci = wiai/Pmax. The power constraint is thenp(r, b) ≤ 1.
We first observe thatpi is a convex function ofri andbi. The

functiong(x, y) = yex/y, defined fory > 0, is the perspective
of the exponential function, and so is convex inx andy (see,
e.g., [35, Sec. 3.2.6]). The functionpi is obtained fromg by

1In the uplink, some mobiles may be power limited and so, it is necessary
to model the individual power constraint for each link. Sincewe mainly focus
on the downlink for the rest of the paper, we do not include this in our analysis
for notational simplicity – our techniques can be applied in astraightforward
manner to allow for such constraints as well.

2In general we can have a total interference budget constraint at more than
one base-station – our analysis extends to this case as well.Also, a total
interference budget constraint is a reasonable way to keep interference low
at neighboring base-stations when the frequency tones in neighboring cells
hop randomly and independently of each other [8]. Setting theinterference
budgets is out of the scope of our paper. For the uplink,N0 now represents
the noise plus average interference power spectral density.
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an affine composition, and the addition of a linear term, and
so is convex. The total powerP is therefore also a convex
function of r and so, the total power constraint is a convex
constraint forr, b > 0.

B. User Utility Functions

The utility for useri is a function of its instantaneous rate,
given byUi(ri), so the total utility is

U(r) =
n

∑

i=1

Ui(ri).

We assume that the utility functionsUi : (0,∞) → R are
thrice continuously differentiable with

U ′
i(x) > 0, U ′′

i (x) < 0,

for all x > 0 and

lim
x→0+

U ′
i(x) = ∞.

Thus, Ui (and therefore alsoU ) is strictly increasing and
strictly concave, and the marginal utility increases without
bound as the rate converges to zero. Examples of common
utility functions satisfying these conditions includelog x and
xa, for 0 < a < 1.

Note that the above utility function does not take into
account past allocations to users. We consider this extension
in Section V. We show that we can use our computational
techniques to efficiently compute a scheduling policy that is a
generalization of the scheduling policy in [3].

C. Maximum Utility Resource Allocation

Our goal is to chooser andb to maximize the total utility,
subject to the power constraint, and the bandwidth-fraction
constraint:

maximize U(r),
subject to 1

T b = 1,
r > 0, b > 0,
p(r, b) ≤ 1,

(1)

where 1 denotes the vector with all entries one. The opti-
mization variables areri and bi; the problem data areci and
the functionsUi. The vector inequalities are componentwise;
r ≥ 0 meansri ≥ 0, i = 1, . . . , n. For convenience we will
define the feasible setD by

D =
{

(r, b) ∈ R
2n | 1

T b = 1, p(r, b) ≤ 1, r > 0, b > 0
}

.

We now have the equivalent problem

maximize U(r),
subject to (r, b) ∈ D.

(2)

In the following section we will show that there is a unique
optimal allocation(r, b) which is achieved at a point with
r > 0 and b > 0. Hence relaxing these strict inequalities
to nonstrict inequalities, and appropriately interpreting p and
U , does not change the optimal solution.

The resource allocation problem (2) is a convex optimiza-
tion problem, with 2n variables and2n + 2 constraints.
Roughly speaking, this means that its global solution can be

efficiently computed, for example by a general interior-point
method. These methods typically converge in a few tens of
iterations; each iteration in a general-purpose implementation
requiresO(n3) arithmetic operations (see,e.g., [35, Ch. 11]
or [37]). The algorithm we describe in the next section solves
the resource allocation problem much faster by exploiting its
special structure. The resulting interior point method converges
in about 25 to 30 iterations, where each iteration requiresO(n)
operations with a modest constant.

D. Existence and Uniqueness of a Positive Solution

In this section, we show that the resource allocation prob-
lem (1) has a unique solution(r⋆, b⋆), with r⋆ > 0 and
b⋆ > 0. We will do this by constructing a sequence of points
converging to the maximum, which must therefore lie in the
closure of the feasible set. We first show the following. (The
proofs of the next three lemmas have been moved to the
Appendix.)

Lemma 1:The closure ofD satisfiesD̄ ⊂ Sn.
The interpretation of this result is that allocating zero

bandwidth-fraction and positive rate to a user requires infinite
power. Hence for every point(r, b) in the feasible set, we must
havebi > 0 wheneverri > 0, and in fact this holds for the
closure of the feasible set also.

The next result shows that a point(r, b) with (ri, bi) =
(0, 0) for somei cannot be optimal. The idea here is that since
Ui has infinite slope at0, slightly increasingri andbi will give
an increase in utilityUi which outweighs the decrease in the
other rates necessary to maintain the power constraint.

Lemma 2:Suppose(rk, bk) is a sequence inSn with limit

lim
k→∞

(rk, bk) = (r, b)

and (r, b) ∈ Sn, with 1
T b = 1 andp(r, b) ≤ 1. Suppose also

that for all i = 1, . . . , n either ri > 0 or (ri, bi) = (0, 0).
If there is somei such that(ri, bi) = (0, 0) then there exists
(x, y) ∈ D such that

lim
k→∞

U(rk) < U(x).

The final lemma needed shows that a point(r, b) with ri = 0
for somei must also havebi = 0. If this were not the case, we
could decreasebi to zero, spreading this bandwidth-fraction
among the other users, who can use the extra bandwidth-
fraction to increase their rates without increasing their powers,
thus giving a feasible point with larger total utility. Thenusing
Lemma 2, we can rule out the possibility that a maximizing
sequence converges to(r, b) = 0.

Lemma 3:Suppose(rk, bk) is a sequence inSn with limit

lim
k→∞

(rk, bk) = (r, b)

and (r, b) ∈ Sn, with 1
T b = 1 and p(r, b) ≤ 1. If there is

somei such thatri = 0, bi > 0, then there exists(x, y) ∈ D
such that

lim
k→∞

U(rk) < U(x).

We now have the following theorem showing the existence
and uniqueness of the solution.
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Theorem 1:There exists a unique(r⋆, b⋆) ∈ D with
r⋆, b⋆ > 0 such that

U(r⋆, b⋆) = sup
{

U(r) | (r, b) ∈ D
}

.
Proof: First notice that problem (2) is feasible. That is,

the setD is nonempty, since for small enoughǫ > 0 the choice
b = (1/n)1, r = ǫ1 satisfies(r, b) ∈ D. Let

U⋆ = sup
{

U(r) | (r, b) ∈ D
}

.

Then U⋆ is finite, sinceD is bounded andU is concave.
We must show that this optimal value is actually achieved.
Suppose(rk, bk) is a maximizing sequence inD, so that
U(rk, bk) → U⋆. By extracting a subsequence, we can assume
that(rk, bk) converges to a point(r̄, b̄) ∈ D̄. Lemma 1 implies
this point lies inSn and since it is optimal on̄D Lemma 3
implies that r̄ > 0 and b̄ > 0. Hence the optimal value is
achieved inD. Uniqueness now follows from strict concavity
of U .

III. FAST ONLINE RESOURCEALLOCATION ALGORITHM

In this section, we describe the barrier method to compute
an optimal resource allocation. Such a method, in general, has
complexity O(n3). However, we exploit the structure of the
problem to reduce the complexity toO(n).

A. Barrier Method

We use the barrier method to solve the optimization problem
in (2) [35]. The central point(r⋆(t), b⋆(t)) for a given value of
the barrier parametert is given by the solution of the following
problem:

minimize −tU(r) −
∑n

i=1 (log ri + log bi)
− log (1 − p(r, b)) ,

subject to 1
T b = 1.

(3)

As t increases,(r⋆(t), b⋆(t)) becomes a more accurate approx-
imation to the solution to the problem in (2). Note that the
objective function above is convex, and the above problem is
a convex optimization problem. Moreover, the solution to the
above problem is unique. This follows, in particular, from the
positive-definiteness of the Hessian of the objective function,
as argued in Sec. III-C.

We collect the variables into one vectorx ∈ R
2n, x =

(r1, b1, . . . , rn, bn). Note that we have interleaved the rate
and bandwidth-fraction variables here, so that the variables
associated with a given user are adjacent. Also, we denote the
barrier function as

φ(x) = −

n
∑

i=1

(log ri + log bi) − log (1 − p(r, b)) ,

and
ψt(x) = −tU(r) − φ(x).

The barrier method is then as follows.

Given strictly feasible starting pointx, t := t(0),
µ > 1, toleranceǫ.
Repeat

1) Centering Step.Minimize ψt(x) subject to
1

T b − 1 = 0, starting atx.
2) Update.x := x⋆(t).
3) Stopping Criterion.quit if (2n + 1)/t < ǫ.
4) Increaset. t := µt.

B. Newton Method

We now describe the Newton method to compute the central
point x(t), i.e., solve the problem in (3) for a given value of
t. The Newton step∆x at x, and the associated dual variable
are given by following equations

[

∇2ψt(x) d
dT 0

] [

∆x
ν

]

=

[

t∇U(r) −∇φt(x)
0

]

,

(4)

whered = [0 1 · · · 0 1]T . For the Newton method, we use a
backtracking line search to ensure an adequate decrease inφ
(see,e.g., [35, Ch.11] or [38]). The method is then as follows.

Given starting pointx such that1T b = 1, tolerance
ǫ, α ∈ (0, 1/2), β ∈ (0, 1).
Repeat

1) Compute∆x andλ2 := −∇ψt(x)∆x.
2) Stopping Criterion.quit if λ2/2 ≤ ǫ
3) Backtracking line search onψt(x). s := 1.

while ψt(x + s∆x) > ψt(x) − αsλ2,
s := βs.

4) Update.x := x + s∆x.

C. Fast Computation of Newton Step

We now describe how we can exploit the structure of the
problem to compute the Newton step inO(n) time rather than
using matrix inversion in (4) which has a cost ofO(n3). The
gradient of the barrier function is given by

∂φ(x)

∂ri
= −

1

ri
+

cie
ri/bi

1 − p(r, b)
,

∂φ(x)

∂bi
= −

1

bi
+

cie
ri/bi(1 − 1/bi) − ci

1 − p(r, b)
.

The Hessian of the barrier function is given by

∇2φ(x) =















1/r2
1

1/b2
1

. . .
1/r2

n

1/b2
n















+
1

(1 − p(r, b))2
∇p(r, b)∇p(r, b)T +

1

1 − p(r, b)
∇2p(r, b).

Hence, it follows that

∇2ψt(x) = −t∇2U(r) + ∇2φ(x)

=
1

(1 − p(r, b))2
∇p(r, b)∇p(r, b)T

+











H1

H2

. . .
Hn











,
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where the blocks not shown are all zero, and

Hi =

[

−tU ′′
i (ri) + 1/r2

i 0
0 1/b2

i

]

+
1

1 − p(r, b)

[

eri/bici/bi −eri/biciri/b2
i

−eri/biciri/b2
i eri/bicir

2
i /b3

i

]

.

The gradient,∇p(r, b), of p(r, b) is given by

∂p(r, b)

∂ri
= cie

ri/bi

∂p(r, b)

∂bi
= cie

ri/bi(1 − 1/bi) − ci.

Let us denote

g =
1

(1 − p(r, b))
∇p(r, b),

h = t∇U(r) −∇φt(x).

Then we have

∇2ψt(x) =











H1

H2

.. .
Hn











+ ggT .

It is easy to show thatHi > 0. SinceggT ≥ 0, it follows
that∇2ψt(x) > 0. Sinced is a nonzero vector, it follows that
the KKT matrix on the left in equation (4) is invertible. Also,
the KKT matrix on the left in (4) is the sum of ablock-arrow
matrix and arank-one matrix. We exploit this structure to
compute the Newton step inO(n) time. Let us denoteH =
diag(H1, . . . ,Hn). In particular, we have (see, for example,
[35, App. C])

[

∆x
ν

]

= u −
[gT 0]u

1 + [gT 0]v
v,

where
[

H d
dT 0

]

u =

[

h
0

]

, (5)

and
[

H d
dT 0

]

v =

[

g
0

]

.

We now obtain analytical formulas foru andv, which can be
computed inO(n) time. We consider the computation ofu in
detail; the computation forv is identical. It follows from (5)
that

[

u2i−1

u2i

]

= H−1
i

[

h2i−1

h2i − u2n+1

]

.

Substituting these back in (5), it follows that

u2n+1 =
1

∑n
i=1 H−1

i2,2

n
∑

i=1

(H−1
i2,1

h2i−1 + H−1
i2,2

h2i).

To computeu, we first obtainu2n+1, and then obtain the other
uis. Both these operations costO(n).

D. Convergence Analysis

We now prove the convergence of the Newton method for
this problem for a givent. The convergence of the barrier
method then follows. Consider the minimization ofψt(x).
Define the set of iterates for the Newton method byL =
L(x(0)), where the initial point(x(0)) is chosen to be strictly
feasible. For the initial value oft, such a point is easy to find
by allocating equal bandwidth fractions, and powers to users
such that the total power is less than1, i.e., p(r(0), b(0)) < 1;
for other iterations of the barrier method, the solution forthe
previous value oft is guaranteed to be strictly feasible. The
Newton method is a descent method, i.e.,ψt(x

(k)) ≤ ψt(x
(0)),

for any iterationk.
We first consider the following two lemmas, the proofs of

which have been moved to the Appendix.
Lemma 4:For all iterationsk of the Newton method,x(k)

is strictly feasible.

Now, it can be shown that the iterates belong to a closed
and bounded set.

Lemma 5:The setL ⊂ L̄, where for any(r, b) ∈ L̄, ri, bis
are bounded above and bounded away from zero.

Since the KKT matrix on the left in equation (4) is in-
vertible, and is a continuous function of(r, b), it follows
that its inverse is bounded on the closed setL̄. Also, ∇2ψt

is a continuously differentiable function of(r, b) and hence,
∇2ψt is Lipschitz continuous on̄L, and‖∇2ψt‖ is bounded
above onL̄. The convergence of the Newton method then
follows (see, for example, [35, Ch. 10]).

A formal complexity analysis (i.e., a bound on the number
of Newton steps required to attain an accurate solution) canbe
carried out, but this seems irrelevant to us, given the extremely
fast convergence of the algorithm in practice. A typical number
of steps required is25, and often less.

E. Warm Start

The Newton method can be initialized withb = (1/n)1,
and r = ǫ1, whereǫ > 0 such that(r, b) is strictly feasible,
i.e., p(r, b) < 1. It can also be initialized with an approximate
solution, such as the solution of a resource allocation problem
that is ‘close’. Consider, for example, the situation wherewe
have computed the optimal resource allocation, and then the
problem changes, but not drastically; for example, the utility
functions change, or the channel parametersai change, or
the maximum available powerPmax changes. Running the
barrier method starting from the previously computed optimal
point and a larger value oft typically cuts the number of
iterations required to10 to 15. This can be repeated, in order to
efficiently track the optimal resource allocation as the physical
parameters or requirements change.

F. Numerical Results

In this section, we show the typical behavior of the algo-
rithm described in this paper. We consider a system ofn = 200
users in a cell. The utility function for useri is taken to be
Ui(ri) = ki log ri, where ki are generated as independent
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Fig. 1. Typical convergence of the barrier method.Top. Norm of residual
versus iteration for two different instances.Bottom.Convergence ofU⋆

−U

versus iteration.

uniform random variables on[1, 10]. We takewi = 1, i.e.,
we model the sum-power constraint for the downlink.

We first study the convergence of our algorithm for ran-
domly generatedci’s. In particular, we consider eachci to be
randomly distributed over[0.1, 5], i.e., the received signal to
noise ratio (SNR) at the mobile can vary over the large range
of -9.6 dB to 20dB. Figure 1 (top) shows the convergence of
the norm of the residual, versus cumulative Newton iteration,
for two different instances of the problem. The bottom plot
shows the convergence of the utility to its optimal value; note
that all intermediate iterates are feasible. This plot shows that
the resource allocation obtained is close to optimal, from a
practical point of view, within20 or so Newton iterations.
Highly accurate solutions can be obtained in about 30 iter-
ations or so. Both plots are quite typical; similar results are
obtained asn and other problem parameters are varied.

To illustrate warm-start methods, we simulated a wireless
network with time-varying fading channels. The resulting
scheduling policy obtained by solving (1) has the following
properties. Users with a higher average channel gain get more
resources on average. Users get allocated more resources when
their instantaneous channel gain is relatively high than when
their instantaneous channel gain is low. In our simulation,each
user’s channel undergoes mutually independent Rayleigh fad-
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Fig. 2. Number of Newton iterations needed for re-convergence with
Rayleigh fading channels.Top. Number of Newton iterations for re-
convergence during the first100 time-steps.Bottom. CDF of number of
Newton iterations for re-convergence over 500 time-steps.

ing with a Doppler frequency of 5Hz and mean SNR of 0dB.
Thus, the channel completely de-correlates after 200 time-
steps or so. We re-computed the optimal resource allocation
at every time step of 1ms. Also, the variation in channel gains
over time is very high; the channel can easily swing over a
range of 30 dB.

Figure 2 shows the number of Newton steps required to
re-converge to a very accurate optimal resource allocation,
starting from the previously computed one. The first com-
putation (from a generic initial resource allocation) requires
29 cumulative Newton steps. For the rest of the time-steps we
used a larger value oft(0) such that only 2 centering steps were
required for a guaranteed duality gap of less than10−3. About
80% of the time, the number of Newton iterations required for
re-convergence is less than 15. A larger number of Newton
iterations is occasionally required at times when the rate of
change of the channel is high; for example during deep fades.

IV. FREQUENCYSELECTIVE FADING

In this section, we describe an extension to the case where
there arem frequency bands such that over a given frequency
band, each user’s channel undergoes flat fading. For example,
it is sufficient to choose the bandwidth of each band to be
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less than the minimum coherence bandwidth of the users [39].
Denote byGj

i , the channel gain on thejth frequency band for
useri. Similarly, denote the rate and bandwidth for useri on
the jth frequency band byrj

i and bj
i , respectively. Then the

total rate allocated to useri is

ri =

m
∑

j=1

rj
i .

Also, the total (weighted) power consumption is given by

p(r, b) =
n

∑

i=1

m
∑

j=1

cj
if(rj

i , b
j
i ),

wherecj
i = wiN0B/(Gj

iK).
We again would like to compute a resource allocation to

maximize the total utility, i.e., solve the following optimization
problem.

maximize
∑n

i=1 Ui

(

∑m
j=1 rj

i

)

,

subject to 1
T bj = 1, j = 1, . . . ,m,

∑m
j=1 rj

i > 0, i = 1, . . . , n,

(rj
i , b

j
i ) ∈ S, i = 1, . . . , n, j = 1, . . . ,m,

p(r, b) ≤ 1,
(6)

whererj andbj are inR
n and denote the vectors of the rates

and the bandwidth-fractions given to then users in frequency
bandj, respectively.

The analysis to show the existence of a solution and
convergence of the barrier method is similar to that be-
fore. We now illustrate an efficient method to compute the
Newton step during each Newton iteration. Again, we in-
terleave all the variables into one vectorx ∈ R

2nm, x =
(r1

1, b
1
1, . . . , r

m
1 , bm

1 , . . . , r1
n, b1

n, . . . , rm
n , bm

n ).
The barrier function is given by

φ(x) = −

n
∑

i=1

m
∑

j=1

(log rj
i + log bj

i ) − log(1 − p(r, b)).

Also, denote

ψt(x) = −tU(r) − φ(x),

where nowU(r) =
∑n

i=1 Ui

(

∑m
j=1 rj

i

)

.

Then, at each iteration of the barrier method, we solve the
following problem using Newton’s method.

minimize ψt(x),
subject to 1

T bj = 1, j = 1, . . . ,m.
(7)

The Newton step for this problem can be computed through
the solution of the linear equation in (4), where now,d is a
2mn × m matrix give by

d =







duser
...

duser






,

whereduser is a 2m×m matrix whose(2i, i) entry is one for
i = 1, . . . , n, and all other entries are zero. Now,

∇2ψt(x) = −t∇2U(r) + ∇2φ(x)

=
1

(1 − p(r, b))2
∇p(r, b)∇p(r, b)T

+











K1

K2

. . .
Kn











,

where the blocks not shown are all zero, andKis are2m×2m
matrices given by the following.

Ki = −tU ′′
i





m
∑

j=1

rj
i



















1 0 1 0 . . . 1 0
0 0 0 0 . . . 0 0

...
1 0 1 0 . . . 1 0
0 0 0 0 . . . 0 0















+







H1
i

.. .
Hm

i







where

Hj
i =

[

1/(rj
i )

2 0

0 1/(bj
i )

2

]

+
1

1 − p(r, b)

[

erj

i
/bj

i cj
i/bj

i −erj

i
/bj

i cj
i r

j
i /(bj

i )
2

−erj

i
/bj

i cj
i r

j
i /(bj

i )
2 erj

i
/bj

i cj
i (r

j
i )

2/(bj
i )

3

]

.

Thus, Ki is the sum of a block diagonal matrix (where the
blocks are2 × 2) and a rank one matrix. Hence,Ki can be
inverted inO(m) time. Now, the Hessian ofψt(x) is the sum
of a rank one matrix and a block diagonal matrix with blocks
given by theKis, each of which can be inverted inO(m)
time. Using the elimination of variables as before, it can be
shown that each Newton iteration can be performed inO(nm)
time – compare this with a general-purpose method which
costsO(n3m3). Thus, the reduction in complexity is huge,
especially because in many systems the number of users,n,
is much larger than the number of frequency bands,m [34],
[33].

V. SCHEDULING ALGORITHMS WITH MEMORY

We now illustrate the application of our computational
techniques to design a scheduling heuristic which greedily
maximizes the sum utility of user rates at every time-step. The
average is computed in an online manner using an exponential
filter. This can be used to model the behavior that the end-user
experience is a function of the scheduled rates over multiple
consecutive time-slots rather than a single scheduling decision.
We focus on the downlink.

A. Utility Functions

The utility for user i is a function of its average rate.
We consider an exponential averaging filter; in particular the
average rate,yi(τ), for useri is computed at timeτ as follows:

yi(τ) = αri(τ) + (1 − α)yi(τ − 1), (8)
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whereri(τ) is the rate allocated to useri at timeτ , and0 <
α < 1. Also, we assume all users are initialized with (possibly
very small) non-zero average ratesyi(0) > 0. Then the utility
of useri at timeτ is given byUi(yi(τ)), so the total utility is

n
∑

i=1

Ui(yi(τ)).

The assumptions onUi are the same as those in previous
sections. However, note that nowUi(αri(τ)+(1−α)yi(τ−1))
is well defined forri(τ) = 0 becauseyi(0) > 0 (and hence,
yi(τ) > 0 for all finite τ ).

B. Resource Allocation

The total (weighted) normalized power consumption when
each useri is allocated rateri(τ) and bandwidth-fractionbi(τ)
is

p(r(τ), b(τ)) =
n

∑

i=1

ci(τ)f(ri(τ), bi(τ)),

where ci(τ) = wiN0B/(Gi(τ)KPmax) and Gi(τ) is the
channel gain for theith user at timeτ .

Our goal is to chooser(τ) and b(τ) at each timeτ
to greedily maximize the total utility, subject to the power
constraint and the total bandwidth constraint. Thus, at each
time τ , we solve the following resource allocation problem:

maximize
∑n

i=1 Ui(αri(τ) + (1 − α)yi(τ − 1)),
subject to 1

T b(τ) = 1,
(r(τ), b(τ)) ∈ S,
p(r(τ), b(τ)) ≤ 1.

(9)

The optimization variables areri(τ) and bi(τ); the problem
data areci(τ), yi(τ −1), and the functionsUi. We refer to the
resulting scheduling algorithm as agreedy utility maximization
algorithm. Even though at each time-step, the solution to the
above problem is computed with high accuracy, we study
the resulting scheduler over a longer time horizon only via
a numerical experiment. Hence, when viewed over multiple
time-steps, the resulting algorithm is a heuristic.

C. Relation to Asymptotically-Optimal Bandwidth Allocation

Note that when we takeα to be small enough and restrict
power allocation to be uniform across the entire bandwidth,
the problem in (9) can be approximated as

maximize
∑n

i=1 U ′
i(yi(τ − 1))ri(τ),

subject to ri(τ) = bi log (1 + 1/ci(τ)) , ∀i = 1, . . . , n,
1

T b(τ) = 1, (r(τ), b(τ)) ∈ S.
(10)

The above problem is thus essentially an optimization problem
in the bi(τ)s where the objective function is a linear combi-
nation of thebi(τ)s with positive coefficients:

n
∑

i=1

bi(τ)U ′
i(yi(τ − 1)) log (1 + 1/ci(τ)) ,

and the constraint is a sum constraint on thebi(τ)s. Hence, a
solution to the above optimization problem is one where all
the bandwidth (and power) is allocated to a useri for which

log

(

1 +
1

ci(τ)

)

U ′
i(yi(τ − 1))

≥ log

(

1 +
1

cj(τ)

)

U ′
j(yj(τ − 1)), ∀j = 1, . . . , n.

(11)

This scheduling scheme has been widely studied in the liter-
ature. It has been shown that under appropriate assumptions
on the channel gain processesGi(τ)s and when power is uni-
formly allocated across the bandwidth, the above bandwidth
allocation scheme (roughly) maximizes the total utility ofrates
averaged over a very long time horizon [3]. Hence, we refer to
this scheme as anasymptotically-optimal bandwidth allocation
scheme.

The above scheduling scheme is a good one for narrowband
systems and when there are few users in the system – it
exploits multi-user diversity well and users get scheduledafter
relatively short intervals of time. However, with the advent of
fourth generation wideband systems (e.g. LTE, WiMax, and
UMB) we need to consider schemes which will distribute
the resources among multiple users simultaneously due to the
following reasons:

1) Wideband systems can have a total bandwidth of 20
MHz, and if all the bandwidth is allocated to one user
(cell-phone), the user (cell-phone) may not even have
enough processing power to decode the huge burst of
data. In fact, the UMB spec specifies an upper bound
on the amount of data that can be transmitted to a user
in a single time-slot [33].

2) Fourth generation systems will have thousands of flows
and hybrid ARQ mechanisms. Consider the case where
there are 5000 flows and each time-slot is 1ms. More-
over, assume that it takes 3 hybrid ARQ re-transmissions
to transmit a packet. Then if all the flows experience
independent and identically distributed (i.i.d.) channels,
on average each flow will get scheduled roughly every
15 seconds – this is clearly not acceptable for many
types of traffic even when the individual packets do
not have strict delay requirements. In many applications
(e.g., web browsing), a user’s utility, i.e., the end-user
experience is a function of the average rate it sees over
a short time horizon in the past rather than over a very
long time horizon. Also, in many practical systems, this
will lead to TCP time-outs and hence, the long inter-
scheduling time will be interpreted as congestion thereby
deprecating performance.

We note that the problem formulation in (9) is for a general
value ofα ∈ (0, 1) and without any restriction on the power
profile across the total bandwidth.

D. Existence and Uniqueness of Solution to Problem (9)

For convenience we will re-define the feasible setD by

D =
{

(r(τ), b(τ)) ∈ R
2n | 1

T b(τ) = 1, p(r(τ), b(τ)) ≤ 1,

(r(τ), b(τ)) ∈ S
}

.
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We now have the equivalent problem

maximize
∑n

i=1 Ui(αri(τ) + (1 − α)yi(τ − 1)),
subject to (r(τ), b(τ)) ∈ D.

(12)

Also, we simplify notation and drop the dependence of the
variables onτ . And, we denote

U(r) =
n

∑

i=1

Ui((1 − α)yi(τ − 1) + αri). (13)

We show that the resource allocation problem (9) has a unique
solution (r⋆, b⋆). The proof of the following lemma can be
found in the Appendix.

Lemma 6:The setD is closed.

We now have the following theorem showing the existence
and uniqueness of the solution.

Theorem 2:There exists a unique(r⋆, b⋆) ∈ D such that

U(r⋆) = sup
{

U(r, b) | (r, b) ∈ D
}

.
Proof: First notice that problem (12) is feasible. That is,

the setD is nonempty, since for small enoughǫ > 0 the choice
b = (1/n)1, r = ǫ1 satisfies(r, b) ∈ D. The boundedness of
D is easy to see. SinceD is closed, the supremum is achieved.
Uniqueness follows from strict concavity ofU .

E. Fast Barrier Method

The barrier method to solve problem (12) is identical to that
in Sec. III except that the utility function is now given by that
in (13). Hence, using our approach we can solve problem (12)
in O(n) time.

F. Numerical Results

We considered a time-varying channel model similar to that
in Sec. III-F. In particular, we consider 300 users with i.i.d.
Rayleigh fading channels with 25 Hz Doppler and mean gain
of 0dB. A typical sample path for this channel is shown in
Fig. 3. We again setUi(yi(τ)) = ki log(yi(τ)), whereki were
generated as independent uniform random variables on[1, 10].
Also, we set1/α = 100ms. Thus, if a user,i, does not get
scheduled for 100 ms, its average rate,yi(τ), decays by about
33%. The problem in (9) was re-solved every 1 ms.

In Fig. 3, we plot the utility function as a function of
time (after initial transients) for the following three resource
allocation schemes.

1) Greedy utility maximization:This scheme corresponds
to allocating resources according to the solution of (9)
which is updated every millisecond.

2) Asymptotically-Optimal Bandwidth Allocation:All the
resources are allocated to a single user according to the
scheduling policy in (11).

3) Equal Resource:In this scheme, power and spectrum
are equally distributed among all users at all times.

Since we use log utilities for our computations, the difference
in utilities is a reasonable metric for comparison (vs. ratios
of utilities which can change a lot depending on the units
of ris). Also, note that the large negative values for the
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Fig. 3. Scheduling with memory and log utilities.Top.Typical sample path
of channel gain.Bottom.Evolution of utility functions with time for three
different scheduling policies.

total utility are because we consider normalized ratesri(τ)s,
and sori(τ) ≤ 1 always. We see that the net utility for
the asymptotically-optimal bandwidth allocation algorithm is
lower than that for the greedy utility maximization algorithm
– this is to be expected because the asymptotically-optimal
bandwidth allocation algorithm is designed for (a) very large
time constants, i.e., small values ofα, and (b) when the
power allocation is restricted to be uniform across the entire
bandwidth. In fact, the equal resource allocation algorithm
outperforms the asymptotically-optimal bandwidth allocation
algorithm.

We show the evolution of the average rate of a single user
in Fig. 4. At any timeτ , the increase in average rate is due
to resources allocated to that user, while the decay is due to
the exponential averaging when no resources are allocated.We
can see that the greedy utility maximization scheme dominates
the equal resource scheme – this is because the equal resource
scheme does not take advantage of (a) multi-user diversity by
allocating more resources to users which have strong channels
at any given time, and (b) the knowledge of difference in
the coefficientski’s in the sum utility function. Also, for
most of the time, the greedy utility maximization scheme
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has a higher average rate than that for the asymptotically-
optimal bandwidth allocation scheme. This is because the
asymptotically-optimal bandwidth allocation scheme allocates
resources to only a single user at a time and the resource
allocations for a given user are separated by larger times.

VI. D ISCUSSION: COMPARISON WITH OTHER

COMPUTATIONAL METHODS

Many resource allocation problems in wireless networks are
either convex or can be approximated by convex problems
(e.g., [25], [26], [40]). While a general interior point method
can be used to solve these problems, in many cases it is
possible to exploit the structure of the optimization problem
to obtain fast and/or distributed algorithms. Next, we compare
our approach with two other such approaches.

A. Dual Subgradient Method

The subgradient method (applied to the dual) can also
be used to solve the optimization problem (1) (see [23] for
such a method for CDMA systems). Such a method has an
economic interpretation where the dual variables act as prices
for violating constraints [7]. However, the rate of convergence
of this method is highly dependent on the various condition
numbers in the problem, and it will typically converge much
more slowly than the algorithm presented here. Moreover, each
iteration of the subgradient method also hasO(n) complex-
ity, which is the same as that for our method. Unlike the
subgradient approach, the fast convergence of our method
enables it to be used for fading channels, as the number of
iterations required for re-convergence after a warm start is
small. However, we note that the subgradient method can
be used to derive (typically slow) distributed algorithms for
resource allocation problems in an adhoc wireless network
(e.g., [27]), or the internet [7]; for such problems exploiting
the structure in the computation of the Newton step is typically
not possible. Dual decomposition, primal decomposition, or
joint primal-dual decomposition can be used (e.g., [14]).

B. Waterfilling

For the special case of log-utility functions, a waterfilling
algorithm can be obtained to solve the problem (1), where dur-
ing each iteration, we adjust a dual variableλ and recomputeri

andbi. This is similar to the waterfilling algorithm to compute
the capacity of a wireless channel – see for example, [39,
Ch. 4]. While this might appear to be a better algorithm, the
complexity of this method is quite similar to the complexityof
the barrier method described in this paper. In both algorithms,
(i) each iteration has a cost that isO(n), (ii) around 10–25
or so steps are needed to solve the problem, and (iii) a good
initial condition gives convergence within fewer steps. Wealso
note that the waterfilling approach can be used to solve the
problem in [23].

VII. C ONCLUSION

In this paper, we derived an efficient optimization algorithm
to compute the optimal resource allocation in the downlink
of an OFDM wireless cellular network. We showed that
our algorithm converges to the optimal solution and has a
complexity of O(n) for n users. Numerical results show
that our algorithm converges very fast in practice. Thus, our
algorithm can be implemented in an online manner even for
OFDM networks with high resource granularity. Extension to
frequency selective fading and an application to scheduling
algorithms with memory are also discussed.

APPENDIX

Proof: [Lemma 1] Suppose(xk, yk) is a sequence of
points inD converging to(r, b) ∈ D̄. Now supposei is such
that bi = 0, andri > 0. Then we havelimk→∞ f(xk

i , yk
i ) =

∞ and hencep(xk, yk) also tends to infinity, contradicting the
assumption that(xk, yk) ∈ D.

Proof: [Lemma 2] If limk→∞ U(rk) = −∞ then we are
done. Suppose not, and letT = { i | ri = 0 }. For ǫ > 0 define
y(ǫ) by

yi(ǫ) =







ǫ if i ∈ T,

bi −
ǫ|T |

n − |T |
otherwise.

Then1
T y(ǫ) = 1 for all ǫ > 0. Also definex(ǫ) by

xi(ǫ) =

{

αǫ if i ∈ T,

ri − βǫ otherwise,

whereα > 0 andβ > 0. For β > 0 sufficiently large we have
for all i 6∈ T

df
(

xi(ǫ), yi(ǫ)
)

dǫ

∣

∣

∣

∣

ǫ=0

< 0.

Pick such aβ. Hence

dp
(

x(ǫ), y(ǫ)
)

dǫ
= |T |(eα − 1) +

∑

i6∈T

d

dǫ
f
(

xi(ǫ), yi(ǫ)
)

and therefore forα > 0 sufficiently small

dp
(

x(ǫ), y(ǫ)
)

dǫ

∣

∣

∣

∣

ǫ=0

< 0
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and hence forǫ > 0 sufficiently small we havep
(

x(ǫ), y(ǫ)
)

<
1 and hence

(

x(ǫ), y(ǫ)
)

∈ D. Now we have

U
(

x(ǫ)
)

− lim
k→∞

U(rk) = ǫ

n
∑

i=1

Ui

(

pi(ǫ)
)

− limk→∞ Ui(r
k
i )

ǫ
.

Now if i ∈ T , asǫ → 0+ we have

Ui

(

xi(ǫ)
)

− limk→∞ Ui(r
k
i )

ǫ
→ ∞

and if i 6∈ T then asǫ → 0+

Ui

(

xi(ǫ)
)

− limk→∞ Ui(r
k
i )

ǫ
→ βU ′

i(ri)

Hence forǫ > 0 sufficiently small

lim
k→∞

U(rk) < U
(

x(ǫ)
)

as desired.

Proof: [Lemma 3] If limk→∞ U(rk) = −∞ then we are
done. Suppose not, and letT = { i | ri = 0 andbi > 0 }.
Definey ∈ R

n by

yi =







0 if i ∈ T

bi +

∑

j∈T bj

n − |T |
otherwise.

Then1
T y = 1 andy ≥ 0. For anyx > 0 we have

f(x, z1) > f(x, z2) if 0 < z1 < z2.

If r 6= 0 then for somei 6∈ T we haveri > 0 and hence
p(r, y) < p(r, b) ≤ 1. Also clearly if r = 0 thenp(r, y) < 1.
Now for ǫ > 0 definex(ǫ) by

xi(ǫ) =

{

ri + ǫ if ri > 0 andbi > 0

ri otherwise.

Sincep is continuous, there existsǫ > 0 sufficiently small so
thatp

(

x(ǫ), y
)

< 1. Pick such anǫ. Then sinceUi is increasing
we have

U
(

x(ǫ)
)

> lim
k→∞

U(rk).

Now either x > 0 and y > 0, in which case the proof is
complete, or there is somei such that(xi(ǫ), yi) = (0, 0). In
this case the conditions of Lemma 2 hold, and this then gives
the desired result.

Proof: [Lemma 4] x(0) is strictly feasible by assumption.
Now we use induction to prove the lemma.

Consider iterationk+1, and assume thatx(k) = (r(k), b(k))
is strictly feasible. Denote the Newton step by(∆r(k),∆b(k)).
Now, let l̂ be the minimum value ofl such that for somei,
we haver

(k)
i + l̂∆r

(k)
i = 0 or b

(k)
i + l̂∆b

(k)
i = 0, or p(r(k) +

l̂∆r(k), b(k) + l̂∆b(k)) = 1. Thus,l̂ is the minimum value ofl
for which (r(k) + l∆r(k), b(k) + l∆b(k)) is not strictly feasible.
We claim that asl → l̂, f(r(k) + l∆r(k), b(k) + l∆b(k)) → ∞,
i.e., the step length returned by the line search algorithm is
less than̂l, which implies that the(k + 1)th iterate is strictly
feasible.

Note thatr(k)
i + l̂∆r

(k)
i and b

(k)
i + l̂∆b

(k)
i are finite for all

i. Now assume thatl < l̂. Then U(r(k) + l∆r(k)) is upper

bounded. Similarlylog(r
(k)
i + l∆r

(k)
i ) and log(b

(k)
i + l∆b

(k)
i )

are upper bounded for alli. Also, (1−p(r(k) + l∆r(k), b(k) +
l∆b(k))) is upper bounded by 1. Hence, it follows from the
definition of f(r, b) that that asl → l̂, f(r(k) + l∆r(k), b(k) +
l∆b(k)) → ∞, as claimed above.

Proof: [Lemma 5] For all (r, b) ∈ L, 1
T b = 1. By the

above lemma, all iterates are strictly feasible. Sinceb > 0 for
all (r, b) ∈ L, the bis are bounded above by 1, which implies
that

∑n
i=1 log bi is bounded above. Also,0 < p(r, b) < 1 for

all (r, b) ∈ L, i.e., log(1− p(r, b)) is bounded above by zero.
Sincep(r, b) is an increasing function of theris and decreasing
function of thebis, andbi ≤ 1 for all (r, b) ∈ L, it follows
that ris are bounded above by a constant for all(r, b) ∈ L.
This also implies thatU(r) is bounded above by somēU for
(r, b) ∈ L.

Now, we show thatris andbis are bounded away from zero
for all (r, b) ∈ L. To see this, first note thatU(r),

∑n
i=1 log bi,

∑n
i=1 log ri, andlog(1−p(r, b)) are all bounded above for all

(r, b) ∈ L. Thus, it follows thatψt(r, b) → ∞ as ri → 0 or
bi → 0 for any i. Then, the claim follows since the Newton
method is a descent method, i.e.,ψt(r

(k), b(k)) ≤ ψt(r
(0), b(0))

for any iterationk.

Proof: [Lemma 6] We show that the complement ofD,
i.e., DC is open. Note thatDC is the union of the following
sets:

O1 = {(x, y) ∈ R
2n | 1

T y 6= 1},

O2 = {(x, y) ∈ R
2n | x < 0},

O3 = {(x, y) ∈ R
2n | x > 0, y ≤ 0},

O4 = {(x, y) ∈ R
2n | x = 0, y < 0},

O5 = {(x, y) ∈ R
2n | x ≥ 0, p(x, y) > 1, y > 0}.

It is easy to see thatO1 andO2 are open. Since, the union of
open sets is open, it is sufficient to show thatO3 ∪ O4 ∪ O5

is open. To do this, consider a point(x, y) ∈ O3 ∪ O4 ∪ O5.
Hence, either(x, y) ∈ O3 or (x, y) ∈ O4 or (x, y) ∈ O5 – in
each of these cases there exists anǫ−ball around(x, y) which
is contained inO3 ∪ O4 ∪ O5.
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