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Fast Algorithms for Resource Allocation In
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Abstract— We consider a scheduled orthogonal frequency di-
vision multiplexed (OFDM) wireless cellular network where the
channels from the base-station to then mobile users undergo
flat fading. Spectral resources are to be divided among the
users in order to maximize total user utility. We show that this
problem can be cast as a nonlinear convex optimization problem,
and describe an O(n) algorithm to solve it. Computational
experiments show that the algorithm typically converges in
around 25 iterations, where each iteration has a cost that i€ (n),
with a modest constant. When the algorithm starts from an initial
resource allocation that is close to optimal, convergence typically
takes even fewer iterations. Thus, the algorithm can efficiently
track the optimal resource allocation as the channel conditions
change due to fading. We also show how our techniques can
be extended to solve resource allocation problems that arise in
wideband networks with frequency selective fading and when the
utility of a user is also a function of the resource allocations in
the past.

Index Terms—Fast computation, resource allocation, schedul-
ing, wireless cellular networks.

I. INTRODUCTION

Resource allocation in wireless networks is fundamentally 2)

different than that in wireline networks due to the timeyiag
nature of the wireless channel [1]. There has been much prior
work on scheduling policies in wireless networks to allecat
resources among different flows based on the channels they
see and the flow state [1], [2]. The flow state can consist
of the average rate seen by the flow in the past [3], [4],
the delay of the head-of-line packet [5], or the length of the
gueue [6]. Much prior work in this area can be divided into
two categories:
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1) Scheduling for elastic (non real-time) flow$§he end-

user experience for a elastic flow is modeled by a con-
cave increasing utility function of the rate experienced
by the flow [7]. The proportional fair algorithm (see,
for example, [8]) where all the resources are allocated
to the flow with the maximum ratio of instantaneous
spectral efficiency (which depends on the channel gain)
to the average rate has been analyzed in [9], [10], [3];
roughly speaking this algorithm maximizes the sum of
log utilities of average rates over an asymptotically large
time horizon. A more general scheduling rule where po-
tentially multiple users can be scheduled simultaneously
has been considered in [11], [12]. Most of the above
work assumes that the queues have infinite backlogs,
i.e., packets are always available in the buffers of all
the queues; extensions to finite queues are provided
in, for example, [3]. Joint design of scheduling and
congestion control with modeling of queue dynamics has
been considered in, for example, [13], [14], [15], [4]; in
this case, packets are always assumed to be available at
the congestion controller.

Scheduling for Real-Time Flowdkeal-time flows are
typically modeled by a predetermined but unknown
arrival process and a delay deadline for each packet. For
such flows, we can roughly define tis¢ability region

as follows: The stability region for a set of queues is
defined as the set of arrival rates at the queues for which
there exists a scheduling policy such that the length of
any queue does not grow without bound over time (see,
for example, [16]). Astabilizing policyis one which en-
sures that the queue lengths do not grow without bound.
Stabilizing policies for a vector of arrival rates within
the stability region for different wireless network models
have been characterized in, for example, [17], [18], [19],
[6], [5], [16]. The scheduling policy in [5] minimizes the
percentage of packets lost because of deadline expiry,
while the delay performance of thexponential rule
(introduced in [6]) was empirically studied in [20].
Work on providing throughput guarantees for such flows
includes [21] and [22], and references therein.
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time) and real-time flows have been considered in [20]. Dis-
tributed algorithms for interference management to mazeémi
the sum utilities of user signal-to-noise ratios (SNR) ittiutar
networks have been studied in [23], [24]. Also, related sros
layer optimization problems for resource allocation inekéss
networks with different objectives have been analyzed in,
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for example, [25], [26], [27]. Resource allocation algbnits extensions to the uplink can be similarly obtained. We agsum
which focus on maximizing sum rate (without fairness can M-Quadrature Amplitude Modulation (MQAM) scheme
with minimum rate guarantees) for OFDM systems includ®r transmission and a total system bandwidth, Then, the
[28], [29], [30], [31], [32]. The above summary is only amaximum rate (in nats/sec) at which a ugegan transmit is
representative sample of the work in the general area gifen by

resource allocation in wireless networks. For a more cotaple R; = B;log (1 i KPZ-GZ-)

description of prior work, we refer the reader to [6], [2],dan NoB; )’

the references therein. _ o whereP; is the transmit powex; is the channel gain over the
In this paper, we focus on elastic flows with infinite backyk to useri, B; is the bandwidth allocated to usgrN, is
logs; an extension to model constraints of finite backlogge noise power spectral density, aid= —1.5/ log(5BER)
due to congestion control (which can be modeled as {pere BER is the desired (constant) bit error rate [36].
upper bound on bandwidth allocated to a user) is straight-ye denote the effective flow rate in nats/s/Hz for usby
forward. We study the problem of resource allocation ID. = R;/B; > 0, and the fraction of bandwidth allocated to
wideband OFDM wireless cellular networks like Ultra Mobilg; by b; > 0. We denote the associated vectors of rates and
Broadband (UMB) [33] and Long Term Evolution path folyanqwidth-fractions as € R™ andb € R™, respectively. The

3GPP [34]. In particular, we study the assignment of POWBGwer consumption to support flow > 0 can be modeled as
and spectral resources to maximize the sum-utility of the

achieved data rates. The user utility can be a function ¢dins ~ Pi(ri,bi) = asb; (e"/" —1),  a; = NyB/(G;K).
taneous rate or average rate over time. For both these tasesyhan, — o the power required i8. The power consumption

solution in general can result in the distribution of resegr of useri as a function ofr; andb; has the forma, f(r:, b;)
to multiple flowsat the same time. We show that the problemyp e e the functiony : 5 R is defined as follows:

is a convex optimization problem. Hence, it can be solved In

O(n?) time forn users using a general-purpose barrier method y(er/v —1) if y >0,
(see, for example, [35]). However, the time-varying natofe fla,y) = {0 otherwise.
wireless channels necessitates re-computation of an abptim
resource allocation in an online manner. This requires ti&e setS C R* is given by
design of faster (_:omputational glgorithms to t_rack theropti S={0}U{(z,y) eR | 2>0, y >0}
resource allocation. We exploit the underlying structufe o
the problem to derive a specialized barrier method that hasWe assume that each cell has a (weighted) total power
a complexity of O(n). We also illustrate the generality ofconstraint of the form
our computational techniques through extensions to frecyue n
selective fading, where we exploit frequency diversity. P(r,b) = wia; fi(ri, bi) < Prax,
We note that our work focusses on computational algorithms i=1
and is complementary to that in [9], [10], [3], [11]. The fecu where P(r,b) is the (weighted) total powerP.x > 0 is
of those papers is on the asymptotic analysis when the uges given maximum (weighted) total power, ang > 0 are
utility is a function of the rate averaged over a very longdim the weights. This constraint can be used to model a sum-
power constraint, withv; = 1, for the downlink in a cell. For
A. Organization the uplink, it can also be used to model the requirement that
e total interference at a neighboring interfering baséien

The rest of the paper is organized as follows. We ﬂrgt?wuld be kept below some threshbldrhe weights then

consider the utility for each flow to be a function of the® tth ins to th iahborind b 2ative
instantaneous rate. We describe the mathematical model éﬁﬁ‘resen € power gains 1o the neignboring base-sta

problem formulation, and prove the existence of a uniqlﬁé' normalize the power constraint by defining the normadiz

positive solution in Sec. Il. We exploit the structure of thgov_verp: “j: _)ThR by p(r.b) T .z%i.zltchif(”’gi)<v¥here

underlying optimization problem to obtain @(n) algorithm ¢ V_walalt/ t')“ax' (tehpov_ver cons ralfn 'St_ qvo(fr, )(ﬁ; .Th

and illustrate its typical behavior through computatiomesiults e first observe that, Is a convex function of; andb;. The
function g(x, y) = ye®/¥, defined fory > 0, is the perspective

in Sec. Ill. In Sections IV and V, we consider frequency th tial functi ds0i and
selective fading and the case where the utility of a usgf e exponential function, and so is convexdirandy (see,

is a function of its average rate, respectively. In Sec. V?g [35, Sec. 3.2.6]). The functiop; is obtained fromy by

we compare our algorithm with other standard computationak, the upiink, some mobiles may be power limited and so, it is rezogs

approaches. to model the individual power constraint for each link. Simemainly focus
on the downlink for the rest of the paper, we do not includs ihiour analysis

for notational simplicity — our techniques can be applied straightforward

[I. PROBLEM FORMULATION manner to allow for such constraints as well.

A. System Model 2|n general we can have a total interference budget consttaimore than
one base-station — our analysis extends to this case as Algstl, a total

We model an OFDM wireless cellular network where spetsterference budget constraint is a reasonable way to ketegférence low
trum and power need to be divided between communicati@hneighboring base-stations when the frequency tones ighbering cells

fl links i Il We f | . ._ .. hop randomly and independently of each other [8]. Settinginkerference
ows (users) om links in a cell. We formulate an optimizationy,qgets is out of the scope of our paper. For the upliN,now represents

problem which is applicable to the downlink; as we show latehe noise plus average interference power spectral density
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an affine composition, and the addition of a linear term, arefficiently computed, for example by a general interiorqpoi
so is convex. The total poweP is therefore also a convexmethod. These methods typically converge in a few tens of
function of » and so, the total power constraint is a conveterations; each iteration in a general-purpose impleatant

constraint forr,b > 0. requiresO(n?) arithmetic operations (see,g, [35, Ch. 11]
or [37]). The algorithm we describe in the next section selve
B. User Utility Functions the resource allocation problem much faster by exploitisg i

special structure. The resulting interior point methodvenges
In about 25 to 30 iterations, where each iteration requirgs)
operations with a modest constant.

The utility for useri is a function of its instantaneous rate
given by U;(r;), so the total utility is

U(T)ZZUi(Ti)- D. Exi . . .
= . Existence and Uniqueness of a Positive Solution

In this section, we show that the resource allocation prob-
lem (1) has a unique solutiofr*,b*), with »* > 0 and
b* > 0. We will do this by constructing a sequence of points
Ui(z) >0, U(x) <0, converging to the maximum, which must therefore lie in the

closure of the feasible set. We first show the following. (The
proofs of the next three lemmas have been moved to the
lim U/(z) = oo. Appendix.)
Lemma 1:The closure ofD satisfiesD c S™.
Thus, U; (and therefore alsd/) is strictly increasing and  The interpretation of this result is that allocating zero
strictly concave, and the marginal utility increases witho pangwidth-fraction and positive rate to a user requiresiiefi
bound as the rate converges to zero. Examples of comnmi@iver. Hence for every poifit, b) in the feasible set, we must
utility functions satisfying these conditions incluttez z and haveb; > 0 wheneverr; > 0, and in fact this holds for the
x4, for0 <a <1. closure of the feasible set also.

Note that the above utility function does not take into The next result shows that a poiit, b) with (r;,b;) =
account past allocations to users. We consider this exnens'(o’ 0) for somei cannot be optimal. The idea here is that since
in Section V. We show that we can use our computationgl has infinite slope at, slightly increasing-; andb; will give
techniques to efficiently compute a scheduling policy tsa i an increase in utility/; which outweighs the decrease in the
generalization of the scheduling policy in [3]. other rates necessary to maintain the power constraint.

Lemma 2: Supposegr*, b*) is a sequence i8™ with limit

klim (rk, b%) = (r,b)

We assume that the utility functions;: (0,00) — R are
thrice continuously differentiable with

for all x > 0 and

C. Maximum Utility Resource Allocation

Our goal is to choose andb to maximize the total utility,
subject to the power constraint, and the bandwidth-fractiqnd (r, b)) € 5™, with 176 = 1 andp(r,b) < 1. Suppose also
constraint: maximize U that for alli = 1,...,n eitherr; > 0 or (r;,b;) = (0,0).

(r), If there is some such that(r;, b;) = (0,0) then there exists

subject to 17b =1,
r>0, b>0, (1) (x,y) € D such that

p(r,b) <1, lim U(r*) < U(x).

k—oo

Where_ 1 den_otes the vector \.Nlth all entries one. The opti- The final lemma needed shows that a pinb) with r; — 0
mization variables are; andb;; the problem data are; and . .
for some: must also havé,; = 0. If this were not the case, we

the functionsU;. The yector inequalities are qomponennylseéould decreasé; to zero, spreading this bandwidth-fraction
r >0 meansr; > 0,7 =1,...,n. For convenience we will

" . among the other users, who can use the extra bandwidth-
define the feasible s&bd by . ; : : . ) :
fraction to increase their rates without increasing theivers,
D= { (r,b) e R*™ [ 1Tb =1, p(r,b) <1, 7 >0, b>0 } thus giving a feasible point with larger total utility. Thesing
Lemma 2, we can rule out the possibility that a maximizing
sequence converges (o, b) = 0.
Lemma 3: Supposegr®, b*) is a sequence 8™ with limit

klirn (rk, bk) = (r,b)

We now have the equivalent problem

maximize U(r), @
subject to (r,b) € D.

In the following section we will show that there is a unique
optimal allocation(r,b) which is achieved at a point with and (r,b) € S", with 176 = 1 and p(r,b) < 1. If there is
r > 0 and b > 0. Hence relaxing these strict inequalitesome: such thatr; = 0, b; > 0, then there existéz,y) € D
to nonstrict inequalities, and appropriately interprgtinand such that
U, does not change the optimal solution. lim U(r*) < U(z).
The resource allocation problem (2) is a convex optimiza- koo
tion problem, with 2n variables and2n + 2 constraints. We now have the following theorem showing the existence

Roughly speaking, this means that its global solution can B&d uniqueness of the solution.



976 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 3, JUNE 2010

Theorem 1:There exists a uniquér*,b*) € D with 1) Centering StepMinimize «;(x) subject to
r*,b* > 0 such that 17h — 1 =0, starting atz.

. 2) Update.x := z*(t).
U(rr,b") = sup{ U(r) | (r,0) €D } _ _ 3) Stopping Criterionquit if (2n + 1)/t < e.
Proof: First notice that problem (2) is feasible. That is, 4) Increaset. ¢ :— t.
the setD is nonempty, since for small enough> 0 the choice
b= (1/n)1, r = €l satisfies(r,b) € D. Let B. Newton Method

U* =sup{ U(r) | (r,b) € D }. We now Qescribe the Newton mgthod to compute the central
point z(t), i.e., solve the problem in (3) for a given value of

Then U* is finite, sinceD is bounded andJ is concave. ¢ The Newton step\z atz, and the associated dual variable
We must show that this optimal value is actually achievegye given by following equations

Suppose(r¥, b*) is a maximizing sequence i, so that V2 (x) d A

U(r*, %) — U*. By extracting a subsequence, we can assume { d% 0 } { }

that (7, b*) converges to a poir(f, b)) € D. Lemma 1 implies

this point lies inS™ and since it is optimal oD Lemma 3 — { tVU(r) = V() } 7

implies that7 > 0 andb > 0. Hence the optimal value is 0

achieved inD. Uniqueness now follows from strict concavitywhered = [0 1 --- 0 1]7. For the Newton method, we use a

of U. B packtracking line search to ensure an adequate decrease in
(see.e.g, [35, Ch.11] or [38]). The method is then as follows.

v

(4)

IIl. FAST ONLINE RESOURCEALLOCATION ALGORITHM . . ) .
Given starting pointz such thatl* b = 1, tolerance

In this section, we describe the barrier method to compute e, ae(0,1/2), B e (0,1).
an optimal resource allocation. Such a method, in geneaal, h
complexity O(n?®). However, we exploit the structure of the
problem to reduce the complexity ©@(n).

Repeat

1) ComputeAz and \? := — V), (x)Ax.

2) Stopping Criterionquit if \2/2 < ¢

3) Backtracking line search ogh;(z). s := 1.
A. Barrier Method while ¥, (xz + sAz) > ¥y (z) — asA?,

We use the barrier method to solve the optimization problem 5= f3s.
in (2) [35]. The central pointr*(t), b*(t)) for a given value of 4) Update.z := z + sAx.
the barrier parameteris given by the solution of the following

) C. Fast Computation of Newton Step
problem:

o We now describe how we can exploit the structure of the
minimize  —tU(r) — 321, (logr; + log b;) problem to compute the Newton stepdX{n) time rather than
—log (1 —p(r,b)), (3 using matrix inversion in (4) which has a cost@fn?). The
subject to 175 = 1. gradient of the barrier function is given by

As t increases(r*(t), b*(t)) becomes a more accurate approx- Ao (x) 1 c;eli/bi

imation to the solution to the problem in (2). Note that the or; ri - 1—p(rb)’

objective fungthn gbove is convex, and the above problem is 96(x) 1 cem/M (1= 1/b) —
a convex optimization problem. Moreover, the solution te th o~ b + L= p(rb)
above problem is unique. This follows, in particular, frone t o Lo TR
positive-definiteness of the Hessian of the objective fiongt 1 "€ Hessian of the barrier function is given by

as argued in Sec. IlI-C. 1/r?
We collect the variables into one vecter € R??, ¢ = 1/b2
(r1,b1,...,m,b,). Note that we have interleaved the rate V24(z) =
and bandwidth-fraction variables here, so that the vas&gbl 9
) . . ) 1/
associated with a given user are adjacent. Also, we denete th n 182
barrier function as . X n
" s V(1 0)Vp(r,0) T+ ———<V?p(r,b).
(x) ==Y (logri +logh;) — log (1 — p(r,b)), (1= p(r,b)? L= p(r,0)
i=1 Hence, it follows that
and V2 (x) = —tV2U(r) + V2é(z)
=—tU(r) — . 1
1/%(55) (7“) (b(l‘) — vp(r’ b)Vp(r, b)T
. : (1 =p(r,0))?
The barrier method is then as follows. .
1
. . - - - L (()) HQ
Given strictly feasible starting point, ¢ := ¢\"), + ,

> 1, tolerancee. .
Repeat H,
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where the blocks not shown are all zero, and D. Convergence Analysis
—tU (r )Jr /12 0 We now prove the convergence of the Newton method for
H; = { ! 1/b2 } this problem for a givert. The convergence of the barrier

method then follows. Consider the minimization of(z).
Define the set of iterates for the Newton method hy=
L(2(9)), where the initial pointz(?)) is chosen to be strictly
feasible. For the initial value of, such a point is easy to find
by allocating equal bandwidth fractions, and powers to siser

ri/bici/bi 76”/131'62'7'1‘/1)12
—enilbicir; b2 eril/bicir? /b3

The gradientVp(r,b), of p(r, b) is given by

ap(r,b) /by such that the total power is less thani.e., p(r(©, b)) < 1;
“or, G for other iterations of the barrier method, the solution thee
ap(r, b) ro/be previous value of is guaranteed to be strictly feasible. The
o, — e H(1=1/b;) = ci. Newton method is a descent method, ivg(z(*)) < 1, (2(?),
for any iterationk.
Let us denote We first consider the following two lemmas, the proofs of
1 which have been moved to the Appendix.
9= mVP(Ta b), Lemma 4:For all iterationsk of the Newton methods (%)

i ictly feasible.
h = VU (r) — Vou (). is strictly feasible

Now, it can be shown that the iterates belong to a closed
and bounded set.
H, Lemma 5:The setL C L, where for any(r,b) € L, 7, b;S
H, are bounded above and bounded away from zero.

2 T
V(@) = teg Since the KKT matrix on the left in equation (4) is in-
H, vertible, and is a continuous function d@f,b), it follows
that its inverse is bounded on the closed BetAlso, V21,
It is easy to show thafi; > 0. Sincegg? > 0, it follows is a continuously differentiable function @f-,b) and hence,
that V24, (z) > 0. Sinced is a nonzero vector, it follows that V21, is Lipschitz continuous orL, and || V24| is bounded
the KKT matrix on the left in equation (4) is invertible. Also above onL. The convergence of the Newton method then
the KKT matrix on the left in (4) is the sum oflalock-arrow follows (see, for example, [35, Ch. 10]).
matrix and arank-one matrix. We exploit this structure to A formal complexity analysisi. a bound on the number

Then we have

compute the Newton step i@ (n) time. Let us denotd? = of Newton steps required to attain an accurate solution)ean
diag Hy,...,H,). In particular, we have (see, for examplecarried out, but this seems irrelevant to us, given the metg
[35, App. C]) fast convergence of the algorithm in practice. A typical tem

of steps required i85, and often less.

{Am ] o [gT Olu

v 1+ [g7 O]U%
E. Warm Start
where The Newton method can be initialized with= (1/n)1,
[ 17; d } w = { h } 7 (5) andr = el, wheree > 0 such that(r,b) is strictly feasible,
a0 0 i.e.,p(r,b) < 1. It can also be initialized with an approximate

and solut_ion, such as the_z solution of a resource _aIIO(_:ationIpmb
H d g that is ‘close’. C0n3|der3 for example, the S|tL_1at|0n where
{ a0 } v= { 0 ] have computed the optimal resource allocation, and then the
problem changes, but not drastically; for example, thetwytil
We now obtain analytical formulas far andv, which can be functions change, or the channel parameterschange, or
computed inO(n) time. We consider the computation ofin  the maximum available poweP;,.x changes. Running the

detail; the computation fov is identical. It follows from (5) barrier method starting from the previously computed optim

that point and a larger value of typically cuts the number of
Uj—1 . hoi—1 iterations required t@0 to 15. This can be repeated, in order to
= H; " X : .
U i hoi — tong1 | efficiently track the optimal resource allocation as thegitsl

parameters or requirements change.
Substituting these back in (5), it follows that

F. Numerical Results

Z? ) ;12 ; Hy, haimt + Hi,  ho). In this section, we show the typical behavior of the algo-
rithm described in this paper. We consider a system ef 200

To computeu, we first obtainus,, 1, and then obtain the otherusers in a cell. The utility function for useéris taken to be

u;S. Both these operations ca8{(n). U;(r;) = k;logr;, wherek; are generated as independent

U2n+1 =
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Fig. 1. Typical convergence of the barrier methddp. Norm of residual
versus iteration for two different instancé®ottom.Convergence ot/* — U
versus iteration.

Fig. 2. Number of Newton iterations needed for re-convergemith

Rayleigh fading channelsTop. Number of Newton iterations for re-
convergence during the first00 time-steps.Bottom. CDF of number of
Newton iterations for re-convergence over 500 time-steps.

uniform random variables ofi, 10]. We takew; = 1, i.e,
we model the sum-power constraint for the downlink. ing with a Doppler frequency of 5Hz and mean SNR of 0dB.
We first Study the convergence of our a|gorithm for ranThUS, the channel Completely de-correlates after 200 time-
domly generated;’s. In particular, we consider each to be Steps or so. We re-computed the optimal resource allocation
randomly distributed ovef0.1, 5], i.e., the received signal to at every time step of Ims. Also, the variation in channel gain
noise ratio (SNR) at the mobile can vary over the large rang¥er time is very high; the channel can easily swing over a
of -9.6 dB to 20dB. Figure 1 (top) shows the convergence &nge of 30 dB.
the norm of the residual, versus cumulative Newton itergtio Figure 2 shows the number of Newton steps required to
for two different instances of the problem. The bottom pld€-converge to a very accurate optimal resource allocation
shows the convergence of the utility to its optimal valuetenostarting from the previously computed one. The first com-
that all intermediate iterates are feasible. This plot shtvat Putation (from a generic initial resource allocation) reesi
the resource allocation obtained is close to optimal, from28 cumulative Newton steps. For the rest of the time-steps we
practical point of view, within20 or so Newton iterations. used a larger value of®) such that only 2 centering steps were
Highly accurate solutions can be obtained in about 30 itdequired for a guaranteed duality gap of less than®. About
ations or so. Both plots are quite typical; similar results a80% of the time, the number of Newton iterations required for
obtained as: and other pr0b|em parameters are varied. re-convergence is less than 15. A Iarger number of Newton
To illustrate warm-start methods, we simulated a wirele$§rations is occasionally required at times when the rdte o
network with time-varying fading channels. The resultingh@nge of the channel is high; for example during deep fades.
scheduling policy obtained by solving (1) has the following
properties. Users with a higher average channel gain ge¢ mor IV. FREQUENCY SELECTIVE FADING
resources on average. Users get allocated more resourees whin this section, we describe an extension to the case where
their instantaneous channel gain is relatively high thaemwhthere aren frequency bands such that over a given frequency
their instantaneous channel gain is low. In our simulateath band, each user’'s channel undergoes flat fading. For example
user’s channel undergoes mutually independent Rayleigih fat is sufficient to choose the bandwidth of each band to be
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less than the minimum coherence bandwidth of the users [3@heredyseris a2m x m matrix whose(2i, ) entry is one for

Denote bng, the channel gain on thgh frequency band for i = 1,...,n, and all other entries are zero. Now,
user:. Similarly, denote the rate and bandwidth for usem V2, (2) = —tV2U(r) + V2 (z)
the jth frequency band by andb], respectively. Then the 1
total rate allocated to uséris = Vp(r,b)Vp(r,b)T
a—ptrp VP
Ui, K,
L — J
=Y. X
Jj=1 + ,
Also, the total (weighted) power consumption is given by ' K,
n.m o where the blocks not shown are all zero, dig are2m x 2m
pr,b) =Y " f(r], b)), matrices given by the following.
st 1010 10
wherec! = w; NgB/(G?K). m \ [0 000 00
We again would like to compute a resource allocation to K; = —tU;’ [ > r!
maximize the total utility, i.e., solve the following optination j=1 1 01 0 1 0
problem. 00 0 0 0 0
, H}!
maximize Y, U; (Z}”’:l rf) , ‘
. Toi . +
subjectto 170/ =1, j=1,...,m, o
Z;”:l‘rf.>0, i=1,...,n, i
(rl,blyesS, i=1,...,n, j=1,...,m, where ,
p(’l“, b) <1, Hj _ 1/(sz')2 0
o © =T 0 1)
wherer? andd’ are inR™ and denote the vectors of the rates i g S 02
and the bandwidth-fractions given to theusers in frequency . 1 et /b —en eiri [ (b}) [
bandj, respectively. L=p(r,b) | —eri/biclr] /(b))% emi/bic](r])?/(b])?

The analysis to show the existence of a solution angh,s K, is the sum of a block diagonal matrix (where the
convergence of the barrier method is similar to that bgjocks are2 x 2) and a rank one matrix. Hencé;; can be
fore. We now iIIu;trate an efficient methpd to compute t_hiﬁverted iNO(m) time. Now, the Hessian afy () is the sum
Newton step during each Newton iteration. Again, we insf 5 rank one matrix and a block diagonal matrix with blocks

terleave all the variables into one vectere R?*"™, x = given by the ks, each of which can be inverted @(m)
(rds b1, B0 by T D). time. Using the elimination of variables as before, it can be
The barrier function is given by shown that each Newton iteration can be performe@ (nm)
n m time — compare this with a general-purpose method which
o(z) = _Zz(logrg +1logb!) — log(1 — p(r, b)). costsO(n®m3). Thus, the reduction in complexity is huge,

especially because in many systems the number of users,

is much larger than the number of frequency bandg34],
Also, denote [33].

() = —tU(r) — (), V. SCHEDULING ALGORITHMS WITH MEMORY

where nowU (r) = 3", U Z}n:ﬁf _ We now illustrate the application of our computational

Then, at each iteration of the barrier method, we solve trt]eechnlques fo design a scheduling heuristic which greedily

. . , maximizes the sum utility of user rates at every time-stdge T
following problem using Newton’s method. ; . : . .
average is computed in an online manner using an exponential

filter. This can be used to model the behavior that the end-use
experience is a function of the scheduled rates over maeltipl
consecutive time-slots rather than a single schedulingsidec

i=1 j=1

minimize ¥ (x), 7
subjectto 1707 =1, j=1,...,m.

The Newton step for this problem can be computed throuaMe focus on the downlink.
the solution of the linear equation in (4), where nalvs a

2mn x m matrix give by A. Utility Functions

The utility for useri is a function of its average rate.
duser We consider an exponential averaging filter; in particule t

d— average ratey; (1), for user; is computed at time as follows:

duser yi(r) = ari(r) + (1 - a)ys(r — 1), (8)
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wherer;(7) is the rate allocated to usérat timer, and0 <
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and the constraint is a sum constraint on &he)s. Hence, a

a < 1. Also, we assume all users are initialized with (possiblgolution to the above optimization problem is one where all

very small) non-zero average ratg$0) > 0. Then the utility
of useri at timer is given byU;(y;(7)), so the total utility is

Z Ui(yi(7)).

The assumptions of/; are the same as those in previou

sections. However, note that ndW(or; (7)+(1—a)y;(7—1))
is well defined forr;(t) = 0 becausey;(0) > 0 (and hence,
yi(T) > 0 for all finite 7).

B. Resource Allocation

the bandwidth (and power) is allocated to a uséor which

g (14 ) Ultuntr = 1)
' (11)
> log <1 + 017')) Uj(y;(t=1)), Vj=1,...,n.

This scheduling scheme has been widely studied in the liter-
ature. It has been shown that under appropriate assumptions
on the channel gain process@g(r)s and when power is uni-
formly allocated across the bandwidth, the above bandwidth
allocation scheme (roughly) maximizes the total utilityrafes
averaged over a very long time horizon [3]. Hence, we refer to
this scheme as asymptotically-optimal bandwidth allocation

The total (weighted) normalized power consumption whefkheme.

each usetf is allocated rate; (7) and bandwidth-fractioh; (1)
is

n

3 i) fri(r), bi(r)),
=1
where ¢;(1) = w;NoB/(G;(7)K Pmax) and G;(7) is the
channel gain for théth user at timer.
Our goal is to choose'(r) and b(r) at each timer

p(r(7),b(1))

The above scheduling scheme is a good one for narrowband
systems and when there are few users in the system — it
exploits multi-user diversity well and users get schedualfter
relatively short intervals of time. However, with the adven
fourth generation wideband systems (e.g. LTE, WiMax, and
UMB) we need to consider schemes which will distribute
the resources among multiple users simultaneously duesto th
following reasons:

to greedily maximize the total utility, subject to the power 1) Wideband systems can have a total bandwidth of 20

constraint and the total bandwidth constraint. Thus, aheac
time 7, we solve the following resource allocation problem:

maximize Y., Ui(ar; (1) + (1 — a)y; (1 — 1)),
subject to 17b(7) =1,

(r(1),b(7)) € S,

p(r(7),b(r)) < 1.

The optimization variables are (7) and b;(7); the problem
data are; (1), y;(7 —1), and the functiond/;. We refer to the

©)

MHz, and if all the bandwidth is allocated to one user
(cell-phone), the user (cell-phone) may not even have
enough processing power to decode the huge burst of
data. In fact, the UMB spec specifies an upper bound
on the amount of data that can be transmitted to a user
in a single time-slot [33].

Fourth generation systems will have thousands of flows
and hybrid ARQ mechanisms. Consider the case where
there are 5000 flows and each time-slot is 1ms. More-

2)

resulting scheduling algorithm agyeeedy utility maximization
algorithm. Even though at each time-step, the solution ¢o th
above problem is computed with high accuracy, we study
the resulting scheduler over a longer time horizon only via
a numerical experiment. Hence, when viewed over multiple
time-steps, the resulting algorithm is a heuristic.

C. Relation to Asymptotically-Optimal Bandwidth Alloeti

Note that when we take: to be small enough and restrict
power allocation to be uniform across the entire bandwidth,
the problem in (9) can be approximated as

maximize ;" U (yi(7 — 1))ri(7),
subject to r;(7) = b;log (1 + 1/c;(7)), VYi=1,...,n,
17b(r) =1, (r(7),b(7)) € S.
(10)
The above problem is thus essentially an optimization bl

over, assume that it takes 3 hybrid ARQ re-transmissions
to transmit a packet. Then if all the flows experience
independent and identically distributed (i.i.d.) chasnel
on average each flow will get scheduled roughly every
15 seconds — this is clearly not acceptable for many
types of traffic even when the individual packets do
not have strict delay requirements. In many applications
(e.g., web browsing), a user’s utility, i.e., the end-user
experience is a function of the average rate it sees over
a short time horizon in the past rather than over a very
long time horizon. Also, in many practical systems, this
will lead to TCP time-outs and hence, the long inter-
scheduling time will be interpreted as congestion thereby
deprecating performance.

We note that the problem formulation in (9) is for a general
value ofa € (0,1) and without any restriction on the power
profile across the total bandwidth.

in the b;(7)s where the objective function is a linear combib. Existence and Uniqueness of Solution to Problem (9)

nation of theb,(7)s with positive coefficients:

Zbi<f>uz<yi<f — 1)) log (1 + 1/ei(r))

For convenience we will re-define the feasible eby
D =

{ (r(r),b(r)) € R*" | 17b(7) = 1, p(r(7),b(7)) <1,
(r(7),b(1)) € S }
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We now have the equivalent problem

maximize >0, U;(ar;(7) + (1 — &)y (7 — 1)), (12)
subject to (r(7),b(7)) € D.

Also, we simplify notation and drop the dependence of the
variables onr. And, we denote

U(r) =Y U((1 = a)yi(T = 1) + ary). (13)

i=1

We show that the resource allocation problem (9) has a unique

solution (r*,b*). The proof of the following lemma can be TAO
found in the Appendix. : : : :
Lemma 6:The setD is closed. _500 200 400 600 800 1000

time (ms)
We now have the following theorem showing the existence
and uniqueness of the solution.

Theorem 2:There exists a uniqué™, b*) € D such that % 10°

-0.95
U@r) = sup{ U(r,b) | (r,b) € D }

Proof: First notice that problem (12) is feasible. That is, -
the setD is nonempty, since for small enough> 0 the choice -1t
b= (1/n)1, r = €l satisfies(r,b) € D. The boundedness of
D is easy to see. Sind@ is closed, the supremum is achieved. e

Unigueness follows from strict concavity of. 1 —1.0SM
u

11l greedy utility maximization

E. Fast Barrier Method —— asymptotically optimal bandwidth allocation
““““ equal resource

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

utility

The barrier method to solve problem (12) is identical to that

in Sec. Il except t_hat the utility function is now given byath o 00 500 260 800
in (13). Hence, using our approach we can solve problem (12) time (ms)
in O(n) time.

Fig. 3. Scheduling with memory and log utilitiegop. Typical sample path
of channel gainBottom. Evolution of utility functions with time for three
F. Numerical Results different scheduling policies.
We considered a time-varying channel model similar to that
in Sec. lll-F. In particular, we consider 300 users withdi.i.
Rayleigh fading channels with 25 Hz Doppler and mean gaibtal utility are because we consider normalized ratgs)s,
of 0dB. A typical sample path for this channel is shown iand sor;(t) < 1 always. We see that the net utility for
Fig. 3. We again sel;(y;(7)) = ki log(y:(7)), wherek; were the asymptotically-optimal bandwidth allocation alglnit is
generated as independent uniform random variablgs,df]. |ower than that for the greedy utility maximization algbrit
Also, we setl/a = 100ms. Thus, if a user, does not get — this is to be expected because the asymptotically-optimal
scheduled for 100 ms, its average ratgy), decays by about bandwidth allocation algorithm is designed for (a) verygtar
33%. The problem in (9) was re-solved every 1 ms. time constants, i.e., small values of and (b) when the
In Fig. 3, we plot the utility function as a function ofpower allocation is restricted to be uniform across therenti
time (after initial transients) for the following three oesce pandwidth. In fact, the equal resource allocation algarith
allocation schemes. outperforms the asymptotically-optimal bandwidth allbma
1) Greedy utility maximizationThis scheme correspondsalgorithm.

to allocating resources according to the solution of (9) we show the evolution of the average rate of a single user
which is updated every millisecond. in Fig. 4. At any timer, the increase in average rate is due
2) Asymptotically-Optimal Bandwidth AllocatiorAll the  to resources allocated to that user, while the decay is due to
resources are allocated to a single user according to e exponential averaging when no resources are allodated.
scheduling policy in (11). can see that the greedy utility maximization scheme doreinat
3) Equal Resourcein this scheme, power and spectrumhe equal resource scheme — this is because the equal resourc
are equally distributed among all users at all times. scheme does not take advantage of (a) multi-user divergity b
Since we use log utilities for our computations, the diffexe allocating more resources to users which have strong ckanne
in utilities is a reasonable metric for comparison (vs.asti at any given time, and (b) the knowledge of difference in
of utilities which can change a lot depending on the unitke coefficientsk;’s in the sum utility function. Also, for
of r;s). Also, note that the large negative values for thmost of the time, the greedy utility maximization scheme
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0.016 — — B. Waterfilling
0014l TS;izcﬁe”stg':j‘r’crgax'm'Zat'on For the special case of log-utility functions, a waterfgin
_____ asymp. opt. bandwidth allocation algorithm can be obtained to solve the problem (1), where dur
0.012¢ 1 1 ing each iteration, we adjust a dual variahland recompute;
@ oo1l El andb;. This is similar to the waterfilling algorithm to compute
g ‘ gl ! the capacity of a wireless channel — see for example, [39,
@ 0.008/ i E‘ i 2 I Ch. 4]. While this might appear to be a better algorithm, the
2 0.006] P AW :- p |‘ . :" [ complexity of this method is quite similar to the complexity
:!‘ i o 7'- "\ i\ av AR the barrier method described in this paper. In both algorith
00047 VN 1V TRV AR YT (i) each iteration has a cost that @¥(n), (i) around 10-25
0.0021 A e TR AR or so steps are needed to solve the problem, and (iii) a good
i Y Ta initial condition gives convergence within fewer steps. &@l&o
% : 1000 1500 2000 note that the waterfilling approach can be used to solve the
time (ms) problem in [23].

Fig. 4. Evolution of single user's average rate for thrededént resource
allocation schemes. VII. CONCLUSION
In this paper, we derived an efficient optimization algarith

i . to compute the optimal resource allocation in the downlink
has a higher average rate than that for the asymptoticalj¢ 5n OFDM wireless cellular network. We showed that

optimal bandwidth allocation scheme. This is because t§g; algorithm converges to the optimal solution and has a
asymptotically-optimal .bandW|dth aIIocayon scheme cles complexity of O(n) for n users. Numerical results show

resources to only a single user at a time and the resoufRg: our algorithm converges very fast in practice. Thus, ou
allocations for a given user are separated by larger times. algorithm can be implemented in an online manner even for
OFDM networks with high resource granularity. Extension to
frequency selective fading and an application to schedulin

VI. DiscussiON COMPARISON WITH OTHER ) i i
algorithms with memory are also discussed.

COMPUTATIONAL METHODS

Many resource allocation problems in wireless networks are APPENDIX
either convex or can be approximated by convex problems p.jos- [Lemma 1] Suppose(z*,y"*) is a sequence of
(e.g, [25], [26], [40]). While a general interior point methOdpoints inD converging to(r, b) € D. Now suppose is such
can be used to solve these problems, in many cases itsi; — 0. andr: ;

possible to exploit the structure of the optimization pesbl | 5.4 hence(z*, y*) also tends to infinity, contradicting the
to obtain fast and/or distributed algorithms. Next, we canep assumption thatz*, y*) € D. n
our approach with two other such approaches. ’

> 0. Then we havéim;_.o, f(z¥, yF) =

Proof: [Lemma 2] If limy,_», U(r*) = —oo then we are
done. Suppose not, and [Bt= {i | r;, = 0 }. Fore > 0 define
A. Dual Subgradient Method y(e) by

The subgradient method (applied to the dual) can also € ifieT,
be used to solve the optimization problem (1) (see [23] for yile) = ; — €lT| otherwise.
such a method for CDMA systems). Such a method has an - n—|T]
economic interpretation where the dual variables act @eri Then17y(e) = 1 for all ¢ > 0. Also definex(e) by
for violating constraints [7]. However, the rate of convamge
of this method is highly dependent on the various condition zi(e) = {M ifieT,
numbers in the problem, and it will typically converge much ! r; — Be otherwise,
more slowly than the algorithm presented here. Moreoveh ea .
iteration of the subgradient method also Ha&:) complex- Wherea >0 andj3 > 0. For 5> 0 sufficiently large we have
ity, which is the same as that for our method. Unlike thf@r allig T

subgradient approach, the fast convergence of our method M < 0.

enables it to be used for fading channels, as the number of de =0

iterations required for re-convergence after a warm swrt Pick such a3. Hence

small. However, we note that the subgradient method can d ( (©), y! )) d

be used to derive (typically slow) distributed algorithnos f ;Da:;i,ye = |T|(e* - 1) + Z Ef(xi(e)’yi(g))
€ €

resource allocation problems in an adhoc wireless network T

(e.g, [27]), or the internet [7.]; for such problems e_xplo@mgand therefore forv > 0 sufficiently small
the structure in the computation of the Newton step is tyjyica
not possible. Dual decomposition, primal decomposition, o dp(x(e),y(e))

joint primal-dual decomposition can be usedg [14]). de <0

e=0
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and hence for > 0 sufficiently small we have (z(e), y(e)) <
1 and henceg(z(e), y(e)) € D. Now we have

€

n

D

i=1

U(z(e)) — lim U(r*) =€ )

k—oo

Now if ¢ € T, ase — 0t we have
U; (ml(e)) —limp o0 Ui (rF

7

)

— 0
€

and ifi € T then ase — 0"
Ui (1‘7,(6)) — hmk_)oo Ui(’l”
€
Hence fore > 0 sufficiently small

klgglo U(rk) < U(z(e))

k

i

) _ sl

as desired. [ ]

Proof: [Lemma 3] If lim,_, U(r*) = —oo then we are
done. Suppose not, and & = {i | r; = 0 andb; > 0}.
Definey € R™ by

0

vi= b; +

ifieT

. b
@ otherwise.
n—|T|

Then1?y =1 andy > 0. For anyz > 0 we have

f(xvzl) > f(x’ZQ)

If » # 0 then for somei ¢ T we haver; > 0 and hence
p(r,y) < p(r,b) < 1. Also clearly if r = 0 thenp(r,y) < 1.
Now for € > 0 definex(e) by

{

Sincep is continuous, there exists> 0 sufficiently small so
thatp(z(e),y) < 1. Pick such am. Then sinceJ; is increasing
we have

if 0<2 < 29.

if , >0andb; >0
otherwise.

r; +€

ri

x;(€)

Ul(z(e)) > khﬁrrgo U(rk).

Now eitherz > 0 andy > 0, in which case the proof is
complete, or there is somesuch that(z;(e), y;) = (0,0). In
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bounded. Similarlyog(r® + 1Ar*)) andlog(b!® + 1Ab{F)
are upper bounded for all Also, (1 — p(r®) +1Ar®) pk) 4
IAB™M)) is upper bounded by 1. Hence, it follows from the
definition of f(r, b) that that ad — [, f(r® +1Ar® k) 4
IAD®) — o, as claimed above.

|

Proof: [Lemma 5] For all (r,b) € L, 176 = 1. By the
above lemma, all iterates are strictly feasible. Sikice 0 for
all (r,b) € L, theb;s are bounded above by 1, which implies
that > | logb; is bounded above. Alsd) < p(r,b) < 1 for
all (r,b) € L, i.e.,log(1 — p(r, b)) is bounded above by zero.
Sincep(r, b) is an increasing function of thes and decreasing
function of theb;s, andb;, < 1 for all (r,b) € L, it follows
that ;s are bounded above by a constant for(al]lb) € L.
This also implies that/(r) is bounded above by sonié for
(r,b) € L.

Now, we show that;s andb;s are bounded away from zero
forall (,b) € L. To see this, first note that(r), >, log b;,
> logr;, andlog(1—p(r,b)) are all bounded above for all
(r,b) € L. Thus, it follows thatyy(r,b) — co asr; — 0 or
b; — 0 for any i. Then, the claim follows since the Newton
method is a descent method, i, (r(*) b(F)) < 4, (r(®), b))
for any iterationk. [ ]

Proof: [Lemma 6] We show that the complement @f,
i.e., D¢ is open. Note thaD® is the union of the following
sets:

O' = {(z,y) e R*" [ 1Ty £ 1},

0% = {(x,y) € R*" | z < 0},

0% = {(z,y) eR™ | 2> 0,y <0},

O = {(z,y) eR™ | 2 =0,y < 0},

O° = {(x,y) € R* | 2> 0,p(x,y) > 1,y > 0}.

It is easy to see thad! andO? are open. Since, the union of
open sets is open, it is sufficient to show tidat U O* U O°
is open. To do this, consider a poit,y) € O3 U O* U O°.
Hence, eithelz,y) € O3 or (z,y) € O* or (z,y) € O° —in
each of these cases there exists-aball around(z, y) which
is contained in03 U O* U O°. ]

this case the conditions of Lemma 2 hold, and this then gives

the desired result. [ |

Proof: [Lemma 4] z(? is strictly feasible by assumption.

Now we use induction to prove the lemma.

Consider iteratiork +1, and assume that®) = (r(*), p(¥)
is strictly feasible. Denote the Newton step (ayr(*), Ab(*)).
Now, let [ be the minimum value of such that for some,
we haver® +iAr®™ =0 or ¥ +iAb™ =0, or p(r*) +
IA+HF) b(®) L [Ab*F)) = 1. Thus,l is the minimum value of
for which () +-1Ar®) p*) 1 1Ab*)) is not strictly feasible.
We claim that ag — I, f(r®) +1A7F) p®) L 1AR)) - oo,
i.e., the step length returned by the line search algorittm
less thari, which implies that thek + 1)th iterate is strictly
feasible.

Note thatr* + IAr*™ andp™ + iAp{*) are finite for all
i. Now assume that < I. ThenU(r*) + [Ar®) is upper
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