
RC-MAC: A Receiver-Centric Medium Access
Control Protocol for Wireless Sensor Networks

Pei Huang, Chen Wang, Li Xiao
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI, USA

Email: {huangpe3, wangchen, lxiao}@cse.msu.edu

Hongyang Chen
Institute of Industrial Science

The University of Tokyo
Tokyo, Japan

Email: hongyang@mcl.iis.u-tokyo.ac.jp

Abstract—Wireless sensor networks usually operate under
light traffic loads. However, when an event is detected, a large
volume of data may be generated and delivered to the sink. The
demand for simultaneous data transmission may cause severe
channel collision and thus decrease communication throughput in
contention-based medium access control (MAC) protocols. In this
paper, we introduce a novel receiver-centric data transmission
paradigm, which takes advantage of the tree structure that
is naturally formed in data collection of a sensor network to
assist scheduling of channel access. On the tree structure, a
receiver is able to coordinate its multiple senders’ channel access
so as to reduce channel contention and consequently improve
communication throughput. The protocol seamlessly integrates
scheduling with contention-based medium access control. In addi-
tion, to ensure reliable data transmission, we propose a sequence-
based lost packet recovery scheme in a hop-by-hop recovery
pattern, which could further improve communication throughput
by reducing control overhead. We present the performance of
our receiver-centric MAC protocol through measurements of
an implementation in TinyOS on TelosB motes and extend the
evaluation through ns-2 simulations. Compared with B-MAC and
RI-MAC, we show the benefits of improving throughput and
fairness through receiver-centric scheduling under heavy traffic
loads.

I. INTRODUCTION

A wireless sensor network (WSN) usually consists of a large
number of small sensing devices that are powered by batteries,
equipped with less capable processors and limited memory.
Reporting sensed data to a base station (usually referred to as
the sink) is the primary function of a sensor network. While
sensor nodes normally operate under light traffic loads, they
may be suddenly activated by abrupt events such as enemy
attack or fire detection. In such cases, a large volume of
data may be generated and transmitted to the sink within
a short period of time, which demands a high throughput
communication channel to transmit the bursty traffic in a
timely fashion. However, the severe channel collision, due to
the simultaneous needs of data transmission together with the
lossy nature of wireless channel, makes it a challenging task
to achieve high throughput and reliable transmission in such
an occasion.

Schedule-based TDMA (Time Division Multiple Access)
schemes may be a natural choice to address the intensive
collision problem. However, TDMA-based MAC protocols
usually introduce extra overhead for synchronization, time slot
assignment, and schedule maintenance. Moreover, idle time

active
duty-

cycling

sink R
Si

Fig. 1: RC-MAC utilizes the tree structure to assist channel
access scheduling

slots reduce the channel utilization of TDMA since not all
nodes have pending data to send. Z-MAC [1] addresses the
underutilization problem by allowing nonowners of a time slot
to contend for the slot with less access probability than that of
the owner. Consequently, the denser the network is, the closer
to CSMA (Carrier Sense Multiple Access) the Z-MAC is. The
reason is that in a dense network a large proportion of time
slots are assigned to neighboring nodes that have no data to
send and nodes on the delivery paths have to contend for these
time slots.

Comparing with rigid TDMA schemes, contention-based
CSMA mechanisms are more flexible and simple. No synchro-
nization or topology information is required, and nodes leave
and join in network without incurring any extra operation.
Therefore, they can be easily deployed and flexibly adapted to
a dynamic sensor network topology. However, the contention
nature of CSMA may intensify channel collision and this mo-
tivates us to integrate TDMA’s collision-free characteristic into
CSMA while retaining CSMA’s flexibility and low overhead.

An observation of traffic in WSNs is that when an event
is detected, many nodes may generate reports and send them
to the sink. These messages can be combined or aggregated
at some intermediate nodes and in general, they naturally
form a hierarchical tree structure as shown in Figure 1. In
the hierarchical tree structure, each intermediate node receives
packets from multiple senders and forwards packets to its own
parent at a higher layer. A basic unit consists of one parent
(receiver) and multiple children (senders). The central position
of the parent makes it an ideal candidate to manage channel
access scheduling, which can reduce channel contentions from
multiple children to only one node. In this paper, we show
that many benefits can be gained by switching the scheduling
function to the receiver side.

As acknowledgement (ACK) can be a nontrivial overhead,
to ensure reliable data transmission, we propose a sequence-
based lost packet recovery scheme that can be used to reduce
the control overhead. While sequence-based mechanism has
been successfully applied in the sliding-window algorithm of
TCP protocol, we found that the sequence-based mechanism,
originally designed for end-to-end protocols, is not robust
and incurs extra overhead when directly ported to hop-by-hop
recovery, which is the preferred retransmission mechanism in
WSNs. Therefore, how to address the limitations of sequence-
based mechanism in a hop-by-hop recovery pattern will be
detailed in the coming discussion.

The major contributions of this work are as follows:
• We propose to use tree structure that is naturally formed

in data collection of sensor networks to assist channel
access scheduling. The scheduling is traffic adaptive and
robust to topology changes.

• We shift the scheduling function to the receiver side so
that it avoids collision within one basic unit and achieves
high throughput. Moreover, with our proposed blocking
mechanism, collisions among units are also mitigated.

• The scheduling takes into account the different bandwidth
demands of nodes on a collection tree and assign them
different channel access opportunities.

• We dynamically adjust the rounds of scheduling of a unit
according to the remaining buffer size, hence no unit can
occupy the channel exclusively. Therefore, our proposed
receiver-centric MAC protocol can ensure good fairness.

• We apply sequence-based mechanism in a hop-by-hop
recovery pattern which further improves communication
throughput by reducing control overhead.

In the following discussions, we present the design, im-
plementation, and performance evaluation of our receiver-
centric MAC protocol (RC-MAC). Section II provides an
overview of the basic concept of RC-MAC and outlines design
challenges. Section III details the channel access scheduling
and Section IV discusses the reliable data transmission. Per-
formance evaluation is given in Section V and related work is
summarized in Section VI. We finally conclude this paper in
Section VII.

II. OVERVIEW

In this section we present the basic concept of RC-MAC:
scheduling by utilizing the underlying tree structure. We also
discuss the main goals and challenges of integrating schedul-
ing into CSMA.

A. Basic Concept
Common applications [2] [3] in WSNs determine that

routing protocols in WSNs typically form a collection tree.
For example, the default routing protocol in TinyOS 2.x is
the Collection Tree Protocol (CTP) [4], in which one or more
nodes in the network declare themselves as sink nodes and
all other nodes in the network recursively form routing trees
using ETX (expected transmission count) [5] [6] as the routing
metric [7]. Taking advantage of the underlying tree structure
that exists specifically in WSNs, we can approach TDMA’s

1
S P

2
S

3
S

4
S

Sink

2

3

4

1

1
S

2
S 3

S
4
SP P P P

ACKDATA

t

Fig. 2: RC-MAC schedules time slots to different children
based on overhearing

collision-free environment while do not introduce complex
operations and extra overhead.

Figure 2 shows an overview of how to utilize the tree
structure in RC-MAC. A receiver schedules its children’s
packet transmissions by reusing the ACK. Due to the broadcast
nature, the ACK sent to one of its children can be overheard
by all of its children. Therefore, we can schedule children’s
packet transmissions by piggybacking a scheduling message,
which is the ID of the child that can send a packet the
next time, to an ACK as shown in Figure 2. Overhearing
an ACK containing a scheduled node ID, a child holds its
packet if the scheduled node ID is not equal to itself, or starts
to transmit if the scheduled node ID matches its own. As a
result, channel collision can be significantly reduced since only
the scheduled child starts to transmit while all other siblings
hold their transmissions. RC-MAC operates as “pulling” data
rather than traditional pattern of “pushing” data. This benefits
from the special many-to-one data collection traffic pattern in
WSNs. The failure of a child node is handled by the scheduling
method described in Section III-B and the failure of a parent
node is handled by the CTP [4] where children switch to
another parent according to updated ETX.

B. Design Goals and Challenges
Our main design goal is to reduce collision and improve

communication throughput under heavy traffic loads by utiliz-
ing the underlying tree structure in WSNs. However, we do
not want to introduce extra overhead for time slot assignment
because it is not really traffic adaptive. Each node has to be
assigned a time slot but not all of them have data to send in a
particular period. With only a little information available, we
face two-step design challenges.

First, due to the unbalanced tree structure, different nodes
have different bandwidth demands and thus we should assign
nodes different chances for channel access instead of simple
round robin polling. We also need to address topology changes
as nodes may want to join or leave the scheduling or dynam-
ically change their parents as link quality fluctuates.

Second, having solved collision problem in a basic unit,
challenges come out when you put it into a multi-hop scenario
where contentions among units still exist. We cannot let one
basic unit hold the channel exclusively and we do not want
the scheduling to be interrupted by contentions among units.

III. DESIGN DETAILS

A. Adapt to Low Duty Cycle

Our proposed RC-MAC is designed to be effective under
heavy traffic loads when events of interest are detected. Their
occurrence usually results in long bursts of data packets.
Hence, they typically represent the overall network traffic
although they occur rarely [7]. Nevertheless, in most of the
time, network generates very little or no data traffic. In order
to improve energy efficiency, RC-MAC should be able to adapt
to the widely adopted duty cycling [8] [9] technique in WSNs.
In this technique, nodes turn their radio on only periodically,
alternating between active and sleeping states.

Under light traffic loads, we design RC-MAC to adopt the
paradigm of recent proposed RI-MAC [10], which is shown to
be better than prior LPL (low power listening) based solutions
such as B-MAC [9] and X-MAC [11]. In this paradigm,
senders remain active and wait silently. When a node wakes
up, it broadcasts a beacon to notify neighboring nodes that it
is ready to receive data. Upon receiving the beacon, multiple
senders contend for channel access. Different from RI-MAC
where multiple senders transmit data immediately upon receiv-
ing a beacon, RC-MAC requires initial backoff here because
RI-MAC’s fairness is poor as we noticed in experiments that
the capture effect of radio may provide nodes with higher
transmission power a greater chance to transmit successfully
and continuously. In addition, RC-MAC does not rebroadcast
a beacon with increased backoff window size when detects
a collision because the extra overhead does not bring any
throughput gain as the contention is synchronized. Instead,
senders in RC-MAC will retry with binary exponential backoff
(BEB) if an ACK times out. The receiver is definitely awake
if it has received some data and thus becomes a sender. In an
extreme case where packets sent to a receiver were all collided
and the receiver goes back to sleep, senders stop retrying if
the retrying count reaches a predefined limit. They wait for the
next time the receiver wakes up and broadcasts the beacon.

Any other duty-cycling MAC protocols such as B-MAC [9]
and X-MAC [11] can also be adopted under light traffic loads.
In either B-MAC [9] or X-MAC [11], senders will also stay
awake. Therefore, all nodes on the delivery paths will finally
switch from duty-cycling mode to active mode. The fact is
the basis that CSMA can be used in RC-MAC. Currently, we
adopt the paradigm of RI-MAC with slight modifications to
accommodate the light traffic. When senders hear a beacon or
an ACK from a receiver, they set the flag of the receiver as
active. They only set the flag as dormant when the retrying
count reaches a predefined limit or they finish delivery and
go back to the duty-cycling mode. A node, on the other hand,
stays awake if it has pending data to send. The design of RC-
MAC for heavy traffic loads follows.

B. Channel Access Scheduling

We have demonstrated that there exists an underlying tree
structure in the network as illustrated in Figure 1. As nodes
operate under low duty cycle, a node broadcasts a beacon when
it wakes up. Children nodes that have pending data towards it

Sink

R

P1

B1

A3

A2

A1
C2

C3

P3

A4

B2

B3

P2

C1

P4

P5

P6
D2

D1

B

B DATA
cw

cca

cca

B

DATA ACK

ACK

ACK

SIFS

DATA

DATA

SIFS

SIFS

ACK

ACK

ACKcw

cw cw

DATA

DATA ACK

ACK

ACKcw

cca

cca

busybusy

busy

cca

cca

SIFS

B

cca

B

B

cca

contend for channel access

upon receiving a beacon

P1

A1

A2

wake up to send a beacon ACK contains the ID of the

next sender: A2
the next sender: A3

send immediately if

scheduled

contend for sending

if not scheduled

Transmit Receive
Channel

busy

Node

active

Fig. 3: A simple example of RC-MAC. Use circle to represent
interference among units for simple presentation only (solid
circle: communication range; dotted circle: interference range).

start to contend for sending. Upon receiving a data packet, the
parent node responds an ACK that contains the ID of the next
sender. The scheduled child node will transmit immediately
after it receives an ACK from its parent. On the contrary,
neighboring nodes will refrain from sending for a random
period of time and then start for contention if the receiver flag
is set as active. Designing different contention window for the
random backoff can further distinguish unscheduled sibling
nodes from nonchildren nodes of the parent. Upon receiving
an ACK, nonscheduled siblings perform in-group contention
with contention window (CW) of (SIFS + CCA, T1],
nonchildren nodes perform ongoing-transmission contention
with CW (T1, T2], and nodes within interference range use
network allocation vector (NAV) as virtual carrier to avoid the
hidden terminal problem when they sense the transmission of
ACK. The EIFS (extended interframe space) is thus set to be
long enough for an ACK-DATA-ACK round. Since the parent
knows the number of its children, T1 can be set optimally to
handle contentions among children by analytical techniques
[1], and T2 is set as the commonly used BEB value.

Taking Figure 3 as an example, A1 wins channel access and
transmits a packet to P1 upon receiving a beacon from P1.
During the DATA transmission period, nodes in unit C cannot
transmit because they are in the interference range of unit A
and can sense the busy channel. Upon receiving a packet from
A1, P1 immediately responds an ACK to A1 after a delay of
SIFS (short interframe space). Supposing A2 is the next child
specified to transmit in the ACK, it will immediately start the
CCA (clear channel assessment) outlier algorithm, which is
introduced in B-MAC [9] for accurately determining whether
the channel is clear or not. If the channel is clear, A2 sends a
packet. If A2 does not have data to send or cannot send due to
busy channel or process delay of chips, the backoff timers of
siblings will expire and they will contend for channel access.
If P1 cannot hear from A2 for 3 times, it removes A2 from the

schedule list assuming A2 has no data to send. P1 reduces the
original tree structure to a smaller schedule list to achieve the
goal that only nodes with traffic are assigned time slots, which
yields better channel utilization than TDMA. A2 can still join
in the contention for sending if it has data to send later. If
there is no such a chance, it waits for the next time when the
parent reinitializes the scheduling list as shown below.

C. Dynamic Adjustment for Fairness Among Units

Normally, P1 will keep scheduling its children to transmit
and dominate the channel. For fairness consideration, after
several rounds of scheduling, we need to penalize unit A
to give the parent P1 and neighboring units (e.g., unit C)
the chance to win channel access. The number of rounds
is determined dynamically by the receiver’s remaining buffer
size. For instance, suppose a node’s buffer size is 50 packets
and currently the queue size is 10 packets, then the remaining
buffer size is 40 packets. We allow half of the remaining
buffer size to be used in a continuous scheduling. Therefore,
the node responds an ACK with −1 instead of the ID of the
next sender to terminate the scheduling once it has received
0.5 × 40 = 20 packets from its children. The dynamic
adjustment prevents unbalanced packet accumulation. If one
unit is easier to win channel access than other units, the
parent’s buffer size will shrink quickly. As a result, the unit
is unlikely to keep scheduling, and the dynamic adjustment
prevents any unit from occupying the channel exclusively.

Hearing this type of ACK, neighboring nodes will contend
for channel access immediately since no data will follow this
type of ACK. The parent node (i.e., P1) also participates
in the contention trying to relay packets to its own parent.
All the children of P1, however, will refrain from contention
for a certain period of time as punishment. This reduces the
overall contention and balances the traffic. When the next time
P1 starts scheduling, the schedule list is recovered to be the
original children set to accommodate traffic changes.

D. Account for Different Bandwidth Demands

Scheduling children in a simple round robin manner seems
to be fair in a basic unit scope. However, it is unfair in a
global view. For example, in Figure 3, P2 should be given
more opportunities for sending than D1 and D2 because in
addition to its own data, it also collects data from B1 to
B3. Let bu denote the total bandwidth demand of node u
and du represent the data rate generated by node u. The total
bandwidth demand of node u is equal to the total bandwidth
demand of u’s subtree plus the data rate of itself, which is
bu =

∑
ciu∈Cu

bciu + du where Cu is the children set of node
u and ciu is the i-th child of node u. The probability that node
u will be chosen as the next sender by its parent pu is then
equal to bu/

∑
cipu∈Cpu

bcipu . In this way, heavy traffic nodes
get more channel access opportunities and thus the fairness is
improved. The similar idea is also used in [12] for time slot
assignment. The bandwidth demand can be piggybacked on
the data packets when changed. The information that there is
no data to send any more can also be piggybacked so that a
sender will be removed from the schedule list.

Preamble
Sequence

Bytes: 4
Start of Frame
Delimiter
(SFD)

1

Synchronization Header
(SHR)

Frame
Length

PHY Header
(PHR)

Frame Control
Field
(FCF)

Src Dst NX Frame Check
Sequence
(FCS)

MAC Footer
(MFR)

MAC Header
(MHR)

1 2 1 1 1 2

Seq

1

Fig. 4: The format of a RC-MAC beacon/ACK frame for an
IEEE 802.15.4 radio

E. Collision Among Units

To maximize the benefits of receiver-centric scheduling, we
need to minimize the interferences among units; otherwise, it
may degrade to CSMA. Due to the hidden terminal problem,
some nodes may be unable to sense the transmission of other
units and trigger their own receiver-centric scheduling. To
avoid interrupting ongoing scheduling of neighboring units,
a receiver changes the value of the next sender ID to -2 when
it responds an ACK but detects busy channel. Children of this
unit will backoff several rounds of data transmission before
retry contention, while nonchildren nodes regard it as a chance
to win channel access since no immediate data will follow the
ACK with -2.

In addition to the general rule, there are time priority
and capture effect exception for maintaining the ongoing
scheduling. For example, as shown in Figure 3, although A1

wins channel access, B3 is not in the interference range of
A1 and it may transmit a packet to P2, which will trigger the
receiver-centric scheduling within unit B. If the reception of
P1 is corrupted by the transmission of B3, unit A will not
enter in the receiver-centric scheduling because P1 will not
respond an ACK. If P1 receives A1’s packet successfully, it
assumes that unit B will quit since unit A holds the channel
earlier and thus P1 should start scheduling normally (i.e., time
priority). The reception of P2 may be interfered by the ACK
of P1. If the reception of P2 is corrupted, the receiver-centric
scheduling of unit B will not be triggered, and the children
will keep contending. If P2 can capture the data packet, P2

will also start scheduling since they are far away enough (i.e.,
capture effect exception).

Note that no contention exists in a basic unit. Among
units, only those out of interference range can coexist. The
scheduling considerably reduces the probability of collision
compared to a scenario where all sensor nodes in the same
interference range keep contending for packet transmission,
and also improves channel utilization by allowing compatible
units transmit simultaneously.

F. Beacon/ACK Frame

A beacon frame is used when a node wakes up. The aim is to
notify neighboring nodes that it is ready to receive packets. As
a result, it must contain a Src (source ID) field. In addition to
this, an ACK must also contain a Dst (destination ID) field and
a NX field which is used to specify the next sender. An optional
Seq field is introduced in the following sequence-based lost
packet recovery scheme. The beacon and ACK frame can be
combined together and a node can distinguish them according
to the length of the frame. We comply with the IEEE 802.15.4
frame format to design our beacon/ACK frame format, which
is illustrated in Figure 4.

A B C D

1

2 1

2

2

13

4

5

6

4

5

6

3

Fig. 5: In TCP protocol, node B stops
forwarding packet 4, 5, and 6 when
packet 3 is lost

A B C D

1

2 1

2

2

13

4

5

6

4

5

6

3

3

4

5

Fig. 6: In RC-MAC, node B continues
to forward packet 4, 5, and 6 even
when packet 3 is lost

head

tail

vH
ea
d

Sending region

Recovery region

Receiving region

Fig. 7: RC-MAC divides packet buffers
into three regions: sending region, recov-
ery region, and receiving region

IV. RELIABLE DATA TRANSMISSION OF THE
RECEIVER-CENTRIC MAC PROTOCOL

Retransmission mechanism is widely used to ensure reliable
data transmission in WSNs. The time-out mechanism is a
basic approach to retransmit lost packets. In this mechanism,
a sender will wait for an ACK after it sends out a packet
to a receiver, and retransmit the packet if the ACK is not
received within a certain period of time. The lost packet may
be retransmitted multiple times up to a certain threshold. The
time-out mechanism is simple and can be easily implemented.
However, we have to pay the penalty of large control overhead.
Take CC2420 radio as an example, for a packet with payload
of 28 bytes, there are 19 bytes headers, thus in total 47 bytes
by default in TinyOS. An ACK, on the other hand, is 11
bytes, about one quarter of the DATA frame. Aggregating
small packets into a long message has the drawback of high
cost of retransmission if only a few bits have been corrupted.
Therefore, in the second part of RC-MAC design, several
small packets are aggregated as a group with one ACK, and a
sequence-based mechanism is adopted within a group to detect
and retransmit lost packets. In this design, the number of ACKs
is reduced and only the lost packets in a group, instead of the
whole group, will be retransmitted.

To detect lost packets between a sender and a receiver, the
sequence-based mechanism labels the packets sent in a group
with continuous sequences, and lost packets can be detected
by the receiver if a discontinued sequence is received. We
shift the retransmission decision to the receiver side because
the sender may lose some overhearing packets and incorrectly
thought that some packets with missing sequences are lost.

The sequence-based mechanism, originally designed for the
sliding window algorithm of the end-to-end TCP protocol,
works between a pair of end users to ensure a highly reliable,
strictly in-order packet transmission. Different from the TCP
protocol, the RC-MAC applies the sequence-based mechanism
in a hop-by-hop recovery manner to achieve reliable data
transmission from multiple sources to a sink. This difference
leads to different design principles and implementation details.

A. Streaming Data Transmission from Multiple Sources to A
Sink

As we discussed before, the RC-MAC is designed to maxi-
mize throughput from multiple sources to a sink. Based on this
principle, we design the RC-MAC to stream packet transmis-
sion such that it will not be interrupted by the retransmission of
lost packets. We first show that continuous packet forwarding

can be interrupted by the sequence-based mechanism directly
ported from the TCP protocol. After that, we discuss how the
continuous data stream is maintained in RC-MAC.

The sequence-based mechanism relies on strictly in-order
sequence to detect lost packets, which may incur extra over-
head and interrupt the packet forwarding stream. As illustrated
in Figure 5, when the source sends out packets to the sink
through multihop forwarding, the source labels packets with
continuously increased sequences. When node C receives
packets 4 to 6 while losing packet 3, it will issue a request to
node B to resend packet 3. At this moment, packets 4 to 6 have
to be held by node C and cannot be sent to node D. Otherwise,
node D will also detect that packet 3 is missing and request
node C to retransmit. Here, all the subsequent nodes have to
wait until node C recovers the single lost packet 3. Therefore,
the data forwarding stream is interrupted by retransmission of
lost packets. The situation may become worse if some packets
cannot be recovered due to buffer overflow. Those lost packets
will continue to be detected by intermediate forwarding nodes
and incur frequent lost requests for unrecoverable packets.

The sequence-based mechanism cannot maintain a con-
tinuous data forwarding stream because it relies on strict
continuous sequences globally maintained between the source
and the sink. Therefore, an interruption at any intermediate
node will stop data forwarding of the entire path. To solve this
problem, we add a localized numbering mechanism to relabel
each packet at each hop. In this mechanism, when a node
sends packets, it re-labels packets with continuously increased
sequences maintained in the local variable. An example is
shown in Figure 6, node C detects lost packet 3 based on
discontinued sequences. However, node C can still continue
forwarding packets 4 and 5 to node D since all packets are
re-labeled by node C when sent out. The packet forwarding
between nodes B and C and the packet forwarding between
nodes C and D are isolated by the sequence renumbering.
Therefore, packet interruption at one hop will not affect the
continuous forwarding of the entire path. When a lost packet
is received, it will be inserted to the right position of the queue
according to the original global sequence or sent out before
any other packet to catch up with the global sequence.

B. Request Lost Packets

Each time a node sends 8 packets in a group, and one
byte (i.e., Seq field in Figure 4) is attached to the ACK for
requesting lost packets. Each bit is the representative of a
packet in the group: ‘1’ implies received, ‘0’ means lost.

Upon receiving the lost packet sequences, we slightly mod-
ify the queue management with an extra virtual head to recover
lost packets with O(1) time complexity. In RC-MAC, the
queue is divided into three regions: the sending region, the
receiving region, and the recovery region as shown in Figure 7.
The sending region contains all the packets that wait to send,
the recovery region contains the 8 packets that have been sent,
and the receiving region contains empty buffers that wait for
new packets. The sending region works as a normal queue,
which sends out packets at the head and receives packets at the
tail. However, when a packet is sent out, it will be temporarily
moved from the sending region to the recovery region, which
might be used to recover lost packets as follows.

When the sender is notified by the receiver with missing
sequences, the lost packets can be recovered from the recovery
region. To achieve this, we use an extra pointer named vHead,
which can be temporarily pointed to the buffer containing the
lost packets. When the lost packets are resent, the normal head
will continue to be used for packet forwarding (the lost packets
and the new packets are sent together in a group). Here vHead
is used to lookup and resend the lost packets. In RC-MAC,
looking up a lost packet in the recovery region can be finished
in O(1) time because the sequence is relabeled when sent out,
the sequence number s assigned to a packet is correlated with
the index i of the buffer containing the packet. We have i =
s mod N , where N is the recovery buffer size.

V. PERFORMANCE EVALUATION

We first evaluated RC-MAC in an implementation in
TinyOS on TelosB motes and then extended the evaluation in
ns-2 network simulator. We compared our RC-MAC with B-
MAC [9] and RI-MAC [10]. Assuming all nodes are active, we
have a variant of B-MAC where the LPL is disabled. Then B-
MAC works like a pure CSMA and can achieve high through-
put without the preamble transmission. This comparison al-
lows us to demonstrate the benefits of coordinating channel
access among neighboring nodes. We have the same philoso-
phy as RI-MAC that shifts responsibilities to the receiver side,
but RI-MAC is contention-based and adopts random backoff
to mitigate collisions. On the contrary, RC-MAC is schedule-
based, ensuring no collision within a unit. Thus we compared
our RC-MAC with RI-MAC to demonstrate the advantages of
utilizing the tree structure in a WSN.

A. Experimental TinyOS Evaluation

RI-MAC [10] was implemented under the unified power
management architecture (UPMA) framework [13] [14] in
TinyOS, where B-MAC [9] is also provided. To compare RC-
MAC with them, we also implemented our RC-MAC under
the UPMA framework.

To adapt to heavy traffic loads, we made a minor modifica-
tion on RI-MAC. In the original implementation of RI-MAC,
a node broadcasts a base beacon with no backoff window field
when it wakes up. Then all senders with pending DATA frames
transmit immediately. This design is optimized for a typical
sensor network where there is light or no traffic most of the
time. Under heavy traffic loads, however, due to the capture

effect of CC2420 radio, we found that its fairness is extremely
poor since the received signal strength from different senders
is different. Consequently, some nodes’ transmissions are more
likely to be captured while others have a lower chance to be
received. Therefore, we included an initial backoff value in
the base beacon.

CC2420 includes hardware support for transmitting ACK,
but we are unable to modify the frame format. Therefore, same
as in RI-MAC, RC-MAC uses a frame with only the CC2420
header as the ACK frame. The length is thus 19 bytes, although
we can decrease it to 14 bytes as described in Section III-F. For
fair comparison, B-MAC also adopted this MAC layer ACK
(MACK) when LPL was disabled because in both RI-MAC
and RC-MAC, several milliseconds are used to load the MAC
layer ACK into CC2420’s TX buffer. This variant is named
as BMAC-MACK and the original B-MAC is called BMAC-
LPL-SACK in the following discussions (ACK is hardware
supported but is issued by a software command SACK.strobe(),
hence SACK).

The payload of a DATA frame is 28 bytes. Adding the
headers, the length is 47 bytes in total, which results in an
airtime of about 1.5 ms with 250 kb/s data rate of CC2420. The
preamble length is set to 20 ms in BMAC-LPL-SACK and the
beacon timer in RI-MAC is set to 1 s to minimize the control
overhead while achieving good fairness. The throughput is
measured every minute and averaged over 10 minutes.

To demonstrate the fairness, we use the metric fairness index
defined in [15] [16]. The aim of fairness based on throughput
is to provide the same throughput to all sources. Consider a
system with n flows, each receiving a throughput of Ti, the
fairness index is given by

F =
{
∑n

i=1 Ti}2

n{
∑n

i=1 T
2
i }

Experimental results in one-hop topology. We first evalu-
ated BMAC-LPL-SACK, BMAC-MACK, RI-MAC, and RC-
MAC in a one-hop topology scenario where n nodes are placed
equidistant from a receiver in a circle. Each node transmits
as quickly as possible. Upon receiving an ACK, a node
immediately generates another packet, or if ACK times out,
Resend command is called. This is to measure the achievable
throughput of different MAC protocols under different levels
of contention in a basic unit. We forced radio on so that B-
MAC can disable the LPL. The results are shown in Figure 8.
A source in the figure is a node that generates packets.

When there is only one sender, the sender is always speci-
fied as the next sender in RC-MAC. It transmits a DATA frame
without initial backoff and thus increases the channel utiliza-
tion. On the contrary, BMAC-MACK and RI-MAC both send
a DATA frame after a random initial backoff. Their difference
is that the RI-MAC needs to broadcast beacon periodically and
thus BMAC-MACK achieves higher throughput. Moreover, in
RI-MAC, if the receiver gives up beaconing due to consecutive
collisions, all senders have to wait for the next time the beacon
timer of the receiver expires. Nevertheless, RI-MAC indeed
improves on B-MAC if LPL is needed in B-MAC.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
v
e

ra
g
e

 T
h
ro

u
g
h
p

u
t
-

K
b

p
s

Number of Sources

RC-MAC
RI-MAC

BMAC-MACK
BMAC-LPL-SACK

Fig. 8: Data throughput comparison in the one-hop TelosB
topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F
a
ir
n
e

s
s
 I

n
d

e
x

Number of Sources

RC-MAC

RI-MAC

BMAC-MACK

BMAC-LPL-SACK

Fig. 9: Fairness index comparison in the one-hop TelosB
topology

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

A
v
e
ra

g
e

 T
h
ro

u
g
h

p
u
t
-

K
b

p
s

Number of Sources

RC-MAC
RI-MAC

BMAC-MACK
BMAC-LPL-SACK

Fig. 10: Data throughput comparison in the two-hop TelosB
topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6 7 8

F
a
ir
n

e
s
s
 I
n
d
e

x

Number of Sources

RC-MAC

RI-MAC

BMAC-MACK

BMAC-LPL-SACK

Fig. 11: Fairness index comparison in the two-hop TelosB
topology

The throughput is limited by process delay when only one
sender is presented. It usually takes several milliseconds to
load a packet to the TX FIFO of CC2420. Therefore, when
more than one sender is deployed, the specified next sender
has already loaded the DATA into the TX FIFO and thus can
transmit immediately. The throughput of RC-MAC soars high
to the maximum achievable throughput when 3 senders are
deployed. The throughput is now upper bounded by the ACK
process delay of the receiver. The throughput of B-MAC and
RI-MAC increases slightly and drops a little. The reason is that
all packets have to go through the initial backoff or congestion
backoff, and packets may collide with each other when more
sources are contending.

The fairness comparison is illustrated in Figure 9. The high
performance of RC-MAC comes from the scheduling that
each sender has equal chance to transmit without interference
as coordinated by the receiver. On the contrary, the fairness
indices of B-MAC and RI-MAC drop to 0.8 as the number of
senders increases. The random initial backoff, congestion and
collision leave nodes unfair chances to deliver packets.

Experimental results in two-hop topology. To explore
possible problems in multi-hop relay, we added a manual
routing in TinyOS implementation. The number of children of
the sink is increased from 1 to 4, and the number of children
for each child is increased from 1 to 2. The leaf nodes are
sources. As in the one-hop topology, all sources always have
data to send. The results are presented in Figure 10.

The throughput of RC-MAC and BMAC-MACK is reduced
by a little more than half compared with the one-hop topology
scenario because a packet needs to be relayed by two hops

to arrive at the sink. Compared with BMAC-MACK, the
results demonstrate that coordination among senders helps
to save time for backoff and reduce collisions as well. The
throughput of RI-MAC is decreased by two thirds in the two-
hop scenario. The reasons are as follows. In RI-MAC, a node
sends an ACK beacon when it receives a DATA frame, and
this ACK beacon invites more DATA frames to it. Only when
consecutive collisions make it give up beaconing or no more
data is destined to it, it starts to send its own data. In turn,
it needs to wait for its own intended receiver’s beacon. In
our RC-MAC, we have dynamic adjustment according to the
remaining buffer size. When a node accumulates enough data,
it will penalize the contention of its children and starts its own
data transmission. No unit will hold the channel exclusively.

Fairness comparison illustrated in Figure 11 shows that
although RI-MAC delivers fewer packets, its fairness is better
than B-MAC. On the one hand, the lower delivery ratio
contributes to the fairness. On the other hand, all senders
hold their packets and wait for the intended receiver’s beacon
to initiate data transmission. The synchronized contention in
general assigns more equal chance to senders than BMAC-
MACK where nodes perform congestion backoff.

B. Simulation Evaluation

We further extended the performance evaluation in ns-2. To
match the real implementation, we drew parameters from the
CC2420 datasheet [17]. The RSSI value is averaged over 8
sample periods (128 µs), hence we use this time as the CCA
check delay. The hardware supported ACK is transmitted 12
symbol periods (192 µs) after the last symbol of the incoming

TABLE I: The default simulation parameters

Initial backoff window 31× 10

Binary exponential backoff window (31 ∼ 255)× 10

CCA check delay 128 µs

SIFS 192 µs

Slot time 30.5 µs

Process delay 6 ms

Transmission range 135 m
Interference range 275 m

Communication bandwidth 250 Kbps

frame. We use this time as the value of SIFS. TinyOS provides
a 32 KHz timer, hence the slot time is 1s/32768 = 30.5 µs.
We also add 6 ms process delay as observed in experiments
to the simulator. It compensates for writing/reading TX/RX
FIFO of CC2420. The transmission/interference ranges are set
as reported in [18]. Table I summarizes the default settings of
the simulation parameters.

In simulations, we implemented our dynamic adjustment in
RI-MAC so that a receiver will stop requesting for data ac-
cording to its remaining buffer size. For B-MAC, we disabled
the LPL function. We skip simulation results in the one-hop
topology because of space constraint. The results are consistent
with the experimental results.

Simulation results in two-hop topology. We created two-
hop topologies where hidden terminals may degrade the per-
formance of different protocols. In the topology, the sink has
three children and each child receives data from multiple
sources. We increased the number of sources from 2 to 6
for each of the three intermediate nodes. We also adjusted
the distance between nodes and averaged the results on five
graphs. Figure 12 presents the data throughput comparison
when hidden terminals exist.

With our blocking mechanism described in Section III-E,
RC-MAC is robust to hidden terminals. A hidden terminal may
trigger receiver-centric scheduling in a unit and interfere with
another unit. However, the receiver will penalize the contention
of its children once detects a collision and consequently quits
the scheduling. Only compatible units can coexist and the
interference is mitigated. Since there is no contention within
a basic unit, RC-MAC obtains the highest throughput.

RI-MAC has lower throughput than B-MAC because
sources can only contend for sending when requested by
receivers in RI-MAC. As a result, when two units can transmit
simultaneously, only one unit is active while the senders of the
other unit are waiting for beacon. Furthermore, when a child
of the sink receives enough packets, it also needs to wait for
the sink’s beacon to initiate data transmission.

Although B-MAC delivers more packets than RI-MAC,
its fairness is worse than RI-MAC as shown in Figure 13.
Nodes with fewer neighbors get a greater chance to send when
they all keep contending in B-MAC. Our dynamic adjustment
ensures fairness in that although the boundary nodes have a
greater chance to grab the channel, the receiver will penalize
them accordingly.

Simulation results in multi-hop topology. Having verified
the effectiveness of receiver-centric scheduling, we finally con-
structed a network with 50 nodes that are randomly scattered

in a 1000 × 1000 m2 field. We fixed the number of sources
to be 20 and increased the data rate from 2 pps (packets per
second) to 40 pps. We averaged the results over 10 graphs.
Figure 14 shows the throughput performance under the multi-
hop topology of 50 nodes.

When data rate is low, CSMA-based B-MAC is better than
our schedule-based RC-MAC. When data rate is low, a child
that is scheduled to transmit in RC-MAC may not have data
to send. Other siblings have to hold their packets and contend
for transmission only when their backoff timers expire. If
all children have no data to send, the channel is reserved
but nothing has been sent until neighboring nodes begin to
contend. Therefore, scheduling occupies the channel but no
data is transmitted. It is no better than just letting nodes
with pending data to send contend for transmission. In RI-
MAC, if no data is received after beaconing, this receiver stops
beaconing and resets the beacon timer. When a node has data
to send, it must wait for the receiver’s beacon timer to expire
while in B-MAC it can transmit immediately.

As data rate increases, the performance of B-MAC degrades
due to collisions. The performance of RC-MAC also has
a slight drop because nodes always have data to send and
hidden terminals may interrupt neighboring units’ receiver-
centric scheduling. The hidden terminal problem also affects
RI-MAC, but since all nodes wait for beacons, the interference
is comparably mild.

VI. RELATED WORK

Many studies have been done to provide low duty cycle
MAC protocols [9] [11] [10] in WSNs, aiming at reduc-
ing energy consumption while not compromising end-to-end
delivery delay. The assumption is that the traffic load in a
WSN is usually light. However, when an event is detected,
a large volume of data may need to be delivered within
a short period of time. Asynchronous approaches typically
seek ways to shorten preamble length so that more rooms
can be left for exchanging data. For instance, X-MAC [11]
uses a strobed preamble that consists of a sequence of short
preambles prior to DATA transmission. The intervals between
short preambles allow the intended receiver to send an early
ACK to stop further preamble transmission and start DATA
transmission immediately. WiseMAC [19] truncates preamble
length by learning wakeup schedules of its direct neighbors,
and transmits preamble just before the wakeup time of the
intended receiver. RI-MAC [10], in contrast, relies on the
receiver’s beacon to start data transmission. Hence it does not
occupy the channel until the receiver is ready for receiving.
However, the broadcast of a beacon may cause collisions
among multiple senders to a common receiver. It thus tries
to mitigate collisions by increasing backoff window size,
which is included in the receiver’s beacon. Different from
their contention-based method, we take advantage of the
tree structure to schedule children’s transmissions and thus
ensure that there is no collision among contending senders.
Although RI-MAC and RC-MAC both shift responsibilities to
the receiver side, they target at different problems. RI-MAC
tries to minimize the time that a sender occupies the channel to

 0

 2

 4

 6

 8

 10

 12

 14

 6 9 12 15 18

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
-

K
b
p
s

Number of Sources

RC-MAC
B-MAC

RI-MAC

Fig. 12: Data throughput comparison in
the two-hop ns-2 topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 9 12 15 18

F
a
ir
n
e
s
s
 I
n
d
e
x

Number of Sources

RC-MAC

B-MAC

RI-MAC

Fig. 13: Fairness index comparison in
the two-hop ns-2 topology

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 15 20 25 30 35 40

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
-

K
b
p
s

Data Rate (packets/second)

RC-MAC
B-MAC

RI-MAC

Fig. 14: Data throughput comparison in
the multi-hop ns-2 topology

negotiate a time for data transmission while our RC-MAC aims
to coordinate channel allocation between multiple senders.

To reduce channel collision, a group of TDMA-based proto-
cols have been proposed [12] [20]. However, TDMA protocols
may either require a global view of the entire network topol-
ogy, or incur massive message exchanges between neighboring
nodes. Moreover, TDMA is not flexible and scalable, which
makes it impractical to be deployed in a constantly changing
sensor network. Some hybrid solutions of CSMA and TDMA
have been proposed recently [1] [21]. Z-MAC [1] runs a
global time slots assignment at the setup phase but also allows
nodes to compete for the slot if the owner does not need
it. Z-MAC may degrade to CSMA when many neighboring
nodes have no data to send, whereas in RC-MAC all time
slots are assigned to nodes with pending data. Z-MAC im-
proves schedule-based TDMA by introducing contention while
RC-MAC enhances contention-based CSMA by incorporating
scheduling. Funneling-MAC [21] adopts TDMA in the region
that is close to the sink while using CSMA for the rest area.
This approach can only mitigate channel contention within
a small specific area by taking advantage of the sink’s super
ability. In contrast, RC-MAC utilizes the tree structure to assist
channel access scheduling in the entire network.

VII. CONCLUSION

In this paper, we aim to improve data transmission through-
put in case of heavy traffic loads in sensor networks through
two approaches. First, we incorporate channel access schedul-
ing into CSMA, which reduces channel collision and thus
improves network throughput. Our solution is flexible and
scalable, does not require any synchronization or topology
information. The protocol is traffic adaptive and can be easily
deployed in sensor networks. Second, we propose a sequence-
based retransmission scheme in a hop-by-hop recovery pat-
tern, which further improves communication throughput by
reducing control overhead. We evaluated RC-MAC through
measurements of an implementation in TinyOS on TelosB
motes and detailed ns-2 simulations. Results show that the pro-
posed RC-MAC can significantly improve data transmission
throughput and achieve good fairness by utilizing the special
tree structure in sensor networks.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation under grants CCF-0514078, CNS-0551464, and
CNS-0721441.

REFERENCES

[1] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: A hybrid MAC for
wireless sensor networks,” in Proc. of SenSys, 2005, pp. 90–101.

[2] M. Welsh, G. W. Allen, K. Lorincz, O. Marcillo, J. Johnson, M. Ruiz,
and J. Lees, “Sensor networks for high-resolution monitoring of volcanic
activity,” in Proc. of SOSP, 2005, pp. 1–13.

[3] G. Wittenburg, K. Terfloth, F. L. Villafuerte, T. Naumowicz, H. Ritter,
and J. Schiller, “Fence monitoring - experimental evaluation of a use
case for wireless sensor networks,” in Proc. of EWSN, 2007, pp. 163–
178.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proc. of SenSys, 2009, pp. 1–14.

[5] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A highthrough-
put path metric for multihop wireless routing,” in Proc. of MobiCom,
2003, pp. 134–146.

[6] S. Biswas and R. Morris, “ExOR: Opportunistic multihop routing for
wireless networks,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 4,
pp. 133–144, 2005.

[7] M. H. Alizai, O. Landsiedel, J. A. B. Link, S. Gotz, and K. Wehrle,
“Bursty traffic over bursty links,” in Proc. of SenSys, 2009, pp. 71–84.

[8] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks,” in Proc. of IEEE INFOCOM, vol. 3, Jun.
2002, pp. 1567–1576.

[9] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proc. of SenSys, 2004, pp. 95–107.

[10] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: A receiver-initiated
asynchronous duty cycle MAC protocol for dynamic traffic loads in
wireless sensor networks,” in Proc. of SenSys, 2008, pp. 1–14.

[11] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A short
preamble MAC protocol for duty-cycled wireless sensor networks,” in
Proc. of SenSys, 2006, pp. 307–320.

[12] W.-Z. Song, R. Huang, and B. Shirazi, “TreeMAC: Localized TDMA
MAC protocol for real-time high-data-rate sensor networks,” in Proc. of
PerCom, 2009, pp. 1–10.

[13] K. Klues, G. Hackmann, O. Chipara, and C. Lu, “A component-based
architecture for power-efficient media access control in wireless sensor
networks,” in Proc. of SenSys, 2007, pp. 59–72.

[14] “UPMA package: Unified power management architecture for wire-
less sensor networks,” http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.
x-contrib/wustl/upma/.

[15] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol. 17, pp. 1–14, 2000.

[16] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of
fairness and discrimination for resource allocation in shared computer
system,” Digital Equipment Corp, Tech. Rep. DEC-TR-301, 1984.

[17] “CC2420 datasheet,” http://www.ti.com.
[18] G. Anastasi, M. Conti, A. Falchi, E. Gregori, and A. Passarella,

“Performance measurements of mote sensor networks,” in Proc. of ACM
MSWiM, vol. 1, Oct. 2004, pp. 174–181.

[19] A. El-Hoiydi and J.-D. Decotignie, “WiseMAC: An ultra low power
MAC protocol for multi-hop wireless sensor networks,” in Proc. of
ALGOSENSORS, 2004, pp. 18–31.

[20] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-
efficient collision-free medium access control for wireless sensor net-
works,” in Proc. of SenSys, 2003, pp. 181–192.

[21] G.-S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo,
“Funneling-MAC: A localized, sink-oriented MAC for boosting fidelity
in sensor networks,” in Proc. of SenSys, 2006, pp. 293–306.

