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Abstract Anomaly detection is emerging as a necessary

component as wireless networks gain popularity. Anomaly

detection has been addressed broadly in wired networks

and powerful methods have been developed for correct

detection of a variety of known attacks and other anoma-

lies. In this paper, we propose a real-time anomaly detec-

tion and identification scheme for wireless mesh networks

(WMN) using components from previous methods devel-

oped for wired networks. Experiments over a WMN test-

bed show the effectiveness of the proposed scheme in

isolating different types of anomalies, such as Denial-of-

service attacks, port scan attacks, etc. Our scheme uses

Chi-square statistics and it is based on similar ideas as the

scheme presented by Lakhina et al. although it has lower

computational complexity. The original method by Lakh-

ina et al. was developed for wired networks and used

Principal Component Analysis (PCA) for reducing the

dimensions of observed data and Hotelling’s t2 statistics to

distinguish between normal and abnormal traffic condi-

tions. However, in our studies we found that dimension

reduction is the most computationally intensive process of

the scheme. In this paper we propose an alternative way of

reducing dimensions using flow variances in a Chi-square

test. Experimental results show that the Chi-square test

performs similarly well to the PCA-based method at

merely a fraction of the computations. Moreover, we pro-

pose an automatic identification scheme to pin-point the

cause of the detected anomaly and its contribution in terms

of additional or lack of traffic. Our results and comparison

with other statistical tools show that the Chi-square test and

the PCA-based method with identification scheme make

powerful tools for real-time detection of various anomalies

in an interference prone wireless networking environment.
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1 Introduction

With growing popularity of wireless networks, it is

becoming critically important to work towards providing

similar service characteristics to the users as they are

accustomed to in wired infrastructure networks. Wireless

Mesh Networks (WMN) is a specific class of wireless net-

works that have attracted much interest from both academia

and industry because of potential back-haul cost-effective-

ness. There are however, only pilot and experimental

deployments of wireless mesh networks at the moment, e.g.,

MIT Roofnet [21], Wray village [12], etc. Compared with

wired networks, there is therefore limited experience with

real incidents and security issues. It is not difficult to

imagine the extent of additional vulnerabilities associated

with WMN that should be taken care of before any major

deployment can occur.

The most significant difference, between a wired and a

wireless infrastructure network, lies in the fact that links are
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relatively unreliable, dynamic, and resource constrained in

nature. Moreover, the unprotected locations of wireless

routers expose them to malicious intrusions, such as, jam-

ming, Denial-of-Service (DoS) attacks, and environmental

hazards, such as thunder storms, etc. [25]. As a consequence

of faults (natural and man-made), wireless mesh networks

might perform inefficiently and malfunctions such as node

failures, DoS attacks, etc., can have a more severe impact on

wireless networks than they would have on wired networks,

due to limited and shared resources.

Since WMN is a recent construct, not many schemes

have been developed for fault management taking the

specific considerations of such networks into account. A

brief overview of fault detection/management techniques is

provided in Sect. 2 and their respective merits and demerits

are pointed out. Typically, existing schemes monitor a

single or collection of nodes, e.g., destinations, for unex-

pected behavior in order to detect malicious intrusions. To

the best of our knowledge, [22] presents the only method

for WMN where traffic traces from a gateway node can be

fed into a processing engine in order to be classified as

normal or abnormal. The processing engine in Qiu et al.

[22] consists of a simulator which is previously trained

using similar traces. On the other hand, a rich collection of

mature research is available in the anomaly detection area

for wired networks. These techniques generally incorporate

some statistical or analytical tool to process measured data,

for example, empirical densities [1], wavelets [10], etc.

However, as wireless links have higher interference and

variability than wired links it is not known if a direct

implementation of these methods would be able to detect

anomalies in noisy environments while keeping the false

alarm rate and additional overhead at a reasonable level.

In this paper, we present a computationally economical

algorithm for real-time anomaly detection in WMN. Our

algorithm is derived from the technique developed in

Lakhina et al. [16] for wired infrastructure networks. The

method of Lakhina et al. [16] employs Principal Compo-

nent Analysis (PCA) [13] for dimension reduction and

filtering of observed data and uses Hotelling’s t2 statistics

to detect the data points deviating far from the mean traffic

conditions. We have evaluated the scheme of Lakhina et al.

[16] in Hakami et al. [8] for the scenario of a WMN testbed

deployed in Sydney. Our experimental results show that

PCA with t2 statistics is able to detect the anomalies, such

as, DoS, port scan, and node failures, in a rich mix of

network traffic over wireless mesh networks albeit with a

non-trivial number of false alarms. While analyzing the

computational complexity of the PCA-based method we

realized that dimension reduction is in fact the most

computationally intensive component of this method. In

order to overcome this severe limitation and provide a

computationally tractable and reasonable method, we here

propose a cost-effective algorithm that uses Chi-square

statistics instead of PCA, still yielding similar performance

to the PCA-based method in our experimental study.

Also, the PCA-based method, even though it has

potential for real-time detection, is presented and evalu-

ated as an off-line process in Lakhina et al. [16] and

Hakami et al. [8]. In this paper, we use the on-line ver-

sion of the algorithm in comparison analysis with the

Chi-square test and other statistical tools used in anomaly

detection in wired networks, such as statistical distribu-

tions (the Kolmogorov-Simrnov test) [1]. To the best of

our knowledge, this is the first attempt to evaluate a real-

time anomaly detection tool for the wireless mesh net-

working scenario.

Moreover, we have developed an algorithm for auto-

matic identification of the source of a detected anomaly

and its contribution in terms of number of packets or flows.

Our identification method maps the detected anomalous

time bin into the specific flow or flows causing the

anomaly. The automatic identification is very useful in

reducing the number of false alarms and increasing the

efficiency of the anomaly detection process. We show

through experiments that the identification method points

out the traffic flows responsible for real faults.

Our contribution in this paper is summarized as follows:

– According to our knowledge this is the first attempt to

propose and evaluate real-time anomaly detection tools

for wireless mesh networks. Our evaluation experi-

ments are performed in real outdoor wireless environ-

ment although with synthetically generated traffic.

Besides being more vulnerable, wireless links have

higher interference, variability, and limited resources

than wired links which could result in higher false

alarm rate and prohibit the use of any heavy-duty

detection tool.

– Our computational analysis revealed that dimension

reduction as performed by the PCA-based method is

computationally complex and not suitable for real-time

anomaly detection in resource constraint environment

of WMN. An alternative method based on Chi-square

statistics is proposed and comparison is done in terms of

detection performance and computational complexity.

– We have enhanced the theory of detection methods based

on PCA and Chi-square statistics by proposing a novel

automatic identification scheme which could be used

with either of the methods to identify the cause of the

detected anomaly and its contribution in terms of

increased or decreased traffic. The identification scheme

is also useful in differentiating false alarms from real

anomalies and initially developed to reduce the false
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alarm rate in WMN. However, this scheme can also be

used in wired networks.

– Similarly the PCA-based and Chi-square based meth-

ods are also enhanced by proposal of an alternate

threshold when normal traffic could be heavy tailed,

which is a typical case for much of the current Internet

traffic. Use of standard thresholds of both methods

yields higher false alarms in our study when traffic is

dominated by self-similar flows.

– Experimental study also included Comparison of both

schemes with other statistical tools used in anomaly

detection in terms of detection accuracy, low compu-

tational complexity, and ability to identify the culprits.

Both methods, discussed in this paper, are effective in

detecting anomalies which create spikes or sudden changes

in network traffic, such as, DoS, port scan, node failures, etc.

Other anomalies which do not result in rapid changes in

network traffic, such as, MAC-spoofing, man-in-the-middle

attack, mis-forwarding attack, etc., cannot be detected using

these methods unless all nodes are individually monitored.

For anomalies causing spikes or sudden changes, variances

or 2nd moment analysis of data traffic is sufficient for

detecting data points far away from the mean trend as done

by Hotelling’s t2 and Chi-square statistics.

The rest of the paper is organized as follows: Sect. 2

contains a literature survey summary, Sect. 3 presents the

real-time anomaly detection schemes including a brief

summary of the PCA method proposed in Lakhina et al.

[16] and details about the Chi-square test, Sect. 4 develops

the method for automatic identification of causes, Sect. 5

presents details about our wireless mesh testbed, experi-

ments and results, and finally Sect. 6 concludes the paper.

2 Related work

As mentioned above, since WMN is a recent development,

not many schemes have been developed for fault man-

agement taking the particular nature of these networks into

account. A comprehensive survey of fault management

techniques in wireless multihop networks, i.e., including

mobile ad hoc and sensor networks, can be found in Zaidi

et al. [28]. In wireless multihop networks, largely for ad

hoc and sensor networking scenarios, research is limited to

either threshold-based techniques where loss of a certain

number of ACKs or periodic updates trigger route recovery

[28], or intrusion detection techniques, where incoming

and outgoing links of each node are monitored locally for

abnormal behavior, such as, artificial immune system (AIS)

[25] and watchdog [20]. These techniques either require all

nodes to monitor their neighbors, causing trust issues, or

they require a high density of robust monitors which makes

them very expensive.

Recently, work has been done to establish the require-

ments of a fault management system for WMN [19, 2] and to

study the effects of monitoring on network performance [7].

Moreover, specific security issues and challenges of the

WMN scenario are outlined in Refs. [26, 24]. To the best of

our knowledge, Qiu et al. developed the first fault detection

scheme for WMN [22]. They trained a simulator using

traffic traces from WMN and used it for distinguishing

normal and abnormal traffic patterns. Even though the

scheme was able to detect a variety of faults, its performance

heavily depended on the accuracy and flexibility of the

simulator, selected to implement the scheme, and the quality

of traffic traces used for training. Moreover, in order to adapt

to a dynamic system, the simulator needed frequent training

periods, increasing the cost of the scheme. Furthermore,

even though the results were encouraging, a simulator dri-

ven approach is not suitable for real-time fault detection.

On the other hand, a huge volume of mature research is

present in anomaly/fault detection in wired networks.

According to Ye and Chen [27], anomaly detection meth-

ods complement the capability of a rule-based or signature

matching intrusion detection technique. Signature match-

ing techniques store the signature of known intrusion

detection scenarios, but detection of a zero day attack, i.e.,

a new threat with no available security fix, is only possible

through anomaly detection techniques. In wired network

research, statistical methods are widely used for anomaly

detection. These methods use statistical distributions such

as Kolmogorov-Simrnov test [1], wavelets [10], and fre-

quency distributions [14]. The Kolmogorov-Smirnov (KS)

test [1] compares the empirical distributions of observed

data with that of normal data and deviations exceeding a

pre-determined threshold are classified as anomalous. The

KS test is able to detect anomalous traffic but it is not able

to identify the cause of an anomaly as shown from our

experimental results. Packet content frequency distribution

is used in Karamcheti et al. [14] to detect worm attacks.

Wavelets can detect congestion by comparing the energy

distributions over various wavelet components in normal

and anomalous situations but the method cannot be used in

real-time as it is computationally intensive and generally

requires to process data sets collected over multiple days.

The PCA-based method is, however, considered compu-

tationally feasible to be used to run online. Chi-square

statistics based intrusion detection method is also proposed

in Ye and Chen [27], where long-term profile of normal

traffic is used to train the parameters of a classifier for

different event types. Events of recent past are then com-

pared against the normal profile and significant departures

are termed as anomalies.
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There are other techniques proposed in Dickinson et al.

[3] and Feather et al. [4] that are very similar to the PCA-

based method and where the difference in normal and

anomalous traffic is quantified and compared against cer-

tain thresholds. In Feather et al. [4], values of performance

parameters, such as, throughput, latency, etc., are saved

from a training period as signatures of normal or abnormal

trends. Observations are compared with the signatures for

closest match. Time series of graphs are developed from

the traffic observations in Dickinson et al. [3] which are

used to construct a median graph representing typical

behavior over a longer period. Any subsequent graph

deviating from the median graph by a distance more than a

threshold is deemed to be abnormal. Both methods require

substantial traffic history to develop the signature library in

Feather et al. [4] and median graph in Dickinson et al. [3].

Experiments done in Dickinson et al. [3] used over

100 days of data. Moreover, an efficient method to update

the signatures or median graph with according to network

dynamics is critical, especially for wireless networks.

Preliminary evaluation results of the PCA-based method

[16] over a WMN testbed are presented in Hakami et al.

[8], where the method is shown to detect anomalies though

yielding some false alarms. In the present paper, we use a

real-time version of the PCA-based method to compare

against our algorithm based on Chi-square statistics for

different parameter settings and load.

3 Real-time anomaly detection

In this section, we present a brief summary of the PCA-based

method and highlight the issue of computational complexity.

We then present details of our novel method, the Chi-Square

test, which is significantly less complex than the PCA-based

method. Functional blocks of anomaly detection schemes

such as the PCA-based and the Chi-square based schemes

are shown in Fig. 1, where X is the normalized traffic data

collected from specific nodes in the network (cf. Sect. 3.1).

In order to detect anomalies affecting different aspects of

network traffic, there could be different ways to populate

X such as:

1. Number of packets transmitted during each interval of

the observation window (time bins), sorted according

to OD (Origin-Destination) flow.

2. Number of transmitted bytes during each time bin for

each OD-flow.

3. Number of OD-flows for all time bins.

4. Number of flows sorted according to the origins for all

time bins.

5. Number of OD-flows sorted according to the port

numbers for all time bins.

Once an observation window is specified, the nodes

collect data within the window, passing it to the anomaly

detection system. In typical networks, X might contain

hundreds or thousands of flows. It is desirable to reduce the

dimension of X before any further mathematical process-

ing, here shown by the Dimension reduction block. The

major difference between the PCA-based method and the

Chi-square test lies in the way they reduce data dimen-

sionality. After passing through ‘Dimension reduction’, the

reduced data enters the Anomaly Detection block where

data is compared with pre-selected thresholds according to

specific confidence level and values exceeding the thresh-

olds are deemed to be anomalous. Although, the mathe-

matical formulations are different for both tests considered

in this study, the ‘Anomaly Detection’ block is equivalent

in both cases if the same confidence levels are selected

based on the same underlying assumption about the dis-

tribution of traffic data.

The last block is Identification which maps back the

anomalous time bins into traffic flows and identifies which

nodes trigger a detection and then quantifies their contribu-

tion towards the anomaly in terms of excess or loss of

packets/flows. This method is also useful in order to differ-

entiate false alarms from real anomalies. Finally, anomaly

reports are generated as output of the anomaly detection

system. The anomaly reports consist of the following:

– Time bin where the anomaly is detected

– Responsible source

– Amount of excess/reduction of traffic (packets/bytes/

flows)

– Type of traffic where anomaly is found, i.e., packets/

bytes/flows

A sample of the anomaly report is shown in Table 3 in

Sect. 5.

3.1 PCA-based method

As summarized in Lakhina et al. [17], PCA is a coordinate

transformation method that maps the measured data onto a

new set of axes called the principal axes or components.

Each principal component has the property that it points in

the direction of the maximum variance remaining in the

data, given the variance already accounted for by the pre-

ceding components. This way, the first principal component

is directed towards the maximum variance of the original

Anomaly 
Detection

Identification
Dimension 
Reduction

X Anomaly reports

Fig. 1 Functional block of anomaly detection scheme
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data. The second principal component is orthogonal to the

first and represents the maximum residual variance among

the remaining directions.

Let X of size p 9 l contains l columns of observed data

which could be number of bytes/packets/flows for p time

bins. Each principal component vi is the ith eigenvector

computed from the spectral decomposition of XTX,where

X ¼ X � �X and �X is the time average of X : This nor-

malization ensures that PCs capture the common temporal

trends in traffic and are not skewed by the differences in

mean traffic rates. Moreover the normalization along the

mean traffic allows an easier way to differentiate flood

attacks (data with positive sign) and outages (data with

negative sign).

XT Xvi ¼ kivi; i ¼ 1; � � � ; l ð1Þ

where ki is the eigenvalue corresponding to vi. Further-

more, because XTX is a symmetric positive definite, its

eigenvectors are orthogonal and the corresponding eigen-

values are nonnegative real. By convention, the eigenvec-

tors have unit norm and the eigenvalues are arranged from

large to small, so that k1 C k2 C ... kl.

Considering the data mapped onto the principal com-

ponents, it is clear that the contribution of principal axis i

as a function of time is given by Xvi [17]. This vector can

be normalized to unit length through division by
ffiffiffiffi

ki

p
: Thus,

for each principal axis i,

ui ¼
Xvi
ffiffiffiffi

ki

p ; i ¼ 1; � � � ; l: ð2Þ

The ui’s, called eigenflows, are vectors of size p that are

orthogonal by construction [17]. Since the principal axes

are in order of contribution to the overall variance,

u1 captures the strongest temporal trend common to all

OD flows, u2 captures the second strongest, and so on. The

eigenvalues are useful for gauging the potential for reduced

dimensionality in the data. For example, if the first two

eigenvalues are 99.9% of the aggregated eigenvalues, the

first two PCs might explain up to 99.9% of the total

variability of the specific data set. Specifically, finding that

only rt singular values are non-negligible, implies that X

effectively resides on an rt-dimensional subspace of Rl: In

this case, the original X can be approximated as X0 �
Prt

i¼1

ffiffiffiffi

ki

p
uiv

T
i : The rest of the PCs define the residual

subspace ~X; i.e., X ¼ X0 þ ~X:

In Lakhina et al. [16], the residual subspace is also

referred to as an abnormal subspace and the calculation of

squared prediction error (SPE) of eigenflows in an abnor-

mal subspace is suggested as a method to detect anomalies.

Although, in our experiments, we realized that since most

of the network traffic is effectively characterized by X0, the

anomalies are also contained in X0 rather than ~X: As a

result, the performance of SPE is very poor as compared to

t2 statistics and results in significant number of missed

detections and false alarms.

Hotelling’s t2 is a statistical measure of the multivariate

distance of each observation from the center of the data set

(for eigenflows, the center is zero by construction [15]).

This represents an analytical way to identify the most

extreme points in the data by calculating the sum of squares

at each interval j of the eigenflows in the normal subspace,

as follows:

t2
j ¼

X

rt

i¼1

u2
ij; j ¼ 1; � � � ; p: ð3Þ

A peak in the t2 graph exceeding the threshold dt as

defined in Lakhina et al. [15] and shown in (4) is

considered an anomaly.

dt ¼
rtðp� 1Þ

p� rt
Frt ;p�rt ;a; ð4Þ

where Frt ;p�rt ;a is the value of F distribution with rt and

p - rt degrees of freedom at the 1 - a confidence level.

The PCA-based method reduces dimensions of data by

picking up the dominant trends and filtering the insignifi-

cant components in the ‘Dimension reduction’ block of

Fig. 1. PCA calculation, or eigenvector decomposition,

requires O(l3) computations or multiplication operations

(cf. Cholesky factorization [5]), where l is the number of

columns in X. The ‘Anomaly Detection’ block requires

O(rtp) computations and ‘Identification’ is of order O(l) per

detected anomaly, as discussed later in Sect. 4. As traffic

dimension or number of flows, i.e., l, grows, the ‘Anomaly

Detection’ block largely remains static but the ‘Dimension

reduction’ becomes increasingly costly. No computation-

ally intensive post-reduction processes are used in Lakhina

et al. [16] and even if dimensions are not reduced, the

penalty would be to use all l vectors in ‘Anomaly Detec-

tion’ rather than rt, where typically rt � l. Although, a

more severe penalty is the additional number of false

alarms as normalized eigenflows [cf. (2)] can inflate the

small perturbations along insignificant PCs and make them

comparable to real anomalies if all PCs are used in cal-

culation of t2 statistics. The overall computational com-

plexity of the PCA-based method is O(l3).

3.2 The Chi-square test

An alternative way of dimension reduction would be to

choose the significant columns of the traffic matrix X on the

basis of their respective variances instead of selection of

dominant eigenvalues. This method of reducing dimen-

sions is computationally inexpensive but is not optimal as

the case of PCA-based method [6]. Also, it treats all flows

to be independent of each other, although, there may exist
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mathematical or physical dependencies between flows

(columns of X) specially in the case of coordinated and

distributed attacks. We expect that PCA-based method will

be more suitable for distributed attacks. In this experi-

mental study, we are only concerned with detecting flows

which are deviating from their own mean trend and

orthogonality can be assumed between the flows without

sacrificing accuracy of detection. This interesting property

makes it possible to avoid eigenvector decomposition and

to save O(l3) computations.

Let ri
2 denote the variance of the ith flow or column of

traffic matrix X, i.e.,

r2
i ¼

1

p� 1

X

p

k¼1

X2
ki; i ¼ 1; � � � ; l: ð5Þ

Similar to the PCA method, variances are arranged in

descending order, i.e., r1
2 C r2

2 C ... rl
2, and rq significant

components are selected, such that the sum r2
1 þ � � �

þr2
rq

comprises of significant portion of total aggregated

variances, e.g., 95%. This alternative way of dimension

reduction requires O(lp) computations instead of the O(l3)

required for PCA.

We now define test statistics qj as

qj ¼
X

rq

i¼1

X2
ji

r2
i

; j ¼ 1; � � � ; p: ð6Þ

where Xji is the element of matrix X at column i and row j.

Note that the matrix X is re-arranged to match the associated

variances in descending order. If X follows a multivariate

Gaussian distribution, then qj is a Chi-square random vari-

able. This assumption about distribution of data is also an

underlying postulation in the PCA-based method when

Hotelling’s t2 statistics is used to represent summation of

eigenflows. Both methods’ ‘Anomaly Detection’ modules

(cf. Fig. 1) differ only in mathematical forms but they are in

fact equivalent. A peak in the q graph exceeding the

threshold dq is considered an anomaly, where dq is the value

of the Chi-square distribution with rq degree of freedom at

the 1 - a confidence level.

In the Chi-square test, we have replaced the ‘Dimension

reduction’ block of Fig. 1 by a selection of flows with

higher variances. Computations required for this method

are of the order of O(lp). The ‘Anomaly Detection’ block

requires O(rqp) computations. The ‘Identification’ block

still requires O(l) per detected anomaly, details are dis-

cussed in Sect. 4. The overall complexity of the Chi-square

test is therefore O(lp).

3.3 Alternative threshold

The threshold for t2 in (4) and dq for q are accurate if the

underlying data, i.e., X is normally distributed. In our case,

network traffic is typically self-similar which would result

in a heavier tailed distribution. Thresholds defined for q and

t2 may result in a higher rate of false alarms, something that

was also shown in Hakami et al. [8] for t2 statistics.

We propose a new threshold according to the Chebyshev

inequality which states that

PðjY � lyj � kryÞ�
1

k2
; ð7Þ

where Y could be any data set with mean ly and standard

deviation ry and k is a constant. The standard deviation ry

could be rt2 or rq for t2 vector calculated from (3) or q vector

calculated from (6) respectively. A threshold of dyc = 4ry

will ensure that 94% of the data will reside under the

threshold. A threshold of dyc = 7ry could be used for 98%

confidence bounds. The alternative threshold dyc could be

either dtc or dqc depending on the statistics used for detec-

tion, i.e., t2 or q respectively. Since the Chebyshev

inequality is a weaker upper-bound, the chances of missed

detection will increase with a higher threshold. A positive

aspect of this threshold is its distribution independence.

However, if the data distribution is closer to normal distri-

bution, dt from (4) and dq for q constitute better thresholds.

4 Automatic identification of anomalies

Once an anomaly has been detected, it is vital to know:

who caused it and what is the impact of the anomaly on the

network traffic. The identification scheme can identify the

OD flow or flows, or more generally sources, causing peaks

in q or t2 vectors and their contribution in terms of number

of packets or flows. Our scheme helps eliminate false

alarms due to traffic perturbation as well as providing an

efficient way of identifying the anomalous OD flows and

can even help classify the type of specific anomaly in some

cases.

The principle behind our identification scheme is the

reverse mapping of q or t2 vectors into the measurement

space. Once q or t2 detect an anomaly in a particular time

bin j, all significant contributing flows are identified as

follows:

qj or t2
j ¼

X

k

ck; ð8Þ

where ck is the contribution of OD flow k. For q statistics,

ck ¼
X2

jk

r2
k

; ð9Þ

where rk
2 is given in (5) and for t2 statistics,

ck ¼ Xjk

X

l

n¼1

Xjn

X

rt

i¼1

ðviÞkðviÞn
ki

; ð10Þ
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where (vi)k is the kth element of eigenvector vi [cf. (1)]. The

OD flow k with the largest ck calculated for q or t2 is the

major contributor in the peak of the respective statistics.

Xjk is either the flow contribution from the kth origin or

the packet/byte contribution of the kth OD flow if ck is

found to be exceeding a percentage contribution threshold

of Tc. In our experiments, an arbitrary value, 10, is selected

for Tc. Since X is the normalized traffic vector, Xjk could be

positive or negative. A negative value for Xjk shows the

absence of packets with respect to the mean flow rate,

which could happen in a node outage scenario, and a

positive value indicates excess packets, for example found

during a DoS attack. The type of traffic where an anomaly

is found, is helpful in characterizing the anomaly. For

example, DoS and flooding should be visible in packet and

byte count data where as port scan should be seen in the

flow count. According to our experiments, this method is

very effective in identifying different anomalies, such as

DoS, port scan, and node outages. Although, ‘Identifica-

tion’ block in both methods calculates ck by different

mathematical formulations they are essentially the same

and yield very similar results. The only difference between

both methods lies in their respective strength in detecting

the time bins with anomalies. After detection, identification

yields similar performance for q and t2 statistics.

5 Experiments and results

We used NICTA’s outdoor mesh network testbed for our

experiments. The testbed has 7 nodes deployed at traffic

intersections and one gateway mesh node inside the School

of IT at The University of Sydney. The layout of the testbed

with all wireless links, is shown in Fig. 2. The testbed

operates as a WMN with no direct access to the outside world

apart from a fixed link at the gateway node. Each node is

equipped with three wireless interfaces: 2 WiFi (unlicensed

bands) and 1 UnwiredTM (licensed band). UnwiredTM is a

wireless broadband provider in Sydney operating a pro-

prietary radio at 3.5 GHz. Unwired radios are used for con-

trol purposes in our testbed and are shown as curly arrows in

Fig. 2. links exist between every two adjacent nodes and

operate at channel 9 of the 2.4 GHz band (802.11 g), shown

as thick lines in Fig. 2. Some nodes have extra WiFi links

which operate at either 2.4 GHz channel 1 (between mesh02

and mesh03), or 900 MHz channel 4 (between mesh01–

mesh05 and mesh04–mesh07). WiFi links use Omni-direc-

tional antennas. More details about the testbed can be found

in Lan et al. [18].

The major purpose of NICTA’s wireless mesh testbed is

to explore the technical feasibility and issues for a city-

wide network used for control and monitoring applications

such as, traffic signal control. Such a network requires high

reliability although the typical traffic consists of packets

with only a few bytes and bandwidth requirements are not

as stringent as in a public access network. Based on this,

our initial experiments used low volume data with small

packets sizes. We used ICMP ping packets to simulate the

situation of a control network. In subsequent experiments

we used a traffic generator to provide a rich mix of flows

and more diverse scenarios.

5.1 Experiments with low traffic volume

Table 1 summarizes the initial ping based experiments.

Experiments with diverse traffic flows are discussed in the

next section. The column for normal traffic in Table 1 shows

the flows in the form of ‘‘OD, (interval between successive

pings in seconds, start time bin)’’, where OD denotes origin

and destination and 1 start bin refers to the start of the

experiments and each time bin is 1 min long. Note that in OD

description, 1 refers to mesh01, 2 refers to mesh02, and so

forth. All experiments ran over 2 h and traffic data was

collected from mesh01. The observation window is also set

at 2 h for these experiments. Experiment 2 used UnwiredTM

links where the rest of the experiments used 802.11 b/g links.

The confidence level, i.e., 1 - a was set to 95% for all

experiments. The threshold based on the Chebyshev

Fig. 2 Layout of NICTA’s outdoor testbed in Sydney

Table 1 Experiments with ping packets only

Normal traffic Anomaly Wireless

typeOD (ping interval(s),

start bin)

Nodes (type,

start bin)

1 01 (4, 1), 21 (10, 1),

51 (30, 30)

4 to 1 (ping flood, 88) WiFi

2 01 (4, 1), 21 (10, 1),

51 (30, 30)

3 to 1 (ping flood, 83–84) UnwiredTM

3 10 (4, 1), 12 (10, 1),

15 (30, 1)

2 (node failure, 106–109) WiFi
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inequality was taken as 4r, where r denotes the standard

deviation of q or t2 statistics. In order to select significant

flows, the rq components with largest variance, i.e., ri
2,

i = 1, ..., rq, contributing not less than 95% of the aggre-

gated variances were selected for calculating q statistics.

Similarly, rt components with the largest eigenvalues, i.e., ki,

i = 1, ..., rt, adding up to at least 95% of the aggregate

eigenvalues were selected to calculate t2 statistics.

Figure 3a and b show q and t2 values for experiment 1

respectively. The horizontal dotted line in both figures

shows the alternative threshold, given in (7), based on

Chebyshev’s inequality. The dashed line is dq for q sta-

tistics and dt for t2 statistics calculated for a 95% confi-

dence level. The peak at 88th time bin in both figures refers

to the ping flood. The anomaly identification scheme

indicated that approximately 639 additional packets, with

respect to the mean flow rate, were being transmitted

between nodes mesh01 and mesh04 each way. The iden-

tification scheme calculated the relative contribution in

different ways for q and t2 statistics. Even though the

calculations were different, both methods represent deter-

ministic mappings and yield similar performance once a

time bin is detected to contain an anomaly. Both methods,

with both thresholds, yielded similar detection results for

this experiment without false alarms.

A similar experiment was repeated over UnwiredTM

links and we observed symmetrical results. In experiment

2, our identification scheme counted an aggregated number

of 1594 excess packets for the ping flood detected at time

bins of 83 and 84 between mesh01 and mesh03. We

identified approximately 919 excess packets transmitted

from mesh03 to mesh01. Unlike experiment 1 where both

directions contributed equal numbers of packets, this shows

that mesh03 is the most likely cause of the anomaly rather

than mesh01. In experiment 1, an attacker could be either

of the two nodes.

Figure 4a and b show the q and t2 statistics for experi-

ment 3. Also in this case, both methods perform in a similar

manner. However, as shown in Fig. 4a and b, the alterna-

tive threshold based on Chebyshev’s inequality is not able

to detect the anomaly as it constitutes a loose upper-bound.

The node failure is detected at time bins 106–109 as shown

in Fig. 4a and b. For the detected anomaly at 106–109, our

identification scheme shows the deficiency of approxi-

mately 6 packets in flows between mesh01 and mesh02, in

both directions, when compared against the mean flow

rates. The negative contribution values from the identifi-

cation scheme serve as indicators for link or node outages.

The second peak in Fig. 4a and b is identified as a false

alarm. This was actually an attempt to establish a ssh
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Fig. 3 Anomaly detection for experiment 1
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Fig. 4 Anomaly detection for experiment 3
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connection from a remote computer to mesh01 through the

gateway, i.e., mesh00. All together 75 excess packets are

counted for the false alarm peak due to the ssh attempt.

5.2 Experiments with traffic generator

In order to create more interesting scenarios for experi-

mentation, we used a traffic generator [11] which generates

self-similar traffic flows according to an on-off model.

Based on studies in Ridoux et al. [23], this traffic generator

provided us with realistic IP traffic typical for a wireless

LAN. The following parameters are tunable for the traffic

generator:

1. a1 = session arrival rate (no. of sessions/sec)

2. a2 = in-session packet arrival rate (no. of packets/sec

for each session)

3. a3 = session duration parameter (sec)

4. a4 = Hurst parameter

5. a5 = service time distribution (no. of packets/sec)

Table 2 summarizes three 24 h long experiments. In

experiments 1 and 2, two classes of traffic are generated

from mesh06 for mesh05 and mesh04. The parenthesis in

the second column contains the parameter settings for the

traffic generator for each class. Data was collected at

mesh05. Experiments 1 and 2 used 5 min time bins. As

before, the thresholds for q and t2 statistics were calculated

for a 95% confidence level for all experiments. The

threshold based on Chebyshev inequality is set to 4r,

where r is the standard deviation of the q or t2 statistics. In

order to select significant flows, the rq components with

largest variances, i.e., ri
2, i = 1, ..., rq, contributing not less

than 95% of the aggregated variances were selected for

calculating q statistics. Similarly, the rt components with

largest eigenvalues, i.e., ki, i = 1, ..., rt, adding up to at

least 95% of the aggregate eigenvalues were selected to

calculate the t2 statistics. We introduced a single anomaly

of port scan in experiment 1, and experiment 2 contained a

natural link outage at node 5 as shown in Table 2. Table 2

shows the detection result when the observation window is

set to the experiment length, i.e., 24 h. In the next section,

we show the effects of changing the length of the obser-

vation window.

Figure 5a and b show the q and t2 statistics for experi-

ment 1 when data matrix X contains the flow count for

each time bin sorted according to the sources. The port

scan clearly results in a sharp peak in Fig. 5a and b at the

221st time bin. Flow count data without sorting also

resulted in positive detection of the port scan anomaly but

it was unable to pinpoint the node causing it. The identi-

fication analysis with flow counts sorted according to the

sources was able to identify mesh06 with approximately 8

additional flows when compared against the mean trend.

This anomaly is not visible in packet and byte count

analysis. As shown in Table 2 and Fig. 5a, q statistics also

results in couple of false alarms. The identification scheme

shows a deficiency of 1 or 2 flow(s) from each source

causing false alarms in the q statistics. Interestingly, PCA

breaks flows into eigenflows which sometimes helps in

filtering small perturbations as shown in Fig. 5b.

Figure 6 shows the q statistics for experiment 2 when the

traffic matrix contains flow count for each time bin. In this

case q and t2 statistics are essentially the same as X only

containing one column comprised of the total flow count in

the network. Figure 6 shows the detection of link outage at

the 234th time bin as the identification scheme yields a

deficiency of approximately 4 flows with respect to the mean

flow count. When flows are sorted according to the sources,

we are able to identify the failed node as being mesh05. In

this experiment, packet and byte count analysis do not yield

detection of link outage. The threshold dq with 95% confi-

dence level also yields a couple of false alarms which are

Table 2 Experiments with traffic generator observation window = 24 h, threshold = dq or dt

Normal traffic Anomaly Detection False alarms

OD (a1, a2, a3, a4, a5) Nodes (type, start bin) q t2 q t2

1 65 (5, 50, 1, 0.9, 2500.0), 6 to 5 (port scan, 221) 4 4 8 0

64 (50, 5, 1, 0.9, 2500.0)

2 65 (5, 50, 1, 0.9, 2500.0), 5 (link outage, 234) 4 4 5 5

64 (50, 5, 1, 0.9, 2500.0)

3 15 (1, 1, 1, 0.9, 2500.0), 0 to 2 (ping flood, 594), 4 4 6 5

13 (1, 2, 1, 0.9, 2500.0) 0 to all (node scan, 605–606), 9 9

0 to 1 (UDP DoS, 920–922), 4 4

0 to 1 and 2 (port scan, 940–941) 4 4

2 to 3 (port scan, 1211–1228), 4 4

0 to 5 (port scan, 1235), 4 4
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caused by the deficiency of 2 flows as identified by our

identification scheme. Thresholds for 99% confidence level

and an alternative threshold based on Chebyshev inequality

yielded 0 false alarms for experiments 1 and 2.

Experiment 3 used mesh01 as source and mesh03 and

mesh05 as destinations for two classes of traffic as shown

in Table 2. Each time bin was 1 min long and data was

collected at mesh01. We introduced a range of anomalies

in this experiment as shown in Table 2. Figure 7a and b

show the q and t2 statistics when the traffic matrix con-

tained packet count for each time bin and the observation

window length was 24 h. The analysis with byte count

yielded similar result as for packet count. It is clear from

both figures and Table 2 that q and t2 statistics with 95%

confidence threshold yields similar results in terms of

detections and false alarms. Table 3 elaborates the detec-

tion and identification results of experiment 3 using packet

and flow counts. Anomalies associated with port scan may

not show up in the packet count as they induce a small

number of packets in the networks. Although, the q and t2

analyses using flow count, where flows are distinguished

according to the IP address and port numbers, are suc-

cessful in detecting these anomalies as shown in Table 3.

However, the node scan at 605–606 could not be detected

by either method. In a small testbed network of seven

nodes, node scan does not produce a significant number of

packets and flows, and could therefore not be detected by

either method. Sorting flows according to sources makes it

possible to identify the attacker in most cases.

Ping flood and DoS attacks were detected by q and t2

analyses using packet count and the attackers were cor-

rectly identified. Packet count analysis yielded 5–6 false
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Fig. 5 Anomaly detection (flow count) for experiment 1 using traffic

generator
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alarms, using t2 statistics, due to changes in normal flows,

i.e., from mesh01 to mesh03. Some of these changes

happened due to the bursty nature of self-similar traffic. In

practise, once a flow is found to be legitimate, any sub-

sequent detections could be readily classified as false

alarms.

5.3 Observation window

To study the effects of the observation window, we analyzed

the 24 h experiments with variable window lengths. After a

specified interval (30 time bins in our analysis) q and t2

statistics were calculated for the last L observations, where

L is the observation window length in terms of time bins. In

our study, L = 30, 60, 90, .... Packet and flow count data

collected for 24 h, from experiment 1–3, was processed as if

the detection modules were running in real-time. Figure 8a

and b show the false alarms for various observation win-

dows for experiment 1 and 2 respectively. Both experiments

contain a single anomaly which was detected for all obser-

vation window lengths using both methods. Experiment 2

used flow count data and X contained a single column,

therefore q and t2 statistics were equivalent and yielded the

same result as shown in Fig. 8b. In general, a larger obser-

vation window results in fewer false alarms as shown in

Fig. 8a and b. Similar to Fig. 5, q statistics performs in a

similar manner to t2 statistics, although for larger windows,

t2 yields fewer false alarms. Larger observation windows are

desirable to capture normal trends more accurately albeit at

the cost of storage space. Since the observation window uses

the last L observations after a specific interval, a larger

L does not mean later detection. As long as the detection

algorithm is processed at a reasonable frequency, network

anomalies can be detected quickly.

Figure 9a and b show the detection performance and

number of false alarms using q and t2 analysis for packet

count data from experiment 3. We have labeled anomalies

DoS or scan anomalies, i.e., port scan and node scan.

Experiment 3 contains 2 DoS or flood anomalies and 4 scan

anomalies. As discussed above, flood anomalies should be

detectable in packet count, where as scan anomalies may or

may not appear in packet count analysis depending on the

number of packets generated in these anomalies. As shown

in Fig. 9a, q and t2 statistics are able to detect all flood

Table 3 Identification results of experiment 3 (with traffic generator)

Time bin Contribution Responsible nodes Anomaly Traffic matrix

594 2 to 0 (2758 packets), 0 Ping flood Packet count

2 to 0 to 2 (3287 packets)

605–606 Not detected Node scan

920–922 0 to 1 (19641 total packets) 0 DoS Packet/flow count

941 209 flows 0 Port scan Flow count

1211–1228 13 flows 2 Port scan Flow count

1235 103 flows 5 Port scan Flow count

5–6 False alarms 1 to 3 (UDP flow), Packet count

over 1000 packets
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anomalies for all observation windows besides detecting 1

or 2 scan anomalies. Both algorithms exhibit similar per-

formance also in terms of false alarms as shown in Fig. 9b,

where either one has slightly more false alarms than

another for some observation window size. As discussed

before, in general, a larger observation window yields

better performance.

However, flow count data for experiment 3 shows mis-

sed detection for a larger observation window using both

methods as shown in Fig. 10a. The missed anomaly is the

node scan at the 605–606 time bins. Interestingly, when the

observation window is larger, normal changes of few flows

cause the node scan to appear as normal. In a small testbed

of 7 nodes, a node scan only produced few additional

flows. False alarm performance, however, is better for a

larger observation window using both methods as shown in

Fig. 10b. A larger observation window requires more

memory space which in some instances is a limiting factor.

As natural variations in traffic from the mean trend increase

in amplitude, the noise floor of the anomaly detection

algorithms below which anomalies go undetected is also

raised. As shown in numerous studies [9], traffic in public

access networks changes considerably in 24 h. A larger

observation window would encompass all changes from

very light to very heavy traffic conditions and would never

be able to detect anomalies in lighter traffic scenarios,

though they might be significant. To study the effects of

light and heavy traffic, it is important to get data from a

real public access network. Moreover, both methods have

similar performance although the Chi-square test requires a

fraction of the computations compared with the PCA-based

method.

5.4 Comparison with other statistical methods

Among the anomaly detection methods discussed in

Sect. 2, the Kolmogorov-Smirnov test [10] is the only

suitable method to be implemented on our experimental

data. Since wavelets are proposed to detect congestion [10]

and frequency distributions of packet contents are used to
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detect worm attacks [14], both of the methods were beyond

the scope of this paper. Moreover, our experiments were

not done for a long enough period to get meaningful

training of the signature library of [4] and the median graph

of [3]. The Kolmogorov-Smirnov (KS) test [1] compares

empirical distribution of observed data with that of normal

data and deviations exceeding a threshold are classified as

anomalous. We used the first 500 time bins of experiment 3

to generate the normal data distribution as shown by the

solid line in Fig. 11. The first 500 min of experiment 3 did

not contain any anomaly.

The upper and lower bounds shown by dotted and dot-

dash lines respectively in Fig. 11 were drawn for 99%

confidence level using KS statistics tables. The dashed line

in Fig. 11 shows the empirical distribution which is gen-

erated using the remaining data from experiment 3 after the

first 500 time bins. According to the KS test, if the

empirical distribution is not contained within the upper and

lower bounds of the normal distribution, the data contains

an anomaly or anomalies as shown in Fig. 11. The KS test

is able to detect the anomalous traffic but it is not able to

identify the cause of the anomaly and exact time instant

when an anomaly happens. The Chi-square test as well as

the PCA-based method has much higher potential to detect

and identify various anomalies in real-time without sig-

nificant computational load.

6 Conclusion

In this paper, we presented a computationally economical

substitute of the PCA-based method of anomaly detection

using a Chi-square test. Our experiments with real-time

anomaly detection systems using the Chi-square and the

PCA-based methods show that both schemes are very

effective in detecting various types of anomalies including

DoS and port scan attacks in an interference prone wireless

networking environment. The Chi-square test requires a

fraction of the computations required by the PCA-based

test although their performance is comparable in our

experiments. Our experiments used an outdoor testbed with

different types of traffic flows.

We also proposed an automatic identification scheme

which can be used with both algorithms to identify the

cause of a detected anomaly and also to estimate the

contribution of each responsible node in terms of excess or

loss of traffic. The identification scheme is also useful in

isolating false alarms from real anomalies. We have also

proposed an alternative threshold to compare test statistics,

if data is found to be heavy tailed which is a typical case

for self-similar traffic. An alternative threshold based on

the Chebyshev inequality constitutes a loose upper bound

and may result in missed detections.

We have also compared the real-time anomaly detection

using the Chi-square test and the PCA-based method with

other statistical tools proposed in the literature. Both

methods are computationally feasible to run in real-time

and also have the potential of identifying the responsible

nodes. Both methods are very promising to be used in a

WMN environment where the Chi-square test is also more

economical in terms of computational load.
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