
Incremental Evaluation of Tabled Logic Programs

a dissertation presented

by

Diptikalyan Saha

to

The Graduate School

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

computer science

Stony Brook University

December 2006

Stony Brook University

The Graduate School

Diptikalyan Saha

We, the dissertation committee for the above candidate for

the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor C.R. Ramakrishnan, Advisor
Department of Computer Science

This dissertation is accepted by the Graduate School.

Dean of the Graduate School

ii

Abstract of the Dissertation

Incremental Evaluation of Tabled Logic Programs

by

Diptikalyan Saha

Doctor of Philosophy

in

Computer Science

Stony Brook University

2006

Tabled logic programming has emerged as an important evaluation technique of logic

programs. Tabling has enabled us to construct many practical applications - program

analysis and verification systems in particular — by encoding them as high-level logic

programs. Tabled resolution based systems evaluate programs by memoizing subgoals

(referred to as calls) and their provable instances (answers). In this thesis we address

the problem of efficiently updating the memoized information in tables with respect

to the changes in programs due to addition/deletion of facts/rules. Such capability of

incremental maintenance of memoized information facilitates the use of tabled logic

programming for scalable program analysis, where the analysis information can be

updated efficiently in response to small changes to the analyzed program.

Tabled resolution based systems process the addition of facts in semi-naive fash-

ion and thus incremental by nature. We address the problem of maintaining tables

for definite logic programs in response to deletion of facts/rules by maintaining an

auxiliary and-or data structure called support graph. Each support in a support

graph represents an immediate reason for derivation of an answer. Support graph

thus maintains the dependency between answers and facts, and can be used to prop-

agate the effect of deletion of facts/rules. We developed heuristics to reduce the

over-approximation performed by existing algorithms for handling deletion.

Support graph based algorithms update tables extremely fast but impose consid-

erable space overhead for large applications. Our general solution to space-overhead

iii

problem is based on a data structure called Partial Support Graph (PSG) which

keeps bounded number of supports for every answer. For a special class of programs

we present a more efficient algorithm than PSG, based on a compact data structure

called Symbolic Support Graph which exploits the commonality between supports.

We also present an efficient algorithm for handling updates to the facts by carefully

interleaving the insertion and deletion operations generated by updates. We present

an incremental tabled maintenance algorithm for handling programs with negation,

cuts, and aggregation operators. We demonstrate the efficiency of incremental com-

putation to various problems such as pointer analysis, data-flow analysis, push-down

model checking, parsing, dynamic programming, and XML validation.

iv

To My Parents

Contents

List of Figures viii

List of Tables xi

Acknowledgements xiii

1 Introduction 1

1.1 Problem Addressed in this Thesis . 4

1.2 Overview of Our Approach . 6

1.2.1 Handling Addition . 6

1.2.2 A Time-Efficient Technique for Handling Deletion 7

1.2.3 Space-Time Tradeoff . 8

1.2.4 A Local Algorithm for Handling Updates 9

1.2.5 Handling Full Prolog . 9

2 Related Work 10

2.1 Materialized View Maintenance . 10

2.2 Model Checking . 13

2.3 Program Analysis . 15

2.4 Attribute Grammar Evaluation . 16

2.5 Logic Program Analysis . 17

2.6 Functional Programming . 18

2.7 Truth Maintenance Systems . 20

3 Preliminaries 22

3.1 Tabled Logic Programming . 22

vi

3.2 A Deductive Formulation of Pointer Analysis 26

4 An Efficient Algorithm for Incremental Tabled Evaluation 35

4.1 Addition . 36

4.2 Deletion . 38

4.3 Experimental Results . 48

4.4 Related Work and Discussion . 53

5 Combating Space Issues 55

5.1 Partial Support Graph . 56

5.1.1 Algorithm Primary Support 56

5.1.2 Algorithm Acyclic Support . 59

5.1.3 Algorithm Mixed Support . 60

5.1.4 Experimental Results . 62

5.2 Symbolic Support Graphs . 65

5.2.1 Symbolic Support Based Incremental Algorithm 69

5.2.2 Space Complexity of Symbolic Support Graphs 73

5.2.3 Experimental Results . 74

5.3 Related Work and Discussion . 77

6 A Uniform Approach To Change Propagation 79

6.1 Motivation . 80

6.2 Preliminaries . 82

6.3 Data Structures . 84

6.4 The Local Algorithm . 88

6.5 Handling Dynamic Call Graph . 96

6.6 On the Optimality of the Algorithm 100

6.7 Experimental Results . 103

6.8 Properties of Local Algorithm . 105

6.8.1 Foundational Properties of Local Algorithm. 106

6.8.2 Relation

between Incremental and Non-Incremental Evaluation- Proof

of Correctness. 109

6.9 Related Work . 118

vii

6.10 Discussion . 118

7 Extending Incremental Tabled Evaluation Beyond Pure Logic Pro-

grams 120

7.1 Incremental Evaluation based on Call Dependencies 121

7.2 Experimental Results . 129

7.3 Related Work . 135

7.4 Integration to XSB Prolog Engine . 135

7.4.1 Selective Incrementally Maintained Tables 136

7.4.2 Deletion of Incrementally Maintained Tables 137

7.4.3 Integration with Deductive Spreadsheet 138

7.5 Discussion . 139

8 Conclusion 142

8.1 Summary of Major Results . 142

8.2 Discussion . 143

8.3 Future Work . 144

8.3.1 Algorithms for Incremental Computation 144

8.3.2 Applications of Incremental Computation 146

8.4 Final Notes . 147

viii

List of Figures

1 Rule-based specification of reaching definition analysis (a), example

input relations (b) . 1

2 Example reachability program (a) and two edge/2 relations (b & c). . 4

3 Types of changes . 12

4 Anderson’s rules for pointer analysis. 27

5 Logic program using Prolog notation corresponding to Anderson’s rules 27

6 Logic program for points-to analysis specialized with respect to calling

modes . 30

7 Relative performance of Function Pointer Analysis w.r.t. All Points-to

Analysis . 32

8 Example program . 35

9 Example of the data structure to maintain tables for incremental pred-

icates. 37

10 Supports . 39

11 Support graph; the numbers corresponding to the nodes show the

derivation lengths . 40

12 Algorithm for primary support based incremental deletion. 44

13 Derivation lengths . 46

14 Algorithm for acyclic support based incremental deletion. 48

15 Acyclic support graphs before(a) and after(b) deletion of fact f2 . . . 49

16 All Points-To Analysis: Incremental addition time as percentage of

from-scratch time . 49

17 Experimental results for reachability analysis 50

ix

18 Primary support graph . 56

19 Primary support based deletion . 57

20 PCR rederivation for algorithm PS 59

21 PCR rederivation for algorithm AS 60

22 Support graph based rederivation . 61

23 All Points-To Analysis: Incremental deletion time relative to from-

scratch time . 62

24 Example program (a); calls and answers generated when evaluating

query r(6,X) (b); and supports for the query evaluation (c). 65

25 Support graph for answers to query r(6,X) over example program in

Figure 24(a). 66

26 Symbolic supports for query evaluation over the example program in

Figure 24(a). 66

27 Symbolic support graph for answers to query r(6,X). 69

28 Algorithm for Marking . 70

29 Algorithm for Rederivation . 72

30 Space complexity of symbolic support graphs 74

31 Example tabled logic program (a), and its call and answer tables (b). 80

32 Example program (a), facts (b), calls and answers (c), nodes in SLG

forest (d), and SLG forest (e) . 85

33 Ordinal definitions. 87

34 Algorithm for Processing consume answer event. 90

35 Algorithm for resolving goal. 91

36 Mark event (a), Main event loop (b) 93

37 Priorities of Events . 94

38 Algorithms for Processing May Rederive (a) and Rederive (b) events. 95

39 Example program (a), calls and answers (b), consumers (c), new facts

(d), and call graph (e). 97

40 Example program (a), calls and answers (b), new facts (c), consumers

(d), and call graph (e). 99

41 Reaching Definition Analysis; Time comparison (a); Change compari-

son (b). 104

x

42 Example program (a); and called-by graph (b) for evaluating r(1,X) 122

43 Optimized Re-Evaluation Algorithm 128

44 Performance on Dynamic Programming problems 130

45 The effectiveness of the optimized algorithm on LCS. 130

46 Performance on All-Pair Shortest Path 131

47 Algorithm for abolishing incremental calls 138

xi

List of Tables

1 Benchmark characteristics . 31

2 Incremental deletion times as percentage of from-scratch time 52

3 No. of answers marked in Deletion Phase 52

4 Support graph sizes . 52

5 Support counts for different support graphs 63

6 No. of answers marked in Deletion Phase 64

7 Comparison of support graph sizes for pointer analysis 75

8 Incremental deletion time as a percentage of from-scratch time 75

9 Support graph sizes (in MB) for push-down model checking 75

10 Support graph sizes (in MB) for synthetic benchmarks from Figure 30 76

11 Comparison of running times (in Seconds) for model checking 76

12 Data flow analysis; One statement replaced with skip; Time is seconds 132

13 Performance of naive and optimized algorithms on pointer analysis . . 132

14 XML Validation; deletion of one element; Time is seconds 133

15 Space usage (in MB) of the incremental algorithm 134

xii

Acknowledgements

I would like to sincerely thank all those who gave me support and encouragement to

complete this thesis.

I met Prof. C. R. Ramakrishnan in the Computing with Logic course in the first

semester. His great teaching skill and in-depth knowledge in the subject attracted

me to the field of Logic Programming. Consequently, he became my thesis advisor.

His quick thinking and enthusiasm have given me great insight on this research,

and motivated me to work on this thesis. Along with his close guidance, he gave me

freedom to work alone and explore different areas which helped me grow in confidence

and maturity. Without his help and immense encouragement it was not possible to

achieve the high quality of this research.

I started my research on formal methods and verification under close guidance of

Prof. Scott Smolka. I am deeply indebted to him for his support on the verification

research. I admire his lucid style of writing and I always try to reach that perfection.

His advice on reading ‘The Elements of Style’ to improve my technical writing ability

was very helpful.

I would like to extend my thanks to Prof. Annie Liu, who gave me great sugges-

tions on the research of incremental evaluation. I first interacted with her while I was

a teaching assistant to her and later on various meetings with her reading group. Her

in-depth knowledge in the area of incremental evaluation has helped me improve the

quality of this thesis. Over these years, she has given constructive comments on my

teaching ability and presentation skills.

I am grateful to Prof. David Warren, who served in my thesis committee and

gave many suggestions to improve the quality of this thesis. He has helped me to

implement various incremental algorithms into XSB system.

I am also indebted to Dr. Kedar Namjoshi for taking time out of his busy schedule

and agreeing to be my external committee member. His suggestions have made this

thesis more readable and technically sound.

I would like to express my gratitude to Prof. R. Sekar who gave me the opportu-

nity to work in the Model Carrying Code project. My thanks to Prof. Scott Stoller

who served in my thesis committee. Discussion on various research areas with him

has broaden my knowledge in different areas of Computer Science. Prof. I.V. Ra-

makrishnan was very helpful in giving useful tips to me about almost everything. His

presence had made LMC lab a fun place to work in.

It was a pleasure for me to attend lectures and seminars taught by the excellent

faculty of Computer Science Department. I especially enjoyed the year-long course

work on Algorithms with Prof. Michael Bender. He has been a great influence on my

teaching and presentation skills.

I had the opportunity to interact with Edwina Osmanski. She has been very kind

to me all these years. I enjoyed those chit-chats with her in between her service

to the graduate students. Because of those interesting conversations, I continued

getting paycheck from Edwina for five years instead of opting for the direct deposit.

I acknowledge the help and support from other administrative staffs, in particular

Betty Knittweis and Kathy Germana. I extend my sincere thanks to entire staff in

system administration.

It was my pleasure to interact and collaborate with some fine people outside

Stony Brook: Prof. Haifeng Guo, Prof. Gopal Gupta, Dr. Prasad Rao, Dr. Raj

Rajagopalan, Dr. Yow-Jian Lin, Matthias Kahl, Michael Eichberg, Prof. Mira Mezini,

and Prof. Klaus Ostermann.

It was a great pleasure to meet some new and old friends in Stony Brook. They

have been very helpful to me and because of them this journey has turned out to

be enjoyable and eventful. I would like to sincerely thank my officemate and mentor

Prof. Samik Basu with whom I did my research on software verification. Without

my friend Giridhar Pemmasani it would have been hard for me to work in Linux. I

am greatly indebted to Luis De Castro for his implementation of Support Graph in

XSB. I sincerely acknowledge Wei Xu for sharing his implementation of C-to-Prolog

converter. I sincerely thank Anu Singh who carefully went through this entire thesis

and made it more readable. I am greatly indebted to my friends: Rahul Agarwal,

Pradipta De, Arnab Ray, Bikram Sengupta, Saikat Mukherjee, Beata Sarna-Starosta,

Ping Yang, Zan Sun, Wenxin Song, Ashish Raniwala, Srikant Sharma, Ningning Zhu,

Amit Sasturkar, Alok Tongaokar, Paul Fodor, Prem Uppuluri, V.N. Venkatakrishnan,

Ajay Gupta, Shruthi Murthy, Yunfan Bao, Sandeep Bhatkar, Pranav Nawani, Abhijit

Sengupta, Puloma Mukherjee, Dominic Geiger, and many more.

Finally, this thesis would not have been completed without the moral support and

encouragement of my parents. I dedicate my thesis to them.

Chapter 1

Introduction

Rule-based specifications are used in variety of application domains. Examples in-

clude security policy specification, program analysis, trust management, vulnerability

analysis, model checking, business logic specification, etc. Typically in these kind of

applications, known information about the domain is expressed in a knowledge base

and rules are evaluated over this knowledge base to derive new information to accom-

plish the goals of the given application. For example, consider the following rule-based

specification of reaching definition analysis from the domain of data-flow analysis.

gen(Stmt,(Var,Stmt)):- assign(Stmt,Var,_Expr).

kill(Stmt,(Var,_AnyStmt)):- assign(Stmt,Var,_Expr).

in(Stmt,Def):- pred(Stmt,PrevStmt), out(PrevStmt,Def).

out(Stmt,Def):- gen(Stmt,Def).

out(Stmt,Def):- in(Stmt,Def), not kill(Stmt,Def).

assign(s1,a,b). % s1: a=b

assign(s2,c,a). % s2: c=a

pred(s2,s1).

(a) (b)

Figure 1: Rule-based specification of reaching definition analysis (a), example input
relations (b)

The above rules identify the variable definitions that may reach a statement,

given a control-flow graph. The input control-flow graph is specified using the binary

relations pred and assign. An example input relation is shown in Figure 1(b). The first

rule in Figure 1(a) states that a definition (a variable, statement tuple) is generated

(given by the relation gen) at a statement Stmt if the Stmt is an assignment statement

which assigns value to the variable Var . The second rule specifies that due to the

assignment to the variable Var all definitions of variable Var are killed at statement

1

2

Stmt . The binary relation in defines that all definitions coming out of a statement

PrevStmt reach the statement Stmt , provided PrevStmt is a predecessor of Stmt in

the control-flow graph. Definitions coming out of statement are either generated at

that statement (fourth rule), or reaches the statement and not killed by it (fifth rule).

The given rules, also known as intensional relations, derive the relations gen, kill , in,

and out from the input relations (known as extensional relation) assign and pred .

Rules can be encoded using logic programming [Llo84]. In such a language rules

are encoded as clauses and extensional relations are called facts. The logic program

interpreter deduces the logical consequences of the clauses via the process of inference.

Prolog is the most widely used logic programming languages. Note that the rules in

the Figure 1 are encoded using Prolog syntax. The left hand side of a rule is called

head and right hand side of a rule is called body. A body may contain conjunction

(expressed using comma) of one of more predicates or negation (expressed using not)

of predicates.

When it comes to query evaluation, logic programs can be evaluated in two ways:

bottom-up and top-down algorithms. The bottom-up approach starts with known

facts and extends of set of true derived facts using rules. Thus, it can derive new

facts from the old facts and rules. The process repeats until no more facts can be

derived. The query is then resolved against all the computed set of facts. On the

other hand, top-down evaluation starts from a goal which is reduced to subgoals using

the rules. The process goes on until the facts are reached.

Many debates exist on the comparative advantages of bottom-up and top-down

evaluation techniques of query evaluation [Bra95]. Bottom-up evaluation guarantees

computation of least Herbrand model [Llo84] for positive (definite) logic programs.

Also due to the use of set oriented operations it performs well in terms of I/O oper-

ations. Thus it is suitable for large applications in deductive databases. In contrast,

top-down evaluation is goal oriented and hence it generally computes less redundant

facts, making it efficient. This makes top-down evaluation the standard method of

computation in query evaluation framework like Prolog.

Prolog’s query evaluation strategy uses a top-down theorem-proving approach,

namely SLD resolution [Llo84]. It employs a backtracking search through the tree of

SLD refutations using top-to-bottom rule selection strategy, and left-to-right subgoal

3

selection strategy in the body of a rule. One of the main disadvantages of Prolog’s

search strategy for computing SLD tree is its susceptibility to infinite looping. The

problem is evident for evaluation of left-recursive rules. Another disadvantage of Pro-

log’s computational strategy is its tendency to recompute the same answers. Consider

the left-recursive transitive closure program given in Figure 2(a) with the facts in Fig-

ure 2(b). When asked a query reach(0,X) to know all the nodes that are reachable

from node 0, Prolog resolves the query against the first clause to produce answers

X=1 and X=2 using the facts edge(0,1) and edge(0,2), respectively. In search for

getting more answers, backtracking through the second clause will generate the same

query reach(0,X) which again produces the same answers and goes into the same

loop. The problem becomes worse if the order the clauses are changed. In this case,

Prolog’s resolution will not produce any answer, and moreover, will not terminate.

One of the solution to the problem is based on SLG resolution [CW96], also

called tabled resolution as it uses memoization or tabling to overcome the problem of

weak termination, repeated subcomputation, and incomplete semantics for negation.

These features of tabled resolution have been exploited to build variety of systems

for finite- and infinite-state verification [RRR+97, Ram00, BKPR02], program analy-

sis [DRW96, SR05], security analysis [SSS04, OGA05], and implementation platform

for more expressive logic such as F-logic [YK00].

Tabled resolution-based systems evaluate programs by memoizing subgoals (re-

ferred to as calls) and their provable instances (referred to as answers) in a set of

tables. Traditionally, the systems keep all calls in a call table. For each subgoal in

the call table, its provable instances are kept in an answer table. During resolution,

if a subgoal is present in the call table, it is resolved against the answers recorded in

the corresponding answer table; otherwise the subgoal is entered into the call table,

and its answers, computed by resolving the subgoal against program clauses (rules),

are also entered in the answer table. In the above example, the reach predicate is

defined as a tabled predicate. When asked a query reach(0,X), tabled resolution

will store the call reach(0,X) in the call table. Backtracking through the first clause

will generate the answers X=1 and X=2 which are then entered into the answer table

corresponding to call the reach(0,X). While resolving the second clause, tabled res-

olution resolves the first subgoal reach(0,Z) with the answers already there in its

4

1: reach(X,Y) :- edge(X,Y).

2: reach(X,Y) :- reach(X,Z), edge(Z,Y).

edge(0,1).

edge(0,2).

edge(1,1).

edge(1,2).

edge(0,1).

edge(0,2).

edge(1,1).

edge(1,2).

edge(2,3).
(a) (b) (c)

Figure 2: Example reachability program (a) and two edge/2 relations (b & c).

answer table. This generates two subgoals edge(1,X) and edge(2,X) corresponding

to the second conjunct in the body. The subgoals do not generate any new answer

and the computation terminates.

1.1 Problem Addressed in this Thesis

When the logic program changes, by addition/deletion of facts/rules, the tables be-

come stale: they may not have all the answers or the answers in the tables may be

incorrect. For instance, consider the evaluation of the query reach(0,X) over the

program in Figure 2(a) using the definition of edge/2 relation shown in Figure 2(b).

Tabled evaluation will create an answer table for call reach(0,X) with {X=1, X=2}

as the answers. Subsequent invocation of reach(0,Y) will simply resolve the subgoal

against the answers in the table, returning {Y=1, Y=2} as answers.

Now let a new tuple edge(2,3) be added to the edge/2 relation resulting in the

edge/2 relation given in Figure 2(c). Note that the answer table for call reach(0,X)

contains only answers {X=1, X=2} and hence is stale. Invocation of, say reach(0,Z),

will return only answers Z=1 and Z=2, and miss the answer Z=3. The problem becomes

worse if tuples can be deleted. If the tuple edge(0,1) is deleted from the edge/2

relation in Figure 2(b), the query reach(0,Z) will still return answers Z=1 and Z=2,

even though reach(0,1) is no longer true!

Tabling systems currently provide no mechanism to refresh the tables after a

change to the program. To handle such changes to the program, all tables are removed

after an update to the program, and then the query is reissued. This approach is called

from-scratch evaluation. This approach is clearly wasteful, especially if the changes

to the program are small. For instance, in the above example, after the addition

of edge(2,3), the subgoal reach(0,Z) and its answer table must be removed and

5

recomputed, deriving answers {Z=1, Z=2, Z=3}, in effect rederiving answers Z=1 and

Z=2.

An efficient way of maintaining “freshness” of the tables is to compute the changes

in the tables in response to changes in facts and rules. This approach of computing

changes to the result in response to changes in the input is known as incremental

computation. The goal of efficient incremental computation is to compute the changes

as efficiently as possible. In most cases small changes to the set of facts (hereafter

called factbase) result in small changes to the tables, and in those cases incremental

evaluation should be considerably faster than from-scratch evaluation strategy.

The goal of this thesis is to develop a general platform to perform efficient incre-

mental rule-based evaluation. As many problems can be naturally expressed in terms

of rules, they can benefit from incremental computation. Particularly, program anal-

ysis problems can be easily formulated as inference rules and the analysis information

can be computed using logic program query evaluation. Hence, incremental rule eval-

uation will be particularly useful in iterative process of software development, where

it is better to incrementally analyze a program as it changes, than recompute the

analysis information from scratch after every change. In this thesis, program analysis

problems is used for measuring the effectiveness of incremental evaluation.

The idea of incremental computation is used in various fields of computation

including attribute grammar evaluation, functional programming, constraint logic

programming, program analysis, data-flow analysis, truth maintenance systems, and

model checking. In databases, the results of the query may be stored in the databases

and are known as materialized views. When base relation changes, the materialized

views need to be updated too. Thus the problem of maintenance of materialized views

is closest to the problem of incremental maintenance of tables. Most of the earlier

works on maintaining views in databases work only with non-recursive queries, or

work with a cost model where disk access cost dominate all else. Hence they do not

apply to the maintenance of in-memory tables in a rule-processing engine where rules

are typically recursive. A discussion on these related works appears in Chapter 2 in

this thesis.

6

1.2 Overview of Our Approach

1.2.1 Handling Addition

Bottom-up logic program evaluation strategy such as semi-naive [Ull89] is incremental

with respect to addition of facts. Similarly, top-down goal-oriented techniques such as

those based on SLG handle addition of facts incrementally. In SLG evaluation model,

a subgoal that causes answers to be added to the tables is called a producer, and a

subgoal which is resolved against answers already in the tables is called a consumer.

The evaluation engine maintains auxiliary data structures to ensure that no consumer

sees an answer more than once: e.g. environments to produce and consume answers

and control structures linking answer producers to answer consumers. These data

structures are torn down when all answers to a call have been derived, an operation

that is crucial to memory efficiency of top-down evaluators. Owing to the deletion of

such data structures, SLG evaluation strategy cannot perform incremental addition

of facts after all answers to all calls have been derived.

In this thesis, we take three approaches for handling addition of facts. One of

the approaches is to retain the data structures linking producers to consumers and

perform incremental addition of facts as done in non-incremental evaluation. This

process however imposes space overheads which make it unscalable unless specialized

data structures are used to compactly represent such structures. The second approach

is based on finite-differencing [PK82] where rules are generated to capture the new

answers due to addition of facts. For instance, the changes to the reach/2 relation

can be computed by evaluating the predicate ∆reach/2 defined as follows (where the

additions to edge/2 are given by the ∆edge/2 relation): however, direct evaluation

∆reach(X,Y) : − ∆edge(X,Y).

∆reach(X,Y) : − ∆reach(X,Z), edge(Z,Y).

∆reach(X,Y) : − (reach(X,Z); ∆reach(X,Z)), ∆edge(Z,Y).

of these auxiliary rules will lead us two distinct tables for reach and ∆reach, and

the two tables must be merged after the incremental phase. We describe a data

structure that enables the two predicates to share the same table, eliminating most

7

of the overheads of incremental evaluation. Our final approach of handling addition

of facts is based on call dependency where only calls that are affected by the addition

of facts are evaluated from scratch. In the following chapters we elaborate on the

motivation, applicability and description of these approaches.

1.2.2 A Time-Efficient Technique for Handling Deletion

Among the techniques that handle recursive queries, the DRed algorithm [GMS93],

is the most general one used to maintain materialized views. This bottom-up (or

forward-chaining) algorithm considers two kinds of changes: addition to and dele-

tions from the set of facts. The algorithm works in three phases. In the first phase,

all the derived answers that are dependent on the deleted facts are marked as possi-

bly deleted. In the second phase, some of these marked answers that have alternative

derivations are rederived. In the third phase, new answers due to the added facts are

computed. The algorithm, however, has unacceptable time overhead in practice since

the dependencies between answers, rules and facts are computed afresh at each incre-

mental step. Moreover, the first phase may eagerly mark a large number of answers,

only to rederive them in the second phase. In the example given in Figure 2(a) and

(b), if edge(1,1) is deleted after evaluation of the query reach(0,X), the answers

reach(0,1) and reach(0,2) are going to be deleted and subsequently rederived.

Our algorithm for handling deletion of facts and rules improves over DRed in two

respects. First, in addition to the tables themselves, we maintain a structure called

the support graph that keeps with each answer the proximal cause of its derivation.

For instance, if an answer reach(0,1) was derived using the rule reach(X,Y) :-

edge(X,Y) and the answer edge(0,1), then the set 〈edge(0, 1)〉 is maintained as a

support of reach(0,1). Unlike DRed, support graph materializes the dependency

between answers and facts instead of computing them using auxiliary rules. Second,

we identify supports that are acyclic and can be used to finitely construct a proof. For

instance, let 〈reach(0, 1), edge(1, 2)〉 and 〈edge(0, 2)〉 be two supports for reach(0,2),

and let 〈edge(0, 2)〉 be the support generated when reach(0,2) was derived for the

first time. Hence we know that the support 〈edge(0, 2)〉 can be used to build a proof

for the answer reach(0,2). The first support for an answer is always acyclic and

is called its primary support. When a fact is deleted, we mark all the supports that

8

this fact participates in as deleted, and propagate the deletion marking through the

support graph. An answer is not marked as long as it has at least one unmarked

acyclic support. This stops the propagation of deletion marks through the support

graph early. For example, deletion of fact edge(1,1) will not mark any answers as

the primary support 〈edge(0, 1)〉 of the answer reach(0,1) is unmarked. We find

that using primary supports alone, we can reduce the number of answers deleted and

later rederived by over two orders of magnitude. Since the support graph is explicitly

maintained, the propagation of deletion marks and any necessary rederivation is done

in constant time per answer. We find that the time for incremental computation of

rules per source statement deletion is typically less than 1% of the time it takes for

from-scratch evaluation in our experiments with pointer analysis. The support graph

based deletion algorithms are discussed in Chapter 4.

1.2.3 Space-Time Tradeoff

Although the acyclic support-based algorithm is time efficient, the explicit storage of

support graph imposes considerable space overheads. Our first approach to deal with

this problem is based on maintaining a partial support graph which contains only a

bounded number of supports for each answer. Although the size of partial support

graph is linear to the table size, it increases the rederivation time as expensive program

clause based rederivation is required instead of support graph based rederivation.

Using partial support graphs, the time for incremental pointer analysis per statement

deletion is about 8% of the time it takes for from-scratch evaluation.

Our second approach is based on a data structure called symbolic support graph

which represents support information compactly. The method explores the com-

monality between supports originated in certain types of programs. For a variety

of applications the size of symbolic support graphs grows no faster than the table

size. Using symbolic support graphs, the time for incremental evaluation of pointer

analysis per statement deletion is less than 1% of the from-scratch evaluation time.

These algorithms are described in Chapter 5.

9

1.2.4 A Local Algorithm for Handling Updates

All recursive view maintenance algorithms treat addition and deletion as atomic

changes, and an update as a deletion (of the old version) followed by an addition

(of the new version). In some cases, the deletion may cause significant changes, most

of which will be undone by the subsequent addition. This is also the case when mul-

tiple additions and deletions of facts occur. Based on this observation, we present a

local algorithm for handling updates to facts. We maintain a dynamic (and poten-

tially cyclic) dependency graph between and among calls and answers in the memo

tables. The key idea is to interleave the propagation of deletion and addition oper-

ations generated by the updates through this graph such that the overappoximation

of deletion propagation can be nullified by the support generated by addition. The

dependency graph used in our algorithm is more general than that used in algorithms

previously proposed for incremental evaluation of attribute grammars and functional

programs. Nevertheless, our algorithm’s complexity matches that of the most efficient

algorithms built for these specialized cases. This algorithm is described in Chapter 6.

1.2.5 Handling Full Prolog

We implemented the incremental algorithms in XSB tabled logic programming sys-

tem. We notice that the answer dependency based techniques cannot be readily

applied for incremental computation of arbitrary tabled programs, especially those

involving Prolog built-ins such as findall, other aggregation operations, or non-

stratified negation. We explored a simpler incremental evaluation algorithm that,

based on the dynamic call graph, invalidates and re-evaluates entire calls. The al-

gorithm is agnostic to whether a change adds or deletes answers from tables, and

hence can be applied uniformly to programs with negation, even when the negation

is implicit (as is the case with certain aggregation operations). The call-graph based

algorithm is described in Chapter 7.

Our incremental algorithms have been used in various real-life problems such as

pointer analysis, push-down model checking, parsing, dynamic programming, and

XML validation. We describe some of the major contributions of this thesis along

with future avenues of research in Chapter 8.

Chapter 2

Related Work

The problem of incremental computation has been considered in various fields of

research viz. materialized view maintenance and XML validation in databases, model

checking, program analysis, logic programming, and functional programming. In this

section we discuss some seminal works in these areas of research.

2.1 Materialized View Maintenance

Materialized views are pre-computed intensional relations stored in database for fast

query response. When extensional database relations are updated, it is required to

refresh the materialized views which depend on the updated base relations. The pro-

cess of updating materialized views in response to the change in the underlying base

relations is called view maintenance. The problem has been considered in databases

community for many years (see, e.g. [GM95, MT99] for surveys). Although only few

works have been proposed for recursive view maintenance.

Most of the works in recursive view maintenance generate rules that are similar in

spirit to those of DRed [GMS93] and are subsumed by DRed (as compared in [GM95]).

The DRed algorithm generates rules for computing deletions and additions of tuples in

the views. Changes to the views are computed in three steps using bottom-up semi-

naive computation of these rules. First, the algorithm computes an overestimate

of deleted derived tuples: a tuple t is in this overestimate if the changes made to

base relations invalidate any derivation of t. Second, this overestimate is pruned by

10

11

removing (from the overestimate) those tuples that have alternative derivations in

the new database. Finally, the new tuples that need to be added are computed using

the partially updated materialized view and the changes made to the base relation.

Küchenhoff algorithm [K9̈1] derives rules to compute the difference between con-

secutive database states for a stratified recursive program. The rules generated are

similar in spirit to those of DRed but some of these rules are not safe, and while

dealing with positive rules they do not discard duplicate derivations.

Dong and Topor in [DT92] derived a nonrecursive program for addition of a single

tuple for all views defined by a right linear chain Datalog programs.

Propagation/Filtration algorithm ([HD92]) is very similar to the DRed algorithm

except that the changes made to the base relation propagate on a relation by relation

basis. It computes changes in one derived relation due to changes in one base relation,

looping over all derived and base relations to complete the view maintenance. How-

ever, rather than allowing the deletion step to complete before starting the pruning

step, the deletion and pruning steps are alternated after each iteration of semi-naive

evaluation. This allows the PF algorithm to avoid propagating some of the tuples

that occur in the overestimate after the first iteration but do not actually change.

However, the alternation of the steps after each semi-naive iteration also causes some

tuples to be rederived several times.

The Urpi-Olive algorithm ([UO92]) computes the changes in the stratified deduc-

tive database. The views are defined as datalog rules and the changes to the views are

computed using expressions derived from an analysis of deductive rules. The method

takes into account key constraints of the base and derived relations. Updates to the

non-key attributes are handled separately for improving efficiency. The paper defines

several transition and internal event rules. Internal event represents the changes in

the derived predicates and external events denote the changes in the base predicates.

Transition rules capture the relation between old and new database states and the

events that have occurred in the transition. Internal event rules define the conditions

upon which an internal event occurs. It follows a three step algorithm — 1) genera-

tion of transition rules; 2) generation of event rules; and 3) SLDNF resolution to find

the changes to the view.

12

Name Addition Deletion Update Sets of each View Defn.
Change

Küchenhoff[K9̈1] X X × X X

Gupta et. al.[GKM92] X X × X ×
Dong, Topor[DT92] X × × × ×
DRed[GMS93] X X × X ×
Lu et. al.[LMSS95] X X × X ×
Urpi, Olive[UO92] X X X X ×
Staudt, Jarke[SJ96] X X × X ×

Figure 3: Types of changes

Lu et. al. ([LMSS95]) considered materialized mediated views as a set of con-

strained atoms. They extended the DRed ([GMS93]) algorithm to constrained

database which can have non-ground tuples and presented a Straight Delete (StDel)

algorithm which eliminates the rederivation phase of DRed. With every constraint

atom the algorithm keeps track of the proof of truth of the atom. It does not address

the problem of space overhead of keeping track of all possible justifications with every

answer.

Staudt and Jarke ([SJ96]) presented a purely declarative encoding of

DRed ([GMS93]) and transformed these rules with the help of supplementary magic

set techniques so that the rules can be applied to cases where view caches are not ac-

cessible. The algorithm rederives the intensional relations on demand by firing these

rules.

A top-down algorithm for incrementally checking integrity constraints (which can

be seen as views) is presented in [SdS99]. This algorithm first computes the set

of integrity constraints that are possibly affected by the changes to the facts. It

then evaluates the integrity constraints top-down. The method works only for non-

recursive predicates.

We present a tabular comparison of the type of changes handled by some of the

view maintenance algorithm in Figure 3. Also note that apart from the algorithms

in [LMSS95] none of the other algorithms maintain dependency graphs to propagate

changes.

13

2.2 Model Checking

The first use of incremental computation in model checking is noted in [SS94], which

considers model checking alternation-free fragment of modal mu-calculus. The algo-

rithm, called MCI, takes as input a set ∆ of added or deleted transitions to the labeled

transition system (LTS) under investigation, and computes the new truth assignments

of formula variables to LTS states. The main technique utilized by MCI is to first

compute the immediate effects of ∆ on the results of the previous computations and

then restart the fix-point iteration. But before it starts the fix-point iteration, it

makes adjustment to the current variable assignments - raising it sufficiently high

in the lattice of all variable assignments when computing greatest fixed-point, and,

dually, lowering it sufficiently when computing the least fixed-point. It uses a data

structure called product graph for capturing all the dependencies between pairs of the

form 〈s,Xi〉 for LTS state s and logical variable Xi of the given mu-calculus formula.

The lowering of variable assignment in least-fix point computation follows the same

heuristic of deletion phase of DRed [GMS93] - an assignment 〈s,Xi〉 is falsified if any

of its immediate predecessor (a reason for derivation) is falsified. Its restarting fix-

point iteration phase is again same as the rederivation phase of DRed. However, its

use of product-graph for change computation and judicious use of counts distinguishes

it from DRed.

In the context of formal verification of digital circuits Swamy et. al. presented

several incremental algorithms ([SBS95, Swa96]). The algorithms employ similar fix-

point adjustment algorithm as MCI but use rules as in DRed to compute the changes

in the reachable state space in response to changes in the transition relation. The dis-

tinguishing feature of this work is its use of Binary Decision Diagrams (BDDs) [Bry86]

to represent transition relation as well as reachable state space. The semi-naive eval-

uation of rules are expressed as operations on BDDs. To incrementally maintain

reachable states in response to changes in the transition relation, a spanning graph

(acyclic) is generated during reachability analysis as the evidence for all the reach-

able states. While computing the effect of deletion of edges, a state is considered

unreachable if all of its immediate predecessors in the spanning graph are considered

unreachable. Later an unreachable state is derived as reachable if it is reachable via

a path which is not there in the spanning graph. This is possible as the predecessors

14

of a node n in a spanning graph are reachable independent of whether n is reach-

able. Our careful observation reveals that this heuristic is better than the heuristics

of MCI, DRed. MCI would mark a reachable state as unreachable if any one of its

predecessors in the spanning graph is marked unreachable. As DRed does not keep

any evidence of why a state is reachable, such heuristic to prevent over-propagation

of deletion is not possible.

Note that Swamy’s idea of keeping spanning tree and spanning graph can be

considered as well-founded way of justifying reachable state space. This observation

enabled us to devise a deletion algorithm which improves upon DRed, although the

algorithm we use to compute such non-acyclic justifications (or supports) is different

in the context of tabled logic programs. Note that we differ from Swamy’s algorithm

in the rederivation phase as we rederive based on the supports that are not marked

in the deletion phase. However, Swamy’s algorithm needs to perform reachability

query for rederivation as it does not keep all justifications for reachable state space.

We further extend our algorithms to confine change propagation by (i) using strongly

connected components of dependency graph and ensuring that topologically lower

components are stabilized before the effects of changes are propagated to a higher

component, and (ii) using the effect of addition to restrict deletion propagation when

both kinds of changes occur together.

[CNDE05] presents incremental version of inter-procedural analysis algorithm for

verifying safety properties. This is in fact the first incremental algorithm for safety

analysis of recursive state machines. The paper presents two algorithms to handle

changes. The key to both the algorithms is the incremental maintenance of a data

structure called the derivation graph which is the product of the control-flow graph

(CFG) and automaton representing the finite state property. Both the algorithms

handle modification, insertion and deletion of edges from the CFG. In general modifi-

cations are handled by deletion of the old control-flow edge followed by insertion of the

modified edge. In IncrFwd algorithm insertion of CFG is handled by restarting the

non-incremental evaluation algorithm from the point of insertion. Deletion is handled

by checking the entire derivation graph and deleting edges in the derivation graph

which is dependent on the deleted CFG edges. The second algorithm, called IncrBwd,

processes the changes in bottom-up topological order of maximal strongly connected

15

component (SCC) decomposition of the call graph. Thus it propagates changes to

the topologically higher SCC once all changes are computed in lower SCCs. In each

SCC it employs the IncrFwd algorithm. In contrast to IncrFwd algorithm, IncrBwd

algorithm produces a derivation graph which is over-approximation of the graph gen-

erated by from-scratch evaluation. Our incremental local algorithm uses the idea of

propagating changes using SCC-reduces dependency graphs. However, we interleave

insertion and deletion propagation within each SCC.

2.3 Program Analysis

Incremental analysis is used to recompute global analysis information on programs in

response to changes in the program. Many incremental algorithms have been devel-

oped for data-flow analysis problems. Some incremental analyses use the elimination

method [Bur90, CR88, RP88]; some are based on the technique of restarting itera-

tions [PS89] and some are combination of the two techniques [MR90]. A comparison

of incremental iterative algorithms can be found in [BR90]. Effectiveness of incremen-

tal analysis has been shown for MOD analysis of C programs [YRLS97]. Pollock and

Soffa [PS89] presented a precise incremental iterative algorithm using change clas-

sification and reinitialization for bitvector problems. The authors identified several

cases where changes can be propagated without any overapproximation. However, in

presence of cycles they employ two phases called exaggerate and adjust to compute

the changes. These phases use the same heuristic of including a derived fact in the

set of overapproximation of actual changes if any one of its predecessors (derivations)

is already in the overaproximated set.

Yur et. al. in [YRL99] developed an incremental pointer analysis algorithm based

on Landi-Ryders’s flow- and context-sensitive alias analysis ([LR92]). They update

points-to information after a program change rather than computing it from scratch.

Their incremental algorithm is not complete in the sense that it may compute less

precise solution than the exhaustive technique. This algorithm also has two phases

of alias falsification (deletion) and alias introduction (rederivation) as DRed. Their

selective falsification strategy degenerates to falsification strategy of DRed [GMS93]

where all directly and indirectly generated aliases due to the deleted statement are

16

falsified.

2.4 Attribute Grammar Evaluation

A lot of research has been done on incremental evaluation of attribute grammars.

The categorized bibliography by Ramalingam et. al. [RR93] presents the work done

in 80’s and early 90’s. Most of the algorithms in this area are based on updating

values of attribute instances by change propagation through dependency graphs. As

our technique also relies on change propagation using dependency graphs, we discuss

here some of the relevant works on dependency graph based incremental attribute

evaluation.

The work on incremental attribute evaluation is pioneered by Thomas Reps, Tim

Teitelbaum, and Alan Demers [DRT81, Rep82, RTD83, Rep84] in their work moti-

vated by its application on ‘Synthesizer Generator’, a system for creating specialized

editors that are customized for editing some particular languages. All of these works

concentrate only on non-circular attribute grammars. In their first paper ([DRT81])

on incremental evaluation of attribute grammars they presented a two pass algorithm

based on nullification and re-evaluation. The algorithm presented in this paper is

non-optimal. This paper was followed by a paper by Reps ([Rep82]) which presents

an optimal solution on incremental evaluation of non-circular attribute grammars.

This seminal paper has been elaborated in Reps’ thesis ([Rep84]) and subsequently

in the journal version ([RTD83]).

We present here an overview of the main result presented in [Rep82]. As mentioned

before the optimal algorithm is based on keeping functional dependencies among var-

ious attribute instances. For a particular derivation of a string, the derivation tree

represents the dependency between all nonterminal /terminal instances. Semantic

tree is the derivation tree with their respective attribute instances (and their values).

Dependency graph represents the functional dependencies between values of the at-

tribute instances. This paper only considers acyclic dependency graphs, and provides

a change propagation algorithm through dependency graphs. The change propagation

is triggered by various editing operations on derivation tree- like pruning and grafting.

Out of entire allocation of attribute instances of the tree, only certain ones require

17

new values; these are denoted by the set AFFECTED although the members of this

set are not known a-priori. The total cost of the algorithm is O(|AFFECTED |). The

main idea of the algorithm is to do topological order evaluation through the static

and acyclic dependency graphs.

2.5 Logic Program Analysis

Hermenegildo et. al. [HPMS95, PH96, HPMS00] discussed incremental algorithms

for global analysis of logic programs. In [HPMS95] the authors presented incremental

algorithms for re-analysis of logic programs and constraint logic programs respec-

tively. They first presented an event based algorithm for non-incremental program

analysis which builds a program analysis graph containing answer table (nodes) and

dependency-arc-table (edges). Each entry in answer table shows a calling pattern and

corresponding answer pattern. Each dependency arc shows the calling pattern of a

subgoal in the body of a clause for a particular calling pattern of the head subgoal of

the clause. Their incremental addition algorithm uses the non-incremental algorithm

to propagate the changes due to addition of rules. The authors presented two deletion

algorithms. The top-down algorithm first deletes the nodes and edges in the program

analysis graph which is dependent (before the change) on the deleted rules and conse-

quently re-evaluates the affected calls using non-incremental algorithm. Due to huge

overapproximation present in the top-down algorithm they proposed a bottom-up

deletion algorithm which uses SCC-reduced predicate dependency graph to propagate

the changes to the analysis result from topologically lower predicate SCC to upper

predicate SCC level only after lower SCC gets completely evaluated. Within each

predicate SCC the algorithm reevaluates all possibly affected calling patterns and

checks whether the new answer patterns are different from the old answer patterns in

which case the changes are propagated to the topologically higher SCC. In presence

of arbitrary changes (addition and deletion) similar bottom-up algorithm is followed

except that the SCCs needs to be reevaluated due to addition of rules.

In [PH96] the authors optimized the non-incremental global analysis algorithm

presented in [HPMS95]. The optimized algorithm is obtained using delayed depen-

dency and new assignment of event priorities which assures that each topologically

18

lower dynamic call SCC is completely evaluated before upper SCCs. The impor-

tant contribution is to obtain this assurance of SCC-preserving computation without

keeping any explicit SCC. As the incremental deletion algorithm of [HPMS95]) uses

non-incremental algorithm as a subroutine, the efficiency of incremental deletion is

also thereby increased. Incremental addition requires a special attention in the new

non-incremental algorithm as meeting delayed dependency criteria is not always pos-

sible. Incremental addition uses application dependent strategy to make the event

scheduling strategy SCC-preserving.

The idea of using SCC-reduced dependency graphs to optimize propagation of

changes has been seen in various other works [Jon90, WJ88, CNDE05]. In the con-

text of tabled logic programs we develop an incremental algorithm (called local al-

gorithm; discussed in Chapter 6) which also propagates the changes due to insertion

and deletion on topological order of SCC-reduced dependency graph. Infact our event

based description for propagating changes in the local algorithm has been inspired

by their Hermenegildo et. al.’s work. Apart from the fact that their incremental

analysis is specialized towards logic program analysis, they only consider one answer

pattern per call, and propagation is controlled based on the call graph. In contrast,

our local algorithm consider two kinds of dependencies: one based on calls and one

based on answers. Because of the answer dependencies we can achieve finer-grained

interleaving between addition and deletion operations within call graph SCCs.

2.6 Functional Programming

The existing works on incremental functional programming can be divided into two

categories. The literatures ([PT89, LST98, ABH03b]) on the first category use

memoization to re-use results of an earlier call when a matching call occurs. The

paper [ABH02] of the other category uses dependency graph to perform change

propagation to update the solution. Only in recent times couple of technical re-

ports [ABH03a, dMS03] try to combine these two approaches. In this thesis, we build

dependency graph based approach on top of the memoization framework of tabling.

We also extend the problem domain by considering cyclic dependency graphs.

In [PT89] Pugh described an incremental evaluator for functional languages based

19

on function caching. The method is based on stable decomposition scheme that de-

composes two subproblems in a similar way so that they share common subproblems.

The data structures are designed in such a way that two similar values will have

similar decomposition. Liu et. al. [LST98] presented systematic technique, called

cache-and-prune to automatically determine which results need to be cached and how

to cache and maintain them throughout incremental computation. Their method is

based on static program analysis and semantic-preserving program transformation.

Recently Acar. et. al. [ABH03b] presented selective memoization techniques to

provide control over performance of memoization based facilities based on precise

input-output dependencies, defining call-equality, and controlling space usage. The

definition of call-equality is the most important aspect of re-using results of calls.

The most commonly used approach is to deem two calls equal when the function as

well as arguments match exactly. In this paper the authors considered two calls to be

equal if the arguments on which the result is dependent matches. These arguments

are found by keeping input-output dependencies.

The dependency graph based change propagation for incremental evaluation of

functional programs has been recently explored by Acar et. al. [ABH02]. The paper

describes how a pure functional program can be instrumented to obtain the Aug-

mented Dependency Graph (ADG) while the program is executed. Change propaga-

tion is done through ADG to update the values of the expressions that are dependent

on the changed value of the variable. The dependency graph in their work is acyclic

as it represents functional dependencies between values of variables and expressions.

The dependency graph also maintains an ordering among its edges to keep track of

which edges are within the dynamic scope of other edges (containment hierarchy).

The ordering among edges enables the re-evaluation of expressions in the same order

as they were evaluated in the initial evaluation. The containment hierarchy also en-

ables identification and removal of edges that become obsolete. Timestamps are used

to represent this information, and dynamic topological order maintenance algorithm

of Dietz and Sleator [DS87] is used to maintain timestamps incrementally.

Note that dependency graph based incremental attribute evaluation does not ap-

ply for evaluation of functional programming as the dependency graph considered

in attribute evaluation is static. The dynamic nature of the augmented dependency

20

graph (ADG) distinguishes their work from previous applications of incrementality.

However, the acyclic property of ADG limits its use in set-expression evaluation which

can potentially cause generation of cyclic dependency graph. Also note that, the al-

gorithm only relies on dependency graph based evaluation and do not take advantage

of memoization.

In context of incremental tabled evaluation, we maintain a dependency graph

(known as subgoal dependency graph or call graph) which is potentially cyclic and

dynamic. Handling cycles properly is a key challenge addressed in our algorithm.

Nevertheless, we developed algorithm which naturally specializes to ADG based algo-

rithm for incremental functional programming. Note that the stable decomposition

strategy used by Pugh in [PT89] is catered specially towards incremental evaluation.

Following such strategies requires that the input tabled logic program to be written

in a specialized way that it may no longer be declarative in nature. Thus we do not

follow such strategies in developing incremental algorithms for tabled evaluation.

2.7 Truth Maintenance Systems

Truth maintenance (also called belief revision or reason maintenance) is an area of AI

concerned with revising sets of beliefs and maintaining the truth in the system when

new information contradicts existing information. In this context, Doyle’s [Doy79]

truth maintenance system (TMS) determines current set of beliefs from current set

of reasons and incrementally updates the current set of beliefs in accordance with

the new reasons. It considers propositional reasoning and beliefs and uses general

logical formula to describe them. The TMS maintains a four-valued propositional

logic formula, in which all valid, invalid combinations of literal and its negated form

can co-exist. The TMS maintains two data structures which represent beliefs, and

justifications (reasons for beliefs). It maintains justifications for both valid (in) as

well as invalid (out) beliefs. Justifications are divided into two groups: support-list

justifications and conditional-proof justifications. Among all the supports of a belief

it singles out one justification, called the supporting-justification or well-founded sup-

port which forms a non-circular argument for the belief in the in set. It also main-

tains the dependency between beliefs and justifications using a dependency graph.

21

The incremental algorithm employed by TMS propagates the changes through the

dependency graph. The propagation algorithm employs a two phase algorithm con-

sists of deletion and rederivation phases. The deletion phase however is better than

deletion strategy of DRed as it prunes the overapproximation caused by DRed using

well-founded supports.

Our incremental deletion algorithm considers Horn clause logic programs (except

in Chapter 7) and thus is not general as TMS systems. Also we consider first-order

logic whereas the TMS used propositional logic. We use dependency graph structures

similar to support list justification of TMS to keep dependencies between answer and

its supports (or justification). In our case the answer dependencies exist between

only true/valid answers. We use the idea of having a non-circular support of TMS

(referred to as primary support) to reduce the overapproximation of actually deleted

answers. We exploit a property of least fixpoint computation to identify such supports

in non-incremental evaluation without any extra cost. We also extended the deletion

algorithm to include multiple such acyclic supports to further reduce the overapprox-

imation of deletion. In addition to these when deletion and insertion changes are

occurring together we devised a local algorithm which judiciously interleaves the in-

sertion and deletion operations for better efficiency. TMS on the other hand does not

employ such local strategy. It also does not consider the space problem potentially

caused by the support justifications. We develop space efficient algorithm to address

the space problem caused by support graph when incremental tabled evaluation is

applied to program analysis.

Chapter 3

Preliminaries

In this section we describe operational description of tabled logic programming fol-

lowed by a formal treatment of computational power of tabling. We also describe

deductive formulation of a well known pointer analysis algorithm. In this thesis

pointer analysis of C programs has been used as a practical evaluation framework for

demonstrating effectiveness (and weaknesses too) of incremental algorithms.

3.1 Tabled Logic Programming

The use of tabling in logic programming has established itself as a powerful evaluation

technique, since it allows bottom-up evaluation to be incorporated within the top-

down framework, combining the advantages of both. At-least for loop-free, stratified

programs with few redundant subcomputations top-down queries can be substantially

faster than bottom-up deductive database systems. Thus, rather than adding goal

orientation to a bottom-up evaluation, a natural approach to evaluate in-memory

queries is to add bottom-up capabilities or tabling, to Prolog like top-down evalu-

ation. The concept of tabled evaluation has been there for two decades ([TS86])

and in last decade we have seen some powerful implementation of tabled logic sys-

tems ([XSB, RSC00, ZSYY01, GG01]). For the purpose of this thesis we concentrate

on XSB’s ([XSB]) tabled logic programming system.

At a high level, top-down tabling systems evaluate programs by recording sub-

goal (referred to as calls) and their provable instances (referred to as answers) in

22

23

a table. Predicates are marked a-priori as either tabled or nontabled. Clause res-

olution, which is the basic mechanism for program evaluation, proceeds as follows.

For nontabled predicates the subgoal is resolved against program clauses. For tabled

predicates, if the subgoal is “already present” in the table, it is resolved against the

answers present in the table; otherwise the subgoal is entered into the table and its

answers, computed by resolving the subgoal against the program clause, are also en-

tered into the table. The process of resolving a subgoal against its program clauses

will be henceforth called program clause resolution or PCR in short. And answer

clause resolution will refer to resolving a subgoal against the tabled answers. For

both tabled and nontabled predicates, program clause resolution is carried out using

SLG-resolution [CW96].

The check for presence of a call in the call table can be done in two ways. In a

variant based tabling system one checks whether a variant of the new goal already

exists in the table. Two terms are variant to each other if one can be converted to

other by renaming its variables. Alternatively in subsumptive based engine, a call

can be deemed present in a table if another call subsumes the call already in the

table; in that case the call can be resolved against the answers of this more general

call. For the purpose of this thesis only variant based checking is considered. Due

to sharing of call structures in subsumption based tabled engine, incremental algo-

rithms that depend on call dependencies (Discussed in Chapters 6, 7 and Section 5.2)

are not applicable to subsumptive tabling. But, insertion and support graph based

deletion algorithm discussed in Chapter 4 and partial support graph based deletion

algorithm discussed in Section 5.1 seamlessly works for subsumptive engine. Note

that efficiency of memoization technique for the purpose of re-use of old answers is

dependent on these methods of checking. It is important to note that the origi-

nal goal of using tabulation was to incorporate bottom-up semi-naive technique to

top-down evaluation framework thereby making sure of termination for definite logic

programs with bounded term size property [RSS+97]. In contrast in functional pro-

gramming [PT89, ABH03b] memoization techniques have been used fundamentally

for the purpose of incremental evaluation which focuses on interesting memoization

schemes catered towards more re-usability of information. In this thesis we consider

variant based simple call equality approach. Extending our incremental techniques

24

to more fine grained memoization approaches such as [GG04] is an interesting open

problem.

The XSB system uses trie-based data structures for storing terms in call and

answer tables [RRS+95]. For each tabled predicate a call table (trie) is maintained

for various calls of that predicate. All answers to each entry of call-trie (call) in the

call table are stored in an answer trie. Each answer trie is linked with the call trie

entry with the intermediate structure called subgoal frame which keeps most of the

information regarding a call. Tries permit efficient lookup and one-pass check-insert

operations. However, tries do not maintain the terms in the order of insertion. When

resolving answers against an incomplete table (where new answers may be added),

XSB maintains and uses an answer list, which links leaf nodes in the trie in their

order of insertion. When a table is complete, which means no new answers can be

added to the table with respect to a given set of facts, answer resolution is done by

backtracking through the trie top-down; the answer list is no longer needed and is

deleted.

Most of the incremental algorithms in subsequent chapters are described with

respect to definite logic programs which can be extended to stratified negation based

on propagating changes strata-by-strata. In the following discussion we present a

formal description of tabled evaluation for definite logic programs, focussing specially

on the model computed by tabled evaluation.

The semantics of definite logic program is described in terms of existence of the

least Herbrand model [Llo84]. However, Herbrand model is based on an interpretation

where the domain is a set of variable-free terms. This assumption does not hold for

the model inferred by the tabled evaluation of definite logic programs. Also the model

generated by tabled evaluation is related to a goal (or query) to a program.

Consider a definite logic program P be a tuple 〈R,F 〉 where F is a set of facts

and R is a set of rules. Let EVALtab(P
′, Q′) returns a tuple 〈A′, Γ′〉 where A′ is the

union of set of answers generated by table evaluation while evaluating the queries in

Q′ and the set of facts in P ′, and Γ′ is the set of calls generated by tabled evaluation.

In the following we define the set of calls Γ′ and set of answers A′ generated by tabled

evaluation.

The calls and answers generated by tabled evaluation can be defined using SLD

25

resolution [Llo84].1 The SLD resolution processes results in a finite or infinite

sequence of goals starting from with the initial goal. At every step a program clause

(with renamed variables) is used to resolve the subgoal selected by the computation

rule R and an mgu (most general unifier) is created. Thus, the full record of a

reasoning step would be a pair 〈Gi, Ci〉, i ≥ 0, where Gi is a goal and Ci is a program

clause with renamed variables. The computation rule R together with Gi and Ci

determines (upto renaming of variables) the mgu (to be denoted θi+1) produced at

i + 1th step of the process. A goal Gi+1 us said to be derived (directly) from Gi and

Ci via R. The computation rule is a selection function which for a given goal selects

the subgoal for unification.

Definition 1 (SLD-derivation([NM00])) Let G0 be a definite goal, P is a definite

logic program and R is a computation rule. An SLD-derivation of Go (using P and

R) is a finite or infinite sequence of goals:

G0
C0−→ G1 . . . Gn−1

Cn−1

−→ Gn . . .

For the purpose of this discussion we only consider SLD-derivation in which com-

putation rule selects a left-to-right subgoal selection strategy. Henceforth, unless

stated we consider SLD-resolution which uses the above selection strategy.

We now define the calls evaluated by tabled evaluation based on SLD-derivations.

Definition 2 (Call) Let a definite logic program P be a tuple 〈R,F 〉 where F is a

set of facts and R is a set of rules. Let G0 be a query and G0
C0−→ G1 . . . Gn−1

Cn−1

−→

Gn . . . be an SLD-derivation. Let γi represents the first subgoal of goal Gi. Then the

tabled resolution of P with respect to the query G0 will have γi’s as tabled calls if it

corresponds to a subgoal of a table predicate. All calls generated by tabled resolution

follows from all possible SLD-derivations.

We also define the dependency between calls in terms of a graph called call graph.

Definition 3 (Call Graph) Let a definite logic program P be a tuple 〈R,F 〉 where

F is a set of facts and R is a set of rules. Let G0 be a query. The call graph (Γ,E)

corresponding to the program P and query G0 is defined as follows, Γ is the set of

1The description on SLD-resolution has been taken from [NM00]

26

calls and E ⊆ (Γ × Γ) such that (γi, γj) ∈ E iff there exists an SLD-derivation path

between two goals Gi and Gj where γi and γj correspond to the first subgoal of Gi

and Gj respectively, and the path from Gi to Gj does not contain any goal whose first

subgoal is a tabled predicate.

Note that there can be infinitely long SLD-derivation paths possible. SLD-

derivation is captured by SLD-derivation tree which has finite paths from root to

leaf corresponding to finite derivations (either true or false) and infinite paths. Each

finite SLD-derivation of the form: G0
C0−→ G1 . . . Gn−1

Cn−1

−→ Gn yields a sequence

θ1, . . . , θ2 of mgu’s. The composition of these mgu’s us called the computed substitu-

tion of the derivation. SLD-derivations that end in a empty goal (and the binding of

variables in the initial goal of such derivations) correspond to refutations of the initial

goal. A finite SLD-derivation which ends in an empty goal is called SLD-refutation

of the initial goal. The computed substitution if an SLD-refutation of G0 is called

computed answer substitution for G0.

Definition 4 (Answers) Let a definite logic program P be a tuple 〈R,F 〉 where F

is a set of facts and R is a set of rules. Let γ be a call generated by tabled evalua-

tion. Then all computed answer substitution by SLD-resolution for γ0 are exactly the

answers of γ0 computed by tabled resolution.

The above discussion on tabled resolution is only meant for understanding this

thesis. For further discussion on XSB’s table engine refer to [CSW95, RRS+95]. In

the following section we show an example of tabled evaluation on logic programming

encoding of pointer analysis.

3.2 A Deductive Formulation of Pointer Analysis

We consider Anderson’s [And94] inclusion-based context-insensitive and flow-

insensitive pointer analysis to experiment the effectiveness of various algorithms pre-

sented in this thesis. In this section we explain the rule-based encoding of pointer

analysis. To simplify our presentation, we assume that a given input C program is

decomposed to a set of primitive assignment statements of the following form:

u = &v | u = v | u = ∗v | ∗ u = v

27

u −→ v
u = &v v −→ x

u −→ x
u = v

v −→ x, x −→ y

u −→ y
u = *v

u −→ x, v −→ y

x −→ y
*u = v

Figure 4: Anderson’s rules for pointer analysis.

points to(U,V) :- assign(plain(U),addr(V)).

points to(U,X) :- assign(plain(U),plain(V)), points to(V,X).

points to(U,Y) :- assign(plain(U),star(V)), points to(V,X), points to(X,Y).

points to(X,Y) :- assign(star(U),plain(V)), points to(U,X), points to(V,Y).

Figure 5: Logic program using Prolog notation corresponding to Anderson’s rules

Figure 4 shows the points-to analysis rules for each assignment statements

(from [HT01a]). In the figure x −→ y denotes that x may point to y.

These rules can be readily written as a logic program which is shown in Fig-

ure 5. Following Prolog’s notational convention, identifiers beginning with uppercase

letters denote variables, and identifiers beginning with lowercase letters denote re-

lation names and data constructors. For example, points to denotes the binary

may-points-to relation, and the term points to(x,y) denotes that x may point to y.

The terms plain(x), addr(u) and star(u) represent pointer variable x, and pointer

expressions &u and ∗u respectively. Also assign(U,V) represents the assignment

statement with left hand side and right hand side contain pointer expressions corre-

sponding to the terms U and V . For example, the second rule should be read as “U

may point to X if there exists an assignment statement of the form U = V in the

code and V may point to X.”

Based on this formulation the set of all variables that a given variable v may point

to can be computed as answers to the query2 points to(v,X). For instance, given

the set of assignment statements {u=&v, p=u, u=p}, the query points to(p,X) has

one answer X=v, meaning that p may point to v. While the points-to analysis can

be succinctly encoded in Prolog syntax, most Prolog systems will fail to evaluate the

2In this chapter, we use the terms “query”, “goal”, “subgoal” and “call” interchangeably.

28

program correctly. This results from Prolog’s inability to compute the least models of

programs with left recursion— even for Datalog programs (i.e. logic programs without

data structures). For instance, consider the evaluation of the query points to(p,X)

w.r.t. the set of assignments {u=&v, p=u, u=p, t=&u}. In resolving the original goal,

Prolog will issue the query points to(u,X) (due to p=u), whose resolution gives an

answer X=v. To find more answers for the latter goal, we again encounter the goal

points to(p,X). This causes Prolog to loop.

Tabled resolution (discussed earlier in this chapter), on the other hand, removes

this shortcoming of prolog for datalog programs by using memoization. Consider

again the query points to(p,X) w.r.t. the set of assignments {u=&v, p=u, u=p, t=&u}.

Upon first encountering the original query, tabled resolution adds the goal to the call

table and creates an empty answer table for it. Program clause resolution will then

produce the goal points to(u,X), which, in turn is entered in the call table. Further

resolution will produce one answer X=v, which is entered in both the answer tables.

Continuing with resolution, we will once again get the goal points to(p,X). Instead

of doing program clause resolution which makes Prolog loop, tabled resolution resolves

this goal using answers in the points to(p,X)’s answer table. In this example, this

produces X=v, an answer that was already generated. No further answers can be

generated, and hence the evaluation terminates.

By remembering the past resolution steps and avoid repeating them, memoiza-

tion helps tabled resolution terminate for datalog programs, and moreover, evaluate

queries with polynomial data complexity. Moreover, unlike the semi-naive algorithm

used in the deductive database literature ([Ull89]), tabled resolution is goal-directed,

and hence is naturally suited for demand-driven analysis.

Pragmatics. We apply the above analysis to C programs by transforming all as-

signment expressions into a set of primitive assignments. Nested uses of & and * are

handled by introducing temporary variables. For each static call site we introduce

assignment statements where formal parameter is assigned to actual parameter. Dy-

namic call sites are resolved with functions having same number and types of param-

eters. If the returned value is assigned to a variable then we generate an assignment

statement which assigns a temporary variable (same as the function name) to that

variable. For each function the return expression is assigned to the same temporary

29

variable generated from function name. In this chapter we consider field-independent

analysis which ignores field information for accessing structures and unions. Each

array is treated as a single variable and index information is ignored. Relaxing these

restrictions adds complexity to the analysis but does not reveal any more insight into

the problem of incremental analysis, and hence we describe only an analysis with

these restrictions.

Recall that the evaluation of points to(p,X) w.r.t. the set of assignments {u=&v,

p=u, u=p, t=&u} did not make use of the assignment statement t=&u. This is due to the

goal-directedness of the evaluation technique: only calls and answers that are needed

to resolve the given goal are used. However, note that implementations of tabled

resolution follow Prolog’s literal selection strategy: at each program clause resolution

step, the left-most subgoal is selected for resolution. Hence, the order of literals in

a clause affects the propagation of demand. For example, consider the same query

points to(p,X) with the set of assignments {u=&v, p=u, u=p, t=&u, *s=r}. Due

to the statement *s=r and the fourth rule for points-to, tabled evaluation generates

new queries points to(s,p) and points to(r,X). Thus tabled engine evaluates the

points-to relations of variables that are unrelated to p.

Consider the case when we are interested in evaluating, for different variables v,

what variables v may point to. This can be done by issuing queries of the form

points to(v, A) for different v: queries where the first argument is bound and

second argument is free. The pattern of boundedness of query arguments is known as

the calling mode of the query; the calling mode of the above query is bound-free. Note

that for bound-free queries, the fourth rule defining points-to uses the bound argument

(X) only in the second literal. Thus, tabled evaluation will backtrack through every

assignment of the form *U=V, without regard to whether it is related to the original

query.

We can avoid this by reordering the literals in the fourth rule to as follows:

points to(X,Y) :- points to(U,X), assign(star(U),plain(V)), points to(V,Y).

Due to the first literal in the body of the above rule, tabled evaluation will now

generate queries to points-to with calling mode free-bound. Note that different calling

modes require different literal orders. For instance, for free-bound queries, it is better

to reorder the body of the fourth rule with points to(V,Y), as the first literal.

30

points to(X,Y):- assign(plain(X),addr(Y)).

points to(X,Y):- assign(plain(X),plain(Z)), points to(Z,Y).

points to(X,Y):- assign(plain(X),star(Z1)), points to(Z1,Z),points to(Z,Y).

points to(X,Y):- pointed to by(X,U), assign(star(U),plain(Z)), points to(Z,Y).

pointed to by(X,Y):- assign(plain(Y),addr(X)).

pointed to by(X,Y):- pointed to by(X,Z), assign(plain(Y),plain(Z)).

pointed to by(X,Y):- pointed to by(X,Z), pointed to by(Z,Z1), assign(plain(Y),star(Z1)).

pointed to by(X,Y):- pointed to by(X,V), assign(star(U),plain(V)), points to(U,Y).

Figure 6: Logic program for points-to analysis specialized with respect to calling modes

We hence specialize the points-to relation with respect to the two calling modes,

as shown in Figure 6. In the figure, points to handles bound-free queries to the

original points-to relation; pointed to by, the inverse of points to, handles free-

bound queries to the original points-to relation. Note that if we issue only bound-free

queries to points to from the top-level, then all queries to points to as well as

pointed to by will be bound-free.

Note that the queries to points to and pointed to by are distinct (bound-free

queries are distinct from free-bound queries) and their answers are not shared in the

current tabling infrastructure. Subsumptive tabling [RRR96] can be used to share the

answers, but provided a more general (in this case, a free-free) query is issued first;

however, the general query will mean that the analysis will no longer be demand-

driven.

The rules in Figure 6 are similar to the inference rules for demand driven anal-

ysis in [HT01a]. The mode based specialization presented here is straightforward.

However, since it involves goal reordering, it is not clear how this specialization can

be automated for general logic programs. The program can be further optimized by

grouping the literals on the right hand sides and tabling intermediate results. The

details are omitted here.

Experimental Setup. We measured the performance of points-to analysis on

programs taken from C benchmarks available with PAF [PAF] compiler suite and

SPEC95 benchmarks. The benchmark characteristics are given in Figure 1. The first

four benchmarks in the table are relatively small; to remove noise from the results,

31

Prim. Rep. From Scratch All Points-to
Programs LOC Assign Factor Avg. Time(s) Facts Answers Space(MB)

Size Table Total

smail 3850 664 15 24.5 1.45 19.9K 398.0K 13 22
parser 11391 2190 15 5.8 1.20 65.7K 366.4K 17 32
vpr 17729 2708 15 1.8 0.37 81.2K 146.4K 15 33
m88ksim 19093 1406 15 6.0 0.25 42.2K 160.9K 10 22

twmc 24951 7065 1 16.7 0.87 14.1K 278.6K 9 14
nethack 33993 4875 1 35.0 2.55 9.7K 204.9K 6 21
vortex 67110 14387 1 69.8 12.90 28.8K 1,124.9K 31 57

Table 1: Benchmark characteristics

we replicated the programs, generating new variable names as appropriate. The re-

maining three benchmarks are large enough to permit stable measurements without

replication. We show the replication factor for the each benchmark in the column

named “RF”.

We preprocessed the C source code using CIL [NMRW02] into Prolog facts rep-

resenting the primitive assignment statements. Each library function was replaced

by a stub representing the data flow between its formal parameters and return value

and preprocessed in the same manner. Performance measurements were taken on a

PC with 1.4Ghz Pentium M processor with 2GB of physical memory running Linux

(Debian) 2.6.7. Similar setup is used for the pointer experiments given in this thesis.

We measured the effectiveness of the demand-driven analysis for resolving dy-

namic call sites in the benchmark programs. Function Pointer Analysis (FPA) uses

the logic program encoding in Figure 6, and computes all answers to queries of the

form points to(f, X) for each function pointer f occurring in a given benchmark

program. All Points-To Analysis (APA) also uses the same logic program, but com-

putes the entire points to relation (i.e. over all program variables). The result of

APA is given in Table 1.

Figure 7 shows the time taken and the size of the points-to relation computed

by FPA relative to those of APA. Observe from the figure that for some benchmarks

(gzip, twmc, and nethack) FPA takes less than 1.8% of the time taken by APA;

and in others (vpr, vortex) the time taken for FPA is a significant fraction of that

for APA. The latter benchmarks keep function pointers in structures, and the higher

32

 0

 20

 40

 60

 80

 100

vortexnethacktwmcm88ksimvprgzip

Pe
rc

en
ta

ge
 o

f a
ll

po
in

ts
-to

 a
na

ly
si

s
tim

e

Benchmarks

time

 0

 20

 40

 60

 80

 100

vortexnethacktwmcm88ksimvprgzip

Pe
rc

en
ta

ge
 o

f a
ll

po
in

ts
-to

 a
na

ly
si

s
tim

e

Benchmarks

time
size

Figure 7: Relative performance of Function Pointer Analysis w.r.t. All Points-to Anal-
ysis

analysis times appear to be the artefact of performing field-insensitive analysis, which

results in a large number of spurious points-to tuples for the function pointers.

33

Related Work. Points-to analysis has been studied extensively (see [Hin01] for a

survey), and continues to attract significant attention (e.g. [FRD00, FFA00, GL03,

WL04, LH01]). The aim of this work is to present techniques for making program

analysis incremental. Although we do not directly address the accuracy-time tradeoffs

that are at the core of much of the points-to analysis work, ability to perform incre-

mental analysis will enable us to deploy more accurate analyses that may otherwise

be deemed impractical.

Among the many works on points-to analysis, Heintze and Tardieu [HT01b,

HT01a] encode flow-insensitive and context-insensitive subset-based pointer analy-

sis due to Anderson [And94] using deductive rules. Our encoding in Section 3.2

follows [HT01a]. We derive demand-driven as well as incremental analyses directly

based on these rules. Several graph based optimization techniques [FFSA98, SFA00]

cannot be declaratively encoded showing the limitations of rule-based techniques. We

believe that special purpose constructs can be introduced into table engine (such as

XSB) to perform optimization such as cycle elimination - which collapses cycles in the

dependency graph at that time of evaluation. However, we suspect that incremental

evaluation in presence of such optimization may not be efficient as it is difficult to

quickly regenerate dependency information once the cyclic dependency is broken due

to deletion of facts.

Demand-driven program analysis using logic-programming based formulation has

been studied before [Rep93, HT01a]. For instance, our encoding of demand driven

context-insensitive Anderson’s rules in terms of Horn clauses (Figure 6) is similar in

nature to the rules obtained in [HT01a]. The main difference between the earlier

works and the one presented in this section lies in the way the rules are evaluated.

Heintze et. al. use CLA [HT01b] infrastructure to implement a set-based algorithm

corresponding to the rules by using a technique similar to magic set transformation

to bring goal-directedness to bottom-up evaluation [Rep93, HRS95]. Tabled resolu-

tion [TS86] is naturally goal directed, and as observed in [Rep93] this strategy ensures

that it accesses only those assignment statements and generates only those interme-

diate queries which are relevant to answer the top level query [DRW96]. Although

the implementation by Heintze et. al is considerably faster than our from-scratch

APA analysis, our incremental algorithm can be incorporated into CLA framework

34

for yielding better performance.

In [DGS97] the authors presented a method for the construction of precise demand-

driven algorithms for the class of distributive finite data flow problems. As also ex-

plained in [HT01a] demand-driven pointer analysis falls outside the scope of [DGS97].

In [AG98] a demand-driven pointer algorithm has been presented for Steengard’s Al-

gorithm [Ste96] and program slicing is used to show effectiveness of demand driven

analysis. Demand-driven call graph construction for the Java programs has been

investigated in [ALS02].

Chapter 4

An Efficient Algorithm for

Incremental Tabled Evaluation

In this chapter we present time efficient algorithms for incremental evaluation of defi-

nite tabled logic programs. In Section 4.1 we present a program transformation based

technique for handling incremental insertion of facts. The algorithm uses top-down

query evaluation technique to find the changes due to insertion of facts. In contrast

we follow a dependency graph based bottom-up approach for handling deletion of

facts (Section 4.2).

:- table r/2.

r(X,Y) :- b(X,Y). % rule 1

r(X,Y) :- c(X,Z), r(Z,Y). % rule 2

b(2,3). %f1

b(5,3). %f2

b(5,7). %f3

c(1,2). %f4

c(1,5). %f5

c(4,1). %f6

c(5,4). %f7

c(6,4). %f8

c(6,5). %f9

Figure 8: Example program

35

36

4.1 Addition

Top-down goal-oriented evaluation systems (such as those based on the SLGWAM)

inherently process answers incrementally. A subgoal that causes answers to be added

to the tables is called a generator, and a subgoal which is resolved against answers

already in the tables is called a consumer. The evaluation engine maintains auxiliary

data structures to ensure that no consumer sees an answer more than once: e.g.

environments to produce and consume answers and control structures linking answer

producers to answer consumers. These data structures are torn down when all answers

to a call have been derived, an operation that is crucial to memory efficiency of

top-down evaluators. Retaining these after query evaluation to support incremental

additions imposes unacceptable overheads; e.g., the space usage for evaluating left-

recursive reachability queries increases by 2-6 times. An alternative, similar to the

approach used in prior works such as [GMS93], is to generate rules to capture the

new answers due to addition of facts. We formalize the notion below.

Incremental Evaluation after Additions: Let P be a definite logic program

and γ be a query. We denote the answers to γ with respect to P by ansP (γ). Let

δp be a set of facts and rules added to the program P . The problem of incremental

evaluation of query γ then is one of computing the smallest set ∆ of answers such

that ansP∪δp
(γ) = ∆ ∪ ansP (γ). That is, ∆ is the set of new answers for γ.

Given a definite logic program P and an added program δp we derive a transformed

program P ′ used for incremental evaluation as follows. For each predicate p/n defined

in the program P ∪ δp, we introduce an incremental predicate p′/n. If γ is an atom

with p at its root, we denote by γ′ the atom obtained by replacing the p in γ by p′.

The transformed program P ′ is such that ansP (γ) ∪ ansP ′(γ′) = ansP∪δp
(γ).

First of all, P ′ contains all the clauses in P . For each fact α in δp we add α′ to

P ′. For every clause of the form γ :− β1, β2, . . . βn in the program P ∪ δp, we add

the clause γ′ :− (β1; β
′
1), . . . , (βi−1; β

′
i−1), β

′
i, βi+1, . . . , βn for each i ∈ [1, n]. The i-th

clause computes new answers of γ due to new answers of βi.

For instance, the changes to the r/2 relation given in Figure 8 can be computed

by evaluating the predicate r’/2 defined as follows (where the additions to b/2 and

c/2 are given by the b’/2 and c’/2 relations):

37

answer trie

answer substitutions (for X)

answer list for

reach’(0,X)

1 32

subgoal frame of
reach(0,X)

reach(0,X)
call table entry of

reach’(0,X)
subgoal frame of

Figure 9: Example of the data structure to maintain tables for incremental predicates.

r’(X,Y) :- b’(X,Y).

r’(X,Y) :- c’(X,Z), r(Z,Y).

r’(X,Y) :- (c(X,Z); c’(X,Z)),r’(Z,Y).

The incremental predicate ∆reach defined in Chapter 1 is derived from the origi-

nal definition of reach by the above transformation. The transformation is a straight-

forward application of finite differencing [PK82], and its variants have been widely

used for materialized view maintenance [GMS93, LS03].

Direct evaluation of the transformed program has two sources of inefficiency.

Firstly, the new answers of a query γ are actually added as answers to the new

query γ′; consequently, we must merge the two answer tables after the incremental

evaluation is complete. Secondly, to ensure that γ′ computes only the new answers,

each derived answer must be first checked against answers to the original query γ

(e.g. using the goal ¬γ [SJ96]), causing an extra table lookup.

We overcome these problems by sharing the call table entry and the answer tables

between the incremental goal and the original goal, although the calls access the

answer table in different ways. Let γ be an original goal and γ′ be its incremental

counterpart. The first call to γ′ creates a new subgoal frame. Answers to γ′ are

computed by program clause resolution, are added to the answer table of γ, and also

kept in a separate answer list. Subsequent calls to γ′ consume from this answer list

(even after completion of γ′)— exactly the same way answers are currently consumed

from incomplete tables.

38

In order to prevent answers to γ′ from being accessed when backtracking through

the answers of γ, we mark all the newly added answers as “deleted”. This exploits the

current implementation of tries in XSB which provides a flag to mark terms as deleted

without physically removing them. This flag is used in XSB for maintaining dynamic

asserted data using tries. Finally, when the incremental evaluation is complete, we

reset the deleted flag of all answers in the answer list of γ′, thereby adding these

answers to γ. Let us consider that we have added the fact b(4,8) to the set of

facts given in Figure 8. Figure 9 shows the states of the answer tables of r(4,X)

and its incremental version r’(4,X), just before the completion of the incremental

evaluation.

Discussion: The data structure described above enables us to incrementally eval-

uate queries without changing any other part of the tabling engine. Moreover, in

contrast to bottom-up techniques, we refresh a table only on demand, when a query

is made. Note that we maintain only two versions of answers, and hence cannot main-

tain tables with varying “staleness”. For instance, if γ1 and γ2 are two queries, when

γ1 is incrementally evaluated after changes to facts, observe that γ1 has consumed

all the new facts while γ2 has not. However, since after this evaluation we merge all

new answers with the old, γ2 will remain stale. A promising approach for solving

this problem is to associate timestamps with the added facts and answers, and drive

the incremental computation based on the timestamps. With the timestamp based

solution, we can maintain multiple versions of tables within the same data structure

and hence handle tables with different degrees of staleness. This is a topic of future

research.

4.2 Deletion

Let P be a definite logic program, γ be a query and δp be a set of facts F and set of

rules Rd to be deleted from the program. For notational purposes, we assume that

every rule is associated with an unique identifier (e.g see Figure 8). Following the

notation used in Section 4.1, the problem of incremental evaluation of query γ after the

deletion is that of computing a set ∆ of answers such that ansP−δp
(γ) = ansP (γ)−∆.

We develop an algorithm to efficiently compute the set ∆ in this section and describe

39

Calls Answers Supports
r(1,X) a1 r(1,3) s1 {f4,a3} s10 {f5,a6}

a2 r(1,7) s2 {f5,a7}
r(2,X) a3 r(2,3) s3 {f1}
r(4,X) a4 r(4,3) s4 {f6,a1}

a5 r(4,7) s5 {f6,a2}
r(5,X) a6 r(5,3) s6 {f2} s11 {f7,a4}

a7 r(5.7) s7 {f3} s12 {f7,a5}
r(6,X) a8 r(6,3) s8 {f8,a4} s13 {f9,a6}

a9 r(6,7) s9 {f8,a5} s14 {f9,a7}

Figure 10: Supports

its implementation in terms of tabling data structures.

Formulation: Clearly, the only answers that can be in ∆ are those that depend on

δp. The algorithms based on the delete-rederive approach [GMS93, SS94] first overap-

proximate ∆ by the set of all answers that depend on δp (deletion phase). The second

phase (called the rederivation phase) rederives the answers in the overapproximation

of ∆ without using δp. We use a better approximation using the notion of support

for an answer defined below.

Definition 5 (Support) Let P be a program, and let T be a set of answer tables

obtained when evaluating a query γ over P . A tuple s = 〈k, {β1, β2, . . . , βn}〉 is called

a support of an answer α of γ if there exists a clause k of the form α′ :− β′
1, β

′
2, . . . , β

′
n

and a substitution θ, such that α′θ = α, and for all i ∈ [1, n] β′
iθ = βi and βi is an

instance of an answer in T or a fact in P .

For instance, the supports corresponding to the answers corresponding to all pos-

sible bound-free calls to the predicate r/2 over the program given in Figure 8 are

given in Figure 10. We refer to each fact, answer and supports with names of the

form f0, f1, . . .; a1, a2, . . .; and s1, s2, . . . respectively.

Note that each support for an answer represents one step in some derivation of

the answer. We can construct a derivation of an answer by picking a support and

constructing derivations for all the atoms in that support. However, the choice of

40

s1

s14s13

a8 a9

s8 s9

a2

f5

f6

f9

s4 s2s10

a6 a4 a7a5

s5

s7

f2 f3

a1

a3
s3

f4

s12s11 f7

s6

0

0

f1
0

0

0

0

f8
0

0

1

1

1

0

1

2 22
3

3

4

2

3

3

4

4 4

44

22

1
1

2

Figure 11: Support graph; the numbers corresponding to the nodes show the derivation
lengths

support picked at each step is crucial to the construction of a valid (i.e. finite)

derivation. For instance, picking support s10 each time to derive a1, and s11 each

time to derive a6 would not lead to finite derivation of answer a1.

We maintain the relationship between answers and supports generated during

query evaluation in form of a graph called support graph. We formally define support

graph as follows.

Definition 6 (Support graph) Let P be a definite logic program, and let T be a

set of answer tables obtained when evaluating a query γ over P .

The support graph for the evaluation of γ is a directed graph (V,E) where V

contains the facts in P , answers in T and their supports. The set of edges E is such

that

• (bi, s) ∈ E for all supports s ∈ V such that s = 〈k, {b1, b2, . . . bn}〉, and for all

i ∈ [1, n]. We say that s ∈ bi.uses of and bi ∈ s.part of .

• (s, a) ∈ E for all a ∈ T and s ∈ V such that s is a support of a. We say that

s.answer = a and s ∈ a.support.

The support graph corresponding to the supports of Figure 10 is given in Figure 11.

Support graph makes it easy to determine the answers and supports that are affected

41

by the deletion of facts. If we delete the fact f5 then we mark all the supports

containing the fact, i.e. s2 and s10. Since s2 supports a2, following the traditional

deletion strategy we mark a2 as affected. We continue the propagation of marks,

marking support s5 and then answer a5. As answer a5 is in s9 and s12, they are also

marked. As s12 supports a7, that answer will also be marked as affected. However,

the answer a7 is rederived in the second phase due to the presence of fact f3. Note

that a7 has two supports: s12 and s7, and that truth of support s7 is not dependent

on the truth of a7. Thus support s7 has a derivation that is independent of answer a7.

Since s7 is not marked, we can infer that a7 will be unaffected and hence need not be

marked. Hence, if we can quickly identify independence of supports and answers, we

can limit the marking of affected answers, and consequently reduce the rederivation

effort also.

The key to quickly determine whether an answer is still derivable is to distinguish

supports which can be selected without regard to the history and yet can build finite

derivations. This is done using the notion of a acyclic support graph and primary

support, defined below.

Definition 7 (Acyclic Support Sub-Graph (ASG)) An acyclic support sub-

graph (ASG) corresponding to a support graph (SG) is defined as a directed acyclic

subgraph of SG which contains all the facts and answers of SG and at least one

support for each answer.

Definition 8 (Primary Support) Primary Support Graph (PSG) is an acyclic

support graph (ASG) where every answer has exactly one support. All supports in

PSG are called primary supports.

We compute the primary support for the non-incremental evaluation using the

following procedure. Let α :− β1, β2 . . . , βn be the instance of a rule k that is used by

tabled resolution to derive the answer α for the first time. Then 〈k, {β1, β2 . . . , βn}〉

is deemed as the primary support of α, and is denoted by ps(α). This method

determines the primary support in a tabled evaluation at no extra cost.

In Figure 10 the first support listed for each answer is its primary support. We use

primary supports to (over)approximate the set ∆ of answers to be deleted as follows.

42

Definition 9 (Candidates for Deletion) Let P be a program, γ be a query, and

A be the answers computed during the evaluation of γ. Let ps(α) = 〈k, S〉 be the

primary support of α ∈ A. The set of candidates for deletion due to the deletion of

the program δp from P , denoted by Γ(P, δp) is the smallest set such that α ∈ Γ(P, δp)

whenever ∃β ∈ S such that β ∈ F ∪ Γ(P, δp) or rule k ∈ Rd.

It is easy to establish that the set of candidates for deletion overapproximates the

set of deleted answers. Formally,

Proposition 1 The set of answers for a query γ over a program P , ansP (γ) is such

that ansP (γ) − ansP−δp
(γ) ⊆ Γ(P, δp).

Traditional two-phase delete-rederive algorithms such as [GMS93, SS94] use a

coarser approximation. Also the effect of deletion of rules is not addressed in any

view maintenance literature. The answers they delete in the first phase, which we

denote by Γ♯, can be characterized as follows. The set Γ♯ is the smallest set such

that α ∈ Γ♯(P, δp) if there is some support s = 〈k, S〉 of α such that ∃β ∈ S and

β ∈ δp ∪ Γ♯(P, δp). It can be easily shown that Γ(P, δp) ⊆ Γ♯(P, δp). Note that

the coarser approximation has a cascading effect: an answer marked incorrectly as a

candidate, in turn, leads to (incorrect) marking of other answers. Our approximation

reduces such propagation and hence is considerably less coarse. For instance, deletion

of f5 marks s10 but does not mark a1, as its primary support s1 is not marked. This

restricts the mark propagation to s4, a4, s8, s11 etc. Note that the notion of primary

support is not specific to tabled evaluation and can be easily extended to any least

fixed point computation.

Although only primary supports are used to obtain candidates for deletion, we

still keep the set of all supports for an answer. First of all, note that due to the

approximation, some candidates for deletion may be still derivable. We check this

in the rederivation phase. Traditional algorithms in the view maintenance literature

pose rederivation in terms of rule evaluation. In contrast, we avoid the proof search

using an algorithm based on keeping counts and the set of all supports with each

answer. Secondly, when a primary support is removed in the deletion phase, and the

answer is still valid, we need to identify the new primary support; the new primary

support can be easily generated from the set of all supports. Lastly, we can improve

43

our approximation by finding all supports of an answer which are not dependent on

the answer itself and falsify the answer when all such supports are falsified. Below

we describe the data structures and primary support based algorithm for computing

the candidates for deletion and for rederiving answers.

Data Structures: At first the direction of edges in the support graph may appear

to be counter-intuitive. However, it coincides with the flow of information in our

algorithm: we propagate deletion and rederivation from an answer-node a to all

support-nodes s that contain a; and from a support-node s to answer-nodes a′ for

which s is a support. We also maintain an additional attribute called primary support

with each answer-node a denoting the primary support of a.

In the rederivation phase, we need to check if candidates for deletion identified

in the first phase have alternative derivations. We do so efficiently by maintaining

counts with each node in the support graph.

The meaning of the counts is different for answer-nodes and support-nodes. For

an answer-node representing an answer a, its attribute total support count denotes

the number of supports that a must lose before it becomes false. For example, in

Figure 11 the count of answer-node a1 and a2 is 2. The count of an answer-node

representing true fact or a rule is initially 1; it is decreased by 1 when the fact or the

rule is deleted. For a support-node representing a support s, its attribute false count

denotes the number of false answers and facts in s; in other words, the count is the

number of answers that must become true before the support itself becomes true. A

support-node’s attribute false count enables us to quickly determine the truth value

of a support without evaluating its constituents.

In Figure 11 the count of support-nodes s1 − s14 are all zero. Whenever an

answer-node a becomes false, we increment the false count of all support-nodes that

contain a (given by a.part of). Similarly, when a support-node s becomes false, we

decrement the count of the answer-node that is supported by s (given by s.answer).

The Algorithm: The algorithm for incremental evaluation after deletion of facts

is shown in Figure 12 and has two phases as described below.

Deletion Phase: The algorithm starts in the marking phase which propagates

the effect of deletion of facts and rules to answers and supports. We say an answer

44

mark()
may rederive set = empty
∀ deleted facts f

f.total support count=0;
mark answer(f)

mark answer(a)
a.marked = true
if (a.total support count>0)

add(may rederive set,a)
∀ s ∈ a.uses of

mark support(s)

mark support(s)
s.false count++
if (s.false count == 1)

a=s.answer;
a.total support count−−;
if (a.primary support==s)

mark answer(a);

rederive()
∀ a ∈ may rederive set
if (a.total support count > 0 && a.marked)

rederive answer(a)

rederive answer(a)
a.marked = false
let s ∈ a.support s.t. s.false count = 0;
a.primary support = s;
∀ s ∈ a.uses of

rederive support(s)

rederive support(s)
s.false count−−
if (s.false count == 0)

a=s.answer
a.total support count++;
if(a.total support count==1)

rederive answer(a);

Figure 12: Algorithm for primary support based incremental deletion.

is marked if its marked attribute is true and a support is said to be marked if its

false count is greater than zero. When the marking phase ends all the marked answers

represent the candidates for deletion (Γ in Definition 9). The marking phase is as

such straightforward, the only subtle part being its interaction with rederivation phase

through the may rederive set which we explain while describing rederivation phase.

We explain the algorithm using the support graph in Figure 10. Consider the deletion

of fact f1 (b(2,3)). This marks the answer a3 as its primary support s3 is marked.

Note that as a3 does not have any unmarked support, and thus it is not added to the

may rederive set . At the end of marking phase we mark the answers a3, a1, a4 and

a8 with only a1 and a8 in the may rederive set . It must be noted that traditional

delete-rederive algorithms would have also picked a6 as a candidate for deletion.

Rederivation Phase: We say a support is to rederived if its false count decreases

from 1 to 0 and an answer to be rederived if its marked attribute is changed to false.

There are two ways of rederiving a marked answer - if the answer has an unmarked

45

support after the marking phase is over, or a support of the answer is rederived.

For instance, a1 and a8 can be readily rederived due to presence of their respective

unmarked supports s10 and s13. The may rederive set only contains these answers

which may be potentially rederived in this manner. The other marked answers can

be rederived due to rederivation of supports and thus does not require checking the

existence of unmarked support. Note that it is also possible for an answer in the

may rederived set to be rederived due to rederivation of its support. For instance a8

can also be rederived due to rederivation of support s8. The support s8 along with

s11 is rederived due to rederivation of a4 which is rederived because of rederivation

of s4 which in turn is caused by rederivation of a1.

Note that we assure that an answer is marked and rederived at most once. Below

we present the complexity analysis of the algorithm.

Complexity Analysis: The complexity of the algorithm given in Figure 12 is

given by the following expression:

O(|Ma|) + O(
∑

a∈Ma
|a.uses of |) + O(

∑

a∈Ma
|a.support|) + O(|Ms|)

where Ma and Ms denote the set of marked answers and supports, respectively. The

total number of answers marked and rederived is given by O(Ma). The total number

of times the total support count of answers is adjusted is given by O(Ms). The

number of times falsecount of all supports can increase and decrease is given by the

expression O(
∑

a∈Ma
|a.uses of |). To determine the primary support at the time of

rederiving an answer the algorithm checks the support set of the answer- this takes

time O(
∑

a∈Ma
|a.support|).

Rederivation phase also determines a primary support for each rederived answer.

Note that any unmarked support of an answer before the answer is rederived can

be chosen as primary support. We generalize the idea of primary supports in the

following discussion.

Acyclic Supports: In the above example, a1 was marked since its primary support

s1 was marked. Note that, its other support s10 is also independent of a1: i.e. if a10

is derivable, so is a1. We call these supports as acyclic supports. We formalize the

notion in the following definition.

46

Definition 10 (Acyclic Supports) Supports in an ASG are called acyclic sup-

ports.

We can now generalize the primary support based algorithm by keeping acyclic

supports with each answer, and marking an answer only if all its acyclic supports are

marked. In the above example, if we keep s10 as an acyclic support of a1 then a1

will not be marked, and consequently, a4 and a8 are not marked and rederived.

Note that, there can be multiple ASGs corresponding to a support graph. Finding

an ASG and corresponding acyclic supports becomes a key problem in this case. We

now describe an algorithm to find ASG based on derivation length of answers. Given

a vertex v in the support graph, dl(v) is defined in Figure 13.







0 if v is a fact
max{dl(a) | v ∈ uses of(a)} + 1 if v is a support
dl(s) | s is the primary support of v if v is an answer

Figure 13: Derivation lengths

Definition 11 (Derivation Based Supports) A support s is called derivation

based support if dl(s) ≤ dl(s.answer).

Corollary: Primary support is also a derivation based support.

Definition 12 (Derivation length based Support Graph (DSG))

Derivation based support graph DSG is defined as the subgraph of support graph SG

which contains all the facts and answer of SG and all derivation based supports in

SG.

Theorem 2 A DSG is an ASG.

Proof sketch. We need to prove that DSG does not have a cycle. We prove this

by contradiction. Consider there exists a cycle a1, s1, a2 . . . , a1. From the defini-

tion of derivation length it follows derivation length of every node in the sequence

a1, s1, . . . , a1 is increasing (may not be strictly increasing) and dl(s1) > dl(a2). Thus

we lead to a contradiction that dl(a1) > dl(a1). Proved.

47

For the following chapters we refer derivation based supports as acyclic supports.

In what follows we present an acyclic support based algorithm derived from the

primary support based algorithm. Instead of keeping primary support associated

with every answer, we keep the number of unmarked acyclic supports recorded for

that answer in the attribute acyclic support count . This attribute has value 1 for a

fact. As derivation length of an answer can change due to deletion of fact, we store

the derivation length of answers and supports in an attribute dl associated with them.

We present the changed algorithm in Figure 14. We show the derivation lengths of

answers and supports in Figure 11.

The marking phase of the acyclic support based algorithm is similar to that of pri-

mary support based algorithm, the only difference being the condition which confirms

that an answer of marked only if all its acyclic supports are marked. For example,

deletion of fact f2 marks s6, a6, s10 and s13. The important point to notice in the

rederivation phase is that an acyclic support for an answer may not remain acyclic

after rederivation. This is because, due to the incremental deletion we change from

one ASG to another ASG of the support graph. The new acyclic support of a6 is a11

whose derivation length is 4. Thus a6.dl = 4 and hence s10.dl = 5 and s13.dl = 5.

Consequently, s10 and s13 are no longer acyclic. The ASGs before and after the

incremental deletion of fact f2 are given in Figure 15.

Complexity Analysis: The complexity of the algorithm given in Figure 14 is

given by the following expression:

O(|Ma|) + O(
∑

a∈Ma
|a.uses of |) + O(

∑

a∈Ma
|a.support|) + O(|Ms|)

where Ma and Ms denote the set of marked answers and supports, respectively.

Discussion: Supports for an answer are constructed based on the rule that gen-

erated the answer. In our implementation, when inserting an answer in a table we

determine its supports by using the consumer choice points and other structures used

to generate the answer. Hence the construction of the support graph does not in-

crease the time complexity of query evaluation. However, the space requirement for

the support graph typically exceeds that of the answer tables. For instance, the num-

ber of answers for query reach(X,Y) is O(n2) where n is the number of vertices in

48

mark()
may rederive set = empty
∀ deleted facts f

f.total support count=0;
f.acyclic support count=0;
mark answer(f)

mark answer(a)
a.marked = true
if (a.total support count>0)

add(may rederive set,a)
∀ s ∈ a.uses of

mark support(s)

mark support(s)
s.false count++
if (s.false count == 1)

a=s.answer;
a.total support count−−;
if (s.dl≤a.dl)

a.acyclic support count−−;
if (a.acyclic support count==0)

mark answer(a);

rederive()
∀ a ∈ may rederive set

if (a.total support count > 0
&& a.acyclic support count==0)
rederive answer(a)

rederive answer(a)
a.marked = false
a.acyclic support count=a.total support count
a.dl=max{s.dl|s∈ a.support, s.false count==0}
∀ s ∈ a.uses of

s.dl=max{s.dl,a.dl+1}
rederive support(s)

rederive support(s)
s.false count−−
if (s.false count == 0)

a=s.answer
a.total support count++
if (a.acyclic support count==0)

rederive answer(a);
else

if (s.dl≤a.dl)
a.acyclic support count++

Figure 14: Algorithm for acyclic support based incremental deletion.

the graph. For each answer, there may be up to n supports, and hence the support

graph has O(n3) nodes.

4.3 Experimental Results

We implemented our incremental algorithms by modifying XSB. In the following we

present results of our preliminary experiments designed to measure (i) the effective-

ness of our techniques, (ii) the effect of repeated incremental evaluation, and (iii) the

effectiveness of using supports to control deletion, and (iv) overheads. We used left-

recursive reachability and same generation predicates over trees and complete graphs,

and pointer analysis as benchmarks.

49

s1

s14s13

a8 a9

s8 s9

a2

f5

f6

f9

s4 s2s10

a6 a4 a7a5

s5

s7

f2 f3

a1

a3
s3

f4

s12s11 f7

s6

0

0

f1
0

0

0

0

f8
0

0

1

1

1

0

1

2 22

3

3

4

2

3

3

4

4 4

44

22

1
1

2
s1

s14s13

a8 a9

s8 s9

a2

f5

f6

f9

s4 s2s10

a6 a4 a7a5

s5

s7

f3

a1

a3
s3

f4

s12s11 f7

0

0

f1
0

0

0

0

f8
0

0

1

14

5 22
3

3

4

2

3

3

4

4 4

44

22

1
1

2

(a) (b)

Figure 15: Acyclic support graphs before(a) and after(b) deletion of fact f2

 0

 10

 20

 30

 40

 50

 60

 70

 80

vortexnethacktwmcm88ksimvprparsersmail

Pe
rc

en
ta

ge
 fr

om
 s

cr
at

ch
 ti

m
e

Benchmarks

Figure 16: All Points-To Analysis: Incremental addition time as percentage of from-
scratch time

Incremental Addition We measured the performance of incrementally maintain-

ing the points-to sets for APA when new statements are added, with the same random

assignment statements used for incremental deletion. We computed the points-to re-

lation after deleting a selected statement, then added back the deleted statement and

ran the transformed program for incremental addition. The average time taken to

run the incremental addition query as a percentage of the from-scratch re-evaluation

time for each benchmark is shown in Figure 16. Observe that, for m88ksim and vpr

incremental addition takes about 45-73% of the from-scratch time. However, for large

50

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

e
in

 s
ec

s

Addition size

incremental
non-incremental

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

e
in

 s
ec

s

Deletion size

incremental
non-incremental

(a) Addition [reach(a,X);tree(9999 edges)] (b)Deletion [reach(a,X);tree(9999 edges)]

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

To
ta

l t
im

e
in

 s
ec

s

Total addition size

step 1
step 10
step 50

step 100

0

0.5

1

1.5

2

2.5

3

3.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
To

ta
l t

im
e

in
 s

ec
s

Total deletion size

step 1
step 10
step 50

step 100

(c) Repeated additions (d) Repeated deletions
reach(a,X);tree(9999 edges) reach(a,X);tree(9999 edges)

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
ot

al
 ti

m
e

in
 s

ec
s

Total deletion size

with primary support
without primary support

(e) Deletions [reach(a,X); complete graph(89700 edges); step 1]

Figure 17: Experimental results for reachability analysis

benchmarks (nethack, twmc and vortex) it takes only 5% of the from-scratch evalu-

ation time. Note that the time reflects the effect of addition on all derived relations.

Figures 17(a) compare the incremental and non-incremental evaluation time of

one query after the addition of a set of facts to the edge relations for left-recursive

reachability query. The figures do not include the times for evaluating the initial

query. Observe that when the size of addition is small (less than 5% of the total

51

size of the edge relation), incremental evaluation is 20–60 times faster than non-

incremental evaluation. Moreover, as the size of the addition increases, incremental

evaluation time approaches that of non-incremental evaluation, but remains lower

even when the size of addition is over 90% of the original edge relation.

Incremental Deletion We performed three experiments to measure effectiveness

of support graph based deletion algorithm. The results are shown in Table 2. The

’DRED’ approach refers to the support graph based algorithm where we mark an

answer as deleted if any one of its supports is marked. Unmeasurable small times and

percentages (< 0.1) are denoted by ’-’. The results show tremendous advantage of

acyclic supports over ’DRED’ approach. The explanation for this timing behavior can

be well understood by comparing the number of answers marked in these approaches

against the actual number of deleted answers. This is presented in Table 3.

Figure 17(b) compares the times of one query after the deletion of a set of facts

from the edge relation for reachability analysis. Incremental deletion on this bench-

mark takes very little time (less than 0.1s for all deletion set sizes) and far outperforms

its non-incremental counterpart. The two are comparable only when the input graph

becomes very small due to deletion of a large number of edges.

Figure 17(e) compares the performance of the incremental engine with DRED and

Primary Support based approach. Both versions used support graphs for rederivation.

We measured the performance of the two versions for a sequence of deletions from a

complete graph, issuing a query after each deletion. Observe from Figure 17(e) that

use of primary supports results in a more than 3-fold reduction in evaluation time.

Effect of repeated evaluation: We now compare the performance of the incre-

mental engine for sequences of query evaluations and changes (additions/ deletions)

such that the changes are interspersed between evaluations. In all the runs, the total

number of changes is the same; the number of changes between two query evaluations

is the step size of the run. For instance, a run with step size 10 means that after

every 10 changes we issue an incremental query to refresh the table. Figure 17(c)

and (d) show the total evaluation times for additions and deletions, respectively, for

runs with different step sizes. Observe from the figure that batching changes together

(i.e. querying infrequently, and hence allowing tables to go stale) usually takes less

time than maintaining the tables fresh all the time (i.e. step size 1). Nevertheless,

52

Benchmarks DRED Primary Spt. Acyclic Spt.
smail 44 2 1
parser 32 - -
vpr 3 - -
m88ksim 1 - -
twmc 21 - -
nethack 33 - -
vortex 45 - -

Table 2: Incremental deletion times as percentage of from-scratch time

Benchmarks DRED Primary Spt. Acyclic Spt. Actual Deletion
smail 230.6K 13,282 8,812 8,012
parser 245.7K 1,095 965 446
vpr 20.8K 288 144 133
m88ksim 4.2K 1,086 633 618
twmc 51.3K 2770 615 478
nethack 54.5K 355 187 172
vortex 493.4K 2,882 545 455

Table 3: No. of answers marked in Deletion Phase

consistently maintaining freshness is only only 3 to 5 times slower than refreshing the

table only after all changes are done. This reflects the low overheads for incremental

query evaluation.

Overheads: We find that the initial query evaluation time for incremental evalua-

tion is at most 8% greater than that for non-incremental evaluation. However, since

the support graph size may be much larger than the answer set size, we do observe

Benchmarks Support Size
Count in MB

smail 3,159.4K 92.2
parser 1,355.7K 44.2
vpr 213.1K 9.7
m88ksim 303.5K 11.8
twmc 5,728K 158.5
nethack 2,075K 59.4
vortex 33,444K 912.0

Table 4: Support graph sizes

53

significant memory overheads. Memory overheads range from a factor of 1.9 (49MB

incremental vs. 26MB non-incremental) for same generation queries over binary trees,

to as much as 131 (2.5MB incremental vs. 19KB non-incremental) for reachability

over complete graphs.

We measured the support graph sizes for pointer analysis of various applications

(Table 4). It is evident from the figures that for large applications support graphs

are huge and may not fit into the main memory. This probed us to develop space

efficient scalable incremental algorithms for practical use.

4.4 Related Work and Discussion

In this section we presented the first techniques for incrementally evaluating tabled

logic programs. The relationship of our work to the DRed algorithm [GMS93] has

been explained in sections 4.1 and 4.2. We can handle programs with stratified nega-

tion in the same way as DRed algorithm. It should be noted that the idea of counts

has been used in other works such as [GKM92, SS94] but has not been used to avoid

recomputing subgoals in recursive rules. The transformation rules for supporting ad-

dition are similar to those of [GMS93, SJ96] but we evaluate the incremental rules

top-down and on-demand. We also use specialized data structures to efficiently gener-

ate new answers and avoid propagation of generation of old answers. Our techniques

are also closely related to the incremental model checking algorithm (MCI) of [SS94].

We have adopted MCI’s use of counts to efficiently compute truth values of nodes

during incremental evaluation. Our idea of primary support is very similar to well-

founded support of Doyle’s TMS [Doy79]. Also the idea of acyclic support has a close

resemblame to spanning graph algorithm in Swamy’s work ([SBS95]) where a span-

ning graph is kept as a justification of the reachable state space. A reachable node is

not marked unless all its predecessor node in spanning graph is marked. However, we

exploit the fact that the first support generated in a non-incremental computation is

acyclic and can be identified as primary support. This gives an efficient way of find-

ing primary support. Our derivation length based heuristics to find acyclic supports

is also different from Swamy’s algorithm to determine spanning graph. Note that

we differ from Swamy’s algorithm in the rederivation phase as we rederive based on

54

the unmarked supports. However, Swamy’s algorithm needs to perform reachability

query for rederivation.

Straight Delete (StDel) algorithm [LMSS95] eliminates the rederivation phase of

DRed by keeping the entire proof with every answer. While such an approach may

be feasible for constraint databases, it is prohibitively expensive for logic programs.

For instance, while the support set size for a context free grammar parser is cubic

in the length of the string, the number of distinct proofs may be exponential. Thus

a succinct representation such as a support graph is essential. However, since we do

not keep all the proofs, we cannot avoid rederivation.

Our implementation shows that incremental evaluation in the presence of addition

of facts and rules can be added without any overhead whereas there is a tradeoff be-

tween memory overhead and performance in presence of deletion of facts and rules.

Chapter 5

Combating Space Issues

In the last chapter, we described a data structure, called support graph, for efficient

incremental evaluation of tabled logic programs. The support graph records the

dependencies between answers in the tables, and is crucial for efficiently propagating

the changes to the tables when facts are deleted. As evident from the results shown

in the last chapter, incremental computation with support graphs are hundreds of

times faster than from-scratch evaluation for small changes in the program. However,

the graph typically grows faster than the tables themselves, making it impractical to

maintain the full support graph for large applications.

In this chapter we present two techniques for combating space requirement of

support graph. The first technique (Section 5.1) is based on Partial Support Graph

which keeps bounded number of supports along with every answer thereby has space

complexity linear to the table size. Although the linear bound in space overhead in all

cases makes this attractive for many applications of incremental table maintenance,

we formulated a second technique which shows better time performance than the

former and shows similar space efficiency for an useful set of tabled logic programs.

The method explores the commonality between multiple supports originated in certain

types of programs and represents the entire support graph symbolically (Section 5.2).

55

56

s1

s14s13

a8 a9

s8 s9

a2

f5

f6

f9

s4 s2s10

a6 a4 a7a5

s5

s7

f2 f3

a1

a3
s3

f4

s12f7

s6

0

0

f1
0

0

0

0

f8
0

0

1

11

2 22
3

3

4

2

3

3

4

4 4

44

22

1
1

2

1

0

s11

Figure 18: Primary support graph

5.1 Partial Support Graph

In this section we describe space-efficient techniques for incremental evaluation of

logic programs. Below, we describe three new algorithms that keep the space usage

bounded by keeping only a part of the support graph, yet exhibit acceptable time

performance. The first is a memory efficient algorithm which keeps only the primary

support for each answer; the subsequent algorithms expand on the earlier ones, trading

off a bounded amount of space to obtain better time performance. We begin with the

description of PS, the primary-support-based algorithm. We describe this technique

using the example given in Figure 8.

5.1.1 Algorithm Primary Support

In the algorithm PS (Primary Support) we record only the primary support for each

answer. The resultant support graph is called primary support graph or PSG. The

PSG at the beginning of incremental phase is shown in Figure 18. With each answer

vertex, we keep two additional fields: call, a pointer to the call to which it is an

answer, and all support, a boolean flag to record whether we have recorded all

supports for the answer. In this case, as we are recording only the primary support

57

deletion phase()

∀deleted fact f
∀support s ∈ f.uses of

mark support(s);

mark support(support s)

s.false count++;
if(s.false count==1)

a=s.answer;
mark answer(a);

mark answer(answer a)

a.marked=true
if(a.all support==false)

a.call.dirty count++;
∀s ∈ a.uses of

mark support(s);

Figure 19: Primary support based deletion

with each answer, true value of this boolean flag signifies that primary support is

the only support for the answer. Since we have only incomplete support information,

rederivation of an answer may be performed using program clause resolution (PCR)

of the corresponding call (see below for details). For each call we keep a count of the

number of marked answers in a field called dirty count. This field is also initialized

to zero before each incremental phase. We refer to a call as dirty if its dirty count

is greater than zero.

When an answer is derived for the first time we generate its primary support,

and set its all support to true. If the answer is derived again we discard the new

support and make all support false. The incremental deletion algorithm consists of

two phases, described below:

Phase 1: Deletion phase. The algorithm for this phase is given in Figure 19.

Consider the deletion of the fact f4. The deletion phase marks the answers a1, a4,

and a8, and it makes dirty count=1 for the calls r(1,X) (call of a1) and r(6,X)

(call of a8) but not for the call r(4,X) (call of a4) since the all support field of a4

is true (see the rederivation phase, below).

58

Phase 2: PCR Rederivation phase. To check if an answer marked for

deletion can be rederived, we can perform program clause resolution (PCR) for the

corresponding call. PCR, however, is expensive since it may rederive answers not

even marked for deletion in the first place. For instance, computing r(1,X), r(4,X)

and r(6,X) by PCR to rederive a1, a4 and a8 will also derive answers a2, a5 and a9.

Hence we devise two ways to avoid PCR-based rederivation whenever possible.

The first is based on all support flag of an answer. If this flag is true, then the

recorded supports (in algorithm PS only the primary support) for an answer are the

existing supports for this answer. Hence, in this case, the only way the answer can be

true is if the deletion mark on the primary support is removed. Note that here we are

considering only definite logic program where deletion of facts/rules can only result

in falsification of supports. For instance, we do not have to execute call for r(4,X)

to know whether r(1,4) (answer a4) is true, as we know that if r(1,3) (answer a1)

is true then that will subsequently make support s4 and answer a4 true by removal

of marks through support graph. Thus for a marked answer with all support bit

set, we do not increment the dirty count for its call.

The second heuristic uses the same notion of derivation length (denoted by dl)

discussed in Section 4.2. Intuitively, if an answer a1 has a lower dl than answer

a2, then a1 is independent of a2, and support of a2 may be dependent on a1. Thus

rederivation of a1 may rederive a2 by removal of deletion mark through partial support

graph. Thus if answers with lower dls are rederived earlier, then PCRs for rederiving

higher dls may be avoided altogether.

To ensure that a call is issued only when necessary, we keep the total number of its

marked answers in dirty count, and issue a call only if its dirty count is non-zero.

Whenever an answer is rederived using the support graph and its all support is

false, we decrement the dirty count of its call. In the above example, since answer

a1 has lower derivation length (2) compared to that of answer a8 (4), we issue the call

r(1,X) first. This rederives the answer a1 along with generation of new support s10.

By calling rederive answer(a1) and rederive support(s4) we rederive the answer

a4 and, subsequently, calling rederive answer(a4) and rederive support(s8) we

rederive a8. This decrements the dirty count for the call r(6,X) to 0 and thereby

we save the PCR rederivation for the call r(6,X). The algorithm for rederivation

59

rederivation phase()

queue = set of all marked answers
while(queue is not empty)

remove ans from queue with minimum dl;
call=ans.call;
if((!considered for rederivation(call))

&& dirty count(call)>0)
consider for rederivation(call)=true;
execute query(call);
∀newly generated answers ans

if(marked deleted(ans))
rederive answer(ans);

rederive answer(answer ans)

ans.marked=false;
if(ans.all support==false)

ans.call.dirty count−−;
∀s ∈ ans.uses of

rederive support(s)

rederive support(support s)

s.false count−−;
if(s.false count==0)

ans=s.answer;
rederive answer(ans);

Figure 20: PCR rederivation for algorithm PS

phase is shown in Figure 20.

5.1.2 Algorithm Acyclic Support

Our practical experience with algorithm PS showed that most of the time for incre-

mental deletion is spent in PCR rederivation. One way to reduce expensive rederiva-

tion calls is to make less number of calls dirty which can be achieved by reducing

the number of answers marked. In Chapter 4 we have generalized the primary sup-

port based algorithm by keeping all possible acyclic supports with every answer and

mark an answer only if all its acyclic supports are marked; thus reducing the num-

ber of answer marked and rederived compared to primary support based algorithm.

We follow similar generalization of Algorithm PS to obtain Algorithm AS (Acyclic

Support) by storing only the acyclic supports with every answer, however we limit

the maximum number of acyclic supports stored for an answer (called the Maximum

Acyclic Support Count, or MASC) to keep the size of Acyclic Support Graph (ASG)

bounded.

Algorithm AS is derived from Algorithm PS as follows. With each answer we

now keep the number of unmarked acyclic supports recorded for that answer in

acyclic support count. In mark support, when false count of a support becomes

1, we decrement the acyclic support count of its answer. We mark an answer (and

60

rederive support(support s)

s.false count−−;
if(s.false count==0)

ans=answer of(s);
dl(s)= maximum{dl(a)| s ∈ uses of(a)}+1;
if(ans.acyclic support count==0)

ans.acyclic support count++;
dl(ans) = dl(s);
rederive answer(ans);

else
if(dl(s)≤dl(ans))

ans.acyclic support count++;

Figure 21: PCR rederivation for algorithm AS

propagate this mark) only when its acyclic support count falls to zero. It is easy to

see that our Algorithm PS is a special case of Algorithm AS with MASC=1. Consider

the example in Figure 8. With MASC=2, we will store s10, s13 and s14 as additional

acyclic supports (apart from the primary supports); When fact f4 is deleted, Algo-

rithm AS will not mark any answer. The modified procedure rederive support of

Algorithm PS is shown in Figure 21.

5.1.3 Algorithm Mixed Support

Algorithm AS improves on PS by reducing the number of answers marked in the

first phase. We now describe Algorithm MS (Mixed Support), which builds on AS,

and aims to reduce the number of PCR rederivations. In AS we bound the number

of acyclic supports for each answer by the constant MASC. For some answers we

might not fill this “quota” as the number of acyclic supports may be less than MASC.

Algorithm MS fills the rest of the “quota” for each answer with other (possibly cyclic)

supports, while giving preference to acyclic supports.

For instance consider our running example. Let MASC=2, and assume that we

keep supports s11 and s12 in the support graph (as supports to a6 and a7 respectively)

even though they are do not meet the acyclicity criterion described before. Now

consider the deletion of fact f2. In the deletion phase we will mark s6, a6, s10 and

s13. Since s11 remains unmarked at the end of this phase, we know that the support

61

gred()

rederive list={}
∀marked answers ans

if (ans.total support count>0)
ans.acyclic support count=ans.total support count;
dl(ans) = max {dl(s)| s is a support of ans,s.false count=0}
rederive list=rederive list + ans

∀ans ∈ rederive list
rederive answer(ans);

Figure 22: Support graph based rederivation

s11 has a derivation that is independent of a6. Thus s11 now qualifies as an acyclic

support of a6. Hence we can remove the mark on a6 without PCR rederivation. We

derive Algorithm MS from Algorithm AS by invoking gred (Figure 22) which does a

support graph based rederivation before doing PCR rederivation. In addition to the

data for Algorithm AS, this algorithm maintains the total number of current supports

for an answer, and also a structure to access all supports for a given answer. This

strategy does not affect the number of answers marked, but reduces the number of

PCR rederivations.

Discussion For incremental deletion, the time taken by the deletion phase is pro-

portional to the size of the partial support graph, and hence bounded by the time

taken for from-scratch analysis of the original program. Rederivations done on the

basis of the partial support graph is also proportional to the size of the graph. Now

consider the rederivations that require program clause resolution. Note that PCR

rederivation invokes calls that had been made for the original analysis, and hence

the PCR rederivation time is bounded by the from-scratch analysis time. Therefore,

incremental deletion, which comprises of deletion and rederivation phases, takes time

proportional to that of from-scratch analysis of the original program.

The correctness of our incremental addition and deletion algorithms follows from

the correctness of DRed algorithm [GMS93]. Additionally our deletion algorithm

identifies a set of acyclic supports for an answer. It is easy to construct a proof for

an answer using an acyclic support, by recursively building proofs of answers in the

62

 0

 5

 10

 15

 20

 25

 30

vortexnethacktwmcm88ksimvprparsersmail

Pe
rc

en
ta

ge
 fr

om
 s

cr
at

ch
 ti

m
e

Benchmarks

ps

 0

 5

 10

 15

 20

 25

 30

vortexnethacktwmcm88ksimvprparsersmail

Pe
rc

en
ta

ge
 fr

om
 s

cr
at

ch
 ti

m
e

Benchmarks

ps
2as

 0

 5

 10

 15

 20

 25

 30

vortexnethacktwmcm88ksimvprparsersmail

Pe
rc

en
ta

ge
 fr

om
 s

cr
at

ch
 ti

m
e

Benchmarks

ps
2as
2ms

 0

 5

 10

 15

 20

 25

 30

vortexnethacktwmcm88ksimvprparsersmail

Pe
rc

en
ta

ge
 fr

om
 s

cr
at

ch
 ti

m
e

Benchmarks

ps
2as
2ms
3as

 0

 5

 10

 15

 20

 25

 30

vortexnethacktwmcm88ksimvprparsersmail

Pe
rc

en
ta

ge
 fr

om
 s

cr
at

ch
 ti

m
e

Benchmarks

ps
2as
2ms
3as
3ms

Figure 23: All Points-To Analysis: Incremental deletion time relative to from-scratch
time

support. Since the support is acyclic, this recursive process will terminate, yielding

a proof. Hence it follows that any answer with an unmarked acyclic support has a

derivation and hence is not deleted.

5.1.4 Experimental Results

Incremental Analysis To measure the effectiveness of our incremental evaluation

algorithms, we performed All Points-to Analysis as described in Chapter 3. For single

statement-level changes to the benchmark programs, we measured the time and space

taken to redo the analyses from scratch and to maintain the points-to relations using

our incremental techniques. We report on the performance of incremental deletion

based on partial support graph.

Effectiveness of incremental deletion. We compare the average time taken for single

assignment statement deletion in source (over 105 deletions) for incremental and from-

scratch APA. Note that each assignment statement in the source may correspond

to multiple primitive assignment statements in the preprocessed code. Figure 23

63

PS 2AS 2MS 3AS 3MS ALL
smail 398K 435K 555K 450K 705K 3160K
parser 366K 435K 510K 480K 630K 1356K
vpr 147K 167K 174K 176K 191K 213K

m88ksim 161K 180K 210K 195K 225K 304K
twmc 279K 389K 397K 490K 506K 5728K

nethack 205K 239K 270K 252K 317K 2075K
vortex 1124K 1564K 1714K 1810K 2099K 33444K

Table 5: Support counts for different support graphs

shows the average time taken for incremental APA per source statement deletion as

a percentage of the time taken for from-scratch APA. The figure shows the relative

performance of the different incremental deletion algorithms PS, AS and MS, and

for the latter, with different values of maximum support set size (MASC=2 and 3).

Recall that PS is identical to AS and MS with MASC=1.

Observe from the figure that, even the simplest of our primary support-based

algorithms, PS, takes 1.8%(m88ksim) to 19%(vortex) of the from-scratch time. Time

decreases with increasing MASC, and the MS algorithm performs better than AS.

This is because most of the time (more than 95%) is taken by the PCR rederivation

phase and keeping extra supports considerably reduces the number of calls made for

PCR rederivation.

Space Behavior. In Table 5 we compare the space overhead of our different incremental

deletion algorithms by comparing the total number of supports recorded for APA.

The last column in the table shows the total number of supports in complete support

graph for each benchmark. Each support vertex takes at most 6 words, and the total

number of supports is a very good measure of the space overheads due to incremental

evaluation1 . Note that the support graph space overheads are very small when

the number of supports per answer is bounded. However, note that the size of full

support graphs is prohibitively large for the bigger examples (e.g. 30M vertices, 912

MB memory for vortex), and hence the simpler incremental algorithm of Chapter 4

is impractical. It is interesting to observe that the support size for MS with MASC=2

is smaller than AS with MASC=3, but the average evaluation time is longer for the

1The amount of space each support takes varies from Algorithm PS (2 words), AS and MS (6
words).

64

MASC=0 1 2 3
smail 230.6K 13,282 9,540 9,270
parser 245.7K 1,095 1,065 1,050
vpr 20.8K 288 150 150
m88ksim 4.2K 1086 690 680
twmc 51.3K 2,770 2172 1933
nethack 54.5K 355 208 208
vortex 493.4K 2,882 614 614

Table 6: No. of answers marked in Deletion Phase

latter (Figure 23), showing the advantage of keeping non-acyclic supports in reducing

evaluation time.

The importance of supports. To measure the effectiveness of primary and acyclic

supports in reducing the number of answers marked and later rederived, we collected

the average number of answers marked in the first phase for APA. Table 6 shows the

number of answers marked using the AS algorithm for various benchmarks (rows)

and for different MASC values (columns). Note that AS and MS are identical w.r.t.

number of marked answers, and that AS with MASC=0 is identical to the non-

support-based (e.g. [GMS93, YRL99, SS94]) algorithms. The comparison of MASC=0

and MASC=1 columns shows the substantial advantage (4–160 times) of keeping

primary support for restricting the marking and rederivation of answers. The number

of marked answers decreases as we increase the number of acyclic supports stored.

However, the decrease tapers off after MASC=2, and MASC=2 appears to be a good

balance between evaluation time and space overhead.

Tables 5 and 6 show the importance of keeping a partial support graph for deriving

scalable incremental analyses. Note that the PCR rederivation phase is needed only

when the support set is partial. We observe that this phase takes more than 95%

of the incremental evaluation time. Hence, if the entire support graph is kept, the

incremental evaluation time will be less than 2% of the from-scratch evaluation time.

The algorithms presented in this section hence trade off incremental evaluation time

to lower the space requirements.

65

5.2 Symbolic Support Graphs

The algorithm presented in the last section stored only a limited number of supports

for each answer, making its space requirement linear in the number of answers. The

space savings and scalability however come at the price of increased rederivation time.

Since all supports are not stored, an answer may have a derivation even when all of

its stored supports are marked. Hence, we need to re-evaluate the program clauses

to check if the answer can be rederived. The time penalty can be high: incremental

evaluation time (for small changes) may be as much as 15% of that of from-scratch

evaluation.

This raises an interesting question: Can we store the entire support graph, which

eases rederivation and significantly improves incremental evaluation time, without

incurring a prohibitive space overhead? We address this problem in this section.

To explain various characteristics of our approach we take another example given in

Figure 24(a). The corresponding support graph is shown in Figure 25.

:- table r/2.

r(X,Y) :- b(X,Y).

r(X,Y) :- c(X,Z),

r(Z,Y).

b(1,2). %f1

b(6,2). %f2

b(6,4). %f3

c(1,6). %f4

c(3,6). %f5

c(3,1). %f6

c(6,3). %f7

Calls Answers Supports

r(6,X)

[a1] r(6,2) [s1] {b(6,2)}, [s10] {c(6,3),r(3,2)}
[a2] r(6,4) [s2] {b(6,4)}, [s11] {c(6,3),r(3,4)}

r(3,X)

[a3] r(3,2) [s3] {c(3,6),r(6,2)}, [s8] {c(3,1),r(1,2)}
[a4] r(3,4) [s4] {c(3,6),r(6,4)}, [s9] {c(3,1),r(1,4)}

r(1,X)

[a5] r(1,2) [s5] {b(1,2)}, [s6] {c(1,6),r(6,2)}
[a6] r(1,4) [s7] {c(1,6),r(6,4)}

(b) (c)

(a)

Figure 24: Example program (a); calls and answers generated when evaluating query
r(6,X) (b); and supports for the query evaluation (c).

The key to compactly storing the entire support graph is to make use of explicit

sharing inherent in the supports. Consider the two answers to call r(3,X), r(3,2)

and r(3,4), and their supports s3 and s4 respectively in Figure 24. Observe that the

two supports share c(3,6). Also notice that the literals which make the two supports

66

s1 a1

a4

f3

a2a5

f2

f5

a3

f7

a6

f6

f1

f4

1

0

0

2

2

s3

s8

s6 s7

s9 s11

s4

s2
s5

s10
2

1

2

2

1

0

1

2

2

3
3

1

0

0

0

3
2 0

1

Figure 25: Support graph for answers to query r(6,X) over example program in Fig-
ure 24(a).

Call Symbolic Supports

r(6,X) 〈r(6,X), {}, b(6,X)〉, 〈r(6,X), {c(6,3)}, r(3,X)〉
r(3,X) 〈r(3,X), {c(3,6)}, r(6,X)〉, 〈r(3,X), {c(3,1)}, r(1,X)〉
r(1,X) 〈r(1,X), {}, b(1,X)〉, 〈r(1,X), {c(1,6)}, r(6,X)〉

Figure 26: Symbolic supports for query evaluation over the example program in Fig-
ure 24(a).

different, i.e. r(6,2) and r(6,4), are answers to the call r(6,X). Thus two supports

for answers to r(3,X) can be represented in intensional form as: c(3,6), r(6,X).

This intensional form is represented in a symbolic support, which consists of three

parts, namely, the set of answers supported (e.g. r(3,X), the common part of all

the supports (e.g. c(3,6), and the call whose answers distinguish the supports (e.g.

r(6,X)). Now, when an answer to r(6,X), say r(6,2) is deleted, we can compute,

using the symbolic support, that r(3,2) may be affected. A symbolic support cap-

tures dependencies between certain calls while our earlier notion of supports captured

dependencies between answers. By lifting this to the level of calls, a symbolic support

compactly represents multiple supports.

The symbolic supports for the evaluation of query r(6,X) over the program in

Figure 24(a) appears in Figure 26. Marking can be readily done using the symbolic

supports. Given a marked answer (e.g. r(6,2)), we first compute the substitution

for the variables in a support corresponding to it (e.g. r(6,X), X = 2), and use this

substitution to find the supported answer (e.g. r(3,2)). When the intensional form

does not contain any join operations, we can compute the answer dependencies from

67

the symbolic support in time proportional to the answer size.

We now formally define the notion symbolic supports, and describe the data struc-

ture to represent symbolic support graphs.

Definition 13 (Symbolic Support) Let P be a definite logic program with a set of

facts F , and let C and A be a set of call and answer tables respectively, obtained when

evaluating a query ξ over P . The triple S = 〈h, s, d〉 is a symbolic support for a call

γ ∈ C if there is a clause in P of the form α :− β1, β2, . . . , βn−1, βn and a substitution

θ such that

1. h, called the head of S, is such that αθ = h;

2. s, called the static part of S, is such that s = {b1, b2, . . . bn−1}, and

∀i ∈ [1, n − 1], bi = βiθ and bi ∈ A ∪ F ;

3. d, called the dynamic part of S, is such that βnθ = d.

Note that a symbolic support is shared between a non-empty set of answers of

a call. All non-symbolic supports represented by a symbolic support S are called

embedded supports of S, defined below.

Definition 14 (Embedded Supports) Let P be a definite logic program with set

of facts F , and let A be answers in the tables obtained when evaluating a query γ over

P . A non-symbolic support s is embedded in a symbolic support S = 〈h, s′, d〉 if there

is a substitution σ such that s.answer = hσ ∈ A, s = s′ ∪ {dσ}, and dσ ∈ A ∪ F .

Given a symbolic support S = 〈h, s, d〉, the answer a′ is said to be a supported

answer for an answer/fact a w.r.t. S if there is a substitution σ such that a = dσ

and a′ = hσ. In that case, we also say that a is a supporting answer w.r.t. S.

When the mark on an answer is propagated, we need to find an embedded

support that contains this answer. For instance, consider our running example

and its symbolic supports in Figures 24(a) and 26 respectively. If r(6,2) is

marked, since it is an instance of r(6,X), we need to mark supports embedded in

〈r(1,X), {c(1,6)}, r(6,X)〉 and 〈r(3,X), {c(3,6)}, r(6,X)〉. This lookup can be ef-

ficiently done if the dynamic part of a symbolic support is a tabled call. Moreover, we

can maintain, for each tabled call, the set of symbolic supports that contain it. If the

68

dynamic part of the symbolic support is not a tabled call, then we need to maintain

additional indexing structures to find the embedded supports. Hence we do not use

a symbolic support when its dynamic part is not a tabled call, and use non-symbolic

supports instead.

Symbolic support graphs (SSG) are an extension of the support graphs that has

calls, answers, symbolic as well as non-symbolic supports as vertices and the relation-

ships between them as edges. The edges in an SSG are described below.

• uses of , part of , support , answer : as in Definition 6.

• set uses of : If a fact or an answer a is in the static part of a symbolic support

SS then there is a set uses of edge from a to SS .

• set uses of call and dynamic call : If a call C is the dynamic part of a symbolic

support SS then there is a set uses of call edge from C to SS . There is also a

dynamic call edge from SS to C.

• supported call and symsupport : If a symbolic support SS supports a nonempty

set of answers of a call C then there is a supported call edge from SS to C, and

a symsupport edge from C to SS .

• answers and subgoal : If A is the set of answers for call C, then there is a answers

edge from C to elements of A and a subgoal edge from each element of A to C.

The SSG corresponding to the supports in Figure 25 is shown in Figure 27. Note

that any tabling engine will give unique identities to each tabled call (e.g. the subgoal

frame in the SLG-WAM [CW96]) and tabled answers. We use these identifiers in our

implementation of the SSG to denote calls and answers (we use terms to represent

calls in examples, for clarity). The information about the variables in the head and the

dynamic part, needed to compute the embedded supports, is also kept in a symbolic

support. This implementation detail is not shown in the examples.

The set uses of , set uses of call , and supported call edges in an SSG are required

for propagation of marks and rederivation. They are analogues of uses of and answer

in a support graph. The symsupport edges are used to adjust the derivation length of

an answer after rederivation. Finally, dynamic call is used to compute the embedded

supports of a symbolic support.

69

supported_call
set_uses_of, set_uses_of_call
answer
uses_of

r(6,X)r(1,X)
a5
a6

f1

s5

a1
a2

s1f2
s2f3

a3a4

r(3,X)

SS2

f5

f4

SS1
SS2
SS3
SS4

:: s8, s9
s6, s7
s10, s11
s3, s4

::

::

::

SS4

SS1f6
SS3 f7

Figure 27: Symbolic support graph for answers to query r(6,X).

In addition, for each answer we maintain the total number of unmarked supports

in attribute total support count and the number of unmarked acyclic supports in

attribute acyclic support count . These attributes counts the number of embedded

supports represented by a symbolic support. In Figure 27, total support count of a1

is 2 and acyclic support count of a1 is 1.

5.2.1 Symbolic Support Based Incremental Algorithm

We now describe the incremental algorithm for maintaining the tables using symbolic

supports. The algorithm extends the one in Figure 14 and handles graphs with

a mixture of symbolic and non-symbolic supports. We have already seen in the

previous section how to compute the embedded (non-symbolic) supports for each

symbolic support. Note that information such as derivation length and marking are

specific to the non-symbolic embedded supports; computing this information based

on symbolic supports is the key issue in the algorithm. Note also that the static part

of a symbolic support is common to all its embedded supports. Hence we associate

the information due to the static part in the symbolic support. For each symbolic

support node we maintain an attribute static maxdl that stores the maximum of

derivation lengths of the answers and facts in its static part. We use this information

to compute the derivation length of each embedded support. Similarly, corresponding

to the attribute false count with each non-symbolic support which counts the number

of marked answers/facts in the support, we associate with each symbolic support the

attribute static false count which counts the number of marked answers and facts in

70

mark()
mark queue = empty
∀ deleted facts f

mark fact(f)
while (mark queue != empty)

a = dequeue(mark queue)
mark answer(a)

mark fact(f)
∀ Support s ∈ f.uses of

mark support(s)
∀ Sym.Support S ∈ f.set uses of

mark static(S)

mark answer(a)
a.marked = true
∀ s ∈ a.uses of

mark support(s)
∀ S ∈ a.set uses of

mark static(S)
subg = a.subgoal
∀ S ∈ subg.set uses of call

mark dynamic(S, a)

mark support(s)
s.false count++
if (s.false count == 1)

propagate mark(s.answer, s.dl)

mark dynamic(S, sourceans)
(* Propagate via dynamic part *)
if (S.static false count == 0)

targetans = supported answer of sourceans
w.r.t. S

support dl =
max(S.static maxdl, sourceans.dl) + 1

propagate mark(targetans, support dl)

mark static(S)
(* Propagate via static part *)
S.static false count++
if (S.static false count == 1)

∀ sourceans ∈ answers(S.dynamic call)
if (! sourceans.marked)

targetans = supported answer of sourceans
w.r.t. S

support dl =
max(S.static maxdl, sourceans.dl)+1

propagate mark(targetans, support dl)

propagate mark(ans, support dl)
ans.total support count−−
if (ans.dl ≥ support dl)

ans.acyclic support count−−
if (ans.acyclic support count == 0)

enqueue(mark queue, ans)
marked set = marked set ∪ { ans }

Figure 28: Algorithm for Marking

its static part. The algorithm has two phases analogous to the two phases of DRed

and other incremental recursive-view maintenance algorithms.

Marking Phase. The algorithm for the marking phase is shown in the Figure 28.

The false count attributes of symbolic and non-symbolic supports are initialized to

zero before the marking phase. An answer is marked by setting its marked flag to

true; this attribute is initialized to false. The answers to be marked are placed in a

queue, and the marking phase ends when the queue is empty. The marked answers

are placed in a set marked set for processing in the rederivation phase.

The functions mark answer and mark fact propagate the effect of marking an

71

answer/fact to the supports containing it. The function mark fact propagates the

effect of deleting a fact to the supports containing it. In addition mark answer places

a mark on the answer. Function mark support marks a support and propagates this

mark to the answer supported by it; functions mark static and mark dynamic mark

a symbolic support and if needed propagate this mark to the answer(s) supported by

it. Note that a (symbolic) support is marked if its (static) false count is nonzero.

We illustrate the working of the marking phase using the deletion of f2 and f4

from Figure 27 as an example. A call to mark fact(f2) will call mark support(s1), and

subsequently propagate mark(a1, 1). This will decrement a1’s total and acyclic sup-

port counts (to 1 and 0, resp.), and place a1 in the queue. We will call mark fact(f4)

next. Since f4 is in the static part of symbolic support SS2 , we call mark static(SS2).

This sets static false count of SS2 to 1, iterates over the answers of the dynamic part

of SS2 , i.e. r(6,X). The supported answers of a1 and a2 w.r.t SS2 are a5 and a6,

resp., and a6 is added to the queue as a5 has an unmarked acyclic support s5. Note

this is equivalent to propagation of marking through s6 and s7 in support graph

based algorithm. Continuing further, we pick up a1 for processing from the queue.

Since a1 appears in the dynamic parts of SS2 and SS4 mark dynamic is called for

both the symbolic supports. However, mark dynamic(SS2 ,a1) has no effect as its

static false count is already 1; mark dynamic(SS4 ,a1) will call propagate mark(a3,

2) which reduces the total and acyclic support counts of a3 to 1 (due to acyclic em-

bedded support s8 in SS1). Similarly, processing a6 from the queue does not mark

a4 as it has an acyclic embedded support in SS4 . Thus at the end of marking phase

a1 and a6 are marked.

Rederivation Phase. Each marked answer that has some unmarked support at

the end of the marking phase is known to have a proof not involving its previously

known acyclic supports. In addition to resetting its mark, we need to compute its new

derivation length (due to the new proofs). In our running example we compute the

new derivation length of a1 by computing derivation length of its unmarked support

(s10 in SG) embedded in SS3 . This is done by finding the supporting answer for a1

w.r.t. SS3 , i.e. answer a3 (dl = 3), and computing the dl of the embedded support.

When some of the marked answers are rederived, we propagate rederivation using the

function rederive answer . Figure 29 gives the rederivation algorithm, which is very

72

rederive()
∀ ans ∈ marked set

if (ans.total support count > 0)
ans.acyclic support count

= ans.total support count
recalculate dl(ans)
enqueue(rq, ans)

∀ Answer ans ∈ rq
rederive ans(ans)

recalculate dl(targetans)
spt max=max{s.dl |

s = targetans.support ∧
s.false count == 0}

espt max=
max{max(S.static maxdl,ans.dl)+1

| S ∈ targetans.subgoal.symsupport
∧ S.static false count=0
∧ ans is a supporting answer
of targetans w.r.t S
∧ !ans.marked}

targetans.dl=max(spt max,espt max)

rederive answer(ans)
ans.marked = false
∀ s ∈ ans.uses of

rederive support(s, ans.dl)
∀ S ∈ ans.set uses of

rederive static(S, ans.dl)
subg=get subgoal(ans)
∀ S ∈ subg.set uses of call

rederive dynamic(S, ans)

rederive support(s, dlen)
s.dl = max(s.dl, dlen+1)
s.false count−−
if (s.false count == 0)

propagate rederive(s.answer of, s.dl)

rederive dynamic(S, sourceans)
if (S.static false count == 0)

targetans = supported answer of
sourceans w.r.t. S

dlen =
max(S.static maxdl, sourceans.dl)+1

propagate rederive(targetans, dlen)

rederive static(S, dlen)
S.static maxdl = max(S.static maxdl, dlen)
S.static false count−−
if (static false count(S) == 0)

∀ sourceans ∈ S.supported call.answers
if (!sourceans.marked)

targetans = supported answer of
sourceans w.r.t. S

dlen’ =
max(S.static maxdl, sourceans.dl)+1
propagate rederive(targetans, dlen’)

propagate rederive(ans, dlen)
ans.total support count++
if (ans.acyclic support count==0)

ans.acyclic support count = 1
ans.dl = dlen
enqueue(rq, ans)

else
if (ans.dl ≥ dlen)

ans.acyclic support count++

Figure 29: Algorithm for Rederivation

similar to the marking algorithm.

Complexity Analysis: The complexity of the symbolic support graph based

algorithm is given by the following expression:

O(|Ma|) + O(
∑

a∈Ma
|a.uses of |) + O(

∑

a∈Ma
|a.support|) + O(|Ms|)

73

where Ma denotes the set of marked answers and Ms is the set of marked static

and embedded supports. Note the complexity is same as the acyclic support graph

(ASG) based deletion algorithm presented in Chapter 4. This algorithm has some

extra overhead of finding embedded supports. Finding each embedded support from

a symbolic support takes a trie lookup time. The complexity of trie lookup for a term

is proportional to the length of the term which is considered here as constant.

5.2.2 Space Complexity of Symbolic Support Graphs

In this section we compare the asymptotic size of SSGs with respect to table size

and the size of non-symbolic support graphs for a number of useful tabled programs.

For purposes of this comparison, we assume that all supports in the SSG are sym-

bolic. The selected programs and the complexity measures are shown in Figure 30.

The apparently simple transitive closure programs (lreach/2 and rreach/2) lie at

the heart of a remarkable number of applications of tabled logic programming. For

instance, verification of safety properties of systems and implementation of inheri-

tance in object-oriented logics reduce to reachability problem. Context-free language

reachability, which is the basis for the verification of push-down systems, has rules

that resemble the definition of the simpler same-generation (sg/2) predicate. A class

of useful tabled logic programs not in the figure are those involving negation and

aggregation (e.g. dynamic programming problems). In principle, symbolic supports

can be used in these cases also, but other aspects of our implementation (e.g. han-

dling of addition/updates) need extension. Hence we do not include this class in the

comparison.

For the graph traversal examples, we assume that the edge/2 relation defines a

graph with v vertices and e edges. We consider a bound-free query to right-recursive

transitive closure, say rreach(a,X). Tabled evaluation makes O(v) distinct tabled

calls to answer this query. Each of these calls can have O(v) answers, and hence the

table size is O(v2). Each answer rreach(b,c) has supports of the form {edge(b,Y),

rreach(Y ,b)} where Y ranges over neighbors of b. The number of supports for

this answer is bounded by the out-degree of b. Since there are O(v2) answers, the

total number of supports is O(v ∗ e). The symbolic supports associated with call

rreach(a,X) are {edge(a,X)} and those of the form {edge(a,Y), rreach(Y ,X)}.

74

Example programs Query Space Complexity
Modes Table SG SSG

lreach(X,Y):- edge(X,Y).
lreach(X,Y):- lreach(X,Z), edge(Z,Y).

bb, bf O(v) O(e) O(v)
fb, ff O(v2) O(v ∗ e) O(v2)

rreach(X,Y):- edge(X,Y).
rreach(X,Y):- edge(X,Z), rreach(Z,Y).

bf, ff O(v2) O(v ∗ e) O(e)
bb, fb O(v) O(e) O(e)

sg(X,X).
sg(X,Y):-
edge(X,Y1),sg(Y1,Y2),edge(Y2,Y).

all O(v2) O(e2) O(v ∗ e)

sg opt(X,X).
sg opt(X,Y) :- aux(X,Z),edge(Y,Z).
aux(X,Y):- edge(X,Z),sg opt(Z,Y).

all O(v2) O(v ∗ e) O(v2)

Context-Free Language Reachability
N=|nonterms|,G=grammar size

all O(N ∗ v2) O(G ∗ v3) O(G ∗ v2)

Figure 30: Space complexity of symbolic support graphs

Thus there are two symbolic supports for each edge and hence the number of symbolic

supports is O(e). Note that SSG grows slower than the tables for this example.

The asymptotic space complexity for the other examples and queries in Figure 30

are computed along the same lines. The figure shows two versions of the same gen-

eration predicate: the naive sg/2, and an optimized version sg opt/2 obtained by

supplementary tabling (i.e. tabling an intermediate join). The latter has better time

complexity; observe from the figure that the size of SSG for this program is propor-

tional to table size. For such programs, the space needed for SSG is less than three

times the table space in the worst case. In practice the constant factor is close to 1.5.

5.2.3 Experimental Results

The aim of symbolic support graphs is to make incremental evaluation scale to large

applications.

Space. We performed All Points-to Analysis (APA), which computes the points-to

relation for all program variables (Chapter 3). Table 7 shows the number of supports,

and space (in MB) taken by, support graphs, partial support graphs with maximum

of 2 supports per answer, and symbolic support graphs for each benchmark. Observe

from the table that the symbolic support graph takes the least space among the

three. Note that the symbolic support graph may contain non-symbolic supports;

while it is possible to make all supports symbolic, we find that it usually increases

75

Avg. Support Graph Partial Su. Gr. Symbolic Support Gr. mem
Benchmark size supports mem supports mem support symspt mem sym

com
%

smail 24.5 3,159.4K 92.2 560K 22.8 42.2K 163.0K 15.5 16.8
parser 5.8 1,355.7K 44.2 518K 21.8 130.0K 159.2K 17.9 40.5
vpr 1.8 213.1K 9.7 172K 8.7 56.2K 51.9K 8.5 86.9
m88ksim 6.0 303.5K 11.8 206K 9.2 34.3K 47.9K 7.1 60.5
twmc 16.7 5,727.8K 158.5 396K 16.2 90.5K 105.0K 12.6 8.0
nethack 35.0 2,074.8K 59.4 269K 11.2 34.9K 60.4K 8.1 13.6
vortex 69.8 33,334.5K 912.0 1,714K 65.2 215.3K 361.4K 46.1 5.1

Table 7: Comparison of support graph sizes for pointer analysis

Benchmark complete partial symbolic
smail 1.2 7.4 3.0
parser - 7.7 0.9
vpr - 1.3 -
m88ksim - 1.1 -
twmc - 8.4 0.5
nethack - 5.6 -
vortex - 15.0 0.2

Table 8: Incremental deletion time as a percentage of from-scratch time

space requirements by 20%. Finally, the table shows that the symbolic support graph

can be considerably smaller than the (non-symbolic) support graph. Since symbolic

supports keep dependencies between calls instead of answers, the reduction in space

is proportional to the number of answers per call (the average points-to size).

Table 9 shows the sizes of non-symbolic (SG) and symbolic (SSG) support graphs

for performing automata-based dead variable analysis of C programs using the push

down model checker of [BKPR02]. The model checker has few answers per call,

consequently we see a reduction in space due to SSGs, but not as much as in the

Benchmark Table SG SSG
smail 0.8 0.9 0.8
allroots 0.5 0.5 0.4
assembler 47.7 67.6 48.6
compiler 51.1 154.0 53.7
compress 7.0 9.2 7.0
loader 5.9 6.9 6.0

Table 9: Support graph sizes (in MB) for push-down model checking

76

Graphs
Programs chain complete tree

2000 nodes 100 nodes 10000 nodes
Table SG SSG Table SG SSG Table SG SSG

lreach 0.3 0.2 0.2 0.3 0.7 0.4 1.6 0.8 0.9
rreach 47.0 96.0 40.2 0.7 28.5 0.9 5.4 5.7 3.2
sg opt 1.1 0.4 0.4 1.3 56.6 1.9 5.7 1.8 1.9

Table 10: Support graph sizes (in MB) for synthetic benchmarks from Figure 30

Bench- from Incremental
mark scratch SG SSG
smail 0.520 .0011 .0013
allroots 0.0320 .0004 .0005
assembler 6.0280 .0253 .0333
compiler 27.1290 .0161 .0330
compress 0.3440 .0104 .0165
loader 0.4480 .0070 .0072

Table 11: Comparison of running times (in Seconds) for model checking

points-to analysis.

Recall from Section 5.2.2 the size of the symbolic support graph grows at or near

the same rate as the table size for bound-free queries to left-recursive and right-

recursive transitive closure and same generation programs (from Figure 30). Table 10

shows that not only the growth rates, but the total space requirements of symbolic

supports are also close to those of the tables themselves.

Time. The effectiveness of the incremental techniques were evaluated by removing

one (source-level) statement from the benchmark programs, and measuring the time

and space taken to redo the analysis from scratch and to maintain the points-to

relation incrementally. Deleting one source level assignment statement may delete

multiple primitive assignment statements and hence multiple facts.

Table 8 shows the incremental evaluation times for pointer analysis as a percentage

of time of from-scratch analysis using the non-symbolic support graph (complete), the

partial support graph with at most 2 supports per answer (partial), and the symbolic

support graph (symbolic). We found SSG-based algorithm is on average 5 times slower

than the complete support graph based one, but is still two orders of magnitude faster

than the from-scratch analysis for small changes. Incremental percentage which are

77

less than .1% are shown using ‘-’. For model checking benchmarks SSG-based analysis

is on average 1.5 times slower than complete support graph based analysis (Table 11).

The incremental times for synthetic benchmarks are non-measurable and thus omitted

here.

5.3 Related Work and Discussion

In this chapter we presented space-efficient data structures and incremental algo-

rithms for maintaining tables in the presence of deletion of facts. The techniques can

be readily extended to handle deletion of rules by keeping rule information in supports

as done in the Chapter 4. The partial support graph grows linearly with the table

size but it suffers from high rederivation time. In contrast, symbolic support graph in

general is not bounded by table size but for a useful set of programs it showed similar

space efficiency as partial support graph.

In-spite of the fact that the chief hindrance of using dependency graph based

incremental computation is its space complexity, it is surprising to note that among

all the works we are aware of only Rep’s thesis [Rep84] addresses this problem. The

first method discussed in his thesis reduces the storage by reducing the number of

attribute values retained at any stage of attribute evaluation, although it compromise

on optimality of the algorithm. The second method shares the space used for attribute

values that are complex data structure. More specifically, it uses 2-3 tree for sharing

ordered sets of values. Symbolic support graph is also based on sharing common part

of support graph although the technique is dependent on dependency between calls

and answers which is exploited in such a way that the dependencies between answers

can be readily computed from the dependency between calls.

The ease of computation is ensured by keeping the symbolic supports in a “join-

free” form, keeping only the last literal of a support as a call. This can be easily

extended to keeping calls as the right-most literal in a clause that is followed by

simple computations (such as comparison operations). This extension of the notion

of symbolic supports will permit us to represent programs with aggregation opera-

tions using symbolic supports, thereby enabling incremental evaluation of dynamic

programming problems.

78

In this chapter we considered only definite logic programs, where all predicates

are either tabled or defined by facts. We can extend this to programs containing a

mixture of tabled and non-tabled predicates along the same lines as in Chapter 4:

accumulating support information from non-tabled predicates and storing them with

answers.

Chapter 6

A Uniform Approach To Change

Propagation

Most existing techniques for incremental evaluation consider addition and deletion of

facts as primitive changes, and treat update as deletion of the old version followed by

addition of the new version. They handle addition and deletion using independent

algorithms, consequently performing many redundant computations when processing

updates. Our first step (described in Chapter 4) towards designing algorithms for

incremental update to tables also followed the above approach.

In this chapter, we deviate from these existing approaches to present a local al-

gorithm for handling updates to facts or a set of addition and deletion of facts. We

maintain a dynamic (and potentially cyclic) dependency graph between and among

calls and answers in the memo tables. The key idea is to interleave the propagation of

deletion and addition operations generated by the updates through this graph. The

dependency graph used in our algorithm is more general than that used in algorithms

previously proposed for incremental evaluation of attribute grammars and functional

programs. Nevertheless, our algorithm’s complexity matches that of the most efficient

algorithms built for these specialized cases.

79

80

:- table r/2.

r(X,Y) :- e(X,Y).

r(X,Y) :- e(X,Z), r(Z,Y).

e(1,2).

e(2,3).

e(3,4).

e(4,3).

Calls Answers

r(1,A) r(1,2), r(1,3), r(1,4)

r(2,A) r(2,3), r(2,4)

r(3,A) r(3,4), r(3,3)

r(4,A) r(4,3), r(4,4)

(a) (b)

Figure 31: Example tabled logic program (a), and its call and answer tables (b).

6.1 Motivation

Most of these works consider changes to the program in terms of addition and deletion

of facts. An update of a fact is treated as the deletion of the old version followed by the

addition of the new version and processing addition and deletion using independent

algorithms. Treating updates in this manner may lead to unnecessary evaluation

steps, as illustrated by the following example.

Consider the evaluation of query r(1,A) over the program in Figure 31(a). In

the program, r/2 defines the reachability relation over a directed graph, whose edge

relation is given by e/2. The calls and answers computed for this query evaluation

are given in Figure 31(b).

Now consider the effect of updating the fact e(2,3) to e(2,4) and treating this

change as the deletion of e(2,3) followed by the addition of e(2,4). First, since

e(2,3) is deleted, the answers r(2,3) and r(2,4) for call r(2,X) are deleted. Then

answers r(1,3) and r(1,4) are deleted since they depend on answers r(2,3) and

r(2,4). In summary, nodes 3 and 4 are no longer reachable from 1 or 2.

Having propagated the effect of deleting e(2,3), we now process the addition of

e(2,4). This introduces two answers to call r(2,X): r(2,4) (from the first clause

of r/2), and r(2,3) (from the second clause of r/2, since e(2,4) and r(4,3) hold).

The addition of these two answers to call r(2,X) results in the addition of r(1,3)

and r(1,4) to call r(1,X).

Several works, especially those on incremental evaluation of attribute gram-

mars [DRT81, Rep82], treat update as in-place change, and propagate this change.

This approach is very restrictive for logic programs. In order to use this approach

the program has to be non-recursive and the change can only be on “non-key at-

tributes” [SdS99]: i.e. the control behavior of the program cannot be changed.

81

However, these update propagation algorithms, whenever applicable (i.e. when the

restrictive conditions are met), are optimal.

Updates may lead to deletions or additions in general. For instance, in the above

example, if fact e(2,3) is changed to e(3,2), node 2 becomes reachable from 3

and 4, and nodes 3 and 4 are no longer reachable from 1 or 2. Hence any algorithm

that handles only in-place updates is bound to be restrictive in the context of logic

programs.

The interesting problem then is to devise an incremental technique for processing

additions, deletions as well as updates, which applies to a large class of logic programs,

and yet is optimal for the class of programs handled by the in-place update algorithms.

We present such a technique in this chapter.

Our Approach: We give an incremental evaluation algorithm that interleaves

the processing of additions and deletions. The interleaving reduces the number of

intermediate steps in the incremental evaluation. For instance, consider the example

in Figure 31. Since e(2,3) is changed, inspect r(2,X)’s answers table and recalculate

results. However, if we process all additions and deletions to r(2,X) before moving

further, we will stop the propagation there since there is no net change to r(2,X)’s

answers. Hence r(1,3) and r(1,4) will not be deleted in the first place.

Interleaving addition and deletion requires that additions be performed bottom-up

(i.e. in a forward-chaining manner). Our earlier algorithms in the previous chapters

for incrementally processing additions was based on top-down query evaluation. In

this chapter we describe data structures and algorithms to process additions bottom-

up while using the information about the original queries. Section 6.3 introduces

the data structures used for incremental processing of additions and deletions. Inter-

leaving between the two operations is achieved by decomposing the processing of an

addition or deletion into finer-grained operations, and assigning priorities to these op-

erations. Section 6.4 describes the assignment of priorities and a scheduler to perform

the operations in order.

Salient Features of Our Approach: We consider definite logic programs where

facts as well as rules may be changed between two query evaluation runs. We consider

an update as a deletion and an addition, but select the order in which the deletion

and addition will be processed based on the dependencies between the queries and

82

computed answers. The order in which the operations are performed generalizes the

call-graph based orders used in previous incremental algorithms [HPMS00, e.g.]. As

a result, our algorithm inspects the same number of answers in tables (which is a

good measure of an incremental algorithm’s performance) as algorithms that perform

in-place updates. In particular, for non-recursive programs, the order in which oper-

ations are performed coincide with the topological order of the dependencies. Hence

our algorithm is optimal for the cases for which optimal update algorithms (e.g. in-

cremental attribute evaluation) are known. Moreover the algorithm handles adds,

deletes and updates efficiently, even when the changes affect the control behavior

of the program. We describe the properties of the algorithm, including its behav-

ior on parsing, attribute evaluation in Section 6.6. In a more general setting when

the dependencies may be recursive, our algorithm interleaves addition and deletion

operations even with a strongly connected component (SCC) in the call graph. It

can be shown that our schedule of operations is uniformly better than adds-first or

deletes-first schedules.

Although the technical development of this chapter deals only with definite logic

programs, it is easy to extend the results to programs with (dynamically) stratified

negation. The data structures used by this algorithm can be modified to reduce its

space requirements. These issues along with results of our experiments on incremental

data-flow analysis are discussed in Section 6.10.

6.2 Preliminaries

We assume familiarity with the standard logic programming definitions of terms,

formulas, predicates, Horn clauses, rules, facts, and unification [Llo84].

We restrict our main technical development to definite logic programs. We later

describe how to extend these results to general logic programs evaluated under the

well-founded semantics. As an optimization, we assume that definitions of only those

predicates that are marked as volatile may be changed (i.e. with additions, deletions

or updates).

In SLG resolution [CW96], derivations are captured as a proof forest, called SLG

forest [CSW95]. Since we are treating SLG evaluation for definite logic program

83

we defined here SLG forest with respect to definite logic programs as follows. This

definitions follows from [Swi99].

Definition 15 (SLG Forest) An SLG forest is a set of SLG trees. Nodes of an

SLG tree either have the form

Answer Template :− Goal List.

where the answer template, Answer template, is an atom and the Goal list is a se-

quence of literals.

The SLG forest constructed when evaluating goal r(1,X) over the program in

Figure 32(a) is given in Figure 32(b). Each tree in the forest corresponds to a call in

the call table. For a given tree, the different branches correspond to derivations; the

computed answer substitutions of successful derivations correspond to answers of the

call. We informally describe the construction of an SLG forest using the example in

Figure 32. The initial call, r(1,X) results in a root node r(1,X) :- r(1,X) in the

forest (labelled p1 in the figure). The call r(1,X) is also entered in the call table. The

children of this node are obtained by resolving the selected literal in the body of the

node (r(1,X), in this case) with the program clauses. The node r(1,X) :- e(1,X)

(labeled c1) corresponds to the step in derivation of answers to r(1,X) based on the

answers to e(1,X). Since e/2 is not tabled, children of this node are also obtained by

program clause resolution. Note that since e(1,2) and e(1,3) are facts, this node

has two children, r(1,2) and r(1,3) (labeled s1 and s2, resp.), corresponding to two

answers of r(1,X). These two answers are entered into the answer table corresponding

to r(1,X).

The other child of p1, r(1,X) :- r(1,Z),e(Z,X) (labeled c2) is the result of

resolving r(1,X) with the second clause defining r/2. The selected literal in this

node is r(1,Z) which is a variant (i.e. a renaming) of a call in the table, hence

its children are obtained by resolving r(1,Z) with the answers in the corresponding

answer table. For instance, using the answer r(1,2), we get r(1,X) :- e(2,X) as

a child of c2. At any step, if the selected literal G of some node n is tabled but a

variant of G is not already in the call table, we start a new tree in the forest with

G :− G as the root and add G to the call table. Children are added to the original

node n as and when answers are computed for G. The construction process continues

84

until the SLG forest is complete, i.e. it can no longer be expanded. The leaves of a

complete SLG forest of the form G0 :− G1, . . . , Gn represent a failed derivation; the

other leaves represent answers.

Each edge in the SLG forest arises due to program or answer clause resolution.

For each edge (n1, n2) in the forest, n1, as well as the program clause or answer

used in that resolution step are called the premises of n2. For instance, r(1,X) :-

r(1,Z),e(Z,X) (node c2) and the answer r(1,2) are premises to e(2,X) (node c3).

Each tree in the SLG forest corresponds to a generator ; the call associated with

the root of a tree is said to be the call of that generator (denoted by p.call where p is

the generator). Each non-root node in the SLG forest whose selected literal is either

tabled or volatile corresponds to a consumer, defined formally as follows:

Definition 16 (Consumer) Let P be a definite logic program, and F be the

SLG forest constructed when evaluating a query Γ over P . Then c =

〈p,G0, G1, [G2, . . . , Gn]〉 for some n ≥ 0 is a consumer in F iff G0 :− G1, G2, . . . , Gn

is a non-root node in the SLG tree of generator p in F . The set of all consumers in

F is denoted by CF .

6.3 Data Structures

Note that the SLG forest itself does not explicitly represent the set of dependencies

between the nodes of the forest. Our incremental algorithm maintains these depen-

dencies using two auxiliary structures, namely, the evaluation graph and the call

graph, defined below.

Definition 17 (Evaluation graph) Let P be a definite logic program, F be the

SLG forest constructed when evaluating query Γ over P, and AF , PF and CF be the

answers, generators and consumers in F , resp. The evaluation graph corresponding

to FΓ is a directed graph (V,E) where V = P ∪ AF ∪ PF ∪ CF (i.e. the program

clauses, answers, generators and consumers) and E is the smallest set such that

1. ∀c = 〈 , , g, 〉 ∈ CF , p ∈ PF , if p is a variant of g then (c, p) and (p, c) are in

E. We say that c ∈ p.consumers and p = c.generator.

85

:- table r/2.

r(X,Y) :- e(X,Y). % rule 1

r(X,Y) :- r(X,Z), e(Z,Y). % rule 2

r(X,Y) :- d(X,Z), r(Z,Y). % rule 3
(a)

e(1,2). % f1

e(1,3). % f2

e(2,3). % f3

e(3,4). % f4

e(2,4). % f5

e(4,2). % f6

e(2,5). % f7

Call: r(1,Y)

Answers: r(1,2) [a1]
r(1,3) [a2]
r(1,4) [a3]
r(1,5) [a4]

(b) (c)

[p1] r(1,A) :- r(1,A).

[c1] r(1,A) :- e(1,A).

[c2] r(1,A) :- r(1,B), e(B,A).

[c3] r(1,A) :- e(2,A).

[c4] r(1,A) :- e(3,A).

[c5] r(1,A) :- e(4,A).

[c6] r(1,A) :- e(5,A).

[c7] r(1,A) :- d(1,B), r(B,A).

[s1] r(1,2).

[s2] r(1,3).

[s3] r(1,3).

[s4] r(1,4).

[s5] r(1,5).

[s6] r(1,4).

[s7] r(1,2).

(d)

1
p

r
1

c c

c c c c

s s s s s

c

3 4 5 6

3 4 5 6 7

s
1 2

2 71

r
2

r
3

2
f

1
f

3
f

5
f 7

f
6
f

4
f

a
3

a
21

a
4

s

a a

a a a a

1 2

a

2 3 3 14
a

(e)

Figure 32: Example program (a), facts (b), calls and answers (c), nodes in SLG forest
(d), and SLG forest (e)

2. ∀c, c′ ∈ CF , if c′ is a premise of c then (c, c′) and (c′, c) are in E. We say that

c′ ∈ c.next consumer and c = c′.prev consumer.

3. ∀c ∈ CF and ∀a ∈ P ∪AF , if a is a premise of c then (a, c) and (c, a) are in E.

We say that, c is dependent on a, c.dependent on = a and c ∈ a.holds.

4. ∀c ∈ CF such that c = 〈 , h, true, []〉 (i.e. leaves of successful derivations) and

a ∈ AF such that h is a variant of a, (c, a) and (a, c) are in E. We say that c

is a support of a, a = c.answer and c ∈ a.supports.

For program given in Figure 32(a) with facts in (b), the tabled call and answers

are given in Figure 32(c); and the SLG forest in Figures 32(d) and (e).

The edges in the evaluation graph are used as follows. An edge from a generator

to its consumer (type 1 in the above definition) is used to notify the consumer about

insertion of an answer in the generator’s answer table. The consumer then follows

the reverse edge to access the inserted answer(s). An edge from premises to their

conclusion (types 2 and 3) are used to ensure that when a premise is deleted or

otherwise invalidated all its consequences are re-examined. Edges connecting supports

86

and their answers are used to find whether an answer is supported after a deletion,

and to process unsupported answers. In addition to the evaluation graph, we assume

that the set of all consumers CF is indexed on its third (goal) component. This

ensures that when a rule or fact is inserted, we can locate the affected consumers

quickly.

The properly indexed set of consumers and the evaluation graph are sufficient

for incrementally adding nodes to the SLG forest (and hence the call and answer

tables) when new rules/facts are inserted. For instance, consider the insertion of

fact e(4,6). Since the goal field of consumer c5 unifies with this fact, we can add

in the SLG forest a child to c5, say s8: r(1,6). This is a new answer to generator

p1, which gets forwarded to its consumer c2 [using a type-1 edge in the evaluation

graph]. The consumption of this answer by c2 creates a child of c2, say c8 = r(1,A)

:- e(6,A). No further resolution steps are possible and the evaluation stops. Note

that we perform only those operations needed to change the original forest to include

the new fact and its effects.

The evaluation graph can also be used to modify the SLG forest when a fact/rule

is deleted. For instance, consider the deletion of fact e(3,4) (f4) from the program

in Figure 32. Since the node s6 in the SLG forest depends on f4, that node should

be deleted. Moreover, we now need to check if the corresponding answer a3 (r(1,4))

is derivable using a different consumer independent of s6).

In Chapter 4 we used support graph to propagate marks in supports and answers.

We preserve all the information of support graph in the evidence graph which en-

ables us to process deletion through evidence graph. The type-4 edges in definition

of evidence graph preserves the relation between an answer and its supports. The

constituent answers of a support can be found by following the leaf-to-root path in an

SLG tree using type-2 edges and collecting the answers premises (using type-3 edges)

for all the consumers (including the support itself) in the path. This corresponds

to the relation part-of in Definition 6. The uses-of (Definition 6) of an answer can

be found following the type-3 edges to find a consumer and following next consumer

edges to find the supports.

In Chapter 4 we presented heuristics to limit the propagation of deletion mark us-

ing the notion of primary supports and subsequently derivation length based acyclic

87

supports. In this chapter we refine and generalize this measure further. First, we

maintain a call graph that captures the dependencies between the generators in an

SLG forest, and identify strongly connected components (SCCs) in the graph. If p1 is

independent of p2 in the call graph (i.e. p1 does not call p2), then consumers and an-

swers of p1 are independent of those of p2. We number the SCCs in a topological order

(total order) so that the independence of two generators can be determined based on

their SCC numbers. This permits us to quickly identify independent consumers and

answers irrespective of their derivation lengths. Consider again the example given in

Figure 31. The call graph SCC consists of two trivial SCCs - r(1,A) and r(2,A)

and a non-trivial SCC consists of calls r(3,A) and r(4,A) with SCC r(2,A) is topo-

logically lower than SCC r(1,A). This means that call r(2,A) is independent of call

r(1,A) and hence we can process changes to r(2,A) before propagating any changes

to r(1,A). Note that, in this example there is no net change in the answers of r(2,A)

and thus we do not even process call r(1,A). Call-graph SCCs have been used for

localizing the change propagation in existing works and we build our algorithm on

top of it.

Although processing changes within an SCC before propagating its net changes

to topologically higher SCC seems to be fruitful in some cases, it is clearly ineffective

for change propagation within an SCC. To order events within an SCC, we also

associate an ordinal with all consumers— whether on a successful derivation or not—

(analogous to the derivation length) in the evaluation graph. The ordinal and SCC

number attributes (ord and scc, resp.) are defined in Figure 33.

Entity (X) SCC number (X.scc)
Answer p.scc where a is an answer of p
Consumer(c) p.scc where c = 〈p, h, g,G〉

Entity (X) Ordinal (X.ord)
Answer (a) {s.ord | s is the primary support of a}+1

Consumer (c)
max{c′.ord,Ord, 0}, where

c′ = c.prev consumer, a = c.premise and
Ord = a.ord if a.scc = c.scc and 0 otherwise

Figure 33: Ordinal definitions.

88

Corresponding to this definition of ordinals of answers and consumers we say a

support s of an answer a is acyclic if s.ord < a.ord .

The ordinal and SCC numbers are used not only to control the propagation of

markings during deletion, but also to interleave operations arising from addition of

facts/rules with those from deletion. This is described in detail in the next section.

6.4 The Local Algorithm

In this section we present the algorithm for maintaining the SLG forest incrementally

when facts/rules are added, deleted, or updated. The goal of our algorithm is to

confine the processing as closely as possible to the part of the SLG forest that is

modified by the change. We will measure an algorithm’s cost as the total number

of answers taken up for processing. Updates are still treated as simultaneous deletes

and adds, but the algorithm interleaves the deletion phase of marking answers and

processing of addition such that (a) it reduces the number of answers marked for

deletion, and (b) the number of new answers computed only to be subsequently

deleted. We illustrate some of the key features of the algorithm using the example

given in Figure 32. Two additional examples in the next section cover subtle aspects

not covered by the main example.

Consider the program in Figure 32 after updating fact e(1,2) (f1) to e(1,5).

This is treated as deleting f1 and adding a new fact f8 =e(1,5). If we process

deletion before addition, we would do the following: (i) mark a1 and a4 in the deletion

phase; (ii) rederive a1 and a4; and finally (iii) generate a4 that can again be derived

based on the added fact. On the other hand, if we process addition before deletion

we will (i) generate a new acyclic support for a4 (derivation based on the added fact

is shorter than the earlier derivation of a4) (ii) mark a1 but do not mark a4 due to

presence of the new acyclic support (iii) rederive a1. Thus processing addition first

is better than processing deletion first for this example.

Now consider a different change to the program in Figure 32: deleting e(1,2)

(f1) and adding e(2,6) (f9). Processing addition before deletion, we will (i) derive

a new answer r(1,6) based on r(1,2) and e(2,6); (ii) mark this new answer along

with answers a1 and a4 in the deletion phase due to deletion of e(1,2); and (iii)

89

rederive all three answers since r(1,2) has an alternative derivation. Processing

deletion before addition will mark answers a1 and a4, and rederive both. Addition

of e(2,6) will generate a new answer r(1,6). For this example, processing deletions

first performs fewer operations, and is better. These two examples show that neither

add-first nor delete-first strategies is uniformly better than the other.

An interesting question remains: is there a change propagation strategy which is

uniformly ’no worse’ than either delete-first or add-first strategies? The previous two

examples indicate that interleaving the deletion and addition may be better. In fact,

if we delete f1 and add f8 and f9, it is easy to see that the best change propagation

strategy will be to process the addition of f8 first, deletion of f1 next and addition of

f9 last. This key idea is encoded in our algorithm, where the ordering of operations

upon a change is driven by associating events with each operation, priorities with

each event, and processing the events in the order of their priorities.

The Event Model. Our algorithm is based on the event model where processing

addition of facts is done using the event consume answer and processing deletion of

facts is done using three events called mark , may rederive, and rederive. We maintain

two priority queues— ready queue and delay queue for processing events. Events are

scheduled only from the ready queue in increasing order of their SCC numbers - thus

all events of an SCC is first scheduled before processing events of topologically higher

SCC. This makes sure that change propagation is processed from topologically lower

to higher SCCs. The delay queue consists of events that were originally scheduled

but later discovered to be needed only under certain conditions; events in the delay

queue may be moved back into the ready queue when these conditions are satisfied.

Within an SCC, mark and consume answer events have higher priority than

rederive and may rederive regardless of their ordinals. We process mark and

consume answer in ascending order of their ordinals. Among events with the same

ordinal, a mark event has higher priority over a consume answer event.

Before getting into a more detailed description of our algorithm we provide here

the key intuition behind interleaving of mark and consume answer events. Note

that mark operation overapproximates the actual answers that needs to be deleted.

Marking of an answer can be avoided if we can generate an acyclic support for the

answer using added and existing answers, provided the used answers are never going

90

process event(e=consume answer(a,c))
1 c=〈p,h,g,G〉
2 θ=mgu(a,g)
3 g’=head(Gθ) // g’=true if G is empty
4 G’=tail(Gθ) // G’=null if G is empty
5 a’= hθ //answer generated
6 c’=〈p,a’,g’,G’〉 // new consumer
7 insert c’ in c.next consumer, c’.prev consumer=c
8 insert c’ in a.holds, c.dependent on=a
9 if(is empty(G)) // last subgoal of a clause

10 is newanswer=check insert answer(p,a’)
// checks whether a’ is in p.answer table, if not inserts a’
11 if(is newanswer)
12 a’.ord=c’.ord+1;
13 ∀c”∈p.consumer
14 if(!marked(c”))
15 create event(consume answer(a’,c”))
16 else

17 delay event(consume answer(a’,c”))
18 else

19 if(∀c”∈(a’.supports−{c’}) s.t. (c”.ord<a’.ord→marked(c”)))
20 if ((c’.ord<a’.ord) && (e.ord<a’.ord))
21 delete from ready queue(mark(a’))
22 else

23 create event(may rederive(a’))
24 else

25 resolve goal(c’)

Figure 34: Algorithm for Processing consume answer event.

to be marked. Hence we choose the ordinals of events and entities such that the

added answers and the supports generated by newly added and existing answers are

not marked in the same incremental phase.

Addition. Generation of a new answer or addition of a fact/rule generates

consume answer events. For instance, when an answer a is added to p’s table,

we generate a consume answer event for each consumer c of p. The event han-

dler consume answer(a, c) does the work needed to extend the SLG forest when an

answer or a fact (a) is consumed by a consumer (c) (Figure 34). If the consumer

91

resolve goal(c=〈p,h,g,G〉)
1 p’=call check insert(g)
2 if(is newgenerator(p’)) //g is a new call
3 for each rule α:-β1, β2 . . . , βn s.t. (θ=mgu(g,α)!=φ)
4 c’=〈p’,gθ,β1θ,[β2θ, . . . , βnθ]〉 // new consumer
5 resolve goal(c’)
6 else

7 ∀a∈p’.answer table
8 if(!a.marked)
9 create event(consume answer(a,c))

10 else

11 delay event(consume answer(a,c))
12 insert c in p’.consumer, p’=c.generator
13 calculate call graph incrementally

Figure 35: Algorithm for resolving goal.

corresponds to the last subgoal of a rule, the consumption of the answer can gener-

ate a new answer (lines 1–17), or a new support for an existing answer (lines 1–11,

19–23). Otherwise (i.e. the consumer has a non-empty continuation) it generates a

new consumer corresponding to next literal of the clause (lines 1–8, 25).

The pseudo-code in Figure 35 describes processing of the new consumer. The

call check insert(g) function returns the generator of g, creating a generator if one

does not already exist. If a new generator were created, we perform program clause

resolution by iterating through all the clauses of the program (lines 1–5). Otherwise

we iterate through all answers in answer table of g, creating consume answer events

for each of them (lines 7–11).

For example, addition of fact e(1,5) [f8] generates the event

consume answer(f8, c1) which when processed produces a new acyclic support

for the already existing answer a4 (lines 1–11, 18 of Figure 34. On the other

hand, addition of d(1,1) [f9] is consumed by the consumer c7 to generate a new

consumer 〈p1, r(1,Y), r(1,Y), []〉 (c8) (lines 1–9, 25). Processing of consumer c8 by

the function resolve goal creates four consume answer events for c8 and each of the

answers a1, a2, a3, and a4 in generator p1’s answer table.

Most of the steps of consume answer are common to traditional SLG resolution.

92

The interesting aspects are the interaction between the effects of addition and (pos-

sibly scheduled) deletion. For instance, when a new acyclic support c′ is generated

for an answer a′ (line 20, first condition) whose all other acyclic supports are already

marked (line 19) and mark(a’) event has been scheduled (line 20, second condition)

we remove the mark(a′) from the ready queue since a′ cannot be deleted due to c′.

Mark. The mark event for an answer marks a given answer and propagates the effect

of marking (Figure 36(a)). If an answer is marked we move all consume answer events

(in the same SCC) which would consume the answer from the ready queue to the delay

queue (line 2-3). The following definitions are used in the marking algorithm:

Definition 18 (Affected set of an answer) A consumer c is said to be affected

by an answer a (denoted by c ∈ a.affected) if the answer a is a premise of c (i.e.

c ∈ a.holds), or a premise of c is affected by a.

Definition 19 (Marked consumer) A consumer c is marked (expressed as

marked(c)) if either of its premises is marked. A consumer is justmarked (expressed

as justmarked(c)) if there exists one and only one answer a such that a is marked

and c ∈ a.affected.

Note that the consumers in an affected set of an answer are created due to the

presence of the answer. Thus, when an answer is deleted, all its affected consumers

must be deleted too. Thus when an answer a is marked we move any consume answer

event associated with an affected consumer c (in the same call graph component as a)

from the ready queue to the delay queue (lines 4–6). When the last acyclic support

of an answer gets marked, we mark the answer and also place a may rederive event

for it in the ready queue (lines 7–11).

Scheduling of events. We now describe the assignment of event ordinals. Con-

sider deleting f1 =e(1,2), and adding f9 =e(2,6) and f10 =d(1,1) to the ex-

ample in Figure 32. This generates events e1 = consume answer(f10, c7), e2 =

consume answer(f9, c3), e3 = mark(a1), and e4 = may rederive(a1). Note that al-

though we can process event e1 before processing any other event (since c7 is not

dependent on any answer), we cannot process event e2 before process the mark event

e3. This is because c3 is dependent on answer a1 which may be marked when e3 is

93

process event(mark(a))
1 a.marked=true
2 ∀c’, same scc(a,c’),
3 move to delay(consume answer(a,c’))
4 ∀c∈ a.affected ∧ same scc(a,c)
5 if(justmarked(c))
6 ∀a’, move to delay(consume answer(a’,c))
7 if(is leaf(c) ∧ c.ord<c.answer.ord)

// c is acyclic support
8 if(∀c’∈ c.answer.supports−{c}
9 (c’.ord< c.answer.ord → marked(c’)))

// all other acyclic supports are marked
10 create event(mark(c.answer))
11 create event(may rederive(c.answer))

(a)

event loop()
1 while((SC=next scc(CallSCC Q))!=NULL)
2 while(!empty(READY Q,SC))
3 process event(get next event(READY Q,SC))
4 ∀a such that a.scc=SC
5 if(a.marked)

/* do same operation as in mark
event but for different scc */

(b)

Figure 36: Mark event (a), Main event loop (b)

processed. We ensure this by making a consumer’s ordinal no less than that of any

answer that affects it (Figure 33). To process a consume answer(a, c) only after

processing all mark(a′) events which can affect the consumer c, we make the ordinal

of consume answer event no less than the ordinal of its consumer. Additionally we

need to ensure that a consumer does not consume an answer which can be potentially

marked later on. First of all, if an answer belongs to topologically lower SCC than its

consumer then the above condition is satisfied as we complete components according

to their increasing SCC numbering. Secondly, we ensure that a new answer generated

(lines 9–11, Figure 34 can never be marked in the same incremental phase. The only

94

Events(e) Ordinal (e.ord) scc (e.scc)

consume answer(a,c)
max{c.ord, a.ord} if(same scc(a, c)

∧existed answer(a))
c.ord ow.

c.scc

mark(a) a.ord a.scc

may rederive(a) a.ord a.scc

rederive(a) a.ord a.scc

Figure 37: Priorities of Events

remaining case is when the answer a in the same SCC existed before the incremen-

tal phase (function resolve goal , lines 8–11), in which case it can be be potentially

marked. We ensure that the event is processed after a’s marking is processed by

making the ordinal of consume answer(a, c) event is no less than a.ord .

The assignment of ordinals to the different events is summarized in Figure 37.

This assignment of ordinals is critical for the following properties of the algorithm

which are proved in Section 6.8.

Property 3 If consume answer(a, c) is a scheduled event, then a is never marked in

the same incremental phase.

Property 4 If a′ is a new answer and s is a support for an unmarked answer gen-

erated while processing consume answer(a, c) (lines 12 and 19, Figure 34 then a′ and

s are never marked in the same incremental phase.

In the above example, using these ordinal assignments we get e1.ord = c7.ord =

0, e2.ord = c3.ord = a1.ord = 1, and e3.ord = e4.ord = a1.ord = 1. As all

four events belong to the same SCC we process e1 first which generates four events

e5 = consume answer(a1, c8) (e5.ord = a1.ord = 1), e6 = consume answer(a2, c8)

(e6.ord = a2.ord = 1), e7 = consume answer(a3, c8) (e7.ord = a3.ord = 2), and

e8 = consume answer(a4, c8) (e8.ord = a4.ord = 2) (c8 = 〈p1, r(1, Y), r(1, Y), []〉).

Processing the next event e3 moves event e2 and e5 in the delay queue and generates

events e9 = mark(a4) and e10 = may rederive(a4). Event e6 is processed next

followed by event e9 which moves event e8 to the delay queue, followed by event e7.

The ready queue now contains two may rederive events (e4 and e10) and the delay

queue contains e2, e5, and e8.

95

process event(may rederive(a))
1 if(∃c∈a.support s.t. !marked(c))
2 if(∀c’∈ a.support (c’.ord<a.ord→ marked(c’)))
3 a.ord=max{c”.ord | c”∈a.supports,!marked(c”)}+1
4 create event(rederive(a))

(a)

process event(rederive(a))
1 a.marked=false
2 ∀c, s.t. !marked(c) move to ready(consume answer(a,c))
3 ∀c∈a.affected, same scc(a,c) ∧ !marked(c)
4 ∀a’ s.t. !a’.marked, move to ready(consume answer(a’,c))
5 ∀c ∈ a.affected, same scc(a,c)
6 c.ord = max(c.ord, a.ord) // update ordinal of consumers
8 ∀c ∈ a.affected, same scc(a,c)
9 if(is leaf(c) ∧ !marked(c) ∧ marked(c.answer))

10 ans=c.anwswer
11 ans.ord=max{c”.ord | c”∈ ans.supports,!marked(c”)}+1
12 create event(rederive(ans))

(b)

Figure 38: Algorithms for Processing May Rederive (a) and Rederive (b) events.

Rederivation. When processing a may rederive(a) event, we first check whether the

answer a has any unmarked supports left. Subsequently, we make all existing un-

marked supports acyclic by raising the ordinal of the answer a to the maximum

ordinal of its unmarked supports (Figure 38(a)). We then create rederive(a) event

which rederives a and propagates this further. The rederivation of a moves all

consume answer(a, c) events with an unmarked c from the delay queue to ready

queue, thereby undoing the effect of marking in a’s call-graph component. Also if

any consumer c (in the same SCC that of a) got unmarked due to rederivation of a

then all consume answer(a′, c) events are moved from the delay queue to the ready

queue provided a′ is unmarked (Figure 38). Rederivation of answer a also updates

the ordinal of the support that contains a and in the same call graph SCC as that of

a.

In the above example, processing the next highest priority event e4 creates an

96

event e11 = rederive(a1) as the answer a1 has an unmarked support s7 which is

made acyclic by updating the ordinal of a1 to that of s7.ord + 1 = 3. Processing the

next event e11 rederives a1, moves the events e2 and e5 to the ready queue, updates

the ordinals of supports s3, s4 and s5 to 3. Subsequently processing of remaining

events does not reveal any other interesting property of the algorithm and is not

discussed here.

Figure 36(b) shows the pseudo code for scheduling events. After all events of a

component are processed, we propagate the effect of marked answers in the component

to topologically higher components. Note that the call graph can change during the

evaluation. In our algorithm we permit only addition of edges to the call graph. Hence

only two types of changes in the call graph are possible: (i) the topological order of

components is changed without change in any component (Example 3, Section 6.5);

and (ii) components are merged into larger components (Example 4, Section 6.5). We

employ incremental SCC maintenance algorithm of [PK03, AHR+90] to maintain the

call graph SCCs. The correctness of our algorithm depends on the maintenance of an

invariant between ordinal numbers of answers and supports within an SCC: that the

ordinal of the primary support for an answer is lower than that of the answer itself.

Note that it is possible to have an answer a1 whose ordinal is lower than that of its

premise answer a2 if a2 belongs to a topologically lower component than that of a1.

Thus when multiple SCCs are merged the ordinals of answers and supports need to

be redistributed within the merged component (see examples in next section).

6.5 Handling Dynamic Call Graph

We present two more examples to illustrate the handling of dynamic call graph SCC

by the algorithm. In Figure 39 we present the example of right recursive transitive

closure. Note that each producer creates a trivial scc in the call graph. The initial

topological ordering of the components is shown along with each call.

Consider a scenario of updating e(1,3) to e(1,2) and e(2,3) to e(4,3). This

effectively creates the following six events in the ready queue given below.

97

Event Ordinal scc

[e1] consume answer(f4, c1) 0 2

[e2] consume answer(f4, c2) 0 2

[e3] mark(a1) 1 2

[e4] consume answer(f5, c10) 0 3

[e5] consume answer(f5, c11) 0 3

[e6] mark(a2) 1 4
Below we describe processing of each event step-by-step. An event is deleted from

the ready queue when it is chosen for processing.

Step 1: Processing event e1 generates a new answer r(1,2) (say a4) with a new

support s4 (〈e(1, 2)〉).

Step 2: Processing event e2 generates a new consumer c12 =

〈p2, r(1, Y), r(2, Y), []〉. This adds a new call edge from p3 to p2 which reas-

signs topological ordering of calls p3 and p5 to 1.5 and 0.5 respectively. This makes

the priority of the event e4, e5 and e6 greater than that of e3. As answers a2 and

:- table r/2.

r(X,Y) :- e(X,Y). % rule 1

r(X,Y) :- e(X,Z), r(Z,Y). % rule 2

e(1,3). % f1

e(2,3). % f2

e(2,4). % f3

Calls: Producers

factbase [p1]

r(1,Y) [p2]

r(2,Y) [p3]

r(3,Y) [p4]

r(4,Y) [p5]

Answers

r(1,3). [a1]

r(2,3). [a2]

r(2,4). [a3]

[c1] <p2,r(1,Y),e(1,Y),[]>

[c2] <p2,r(1,Y),e(1,Z),[r(Z,Y)]>

[c3] <p2,r(1,Y),r(3,Y),[]>

[c4] <p3,r(2,Y),e(2,Y),[]>

[c5] <p3,r(2,Y),e(2,Z),[r(Z,Y)]>

[c6] <p3,r(2,Y),r(3,Y),[]>

[c7] <p3,r(2,Y),r(4,Y),[]>

[c8] <p4,r(3,Y),e(3,Y),[]>

[c9] <p4,r(3,Y),e(3,Z),[r(Z,Y)]>

[c10]<p5,r(4,Y),e(4,Y),[]>

[c11]<p5,r(4,Y),e(4,Z),[r(Z,Y)]>

[s1] <p2,r(1,3),true,[]>

[s2] <p3,r(2,3),true,[]>

[s3] <p4,r(2,4),true,[]>
(a) (b) (c)

e(1,2) [f4] e(4,3) [f5]

(d)

p2

p4 p5

p3

1

2

3

4

(e)

Figure 39: Example program (a), calls and answers (b), consumers (c), new facts (d),
and call graph (e).

98

a3 already existed in the answer tabled of the call r(2,Y) (producer p3), two new

events e7 = consume answer(a2, c12) and e8 = consume answer(a3, c12) are created.

The changed ready queue is shown below.

Event Ordinal scc

[e4] consume answer(f5, c10) 0 0.5

[e5] consume answer(f5, c11) 0 0.5

[e6] mark(a2) 1 1.5

[e7] consume answer(a2, c12) 0 2

[e8] consume answer(a3, c12) 0 2

[e3] mark(a1) 1 2

Step 3: Processing event e4 generates new answer a5=r(4,3) (a5.ord=1)

with a new support s5 (〈e(4, 3)〉) (s5.ord=0). This generates a new event

e9=consume answer(a5,c7) (ordinal=0, scc=1.5) which gets higher priority than e7

as well as e6.

Step 4: Processing of event e5 generates new consumer c13 =

〈p5, r(4, Y), r(3, Y), []〉. Since the goal r(3,Y)’s producer is p4, this adds a new

call-graph edge p4 to p5. By applying incremental scc maintenance the scc of p4 is

reduced from 1 to 0.25 (a number lower than p5’s scc number 0.5).

Step 5: The next event processed is e9. This generates a new support s6

(〈e(2, 4), r(4, 3)〉) for an already existed answer a2 = r(2, 3). As both the parts

of the support s6 belong to different scc from that of s5, s6.ord is 0. As a2.ord = 1,

s6 is an acyclic support of a2. As a2 can be derived using s6 we delete e6 = mark(a2)

event from the ready queue (Lines 19-23 Figure 34.

Step 6: Processing event e7 generates a new support

s7 (〈e(1, 2), r(2, 3)〉) for a1 = r(1, 3) with ordinal 1. This removes the event e3 =

mark(a1) from the ready queue as in previous step.

Step 7: Finally processing event e8 generates a new answer r(1, 4) with its

primary support s8 = 〈e(1, 2), r(2, 4)〉. The incremental phase stops here having no

other events in the ready queue to process. 2

We present another example to illustrate the handling of dynamic call scc (where

SCCs are merged) by the algorithm. In Figure 40 we present the example of right

99

:- table r/2.

r(X,Y) :- e(X,Y).

r(X,Y) :- e(X,Z), r(Z,Y).

e(1,2). % f1

e(2,3). % f2

Calls: Producers

r(1,Y) [p2]

r(2,Y) [p3]

r(3,Y) [p4]

Answers

r(1,2). [a1]

r(1,3). [a2]

r(2,3). [a3]
(a) (b)
e(2,1) [f3]

(c)
[c1] <p2,r(1,Y),e(1,Y),[]>

[c2] <p2,r(1,Y),e(1,Z),[r(Z,Y)]>

[c3] <p2,r(1,Y),r(2,Y),[]>

[c4] <p3,r(2,Y),e(2,Y),[]>

[c5] <p3,r(2,Y),e(2,Z),[r(Z,Y)]>

[c6] <p3,r(2,Y),r(3,Y),[]>

[c7] <p4,r(3,Y),e(3,Y),[]>

[c8] <p4,r(3,Y),e(3,Z),[r(Z,Y)]>

p2

p3 p4
2 1

3

(d) (e)

Figure 40: Example program (a), calls and answers (b), new facts (c), consumers (d),
and call graph (e).

recursive transitive closure. The initial topological ordering of the components is

shown along with each call.

Consider a scenario of adding fact e(2,1)(f3). This effectively creates the follow-

ing two events in the ready queue given below.

Event Ordinal scc

[e1] consume answer(f3, c4) 0 2

[e2] consume answer(f3, c5) 0 2
Below we describe processing of each event step-by-step. An event is deleted from

the ready queue when it is chosen for processing.

Step 1: Processing event e1 generates a new answer r(2,1) (say a4) with a new

support s4 (〈e(2, 1)〉).

Step 2: Processing event e2 generates a new consumer c9 =

〈p3, r(2, Y), r(1, Y), []〉. This adds a new call edge from p2 to p3. As there

exists an edge from p3 to p2, adding the new edge combines the two trivial SCCs

of producer p2 and p3 to non-trivial SCC containing p2 and p3. This changes the

scc attribute of c1 − c6, a1 − a3, and s1 − s3 to 3. The important point is to note

that the attribute ordinal needs to be update due to the merging of SCCs. For

example, as s2 and a3 now belong to the same SCC the ordinal of s2 should be

100

increased to 1 and consequently the ordinal of a2 is also changed to 2. This is done

in the function calculate call graph incrementally. The attribute adjustment process

increases the ordinals of a support s which belongs topologically higher SCC than

an answer a such that s.ord < a.ord and s ∈ a.affected . If the increase in s.ord

makes s.ord ≥ s.answer.ord and s is the only acyclic support of s.answer then we

increase s.answer.ord to s.ord + 1, otherwise the ordinal of s.answer is not changed

which means s is changed to a non-acyclic support. Also note that the propagation

of this increase of attribute due to merging of SCCs can at most propagate to the

boundary of new merged SCC. The example shows this case. All the other steps are

not further discussed as they do not illustrate any further aspect of the algorithm. 2

6.6 On the Optimality of the Algorithm

In this section we describe the optimality of the local algorithm for certain classes of

problems. Although the interleaved scheduling of consume answer and mark opera-

tions is not optimal in general, we show that its performance is always no worse than,

but sometimes better than fixed schedules.

Attribute Grammars: Consider the attribute grammar for evaluating simple

expressions given below:

:- table expr/3.

expr(S1,S2,X):- expr(S1,S3,X1), c(S3,S4,’+’), c(S4,S2,X2), X is X1+X2.

expr(S1,S2,X):- c(S1,S2,X).

We represent the string to be parsed and evaluated as a set of c/3 facts. A fact of

the form c(i, i + 1, S) represents the symbol at i-th position in the string. Let the

input string be of length 2n−1 (indexed 1 to 2n) containing n numbers and separated

by n − 1 ’+’ symbols, and let the query be expr(1,S,X). The answers to the query

are of the form expr(1,2 ∗ i,k) for i ∈ [1, n] and k is the sum of the first i numbers

in the string.

If we update the string by exchanging the numbers at two positions say 2i − 1

and 2j − 1 for some 1 ≤ i < j ≤ n, our algorithm will update (i.e. delete and add)

101

at most j − i answers of the form expr(1,2 ∗ x,) for x ∈ [i, j − 1]. It is easy to see

that this is optimal. This particular example is an instance of non-circular attribute

grammar evaluation where the dependency graph is acyclic and static. As noted

by Reps in [Rep82], in such cases topological evaluation is sufficient to produce an

optimal change propagation which means that the number of evaluated attributes is

of the order of changed attributes. Note that, although our left recursive encoding of

expression grammar only produces one call SCC, we obtain the topological ordering

using event ordinals. Thus topological scheduling of consume answer and mark events

allows the desired optimal behavior.

Functional Programs: We now discuss the optimality of our algorithm when

the call graph is acyclic but dynamic. We encounter such graphs when evaluating

functional programs (hence non-recursive dependencies) incrementally [ABH02]. We

can build an incremental functional program evaluator by writing an interpreter for

pure functional programs and evaluating it using our incremental algorithm. Since

the call graph is acyclic, topological evaluation suffices. However, since the graph may

change over time (due to different outcomes for the conditionals), [ABH02] employ

an optimal dynamic topological order maintenance algorithm using Dietz and Sleator

data structures [DS87]. When the call graph considered in our algorithm is acyclic,

our incremental topological SCC maintenance algorithm converges to dynamic topo-

logical graph maintenance [ABH02]. Thus we obtain the optimal change propagation

algorithm for functional programs.

The complexity of the local algorithm for incremental interpretation of a pure

functional program is no worse than the complexity of the adaptive algorithm for pure

functional program evaluation given in [ABH02]. The following theorem expresses

the complexity of our local algorithm for incremental evaluation of pure functional

program. We assume that we have logarithmic time priority queue operations, and

insert, delete, find next, and compare operations in order maintenance algorithm can

be performed in constant time (as in [ABH02]).

Theorem 5 The complexity of local algorithm for interpreter based incremental eval-

uation of pure functional program is

O(
∑

e∈E |e| + Elog(q) + C)

102

where E is the number of consume answer events processed due to update, |e| is

the complexity of each such consume answer events and C denotes the total number

of changes in SCC numbering because of the update.

Proof: Each update can generate a mark and a consume answer event. For func-

tional case, each call component has only single call and thus each mark event has

constant time complexity. The rest of the proof is simple, the time taken by local al-

gorithm can be divided into (i) time for processing consume answer and mark events

(O(
∑

e∈E |e|)); (ii) re-assignment of SCC numbering due to change in the topological

ordering; (iii) time for handling events in the priority queue.

The complexity of adaptive functional programming as given in [ABH02] is

O(
∑

e∈Iu
(|e| + ||e||) + Ilog(q))

where I is the set of invalidated edges (each edge corresponds to the one

consume answer and one mark event) and Iu is the set of updates edges. The al-

gorithm presented in [ABH02] does not take advantage of memoization, thus it re-

evaluates certain calls whereas our local algorithm fetches the answers from already

re-evaluated calls. Also ||e|| denotes the number of timestamps created for evaluation

of e ∈ Iu. Thus Iu = E and O(
∑

e∈Iu
(||e||) = C. Thus complexity of our algo-

rithm is no less than complexity of adaptive functional program evaluation algorithm

in [ABH02].

Scheduling: Note that given the four events that arise in incremental evaluation,

there are many possible schedules, yielding algorithms with varying performance. We

first define a measure to compare the relative efficiency of two deterministic scheduling

strategies:

Definition 20 Let mP,γ(S) denote the number of answers marked when performing

incremental evaluation of program P after changes γ using scheduling strategy S. We

say that S1 is better than S2 (denoted by S1 ≥ S2) iff (i) for all programs P and for

all changes γ mP,γ(S1) ≤ mP,γ(S2); and (ii) there is some program P0 and a set of

changes γ0 mP0,γ0
(S1) < mP0,γ0

(S2) is true.

Note that we only compare scheduling strategies based on the number of marked

answers. This is due to the fact that the number of net added/deleted answers are the

103

same for all scheduling strategies, and the number of rederived answers is proportional

to the number of marked answers.

The following properties of our scheduling strategy follow from Property 12: that

we do not schedule a consume answer event if it is dependent on a consumer or an

answer which can be potentially marked.

Proposition 6 Let S0 be the scheduling strategy used in the local algorithm. Let Sdi

be the strategy that schedules all mark events before consume answer events; and Sid

be the strategy that schedules all consume answer events before mark events. Then

• S0 ≥ Sdi

• S0 ≥ Sid

6.7 Experimental Results

We now present results of experiments aimed at measuring the effectiveness of the

local algorithm as well as its overheads. The local algorithm was implemented by ex-

tending the XSB logic programming system [XSB] (ver. 2.7.1). Our implementation,

experimental setup, benchmark characteristics, and detailed experimental results on

parsing and pointer analysis are available in [SR06].

We evaluated the effectiveness of the local algorithm by performing reaching defi-

nition analysis [ASU86] of C programs which can be easily encoded as a logic program.

The incremental change used in these experiments is the deletion of a statement from

the C program source. In the data-flow graph, this translates to deletion of all incom-

ing and outgoing edges from the deleted statement, and addition of flow edges from

the statement’s predecessors to its successors. The local algorithm is expected to per-

form well in this case, by confining the changes to reaching definitions to the affected

region of the graph. We compare the performance of the local algorithm with that of

from-scratch evaluation and that of deletes-first strategy. The deletes-first strategy

first performs all marking and rederivations due to deletion before processing inser-

tions. Marking and rederivation phases are performed in each strongly connected

component of the call-graph (in topological order) before their effect is propagated to

other components in the call graph. Thus comparison of the local and the deletes-first

104

6.0

1.6

assembler

11.7

4.8

diff

4.0

2.2

dixie

13.6

5.4

learn

6.3

3.1

gnugo

3.0

1.5

smail

Incremental Time Comparison

0

2

4

6

8

10

12

14

%
 o

f F
ro

m
-S

cr
at

ch
 T

im
e

delete-first
local

(a)

2.2

0.1

assembler

5.1

0.2

diff

1.1

0.1

dixie

5.6

0.2

learn

2.4

0.2

gnugo

0.8

0.1

smail

Comparison of number of changed answer

0

2

4

6

8

10

%
 o

f T
ot

al
 N

um
be

r o
f A

ns
w

er
s

delete-first
local

(b)

Figure 41: Reaching Definition Analysis; Time comparison (a); Change comparison
(b).

strategy demonstrates the effectiveness of interleaving the processing of deletions and

insertions.

For each benchmark we deleted 250 randomly chosen assignment statements from

the source. The ratios of the average time taken and the average number of answers

105

processed by the local algorithm and the deletes-first strategy, compared to the from-

scratch strategy is shown in Figure 41. Note that the number of inserted and deleted

answers is considerably less (8–20 times) for local algorithm compared to deletes-

first strategy. Despite the extra overhead of maintaining event priority queues, our

preliminary implementation achieves 50–70% reduction in time compared to deletes-

first strategy.

In cases where deletes-first strategy is extremely fast, such as flow-insensitive

pointer analysis, we notice a maximum run-time overhead of 70% for the local al-

gorithm compared to deletes-first strategy. The local algorithm is optimal for in-

cremental evaluation of parsing problems. In the parsing problem, the time taken

for incremental evaluation depends on the position where change occurs in the input

string, and some changes may require the entire parse tree to be regenerated. In such

cases, when from-scratch evaluation is optimal, we observe that the local algorithm

incurs a time overhead of 5% compared to from-scratch evaluation.

6.8 Properties of Local Algorithm

In this section we prove several properties about our algorithm and subsequently

prove its correctness. Unless stated all statements should be considered for a single

incremental phase.

Since the call graph changes with time we associate the subscript time to denote

the call graph and its components at a particular instant. The parameter time ad-

vances by 1 unit after processing each event and before processing the next event.

Note that while processing an event the call graph changes. Thus at a particular

time t there can be two different call graphs — the call graph at the beginning of

processing an event and call graph at the end of processing the event. For purpose

of describing the properties we use St(v) to denote a strongly connected call-graph

component (hereafter referred to as component) containing a vertex v at time instant

t such that St(v) is computed at the beginning of processing an event. As such, any

expression, which is dependent on time, is evaluated at the beginning of processing an

event. We drop the subscript t when it is clear from the context. We use arithmetic

comparison operators with subscript top to compare topological order (total order)

106

of two call graph components at same time instant.

6.8.1 Foundational Properties of Local Algorithm.

Definition 21 A call graph component St(v) is complete iff there exists no event E

in ready queue and delay queue at time t such that E.scc = St(v).

Lemma 7 If an event E ′ is generated while processing an event E then E ′.scc ≥top

E.scc.

Proof: Follows from the definition of the events.

Lemma 8 If a component St(v) is complete then any component St(v
′), such that

St(v
′) <top St(v), is also complete at time t.

Proof: Since the component St(v) is complete at time t, there exists no event in the

event queues for the component. As we process events in increasing order of their scc

thus there exist no events for St(v
′) in the event queues. Thus by definition St(v

′) is

complete.

Lemma 9 If E be an event to be considered for processing at time instant t and St(v)

be a component such that St(v) <top E.scc then St(v) is complete.

Proof: When the event E is considered for processing there exists no event E ′ in

the event queues such that E ′.scc <top E.scc because we process events in increasing

topological order of call graph components. Thus at time t there exists no event for

St(v). Thus by definition St(v) is complete.

Property 10 Let v be a vertex in the call graph and t1 and t2 be two time instances

such that t2 > t1. Then St2(v) = St1(v) if St1(v) is complete.

Proof: Note that an incoming edge is added to a component when a consumer in

the component consumes an answer from a producer which belongs to some other

component. Following Lemma 8, at time t1 there exists no event E in the event

queues such that E.scc ≤top St1(v). Thus according to Lemma 7 at time t2 there

cannot be an event related to St1(v). Thus no incoming edges can be added to the

component. Thus a completed component does not change after completion.

107

Property 11 Let E = mark(A) be an event and A′ be an unmarked answer such

that A′.scc = E.scc and A′.ord < A.ord. Then after E is processed A′ can never be

marked in the same incremental phase.

The proof is based on the following facts: (i) the only event which marks an answer

is mark ; (ii) mark events are generated only from other mark events; (iii) when a

mark(A1) event is processed it generates mark(A2) event such that A2.ord > A1.ord;

(iv) mark and consume answer events do not decrease ordinal numbers of answers;

(v) the ordinal number of a mark event is same as the ordinal number of the answer

associated with the mark event; and (vi) mark events are never pending.

Note that derivation of an answer A′ in a call graph component S(v) (A′.scc =

S(v)) is dependent on the answers in S(v) and/or answers in a component S(v′) such

that S(v′) <top S(v). Using Lemma 9 component S(v′) is complete. Thus using the

above facts and the fact that we process all mark events in increasing order of ordinals

for S(v) we derive that mark event for any unmarked answer with ordinal < A.ord

is never generated.

Property 12 If E = consume answer(A,C) is scheduled when existed answer(A) is

true which means E was generated from function resolve goal then A is never marked

in the same incremental phase.

Proof: Consider the following two cases

I. A.scc = C.scc

From definition of ordinal of a consume answer event we derive that A.ord ≤

E.ord. Also from processing of resolve goal function (line 8) we note that A is

unmarked at the time of generation of E. Since we process all the marks events

before all the consume answer events of the same ordinal, mark events with

ordinal ≤ E has already been processed before processing the consume answer

event. Thus following Property 11 we know that all unmarked answers with

ordinals ≤ E.ord can never be marked in the incremental phase. Thus A can

never be marked in the incremental phase.

II. A.scc < C.scc

108

In this case, A belongs to a component which is completed (following Lemma 9).

Thus there can never be any mark(A) event in the event queue. Thus A can

never be marked.

Property 13 If A is a new answer generated while executing the

consume answer(An, Cn) event then A is never marked in the same incremen-

tal phase.

Proof: We prove it by induction on ordinal of the answers generated by

consume answer event. Let i be the ordinal of a new answer A (A.ord = i) gen-

erated by the consume answer event.

Induction hypothesis: The property holds for all the new answers with ordinal less

than i.

Base Case: Trivial base case for facts.

Induction Step: A was generated by the function consume answer(An, Cn) corre-

sponding to the last subgoal in a clause with consumers C1, C2, . . . , Cn for its respec-

tive subgoal positions. The primary support of A is {A1, A2, . . . , An}. Note that any

answer in {A1, A2, . . . , An} either belongs to some call SCC which is lower than or

equal to Cn.scc. If the former case according to Lemma 9 the answer can never be

marked. Clearly Cn is not marked. Therefore the answers consumed by C1, . . . , Cn−1

i.e. {A1, . . . , An−1} are not marked. consume answer can be called from an event E

with existed answer(An) to be true or false. In either case E.ord ≥ Cn.ord (from the

definitions of ordinals of consume answer). As the mark events of ordinal ≤ E.ord

have already been processed before event E, it follows from property 11 that the

unmarked answers with ordinal ≤ E.ord can never be marked. From the definition of

ordinal number of consumers, it follows that ∀j ∈ [1, n−1], Aj .ord ≤ Cn.ord ≤ E.ord.

Thus all answers in the set {A1, . . . , An−1} cannot be marked. If the event E was gen-

erated with existed answer(An) = true then following Property 12 An can never be

marked. Note that An.ord < A.ord follows from the definition of ordinal of an answer.

If the event E is generated for existsed answer(An) = false (which means it was in-

serted) then following induction assumption we derive that An can never be marked.

Thus the primary support {A1, . . . , An} can never be marked and consequently A can

never be marked.

109

Property 14 If {A1, A2, . . . , An} is a support of an unmarked answer generated by

consume answer(An, Cn) event then {A1, A2, . . . , An} is never marked in the same

incremental phase.

Proof: Similar to the proof of Property 13.

6.8.2 Relation between Incremental and Non-Incremental

Evaluation- Proof of Correctness.

A definite logic program P is a tuple 〈R, F 〉 where F is a set of facts and R is a set

of rules. Let EVALslg(P
′, Q′) returns a tuple 〈A′, Γ′〉 where A′ is the union of set of

answers generated by SLG evaluation while evaluating the queries in Q′ and the set

of facts in P ′, and Γ′ is the set of calls generated by SLG evaluation.

Let we are given a definite logic program P = 〈R, F 〉 and a set of queries Q and

EVALslg(P,Q) = 〈ans(P), Γ〉. Let δ− and δ+ be the set of facts deleted from F and

inserted to F respectively. We assume that δ− ∩ δ+ = φ. The new/changed program

P ν = 〈R, F −δ−∪δ+〉. Let EVALslg(P
ν , Q∪Γ) = 〈ans(P ν), Γ′〉. Thus ans(P ν) is the

set of answers and facts generated on the new program by SLG evaluation of the set

of queries Q ∪ Γ and Γ′ is the set of calls thus generated. Note that after the change

to the program P , non-incremental tabled evaluation is carried out using a different

set of query Q∪Γ. Unless stated we consider now onwards that the changed program

P ν is evaluated for the query Q ∪ Γ.

Given P , δ+, δ−, and ans(P) as inputs to an incremental algorithm, the set of

answers (corresponding to the set of calls Γ′) marked, rederived and inserted by the

incremental algorithm by M , R, and I respectively.

Also for the following proofs we consider a support S is represented by the set of

answers/facts that affects S i.e. A ∈ S if S ∈ A.affected .

We can say that the set of deleted answers is ans(P)−ans(P ν). The soundness of

the incremental marking depends on that fact that every deleted answers is marked

and is expressed by the following lemma.

Lemma 15 Let P = 〈R, F 〉 be a definite logic program, δ− and δ+ be the set of

deleted and inserted facts respectively, ans(P) and ans(P ν) be the set of answers

110

generated by non-incremental evaluation on programs P and P ν = 〈R, F − δ− ∪ δ+〉

respectively, and M be the set of answers marked by the incremental algorithm. Then

every deleted answers are marked i.e. ans(P) − ans(P ν) ⊆ M .

Proof: The proof of this lemma is based on the fact that an unmarked answer is

never going to be deleted in the same incremental phase. Note that we do not mark

an answer if there exists an acyclic support of the answer or an acyclic support is

generated by insertion. Using Property 14 we know that an acyclic support generated

by insertion is never going to be deleted. Also it is easy to construct a proof for

an answer using an acyclic support, by recursively building proofs of answers in the

support. Since the support is acyclic, this recursive process will terminate, yielding

a proof. Hence it follows that any answer with an unmarked acyclic support has

a derivation and hence is not deleted. Thus an unmarked answer is not deleted.

Therefore an answer in the set of unmarked answer (ans(P) − M) belongs to the

final set of answers ans(P ν) i.e. i.e. ans(P) − M ⊆ ans(P ν). By rearranging this

equation we prove the Lemma.

Our rederivation algorithm rederives the answers and supports that are initially

marked but belongs to the final set of answers generated, and its soundness is ex-

pressed by the following Lemma.

Lemma 16 Let P = 〈R, F 〉 be a definite logic program, δ− and δ+ be the set of

deleted and inserted facts respectively, ans(P ν) be the set of answers generated by

non-incremental evaluation on program P ν = 〈R, F − δ− ∪ δ+〉, and M and R be the

set of answers marked and rederived by the incremental algorithm respectively. Then

R ⊆ M ∩ ans(P ν).

Proof: We rederive an answer only if it is marked. Therefore R ⊆ M . Now we

need to prove that all rederived answers have atleast one unmarked support at the

time of rederivation which is never going to be deleted. From the precondition of

generation of rederive event we note that every answer to be rederived has atleast one

unmarked support (precondition of generation of rederive events; see Figure 38(a):

Line 1). Such a support, say S, consists of unmarked answers which can be unmarked

due to three possible reasons: (i) answers that are not marked by mark ; (ii) answers

111

that are inserted; (iii) answers that are rederived. Since at any call-graph component

we start processing rederive events after all the mark events have been processed,

answers due to reasons (i) are never marked. Also following property 13 we know

that an unmarked answer due to reason (ii) are never marked. Note that the support

S of a rederived answer A can use a rederived answer A′ only if A′.ord < A.ord for

same scc(A,A′) or A′.scc < A.scc. Thus using induction on ordinals (proof strategy

used in proof of Property 13) we prove that A′ can never be marked. Thus the support

S responsible for rederivation of the answer A can never be marked. Thus a rederived

answer in set R can never be marked and consequently belongs to the final set of

answer i.e R ⊆ ans(P ν). Thus we derive that R ⊆ M ∩ ans(P ν).

The completeness of the rederivation phase is given by the following lemma.

Lemma 17 Let P = 〈R, F 〉 be a definite logic program, δ− and δ+ be the set of

deleted and inserted facts respectively, ans(P ν) be the set of answers generated by

non-incremental evaluation on program P ν = 〈R, F − δ− ∪ δ+〉, and M and R be the

set of answers marked and rederived by the incremental algorithm respectively. Then

M ∩ ans(P ν) ⊆ R.

Proof: We prove the lemma by induction on height of the shortest proof (hereafter

refer to as derivation height of an answer) of the answers in M ∩ ans(P ν). Let

A ∈ M ∩ ans(P ν) be an answer and derivation height of A be i.

Induction hypothesis: All answers in M ∩ ans(P ν) having derivation height less

than i belong to R i.e. they are rederived.

Induction step: As A ∈ ans(P ν) following property of least fix-point derivation

there exists a support S of A such that all answers in S have derivation height less than

i. For this proof we assume the support S of answer A was generated by resolution

of a binary clause. This assumption can be easily extended to the general case. Let

H :− B1, B2 be such a binary clause such that A is an answer to a call γ (γ and A are

unifiable), A = Hθ, S = {A1, A2}, A1 = B1θ1θ2, A2 = B2θ1θ2θ3, and θ = θ1θ2θ3. As

A ∈ ans(P ν), {A1, A2} ⊆ ans(P ν). We partition the set ans(P ν) into three disjoint

sets U , V , and W where U = ans(P) − M represents the set of answers and facts

corresponding to the program P that are not marked, V = M ∩ ans(P ν) represents

the set of answers that are marked but belong to the answer set corresponding to the

changed program, and W = ans(P ν) − ans(P) represents the inserted answers.

112

Now we consider the following six cases:

I. {A1, A2} ⊆ U represents the case where both A1 and A2 are answers or facts

in the old program that are not marked in the incremental phase.

In this case the support S exists before the incremental phase and S is not

marked in the incremental phase. Now as A is marked there was mark(A) event

which marked A. When mark(A) was generated there was a may rederive(A)

event generated as well. (Figure 36(a) Line 11). Processing may rederive(A)

event (Lines 1-4, Figure 38(a)) generates rederive(A) event due to the presence

of unmarked support S. Processing rederive(A) event removes the delete mark

from A (Line 1 Figure 38(b)). Following Lemma 16, once the answer A is

rederived it is never going to be deleted in the same incremental phase. Thus

A ∈ R.

II. {A1, A2} ⊆ V represents the case where both A1 and A2 are answers that

are marked but belong to the answer set corresponding to the changed program.

By induction hypothesis {A1, A2} ⊆ R. Since {A1, A2} ⊆ ans(P), S already

exists before the incremental phase. Since A1 and A2 are rederived there exist

two events rederive(A1) and rederive(A2). Processing of these events makes S

unmarked and generates rederive(A) (Line 12, Figure 38(b)).

III. A1 ∈ U and A2 ∈ W represent the case where A1 is an answer or fact that

remains unmarked after incremental processing and A2 is an answer or fact

inserted.

Since A1 = B1θ1θ2 ∈ U there exists a consumer C2 = 〈γ,Hθ1θ2, B2θ1θ2, []〉

before the incremental phase has started. Insertion of answer A2 = B2θ1θ2θ3

generates the event E = consume answer(A2, C2). Processing event E

generates support S. As A is marked before processing of event E

thus mark(A).ord ≤ E.ord. By definition of ordinal of mark event,

113

mark(A).ord = A.ord. Therefore E.ord ≥ A.ord. Since E.ord = A1.ord (by

definition of ordinal of consume answer event), A1.ord ≥ A.ord. As support

S contains answer A1, S.ord ≥ A1.ord. Thus execution of Lines 1-11, 18, 19,

20, 22, 23 of Figure 34 generates may rederive(A) event. As S is unmarked

and non-acyclic therefore processing of may rederive(A) event generates the

rederive(A) event and subsequently A is rederived.

IV. {A1, A2} ∈ W denotes the case where both A1 and A2 are inserted by the

incremental algorithm.

Insertion of the answer A1 generates E = consume answer(A1, C1) event where

C1 = 〈γ,Hθ1, B1θ1, [B2θ1]〉 . Processing of the event consume answer(A1, C1)

generates the consumer C2.

Two cases can arise:

• A2 was generated before generation of event E i.e. existed answer(A2) =

true, in which case, an event E = consume answer(A2, C2) (Lines 1, 7-9

of Figure 35 will be generated execution of which generates the support

S. As A is marked, A.ord ≤ E.ord. Therefore the execution of this

event (same as described in the proof of case (III)) generates S and

may rederive(A) event which subsequently rederives A.

• A2 was generated after generation of event E.

Insertion of answer A2 generates consume answer(A2, C2) event. The

execution of this event (same as described in the proof of case (III))

generates S and may rederive(A) event which subsequently rederives A.

V. A1 ∈ U and A2 ∈ V . In this case A1 is an unmarked answer or fact of the

old program and A2 is an answer that is marked in the incremental phase but

belongs to the set of answers corresponding to the changed program.

114

By induction hypothesis A2 ∈ R. Thus rederive(A2) event is generated. Pro-

cessing event rederive(A2) (Lines 1-12 of function in Figure 38(b)) generates

rederive(A) event which subsequently rederives A.

VI. A1 ∈ V and A2 ∈ W

Since A1 ∈ V we derive that A1 ∈ ans(P) and subsequently C2 is generated.

As A1 is marked there exists an event Em = mark(A1).

Depending on time of generation of event Ei = consume answer(A2, C2) two

cases can arise:

• Ei exists in the ready queue while processing Em.

As Ei.ord = C2.ord = A1.ord = Em.ord, Ei is not processed before

Em event. Processing Em moves Ei from ready queue to delay queue

(Lines 4-6 mark(b), Figure 36(a)). By induction hypothesis A1 ∈ R and

hence there exists an event Er = rederive(A1). Processing Er moves Ei

from delay queue to ready queue (Lines 3-4, Figure 38(b)). Processing

of Ei generates support S and creates may rederive(A) event function

consume answer(A2, C2) Figure 34. Execution of event may rederive(A)

generates rederive(A) event.

• Ei does not exist in the ready queue while processing Em.

By induction hypothesis A1 ∈ R and hence there exists an event Er =

rederive(A1). Processing Er makes C2 unmarked. Insertion of A2 gen-

erates Ei and as in previous case execution of Ei subsequently rederives

A.

Following Lemma 16, in all the above cases once the answer A is rederived it is

never deleted in the same incremental phase.

Base Case: Any answer with derivation height=1 is a fact. Note that no fact can

belong to M ∩ ans(P ν). Thus the base case is vacuously proved.

The completeness of insertion algorithm is given by the following lemma.

115

Lemma 18 Let P = 〈R, F 〉 be a definite logic program, δ− and δ+ be the set of

deleted and inserted facts respectively, ans(P ν) and ans(P) be the set of answers

generated by non-incremental evaluation on program P ν = 〈R, F − δ− ∪ δ+〉 and P

respectively, and I be the set of answers inserted by the incremental algorithm. Then

I ⊇ ans(P ν) − ans(P).

Proof: We prove the lemma by induction on derivation height (see Lemma 17) of the

answers in ans(P − δ− ∪ δ+)− ans(P). Let A ∈ ans(P ν)− ans(P) be an answer and

derivation height of A be i.

Induction hypothesis: Induction hypothesis: All answers in ans(P ν) − ans(P)

with derivation height less than i are inserted by incremental algorithm i.e. they

belong to I.

Base Case. Answers with derivation height=1 are inserted facts and thus belong to I.

Induction step. As A ∈ ans(P ν) − ans(P) following property of least fix-point

derivation there exists a support S of A such that all answers in S have derivation

height less than i. For this proof we assume the support S of answer A was generated

by resolution of a binary clause. This assumption can be easily extended to the

general case. Let H :− B1, B2 be such a binary clause such that A is an answer to a

call γ (γ and A are unifiable), A = Hθ, S = {A1, A2}, A1 = B1θ1θ2, A2 = B2θ1θ2θ3,

and θ = θ1θ2θ3. As A ∈ ans(P ν), {A1, A2} ⊆ ans(P ν).

We partition the set ans(P ν) into two disjoint sets U and V where

U = ans(P ν) − ans(P) represents the set of new answers generated by the

SLG evaluation of the changed program and V = ans(P ν) ∩ ans(P) represents

common set of answers in old and changed programs.

I. A1 ∈ V , A2 ∈ U represents the case when A1 is an answer which already existed

in the set of answer corresponding to program P and is not deleted and A2 is

an answer for the changed program which does not exist for the old program.

Since A1 ∈ V there already exists a consumer C2 = 〈γ,Hθ1θ2, B2θ1θ2, []〉.

By induction hypothesis A2 ∈ I. Insertion of the answer A2 into B2θ1θ2

116

table generates an event consume answer(A2, C2). Execution of event

consume answer(A2, C2) generates A.

II. A1 ∈ U , A2 ∈ V

Note that execution of query γ generates the consumer C1 =

〈γ,Hθ1, Bθ1, [Cθ1]〉. Also by induction hypothesis A1 ∈ I. Thus insertion of an-

swer A1 = B1θ1θ2 into B1θ1 table generates an event consume answer(A1, C1).

Execution of event

consume answer(A1, C1) generates the consumer C2 and

E = consume answer(A2, C2), Figure 34 and Figure 35 . As A2 ∈ V i.e A2 is

already in B2θ1θ2’s answer table. Now two cases can arise:

• A2 is not marked.

In this case E is generated in the ready queue and subsequent execution

of generates A.

• A2 is marked deleted.

In this case consume answer(A2, C2) is in the delay queue (Line 11, Fig-

ure 35. As A2 ∈ V it will be eventually rederived. Rederivation of A2 will

move the consume answer event from delay queue to ready queue (Line

2, Figure 38(b)). Execution of event consume answer(A2, C2) generates A.

III. {A1, A2} ⊆ U

By induction hypothesis, {A1, A2} ⊆ I. Insertion of answer A1 generates E =

consume answer(A1, C1) event. Execution of this event generates the consumer

C2.

Two cases can arise:

• A2 was inserted after E was executed.

Insertion of answer A2 generates consume answer(A2, C2) event which

when processed generates answer A.

117

• Execution of E generates E’=consume answer(A2,C2) in the ready queue.

Execution of E ′ generates A.

The soundness of our insertion algorithm is given by the following lemma.

Lemma 19 Let P = 〈R, F 〉 be a definite logic program, δ− and δ+ be the set of

deleted and inserted facts respectively, ans(P ν) and ans(P) be the set of answers

generated by non-incremental evaluation on program P ν = 〈R, F − δ− ∪ δ+〉 and P

respectively, and I be the set of answers inserted by the incremental algorithm. Then

I ⊆ ans(P ν) − ans(P).

Proof Sketch: The proof of the lemma is based on the following facts: (i) all new

answers generated by incremental algorithm are logical consequences of the existing

facts and rules (ii) all new answer generated are not marked and hence not deleted

(Property 13).

Theorem 20 Let P = 〈R, F 〉 be a definite logic program, δ− and δ+ be the set of

deleted and inserted facts respectively, ans(P ν) and ans(P) be the set of answers

generated by non-incremental evaluation on program P ν = 〈R, F − δ− ∪ δ+〉 and

P respectively, and M , R, I are the set of answers marked, rederived and inserted

respectively. Then the set of answers generated by non-incremental evaluation is same

as the set of answers generated by the incremental algorithm i.e. ans(P)− (M −R)∪

I = ans(P ν).

Proof: The proof of this theorem follows from all of the above lemmas.

ans(P) − (M − R) ∪ I.

= ans(P) − (M − R) ∪ (ans(P ν) − ans(P))

= ans(P) − (M − (M ∩ P ν))) ∪ (ans(P ν) − ans(P))

= ans(P) − (M − P ν)) ∪ (ans(P ν) − ans(P))

[M ⊇ ans(P) − P ν) ⇒

M − ans(P ν) = ans(P) − ans(P ν)]

= ans(P) − (ans(P) − ans(P ν)) ∪ (ans(P ν) − ans(P))

= (ans(P) ∩ ans(P ν)) ∪ (ans(P ν) − ans(P))

= ans(P ν).

118

6.9 Related Work

Our primary-support-based algorithm (Chapter 4) improved on the DRed strategy

by significantly reducing the need to propagate deletions. We extended the concept of

primary support by identifying acyclic supports for every answer, all of which should

be deleted before the answer can be marked. The local algorithm presented in this

chapter further optimizes and extends the deletion mark propagation: (i) using the

effect of addition of new facts and answers which is very useful in updates where

addition and deletion occur hand-in-hand; and (ii) by scheduling rederivation of an-

swers in each call graph component, ensuring that topologically lower components

are stabilized before the effects are propagated to a higher component. In Chapter 4

incremental addition was done by evaluating difference rules (obtained by program

transformation) which are evaluated top-down. In contrast, in this chapter we pre-

sented a combined bottom-up algorithm to handle both additions and deletions.

The idea of using SCC-reduced dependency graphs to optimize propagation

of changes has been seen in various past works [Jon90, WJ88, PH96, HPMS00,

CNDE05]. Among these, Hermenegildo et. al.’s works [PH96, HPMS00] on re-

analyzing (constraint) logic programs are closest to our work. Our event based de-

scription for modeling the main aspects of memoized logic program has been inspired

by their work. These papers consider one answer pattern per call, and propagation is

controlled based on the call graph. In [PH96] addition events are processed in such a

way that lower components are stabilized before their effect is propagated to higher

ones without explicitly computing the SCCs. However, since the SCCs are themselves

dynamic, the event ordering only approximates the SCC ordering. In our approach

we maintain call graph SCCs explicitly, similar to [HPMS00]. However, we use event

ordering to control propagation of changes within an SCC, leading to finer-grained

interleaving between addition and deletion operations.

6.10 Discussion

In this chapter we presented an efficient algorithm for incrementally evaluating defi-

nite logic programs with the rules/facts of the program are changed: added, deleted,

or updated. The key to the algorithm is the interleaving of addition and deletion

119

operations based on an order. The algorithm naturally generalizes to techniques that

were developed in the settings where dependencies are non-recursive (e.g. attribute

grammars, functional programs).

The algorithm maintains dependencies between calls, answers, and intermediate

structures used for resolution, and propagates additions and deletions bottom-up

through this graph. This enables us to adapt our algorithm to handle programs with

stratified negation, processing one stratum at a time, and processing lower strata

completely before propagating its effects to the higher ones.

The focus of this work has been on developing a uniform algorithm to treat all

forms of changes— additions, deletions and updates— to facts as well as rules in a

logic program, and to establish how this generalizes previous special-case algorithms.

The algorithm maintains extensive dependency information. We believe that tech-

niques such as those used in symbolic support graphs (Chapter 5) can be used to

compactly store the dependencies.

Chapter 7

Extending Incremental Tabled

Evaluation Beyond Pure Logic

Programs

In the previous chapters of this thesis we have developed time and space efficient

techniques for incremental evaluation of tabled logic programs. However, these tech-

niques cannot be readily applied to arbitrary tabled logic programs, especially those

that use aggregation and other Prolog built-ins, or have non-stratified negation. In

the presence of non-monotonic operators, it is often difficult to determine whether

the addition of an answer to a table results in addition or deletion of an answer to

another table.

In this chapter, we present an incremental evaluation algorithm that is based on

call dependencies instead of answer dependencies, and process additions as well as

deletions using a single method. At a high level, the technique works as follows.

When facts or rules of a program change, we first mark all calls in tables whose

answers may be affected by this change. In the next step we re-evaluate the marked

calls. Naive re-evaluation is often inefficient since the call dependencies are too coarse

compared to answer dependencies. Our algorithm chooses calls to be re-evaluated

optimally, and sequences the re-evaluations judiciously to minimize the number of

wasteful computations (see Section 7.1).

The salient advantages of this technique are:

120

121

• The technique can be used on any tabled program, regardless of the use of

intermediate non-tabled predicates and Prolog built-ins.

• The technique is agnostic to the sign of a dependency— i.e. whether a call

depends negatively or positively on another— and hence can be used without

change on general logic programs: even those with non-stratified negation.

• The re-evaluation phase issues calls in an optimal order, re-evaluating calls only

when needed, and resulting in good performance in practice.

• Call graphs are generally small, and hence the technique scales to large exam-

ples.

7.1 Incremental Evaluation based on Call Depen-

dencies

Our technical development is based on the SLG resolution [CW96]; however the defi-

nitions as well as the results of this chapter can be ported to other tabled evaluation

schemes as well [ZSYY01, GG01, e.g.]. Although SLG resolution is usually described

using pure logic programs, it has been integrated into Prolog-based systems such

as [XSB, RSC00] seamlessly enough to permit programs to mix tabled and non-

tabled predicates, use aggregate and other Prolog builtins, and even use cuts over

non-tabled predicates. Analogously, the concepts formally developed below based on

SLG resolution can be extended to the more general class of tabled Prolog programs.

Given a program P and an initial query q, the set of call tables constructed by SLG

resolution is denoted by calls(q, P). The set of answers computed for a subgoal q over

program P is denoted by ans(q, P). The set of all answer tables constructed during

evaluation of a query q, denoted by answer tables(q, P) is given by the collection

{ans(q′, P) | q′ ∈ calls(q, P)}. In SLG resolution derivations are captured as an SLG

forest, where each tree corresponds to a single call and its associated answer table. Our

incremental algorithm makes a non-trivial change to only one of the operations used

to build the SLG forest: namely, the completion check operation, which determines

whether any more answers can be added to an answer table. The other operations

are either unchanged or are changed trivially to record call dependency information.

122

:- table r/2.

r(X,Y) :- e(X,Y).

r(X,Y) :- e(X,Z),

r(Z,Y).

e(1,2).

e(2,3).

e(3,4).

e(3,5).

e(4,2).

e(5,6).

e(6,7).

e(6,8).

e(7,8).

r(8,X) r(7,X)

r(6,X)

e(8,X) e(7,X)

e(6,X)

e(3,X)

r(2,X)

r(3,X)
r(4,X)

r(1,X)

e(2,X)

e(4,X)

e(1,X)

r(5,X)

e(5,X)

(a) (b)

Figure 42: Example program (a); and called-by graph (b) for evaluating r(1,X)

We consider incremental evaluation of tabled programs, where facts or rules may

be added or deleted after query evaluation is completed. Each complete query eval-

uation is called a run. Between each run, a set of rules in the program may change.

We denote this set by C and partition C into two sets C+ and C− that contain the

added and deleted rules respectively. Given a program P , the changed program P ′

obtained by applying the changes in C is given by P ′ = P ∪C+ −C−. Note that our

technical development is general and considers changes to a program’s rules. Facts,

which are rules with empty bodies, naturally become a special case.

Our algorithm is based on tracking dependencies between the calls during query

evaluation. The smallest set of calls that need to be re-examined after a change,

defined formally below, are those whose answer tables are modified by the change.

Definition 22 (Changed Calls) Let P be a program, C = C+ ∪ C− be the set of

rules that are changed, and P ′ = P ∪C+ −C− be the changed program. Let Q be the

set of calls due to evaluation of some query over P . The set of changed calls, denoted

by changed(P,C) is the set of all calls in Q such that ans(q, P) 6≡ ans(q, P ′).

We assume that all predicates whose definitions are subject to change between

runs are marked as volatile. For instance, in the program in Figure 42(a), edge/2 is

123

a volatile predicate. In general a volatile predicate may be defined by rules, and may

even be tabled.

Our call-dependency-based incremental evaluation technique is based on a data

structure known as called-by graph, defined below.

Definition 23 (Called-By Graph) The called-by graph due to the evaluation of

query q over program P is a directed graph (V,E) such that (i) V = Vt ∪ Vf where Vt

is the set of tabled subgoals that occur as roots of trees in the SLG forest, and Vf is

the set of selected literals in the SLG forest that unify with the head of some volatile

rule; and (ii) (c1, c2) ∈ E if and only if c1 is a selected subgoal in a tree with c2 as the

root (i.e. c1 is called by c2).

The called-by graph after evaluation of query r(1,X) over the program in Figure 42(a)

is given in Figure 42(b). The graph captures the dependencies between tabled calls

and calls to volatile predicates. It is first generated in the initial (non-incremental)

run, and maintained over subsequent incremental runs. Note that the called-by graph

is the transpose of the subgoal dependency graph [CSW95] extended with edges from

calls to volatile predicates.

The incremental algorithm has two phases. The first is the invalidation phase,

where calls that may be affected by the change are marked as affected.

Definition 24 (Initially Changed Calls) Given a called-by graph G = (V,E) and

a non-empty set C = C+ ∪ C− of rules that were changed (added or deleted) since

the last run, the set of initially changed calls, denoted by init(G,C) are those v ∈ V

such that v unifies with the head of some rule in C.

Definition 25 (Affected Calls) Given a called-by graph G = (V,E) and a non-

empty set C = C+ ∪ C− of rules that were changed (added or deleted) since the last

run, the set of affected calls, denoted by affected(G, C), is the smallest set such that

v ∈ affected(C,G) if

• v ∈ init(G,C), or

• ∃v′ ∈ affected(G,C) such that (v′, v) ∈ E.

124

The set of affected calls (based on the above definition) can be found by simply

traversing the called-by graph starting from the vertices that unify with changed rule

heads (case (i) above). Note that the direction of edges in the called-by graph is

from callee to caller which enables us to compute the affected calls by traversing the

called-by graph.

The idea behind the invalidation phase is that the calls that are not deemed

affected are unchanged by the modification, as formally stated below:

Theorem 21 Let P be an initial program, C = C+ ∪ C− be the set of changed

rules, and P ′ = P ∪ C+ − C− be the changed program. Let G = (V,E) be the

called-by graph for some query over P . Then, every changed call is affected; i.e.

changed(P,C) ⊆ affected(G,C).

Naive Re-Evaluation: Theorem 21 means that when some program rules change,

it is sufficient to re-evaluate the set of affected calls. Our naive strategy is to remove

all table entries corresponding to the affected calls (i.e. their entries in the call table,

as well as their answer tables) in the invalidation phase. In the second phase, called

re-evaluation phase, we re-do program clause resolution of all the affected calls. Note

that all affected calls and their answer tables are deleted to ensure that any answer

derived for an affected call is based only on valid information: either rederived answers

of another affected call, or existing answers of an unaffected call. While deleting

the table entries for an affected call, we also remove the corresponding vertex and

the edges incident on it from the called-by graph. Note that the re-evaluation may

generate new vertices and edges in the called-by graph. Thus the called-by graph

itself is (incrementally) modified when processing incremental changes.

For example, consider the deletion of the fact e(3,5) from the program in Fig-

ure 42(a). The invalidation phase identifies the calls e(3,X), r(3,X), r(2,X), r(4,X)

and r(1,X) as affected. Since these calls will be re-evaluated, the edges incident

on these vertices, i.e. e(3, X) → r(3, X), r(5, X) → r(3, X), e(4, X) → r(4, X),

r(4, X) → r(3, X), e(2, X) → r(2, X), r(2, X) → r(4, X), e(1, X) → r(1, X), and

r(2, X) → r(1, X), are deleted from the called-by graph. In the re-evaluation phase,

the call r(1,X) gives rise to calls r(2,X), r(3,X), and r(4,X), and their answers are

subsequently computed. These calls and the corresponding edges are added (back) to

the called-by graph. Note that, answers to unaffected calls can be found directly from

125

the tables. For example, the call r(3,X) uses already existing answers for e(3,X) and

r(5,X); calls such as r(5,X) are unaffected by the deletion and are not re-evaluated,

thereby saving expensive program clause resolution steps.

Optimized Re-evaluation: The set of affected calls overapproximates the set of

changed calls. In many cases, the approximation may be severe and the naive re-

evaluation strategy wastefully re-evaluates unchanged calls. Consider the deletion of

fact e(7,8) from the program Figure 42(a). The invalidation phase identifies the calls

e(7,X), r(7,X), r(6,X), r(5,X), r(3,X), r(2,X), r(4,X), and r(1,X) as affected.

However, the set of changed calls is only e(7,X) and r(7,X), but the naive strategy

also re-evaluates all other affected calls.

We obtain a better approximation of the changed set, called the recomputed set

defined as follows.

Definition 26 (Recomputed Set) Let P be a program, C = C+ ∪C− be the set of

changed rules, and P ′ = P ∪C+ −C− be the changed program. Let G = (V,E) be the

called-by graph for some query q over P . Then, the set of recomputed calls, denoted

by recomputed(G, C), is the smallest set such that c ∈ recomputed(G,C) if

I. c ∈ init(G,C), or

II. there is some c′ such that (c′, c) ∈ E and c′ ∈ changed(P,C), or

III. there is some c′ such that c and c′ are in the same strongly connected component

of G, and c′ ∈ recomputed(G,C).

The recomputed set represents the smallest set of calls that need to be re-

evaluated. The intuition behind this definition follows from the following observa-

tions:

I. Every changed call needs to be re-evaluated.

II. Every call that immediately depends on a changed call needs to be re-evaluated

(even if it itself is not changed). Note that the called-by graph contains no

qualitative information on how the change of a call affects another. Only the

program has this information embedded in it, and hence the only way to deter-

mine whether or not such a call changes is to re-evaluate it.

126

III. If a re-evaluated call is in a SCC, then all calls in that SCC need to be re-

evaluated. For instance, when e(3,5) is deleted from the program in Fig-

ure 42(a), e(3,X) is changed, and hence r(3,X) is recomputed. Note that we

cannot simply delete r(3,X)’s tables and re-evaluate it: since r(4,X) currently

contains the answer X=5, and e(3,4) holds, we will then (incorrectly) conclude

that r(3,5) still holds. Hence, we have to re-evaluate all mutually dependent

calls simultaneously (r(3,X), r(4,X) and r(2,X), in this case).

It follows from the definition that every changed call is also in the recomputed

set. It can also be readily shown that every call in the recomputed set is affected.

Formally,

Proposition 22 Let P be a program, C = C+ ∪C− be the set of changed rules, and

P ′ = P ∪C+ −C− be the changed program. Let G = (V,E) be the called-by graph for

some query q over P . Then changed(P,C) ⊆ recomputed(G,C) ⊆ affected(G,C).

In optimized re-evaluation we redo the calls in the recomputed set . We need two

basic mechanisms to accomplish this: (a) determine whether a re-evaluated call is

changed or not, and (b) determine SCCs in the called-by graph.

a. Marking Changed Calls: First of all, instead of deleting all the affected

tables in the invalidation phase, we only mark the answers of a recomputed call as

(currently) invalid just before the call is re-evaluated. We do not mark the answers

of the affected calls which are not scheduled for re-evaluation. Invalid answers are

ignored when doing answer clause resolution. With each such recomputed call, we

also keep the number of invalid answers (in a counter called invalid count), initialized

to the total number of answers at the beginning of the re-evaluation phase. Finally,

we keep a flag with each recomputed call (called addl answer) to indicate whether a

new answer was added to this call’s answer table in the re-evaluation phase. During

re-evaluation, whenever an answer is added to a table, if the answer already exists but

is invalid, we remove the invalid mark and decrement invalid count for the table. If

the answer did not exist before, we add the answer and set addl answer of the call to

true. When a call is completely re-evaluated (at the Completion operation of SLG),

we can determine that the call is changed iff addl answer is true or invalid count is

non-zero.

127

b. Evaluating SCCs: Finding SCCs in the called-by graph is fundamental to

evaluating the recomputed set. Apart from the explicit use of SCC information in

its definition, note that we determine whether or not a call is changed only after

completion. Consequently we need to evaluate the calls “bottom-up” through the

called-by graph, and triggering re-evaluations at higher levels only after confirming

that the lower-level calls have changed. This strategy has been shown to be optimal

for acyclic graphs.

Algorithms for finding SCCs typically need an additional pass over the graph. We

now describe a technique to find SCCs without making this additional pass, by slightly

modifying the traversal used in the invalidation phase. This technique is based on

Kosaraju and Sharir’s SCC computation algorithm [Sha81], which works as follows.

To find SCCs in a graph G, we first traverse G and give post-order numbers to the

vertices in G. We then traverse GT , the transpose of G, starting from the vertex with

the highest post-order number; this traversal builds a spanning tree for one SCC of G.

Whenever the traversal ends, we begin a new traversal from the unvisited vertex with

the highest post-order number, thereby building a spanning tree for another SCC.

This process continues until all vertices have been visited, enumerating all SCCs

of G. The order in which SCCs are found by the Kosaraju-Sharir algorithm is a

topological order in the SCC-reduced graph of G: if (v1, v2) is an edge in E, then the

SCC containing v1 is found at least as early as the one containing v2.

The Re-Evaluation Algorithm: We now describe a re-evaluation algorithm

that implicitly finds SCCs. In the invalidation phase, we traverse the called-by graph

and assign a post-order number to each affected call. With each affected call we

keep a flag processed which is initialized to false. In the re-evaluation phase, shown in

Figure 43, we maintain a sequence of calls to be re-evaluated in a global data structure

known as the working sequence (variable ws in the algorithm). This sequence is

maintained using a heap data structure, keeping the calls in the descending order

of their post-order numbers. During re-evaluation, we pick the call with the highest

post-order number from ws and invoke the call. Re-evaluation continues until the

working sequence becomes empty. When the re-evaluation of a call c is complete,

and c has changed, we add all its immediate successors in the called-by graph to the

working sequence.

128

re eval(G, C)
1. ws := init(G, C);
2. while (ws is not empty)
3. remove c, the call with the

highest PO number from ws;
4. call(c);

In SLG’s Completion Op. for call c:
1. if (c.addl answer) or

(c.invalid count > 0)
2. foreach c′ such that (c, c′) ∈ E

3. if not c′.processed
4. add c′ to ws
5. c′.processed := true

Figure 43: Optimized Re-Evaluation Algorithm

Note that, during re-evaluation, if c2 calls c1 then corresponding edge in the called-

by graph is (c1, c2). Thus re-evaluation implicitly traverses the transpose of the called-

by graph. If c1’s table is either unaffected or has been recomputed completely, then

c2 can use the answers from that table. Otherwise, c1 will also be re-evaluated. This

ensures that all calls in an SCC of the called-by graph will be evaluated simultane-

ously.

The correctness of the algorithm, stated in the following theorem, can be estab-

lished following the properties of the Kosaraju-Sharir algorithm and the definition of

recomputed set.

Theorem 23 The set of calls picked by the re-evaluation algorithm (line 3 of re eval

in Figure 43) is the same as the recomputed set.

In the example, when e(7,8) is deleted, the reverse postorder of affected calls

is given by the sequence e(7,X), r(7,X), r(6,X), r(5,X), r(3,X), r(4,X), r(2,X),

r(1,X). The set of initially changed calls is {e(7,X)}. When e(7,X) is re-evaluated,

its answer e(7,8) is removed, and hence we deem the call to have changed. This

causes r(7,X) to be added to the working sequence. When this call is re-evaluated,

it too is deemed to have changed (answer r(7,8) is no longer derivable). Hence

129

we add r(6,X) to the working sequence. Re-evaluating r(6,X), we find that it has

not changed. The working sequence is now empty and the re-evaluation is complete.

Thus, among the 8 affected calls, we re-evaluated only 3.

7.2 Experimental Results

Below we present experimental results on the performance of the naive and opti-

mized algorithms on various classes of tabled logic programs. The algorithms were

implemented by extending XSB logic programming system [XSB] (v2.7.1). All mea-

surements were taken on a PC with 3GHz Pentium 4 processor with 2GB of physical

memory running Linux (RedHat) version 2.6.9. Our implementation, benchmarks,

additional experimental results on simple reachability analysis and push down model

checking are available in [SR06].

Dynamic Programming: We measured the performance of our algorithms on

a set of familiar dynamic programming problems. Support graph based incremen-

tal techniques discussed in Chapter 5 cannot be directly used to capture the answer

dependencies in these problems due to the use of aggregation operations (min, max

etc.). Figure 44 summarizes the relative time performance of incremental evaluation

(w.r.t. from-scratch evaluation time) averaged over several possible changes for differ-

ent dynamic programming problems: longest common subsequence (LCS), minimum

edit distance (EDD), and matrix chain multiplication (MM).

LCS: We evaluated the performance of incremental evaluation on LCS by changing

the character at some position in one of the strings. On average, 50% calls are affected,

and 11% are changed and 15% are recomputed. Although only 15% of the calls are

re-evaluated by our optimized incremental algorithm, the time taken for re-evaluation

is close 30%. This is due to the overhead of answer clause resolution that our current

implementation performs (from the top-level) even for calls that are not recomputed.

Incremental evaluation of LCS is sensitive to positions of characters in the string that

were changed, as shown by Figure 45.

EDD: The solution to EDD is very similar to that of LCS. The two problems differ

in the number of dependent calls for each call. Every call in EDD evaluation is

connected to 3 calls in the call-by graph whereas in LCS each call is connected to at

130

LCS EDD MM

invalidation
re−evaluation

na
iv

e

op
t

na
iv

e

op
t

na
iv

e

op
t 0

 20

 40

 60

 80

 100

%
 ti

m
e

of
 fr

om
−s

cr
at

ch

Figure 44: Performance on Dynamic Programming problems

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

%
 o

f c
al

ls

Positions of changes

affected
re-computed

changed

Figure 45: The effectiveness of the optimized algorithm on LCS.

most 2 calls. Hence the number of affected calls in higher in EDD, resulting in higher

invalidation time.

MM: For matrix chain multiplication, we deleted one matrix from the chain and

measured the incremental and from-scratch time. For such a change, all affected calls

are recomputed. Hence the optimized algorithm performs no better than the naive

one.

131

invalidation

re−evaluation

na
ive op

t

na
ive op

t

left right

random

na
ive op

t

na
ive op

t

left right

dag

 0

 20

 40

 60

 80

 100

%
 tim

e
of

 fr
om

−s
cr

at
ch

Figure 46: Performance on All-Pair Shortest Path

All-Pair Shortest Path: We experimented with encodings of the all-pair shortest

path problem on a directed acyclic graph having 50K nodes and randomly generated

graph having 50K edges and 250 nodes (close to complete graph). We performed

separate experiments with two different logic program encodings (with left and right

recursion, resp.). For the almost-complete graph, incremental evaluation algorithms

are not effective since almost all calls are recomputed. For DAGs, the right-recursive

version shows better incremental performance due to the availability of non-trivial

call dependency information.

Data Flow Analysis Reaching definition analysis for imperative programs is a

well-known data flow analysis which determines, for each program point, the set of

variable definitions (assignments) that may reach that point [ASU86]. We extended

the intra-procedural analysis to an inter-procedural setting using the classical ap-

proach of replacing procedure calls with jumps: from the call site to the entry point

of the callee, and from the exit point of the callee to the statement following the

call site. The experiments were performed on various large C programs and for each

benchmark 100 random statements (one per incremental run) were chosen for re-

placement with a skip statement. The logic programming formulation of data-flow

analysis uses stratified negation, hence the techniques based on answer dependency

132

Benchmark Non Non-opt. Incr. Opt. Incr. % calls % of aff. calls
Incr. Re-eval % Re-eval % affected recomp. changed

assembler 5.95 3.60 60.6 3.64 61.2 23.5 85 1
diff 4.55 2.23 49.0 2.24 49.2 30.9 97 1
dixie 1.73 0.96 55.6 0.94 54.4 26.8 95 7
gnugo 4.41 2.38 53.9 2.42 54.8 30.6 99 1
learn 1.29 0.53 40.7 0.54 41.4 26.6 93 9
smail 5.50 2.89 52.4 2.85 51.7 25.4 98 2

Table 12: Data flow analysis; One statement replaced with skip; Time is seconds

Benchmark Naive Optimized % of calls % of affected calls
Incr.(%) Incr. (%) affected recomputed changed

m88ksim 10.1 6.8 1.1 56.4 25.2
vpr 30.8 27.8 4.0 57.9 6.1
smail 72.2 72.3 6.0 90.3 25.8
twmc 42.5 41.7 2.9 85.7 6.0
nethack 82.8 82.2 5.6 67.2 12.8
vortex 97.5 91.3 5.5 68.3 6.6

Table 13: Performance of naive and optimized algorithms on pointer analysis

(Chapters 4, 5) cannot be readily used in this case.

Table 12 shows that incremental algorithms takes on average 50% of from-scratch

time although number of affected calls is close to 30%. In all the experiments the

invalidation times were negligible. Closer inspection reveal that for these examples

90% of the call nodes belong to a few non-trivial SCCs in the called-by graph. The

formation of such large SCCs is due to the inter-procedural jumps which introduce

cycles even when the original program had no recursion. Due to the large SCCs,

most affected calls are also recomputed. For example in benchmark learn 93% of the

affected calls are recomputed but only 9% of the affected calls are changed.

Pointer Analysis We used the call-graph based techniques for the incremental

evaluation of Anderson’s Points-to analysis [And94] encoded as a tabled logic program

in Chapter 3.

Table 13 shows the relative performance of naive and optimized incremental algo-

rithms after removal of one (source-level) statement from the benchmark programs,

as a percentage of from-scratch time. Deleting one source level assignment statement

133

l

No. of Non-Incr Naive Re-eval.
Elements Re-eval %
12K 0.18 0.00 1.25
120K 1.89 0.03 1.55
240K 3.79 0.06 1.59
360K 5.67 0.09 1.64
480K 7.63 0.12 1.62
600K 9.60 0.16 1.64

Table 14: XML Validation; deletion of one element; Time is seconds

may delete multiple primitive assignments statements and hence multiple facts. The

results were averaged over 100 randomly chosen deletion of source statements.

Observe that the incremental times for large benchmarks are close to the non-

incremental times. We investigated the vortex program to explain its behavior.

Pointer analysis of vortex makes 68K calls in total of which on average 4K calls are

affected. Close inspection of affected calls revealed the existence of large SCC (con-

sisting 2.7K nodes) in the call graph. Also about 90% of the time taken by pointer

analysis is attributed to the calls in the large SCC. Since the nodes in the SCC are

part of the affected set, re-evaluation takes almost same time as from-scratch analysis.

The calls in the SCC are also in the recomputed set and hence we do not observe any

appreciable difference in the performance of the optimized algorithm relative to its

naive counterpart.

The presence of large SCCs limits the performance of call-graph-based algorithms.

In contrast, techniques based on the finer-grained answer dependencies perform very

well for this program. For instance, the times for incremental evaluation after deletion

of one source statement from the vortex benchmark are 0.1%, 15%, and 0.2% using

complete support graph, partial support graph, and symbolic support graph respec-

tively. Hence it would be useful to incorporate these specialized techniques into the

more general call dependency based algorithm.

XML Validation We investigated incremental validation of XML documents with

respect to Document Type Definitions (DTD) [BPV04]. The basic validation problem

checks whether a string belongs to a regular language or not.

Table 14 shows the result of applying the naive algorithm for incremental valida-

tion of XML documents for different number of elements (first column). The example

134

Application Table Space Called-by
Graph Space

Pointer Analysis (vortex) 51.0 13.6
Pointer Analysis (twmc) 18.3 3.5
Matrix Multiplication (chain 200) 4.0 75.0
Longest Common Subsequence (strlen 1000) 168.7 50.1
Minimum Edit Distance (strlen 600) 63.3 21.6
Reaching Definition (diff) 211.0 39.3
XML validation (60K elements) 107.0 13.0

Table 15: Space usage (in MB) of the incremental algorithm

XML documents and DTD describe a library catalog which contains zero or more

number of books. Each book contains zero or more number of authors followed by

title. Each author has a name, zero or more emails and an address. We generated

XML documents having 1K–50K books, with up to 3 authors per book and up to

3 email addresses per author. Each update consists of deletion of one book element

from the chain of book elements of the library. The number of affected calls is less

than 0.01% of total number of calls. The savings due to incremental evaluation arise

from reusing the prior validation of each book element. Since the number of books

is large, it results in considerable savings due to incremental evaluation. We encoded

the validator using left recursion. Since this results in only one call, we do not see

any additional benefits due to the optimized algorithm.

Space Overhead We measured the space needed for keeping the called-by graph

for sample applications. Note that although the number of nodes in the called-by

graph is bounded by the number of tabled calls, the number of edges can be large.

Observe from Table 15 that space needed for the called-by graph is about 30% of

the table space for most of the applications. For matrix chain multiplication with

chain length n, the number of calls is O(n2) but the number of called-by graph edges

is O(n3). This contributes to the large size of the called-by graph compared to its

table space. For such applications, it will be better not to materialize the graph, as

described in Section 7.5.

135

7.3 Related Work

Techniques discussed in Chapter 2 and 4 cannot be readily applied to arbitrary tabled

logic programs, especially those that use aggregation and other Prolog built-ins, or

have non-stratified negation. However, when applicable, the fine-grained dependency

information (i.e. between answers) used by these algorithms will enable them to

outperform the call-graph based algorithms.

Our algorithm is very similar to these [HPMS95, PH96, HPMS00] in terms of using

call graphs for change propagation. Notable differences are as follows. Firstly, through

the use of post-order numbers, we perform re-evaluation without explicitly computing

the SCCs whereas they use a separate SCC maintenance phase. Secondly, we use full-

fledged tabled resolution to recompute answers and hence can handle prolog builtins,

aggregates and non-stratified negation. In contrast, the other algorithms keep track

of the direction of a change (i.e. add or delete) and hence are difficult to generalize

for arbitrary programs (e.g. those with findall). Processing of addition of rules was

improved in [PH96] by making the non-incremental algorithm SCC-preserving with-

out explicitly computing the SCCs by using a specialized event scheduling strategy.

We obtain the same effect by using XSB’s local scheduling [FSW96].

7.4 Integration to XSB Prolog Engine

In the previous chapters of this thesis we have described various time and space effi-

cient algorithms for incremental evaluation of definite logic programs. The algorithm

presented in this chapter extends the scope of incremental evaluation from definite

logic program to arbitrary tabled logic programs by handling negation and Prolog

builtins. The generality of the call graph based algorithm makes it the best candi-

date for incorporating into XSB logic programming system [XSB]. The integration

of the call graph based algorithm to XSB and its application to Deductive Spread-

sheet [RRW06] raised a number of interesting issues. In this section we discuss some

of those issues and their solutions.

136

7.4.1 Selective Incrementally Maintained Tables

The algorithm described earlier in this chapter maintains a called-by graph that

keeps the dependencies among tabled calls and volatile rules. Note that volatile rules

correspond to the facts and rules that are dynamic and update to which should update

any tabled predicate that are dependent on it.

We expose to the programmers a builtin operator called incrdynamic/1 using

which a programmer can declare certain dynamic predicates to be volatile. This

gives the programmer the flexibility to choose certain dynamic extensional predicates

to be volatile. Our experience shows that in a typical incremental application the

programmer is aware of the volatile predicates. In this case the call dependency

structure includes volatile facts and excludes the non-volatile facts. This in turn

reduces the space requirement of called-by graph. The call-graph based algorithm

creates the calling patterns of subgoals of incrdynamic predicates and stores them in

a call trie. In contrast to the tabled calls, the calls for incrdynamic predicates are not

associated to any answer tries.

The definition of Called-by Graph in the Definition 23 requires that call depen-

dencies should exist among all tabled subgoals. However, not all tabled predicates are

dependent (directly or indirectly) on volatile facts and thus keeping call dependencies

between the calls of such tabled predicates is clearly redundant. We thus give the

user the flexibility to define tabled predicates whose calls needs to be incrementally

maintained. We expose an operator incr using which the user can declare certain

predicates to be incrementally maintained. We refer to such tabled predicates as

incremental. Thus called-by graph only contains the dependencies among calls of

incremental and volatile predicates.

An interesting question arises when a subgoal of an incremental predicate (say C1)

calls a subgoal of a non-incremental tabled predicate (say C2). If C2 does not directly

or indirectly depend on a volatile predicate then it is not necessary to be declared as

incremental. However, at runtime this information is not available as C2 may be a

new call. We conservatively assume this to be an error on programmers’ part and flag

a runtime error with appropriate error message. We make an exception to the above

action only if programmer describes the predicate of call C2 to be non-incremental.

We allow such an option to the user exposing the operator opaque.

137

The predicates defined by opaque (hereafter called opaque predicates) also pos-

sesses an interesting property - a subgoal (say C3) that is directly or indirectly called

by an opaque predicate is also considered to be opaque. This property holds irrespec-

tive of whether C3 is declared incremental, non-incremental, or opaque. However,

C3 can be called directly or indirectly from an incremental subgoal (C1) without any

opaque call in between. In this case, C3’s behavior depends on its original incre-

mental property (incremental or non-incremental or opaque). Thus, the incremental

behavior of a tabled subgoal depends on the context in which it is called.

7.4.2 Deletion of Incrementally Maintained Tables

The algorithms presented in this thesis incrementally maintains tables in response to

changes to volatile predicates. The data structures and tables are maintained as long

as the session is running. However, in practise a demand can be completely lost on an

incrementally maintained table and maintaining such tables is space inefficient. We

therefore expose the functionality of deletion and space reclamation of incremental

tables.

The design of the functionality of abolishing incremental tables is based on the

following two observations: (i) it is difficult for the application programmer to know

all the tables that are no longer needed to be incrementally maintained; (ii) the

programmer is usually aware of the top-level calls which defines the interface between

the application program and tabled engine, and the top-level calls that are no longer

required. Based on these observations we provide a builtin abolish call(C) which

takes as the argument an incremental call C which is intended to be abolished and

tries to abolish C and all calls that are called directly or indirectly by C. Below we

define the set of calls that are deleted when a particular incremental call is called for

deletion.

Definition 27 Given a called-by graph G = (V,E), the set not deleted(C) defines

the set of calls that should not be deleted when abolish call(C) is called. The set

not deleted(C) is the least set satisfying the relation below: C ′ ∈ not deleted(C)

• if C is not reachable (reflexive and transitive) from C’ in called-by graph

• ∃C ′′ ∈ not deleted(C) and (C ′, C ′′) ∈ E.

138

abolish(C,CallGraph=(V,E))
init(marked set)
init(assumption set)
mark(C)
checkassumptionset()
deletecalls()

mark(C)
C.marked = true
add(marked set,C)
if (C.outcount>0)
add(assumption set,C)

∀ C’ ∈ (C’,C)∈ E
C’.outcount−−;
if(!C’.marked)

mark(C’)

checkassumption()
∀ C ∈ assumption set

if (C.outcount>0)
delete(marked set,C)
if (C.marked)
unmark(C)

unmark(C)
C.marked = false
∀ C’ ∈ (C’,C)∈ E

C’.outcount++;
if(C’.marked)

unmark(C’)

deletecalls()
∀ C ∈ marked set

if (C.marked)
abolish(C)

Figure 47: Algorithm for abolishing incremental calls

The set of deleted calls (denoted by deleted(C)) due to abolishing incremental call

C is the complement of the set not deleted(C) over all incrementally maintained calls

present in called-by graph.

We present a called-by graph based algorithm for determining the set deleted(C)

in Figure 47. The algorithm has three phases marking, checking assumption, and

deletion. The marking phase overapproximates the calls that need to be deleted and

subsequent phases prune the overapproximation. A call is marked if its attribute

marked is true. The attribute outcount associated with each call denotes the number

of un-marked successor calls in the called-by graph. The marked attribute for each

call is initialized to false, and outcount attribute of a call is initialized to number of

its successor calls in the called-by graph.

7.4.3 Integration with Deductive Spreadsheet

The idea of Deductive Spreadsheet [RRW06] is to bring the power of rule-based

computing within the familiar paradigm of spreadsheets. The underlying idea is to

treat sets as the fundamental data type and rules as specifying relationship among

sets and use the spreadsheet metaphor to view the materialized sets. The paradigm

139

extends the functionality of treating a cell for a single value to a set of values. The

spreadsheet shows the extensional and intensional values and hence needs to maintain

relationship between cell values whenever the user changes the values in some cells.

As values of the intensional cells are represented as tables, this problem boils down

to incremental maintenance of tables.

In DSS the set of the values present in a cell typically represents answers to a

tabled call or facts which unify with the calls to facts. As mentioned earlier, calls

to facts can be stored by defining corresponding predicate incrdynamic. In DSS

environment when a cell value is changed by the user, it is difficult to determine

which element of the set represented by the cell has been changed. This requires

us to expose the functionality by which it is possible to deem a particular call of

an incrdynamic predicate as affected. In other words, user can specify the initially

changed calls.

In spreadsheet environment, changes to the content of one cell can trigger changes

to the contents of many other cells. It is hard for the user to determine which cell

content has changed in response to the changes made by the user. As incremental

tabled evaluation computes the set of changed calls due to changes in the factbase,

we expose builtins by which the set of changed calls can be determined and the

corresponding cells can be highlighted. It is also possible for the user to view the

dependencies among the cells by using the builtins to navigate through the called-by

graph.

7.5 Discussion

In this section we discuss possible extensions to the algorithms presented in Sec-

tion 7.1.

Lazy re-evaluation. The algorithms presented in Section 7.1 refreshes all an-

swer tables such that after each incremental phase the set of answers is sound and

complete with respect to the changed program. Certain applications (e.g. ontology

management systems), access tables through a graphical user interface, and access

some or all of the answers only when required. In such cases, it will be better to re-

evaluate a call only on demand. This can be done by keeping a subgoal dependency

140

graph to propagate demand top-down, while keeping the called-by graph to perform

re-evaluations bottom-up. Since the invalidation phase takes very little time, it can

still be done eagerly. That will ensure that the optimized algorithm can still be used

in order to re-evaluate only those calls in the recomputed set that are also demanded.

Addition for Definite Logic Programs. The algorithm presented here re-

evaluates a call by generating all its answers using program clause resolution. When

the direction of the change (i.e. whether it is an addition, deletion or both) is known,

we can do better. If the change made is an addition and the program has no negation,

we can derive a new program that computes these changes efficiently. The rules of the

new program are called “delta rules” and are derived by finite-differencing the orig-

inal definite program [GMS93, SR03]. This has a potential to significantly improve

incremental evaluation times. For example, a single statement addition using delta

rules takes on average 8% of from-scratch time for pointer analysis in vortex bench-

mark whereas it takes 90% of from-scratch time when the affected calls are completely

re-evaluated. While it is relatively straightforward to use the “delta rules” program

for incrementally processing additions for predicates without negation, light-weight

re-evaluation techniques for other kinds of changes and for general logic programs

remains an open problem.

Mixed Strategy. In Chapter 5 we described a space efficient technique for storing

answer dependencies in the form of symbolic support graph. Symbolic support graph

based deletion algorithm is extremely efficient in practice— taking less than 5% of

from-scratch time in all the applications we have tested. We can combine these two

techniques, keeping call dependencies in general but keeping symbolic support graphs

whenever possible to efficiently process deletions.

Non-materialized called-by graph. Although the call dependencies are typically

smaller than answer dependencies, and the number of calls is bounded by table space,

the called-by graph itself may take more space than the tables (e.g. the matrix chain

multiplication example in Section 7.2). It is hence worth exploring whether we can

avoid storing the edges of the called-by graph, and instead compute them on the fly. It

is relatively easy to derive the called-by relation for a given definite logic program. For

instance, from every rule of the form p :− q1, q2, . . . , qn we can derive “called-by” rules

such as called by(qi, p) :− q1, q2, . . . , qi−1. While the computed called-by relation is

141

a space-efficient alternative to storing large called-by graphs, it is not clear whether

such rules can be derived for arbitrary logic programs (especially those employing

impure constructs such as cuts).

Summary. We presented an incremental evaluation algorithm based on call depen-

dencies that can handle tabled logic programs with negation, aggregation and Prolog

builtins. Experiments show that the general algorithm is useful although not as ef-

fective as the (more restricted) answer-dependency-based techniques. The algorithm

identifies a small set of calls to be re-evaluated and invokes them in a particular or-

der to ensure optimality. The actual re-evaluation itself is performed rather naively,

by (effectively) removing all answers from a table to be re-evaluated and using pro-

gram clause resolution to restore the answer table. More sophisticated techniques

that optimize the re-evaluation itself are of significant interest. Our experience with

this algorithm shows that programs written for efficient tabled evaluation may not

be most suited for efficient incremental evaluation too. Developing a methodology to

write efficient incremental programs (analogous to recursion transformations and sup-

plementary tabling for tabled programs) is an important avenue of future research.

Chapter 8

Conclusion

In this thesis we addressed the problem of efficient incremental evaluation of tabled

logic programs and its applications. Below we present summary of our major results

followed by a brief description of our experience with incremental tabled evaluation,

and the description of some of the future work related to incremental computation.

8.1 Summary of Major Results

• Handling Changes. In contrast to the algorithms present in various fields of

research viz. materialized view maintenance, incremental functional program-

ming we presented efficient algorithms which handle various kinds of incremental

changes — batched updates and addition and deletion to rules.

• Efficiency. We presented incremental algorithms for recursive programs which

record dependency between answers and calls in tabled resolution and confine

the propagation of changes locally. This prevents the over-eager propagation of

changes shown in existing algorithms for recursive programs. Our local algo-

rithm naturally specializes to optimal algorithms for non-recursive programs.

• Space-time Tradeoff. Although the fine-grained dependency graph based

incremental algorithms show appreciable time-efficiency for small changes, it

requires large amount of space to store dependency graphs in memory. We

provide solutions to this problem by either storing partial support graph, or

142

143

symbolic support graph (whenever applicable) which exploits the common sub-

structures of the dependency graph.

• Applications. The effectiveness of incremental tabled resolution has been

demonstrated on a wide variety of analysis: pointer analysis, dynamic program-

ming, data-flow analysis, push-down model checking, and XML validation.

8.2 Discussion

We presented various incremental algorithms which showed varied degree of efficiency

on different analyses. For example, our symbolic support graph based algorithm (Sec-

tion 5.2) demonstrated great time and space efficiency when applied to flow-insensitive

program analysis, even in presence of updates. The main reason for time efficiency is

that the deletion propagation can be confined by identifying acyclic supports. How-

ever, for flow-sensitive analysis where the number of supports on average is generally

less, our local algorithm performs better than support graph based algorithms. Note

that for cases where support graph based algorithm is almost optimal, the local al-

gorithm may be inefficient as it incurs time overhead due to event scheduling. In

contrast to the support graph based algorithms which handles pure (no cuts or ag-

gregation builtins) definite logic program, the call graph based algorithm (discussed

in Chapter 7) extends the scope of incremental evaluation to general logic programs

involving cuts, negation, and aggregation operators, even though it is not as efficient

as support graph based algorithms in cases where both of them are applicable.

Another important observation is that efficient from-scratch evaluation of an anal-

ysis does not always guarantee efficient incremental evaluation. For example, con-

sider left- and right- transitive closure with a single-source reachability query. Left-

recursive transitive closure will produce only one call with a self-loop SCC in the call

graph. In this case the dependencies among reachable nodes are captured using an-

swer dependencies (support graph). Whereas right-recursive transitive will produce

nontrivial call as well as answer dependencies. Note that the local algorithm restricts

propagation of changes using precise SCC decomposition of call dependencies followed

by approximate cycle detection (using ordinals) of answer dependencies. Because of

144

this, right-recursive transitive closure is more suitable for incremental evaluation al-

though for single-source query left-recursive transitive closure is known to be efficient

for non-incremental evaluation.

In Section 6.6 we showed that the local algorithm specializes to optimal algorithms

existed for attribute evaluation and incremental functional programming. However we

came across examples in other fields for which straightforward tabled logic encoding

of the problem does not guarantee optimal incremental algorithm. One such example

is XML validation algorithm where worst-case quadratic time non-incremental algo-

rithm and linear-logarithmic time incremental algorithm exist [BPV04]. Straightfor-

ward encoding of XML validation in tabled logic program can only achieve quadratic

time non-incremental and incremental algorithms. This is because simple encoding

of the problem generates a linear dependency graph whereas the optimal algorithm

can generate a logarithmic height dependency graph. It is possible to generate such

dependency graph by careful encoding, but it is cumbersome and voids the purpose

of declarative encoding.

Our incremental table evaluation algorithms were based on XSB tabled prolog

engine. We have several versions of XSB with different incremental algorithms im-

plemented in each of them. These can be downloaded from [IXS06] and available for

all sorts of experiments in all sorts of domains.

8.3 Future Work

In this section we discuss some of the avenues of future work in the area of incremental

evaluation. We categorize these ideas into two areas: one which further extends the

algorithms of incremental tabled evaluation presented in this thesis; and the other

which visualizes possible application areas of incremental computation.

8.3.1 Algorithms for Incremental Computation

• A Combined Answer and Call Dependency Based Algorithm. In Chap-

ter 7 we described an algorithm for incremental evaluation for arbitrary tabled

Prolog programs including those that use Prolog builtins, cuts, aggregation and

non-stratified negation. That algorithm maintained a much coarser dependency

145

structure based on calls compared to the algorithms presented in Chapters 4,

5, and 6, where finer grained dependency structures are built based on answer

dependencies. The results of Section 7.2 showed that answer-dependency based

approaches perform significantly better, but cannot be easily extended beyond

pure programs. Moreover, Chapter 6 showed that fine-grained dependencies are

needed to achieve better performance by scheduling insertion and deletion op-

erations. In future we would like to devise an algorithm which uses fine-grained

local algorithm wherever applicable within the more general setting of arbitrary

logic programs.

• Goal Directed Incremental Computation. The current techniques for in-

cremental table/view maintenance propagate changes bottom up, thereby up-

dating all tables that are affected by the changes. However, all tables may not

require to be updated at all times as the user may be interested only in a subset

of all tables. This is common in Deductive Spreadsheet [RRW06] environment,

where only a small portion of the view may be seen by the user at any given

time. Hence it is important to develop algorithms to incrementally maintain

only that part of the view that is demanded by the user.

• Persistence Data Structures. In XSB, the tables are currently maintained

in memory, and so are the support graphs and call graphs. The incremental

algorithms therefore work only within a single XSB session. We hence need

to devise ways to efficiently store XSB’s tables and support graphs at the end

of a session and restore them at a later time. It would also be interesting to

investigate whether this information can be restored only to the extent needed

by the subsequent session.

• Incremental Evaluation in Presence of Incomplete Tables. The in-

cremental algorithms discussed in this thesis assume that before incremental

evaluation is started all the tables are completed, i.e. there cannot be further

generation of answers due to incomplete operations. In future, we would like

to devise an incremental algorithm to remove the above restriction. However,

before designing such algorithm we need to carefully define the semantics of

incomplete operations in presence of incremental evaluation.

146

8.3.2 Applications of Incremental Computation

• Static Analysis. In this thesis we have shown effectiveness of incremental

tabled evaluation to several program analysis problems. This motivates us to

incorporate incremental tabled evaluation into static analysis system for pop-

ular programming languages like C, C++, and Java. In this effort, currently

we are incorporating incremental tabled evaluation into Magellan [Mag06], a

static analysis framework for Java. Magellan is integrated into the build pro-

cess of ECLIPSE, an integrated development environment. We would like to

investigate characteristics of incremental computation for static analysis of Java

programs. Currently code query systems (e.g. [HVdMdV05]) which use Datalog

to query patterns in the code, use non-incremental Datalog systems for query

evaluation. It would also be useful to extend such systems with incremental

tabled evaluation.

• Model Checking.

– Incremental CTL/LTL Model Checking. Traditional model check-

ers like SPIN, NuSMV do not save any information about state space

search during a model checking run. As a result if a transition system is

changed after a model checking run, similar state space can be explored

again for checking the new system. This scenario is common when model

checking is employed in the design process of a system where small updates

occur after the initial design is created. We plan to incorporate efficient

incremental verification capabilities to these widely used model checkers.

– Incremental Relational Coarsest Partition Refinement. Rela-

tional coarsest partition refinement (RCPP) algorithm determines the

coarsest partition of a set, stable with respect to a given relation. The

RCPP problem is equivalent to bisimulation equivalence problem which is

widely employed in many areas: verification, XML indexing, and so forth.

We plan to develop an efficient algorithm which incrementally re-partitions

the set in response to small changes to the given relation. The result will

have widespread impact on incremental algorithms in different fields.

147

– Incremental Abstraction-Refinement based Software Model

Checking. Traditionally model checking is used for verifying commu-

nication protocol and hardware designs. In recent past, model checking

combined with program analysis and automated deduction, is used for ver-

ification of software systems. For finite as well as infinite state verification,

iterative abstraction refinement is considered to be the key technique for

complex program verification. Incremental algorithms can be very useful

in this iterative paradigm where in each iteration the algorithm can re-use

the information gathered in the previous iteration. The key questions here

are, what information needs to be stored for maximal re-use and what is

the relation between the configurations of states of different iterations.

• Security Analysis. Recently logic based systems have been used for security

and vulnerability analysis [OGA05]. In this framework logical rules describe

security policies, vulnerabilities, and interaction between different vulnerabili-

ties that can be exploited by the attacker. The host and network configuration

are expressed as facts. Application of the rules on the facts derives whether

single- or multi- stage attacks are possible in the network. In this scenario it

is very useful to have a model describing all possible ways of performing such

attacks. A model that is most commonly known used is attack graph. In a log-

ical framework attack graphs can be easily obtained by selecting dependencies

between answers of user selected predicates in support and call graphs which

are built during query evaluation. As incremental tabled evaluation maintains

the support and call graphs, we can easily maintain attack graphs incremen-

tally. This will leverage the functionality of changing the configurations of the

network system and quickly view the effect of such changes.

8.4 Final Notes

Optimizations such as incremental computation are generally useful in dynamic envi-

ronments or evolving systems. Our goal to incorporate efficient incremental capability

to rule based systems serves multifaceted purpose. Firstly, deployment of these effi-

cient algorithms in programming language framework vouches for its general purpose

148

use. Secondly, by hiding most of the complexities of generating and maintaining

space-efficient dependency graphs and efficient change propagation through it, we

preserve the declarative capability of rule based languages. Lastly, incorporation of

efficient incremental algorithms extends the use of rule based programming language

paradigm to dynamic systems.

Bibliography

[ABH02] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional pro-

gramming. In ACM Conference on Principles of Programming Lan-

guages, volume 37, pages 247–259, New York, NY, USA, 2002. ACM

Press.

[ABH03a] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive memoization.

Technical report, Carnegie Mellon University, November 2003.

[ABH03b] U. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization.

In ACM Conference on Principles of Programming Languages, pages

14–25, New York, NY, USA, 2003. ACM Press.

[AG98] D. C. Atkinson and W. G. Griswold. Effective whole-program analysis

in the presence of pointers. In Foundations of Software Engineering,

pages 46–55, 1998.

[AHR+90] B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K. Zadeck.

Incremental evaluation of computational circuits. In Symposium on

Discrete algorithms, pages 32–42. Society for Industrial and Applied

Mathematics, 1990.

[ALS02] G. Agrawal, J. Li, and Q. Su. Evaluating a demand driven technique

for call graph construction. In Computational Complexity, volume 2916

of LNCS, pages 29–45. Springer-Verlag, 2002.

[And94] L. O. Anderson. Program Analysis and Specialization for the C Pro-

gramming Language. PhD thesis, DIKU, University of Copenhagen,

1994.

149

150

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, tech-

niques, and tools, pages 585–718. Addison-Wesley, 1986.

[BKPR02] S. Basu, K. N. Kumar, L. R. Pokorny, and C. R. Ramakrishnan.

Resource-constrained model checking of recursive programs. In In-

ternational Conference on Tools and Algorithms for Construction and

Analysis of Systems, volume 2280 of LNCS, pages 236–250, 2002.

[BPV04] A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation

of xml documents. ACM Trans. Database Syst., 29(4):710–751, 2004.

[BR90] M. G. Burke and B. G. Ryder. A critical analysis of incremental it-

erative data flow analysis algorithms. IEEE Transaction of Software

Engineering, 16(7):723–728, 1990.

[Bra95] S. Brass. Magic sets vs. SLD-resolution. In International Workshop

on Advances in Databases and Information Systems, pages 101–108,

Moscow, 27–30 1995. Phasis.

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function manipu-

lation. IEEE Transactions on Computers, C-35(8):677–691, 1986.

[Bur90] M. G. Burke. An interval-based approach to exhaustive and incremen-

tal interprocedural data-flow analysis. ACM Transaction of Program-

ming Languages and Systems, 12(3):341–395, 1990.

[CNDE05] C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards. Incre-

mental algorithms for inter-procedural analysis of safety properties. In

Computer Aided Verification, volume 3576 of LNCS, pages 449–461,

Edinburgh, Scotland, July 2005.

[CR88] M. D. Carroll and B. G. Ryder. Incremental data flow analysis via

dominator and attribute update. In ACM Conference on Principles of

Programming Languages, pages 274–284. ACM Press, 1988.

[CSW95] W. Chen, T. Swift, and D. S. Warren. Efficient top-down computation

of queries under well founded semantics. Journal of Logic Program-

ming, 1995.

151

[CW96] W. Chen and D. S. Warren. Tabled evaluation with delaying for general

logic programs. Journal of ACM, 43(1):20–74, 1996.

[DGS97] E. Duesterwald, R. Gupta, and M. L. Soffa. A practical framework for

demand-driven interprocedural data flow analysis. ACM Transaction

of Programming Languages and Systems, 19(6):992–1030, 1997.

[dMS03] O. de Moor and G. Sittapalam. Combining memoization and change

propagation. Technical report, Oxford University, October 2003.

[Doy79] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–

272, 1979.

[DRT81] A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation for

attribute grammars with application to syntax-directed editors. In

ACM Conference on Principles of Programming Languages, pages 105–

116. ACM Press, 1981.

[DRW96] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program

analysis using general purpose logic programming systems — a case

study. In ACM Conference on Programming Language Design and

Implementation, pages 117–126, 1996.

[DS87] P. Dietz and D. Sleator. Two algorithms for maintaining order in a

list. In STOC ’87: ACM conference on Theory of computing, pages

365–372, New York, NY, USA, 1987. ACM Press.

[DT92] G. Dong and R. W. Topor. Incremental evaluation of datalog queries.

In International Conference on Database Theory, volume 646 of LNCS,

pages 282–296, 1992.

[FFA00] J. S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus

Monomorphic Flow-insensitive Points-to Analysis for C. In Static Anal-

ysis Symposium, volume 1824 of LNCS, pages 175–198, 2000.

[FFSA98] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial Online Cy-

cle Elimination in Inclusion Constraint Graphs. In ACM Conference

152

on Programming Language Design and Implementation, pages 85–96.

ACM Press, 1998.

[FRD00] M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow

analysis using instantiation constraints. In ACM Conference on Pro-

gramming Language Design and Implementation, pages 253–263. ACM

Press, 2000.

[FSW96] J. Freire, T. Swift, and D. S. Warren. Beyond depth-first: Improv-

ing tabled logic programs through alternative scheduling strategies. In

Symposium on Programming Language Implementation and Logic Pro-

gramming, pages 243–258, 1996.

[GG01] H. Guo and G. Gupta. A simple scheme for implementing tabled logic

programming systems based on dynamic reordering of alternatives.

In International Conference on Logic Programming, pages 181–196.

Springer, 2001.

[GG04] H. Guo and G. Gupta. Simplifying dynamic programming via tabling.

In Practical Aspects of Declarative Languages, volume 3057 of Lecture

Notes in Computer Science, pages 163–177. Springer, 2004.

[GKM92] A. Gupta, D. Katiyar, and I. S. Mumick. Counting solutions to the view

maintenance problem. In Workshop on Deductive Databases, JICSLP,

pages 185–194, 1992.

[GL03] S. Guyer and C. Lin. Client-driven pointer analysis. In Static Analysis

Symposium, pages 214–236, 2003.

[GM95] A. Gupta and I. S. Mumick. Maintenance of materialized views: Prob-

lems, techniques, and applications. IEEE Data Engineering Bulletin,

18(2):3–18, 1995.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views

incrementally. In ACM SIGMOD, pages 157–166, 1993.

153

[HD92] J.V. Harrison and S.W. Dietrich. Maintenance of materialized views in

a deductive database: An update propagation approach. In Workshop

on Deductive Databases, JICSLP, pages 56–65, 1992.

[Hin01] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In

Workshop on Program Analysis for Software Tools and Engineering

(PASTE), 2001.

[HPMS95] M. V. Hermenegildo, G. Puebla, K. Marriott, and P. J. Stuckey. In-

cremental analysis of logic programs. In International Conference on

Logic Programming, MIT Press, pages 797–811, 1995.

[HPMS00] M. Hermenegildo, G. Puebla, K. Marriott, and P. J. Stuckey. Incre-

mental analysis of constraint logic programs. ACM Transaction of

Programming Languages and Systems, 22(2):187–223, 2000.

[HRS95] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow

analysis. In Foundations of Software Engineering, pages 104–115, 1995.

[HT01a] N. Heintze and O. Tardieu. Demand-driven pointer analysis. In ACM

Conference on Programming Language Design and Implementation,

pages 24–34. ACM Press, 2001.

[HT01b] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA:

A million lines of c code in a second. In ACM Conference on Pro-

gramming Language Design and Implementation, pages 254–263. ACM

Press, 2001.

[HVdMdV05] E. Hajiyev, M. Verbaere, O. de Moor, and K. de Volder. Codequest:

querying source code with datalog. In Companion to the Proceedings

of OOPSLA 2005, pages 102–103. ACM Press, 2005.

[IXS06] Incremental xsb engine, 2006. Available at http://www.lmc.cs.

sunysb.edu/∼dsaha/downloads.

[Jon90] L. G. Jones. Efficient evaluation of circular attribute grammars. ACM

Transaction of Programming Languages and Systems, 12(3):429–462,

1990.

154

[K9̈1] V. Küchenhoff. On the efficient computation of the difference between

consecutive database states. In DOOD’91, pages 478–502, 1991.

[LH01] D. Liang and M. J. Harrold. Efficient computation of parameterized

pointer information for interprocedural analyses. In Static Analysis

Symposium, pages 279–298. Springer-Verlag, 2001.

[Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.

[LMSS95] J. Lu, G. Moerkotte, J. Schue, and V. S. Subrahmanian. Efficient

maintenance of materialized mediated views. In ACM SIGMOD, pages

340–351, 1995.

[LR92] W. Landi and B. G. Ryder. A safe approximate algorithm for in-

terprocedural pointer aliasing. In ACM Conference on Programming

Language Design and Implementation, volume 27, pages 235–248. ACM

Press, 1992.

[LS03] Y. Liu and S. Stoller. From Datalog rules to efficient programs with

time and space guarantees. In ACM Conference on Principles and

Practice of Declarative Programming, 2003.

[LST98] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for in-

cremental computation. ACM Transaction of Programming Languages

and Systems, 20(3):546–585, 1998.

[Mag06] Magellan. http://www.st.informatik.tu-darmstadt.de, 2006.

[MR90] T. J. Marlowe and B. G. Ryder. An efficient hybrid algorithm for

incremental data flow analysis. In ACM Conference on Principles of

Programming Languages, pages 184–196. ACM Press, 1990.

[MT99] E. Mayol and E. Teniente. A survey of current methods for integrity

constraint maintenance and view updating. In ER Workshops, pages

62–73, 1999.

[NM00] Ulf Nilsson and Jan Maluszynski. Logic Programming and Prolog. On-

line Publication, 2000.

155

[NMRW02] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-

ate language and tools for analysis and transformation of C programs.

In Compiler Construction, pages 213–228. Springer-Verlag, 2002.

[OGA05] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based

network security analyzer. In USENIX Security Symposium. Society

for Industrial and Applied Mathematics, 2005.

[PAF] PAF. Prolangs analysis framework. Available at http://www.

prolangs.rutgers.edu/public.html.

[PH96] G. Puebla and M. V. Hermenegildo. Optimized algorithms for incre-

mental analysis of logic programs. In Static Analysis Symposium, pages

270–284, 1996.

[PK82] R. Paige and S. Koenig. Finite differencing of computable expressions.

TOPLAS, 4(3):402–454, 1982.

[PK03] D. J. Pearce and P. H. J. Kelly. Online algorithms for topological

order and strongly connected components. Technical report, Imperial

College, London, 2003.

[PS89] L. L. Pollock and M. L. Soffa. An incremental version of iterative data

flow analysis. IEEE Transaction of Software Engineering, 15(12):1537–

1549, 1989.

[PT89] W. Pugh and T. Teitelbaum. Incremental computation via function

caching. In ACM Conference on Principles of Programming Languages,

pages 315–328, New York, NY, USA, 1989. ACM Press.

[Ram00] C. R. Ramakrishnan et al. XMC: A logic-programming-based verifica-

tion toolset. In Computer Aided Verification, number 1855 in LNCS,

pages 576–580, 2000.

[Rep82] Thomas Reps. Optimal-time incremental semantic analysis for syntax-

directed editors. In ACM Conference on Principles of Programming

Languages, pages 169–176, New York, NY, USA, 1982. ACM Press.

156

[Rep84] T. W. Reps. Generating language-based environments. Massachusetts

Institute of Technology, Cambridge, MA, USA, 1984.

[Rep93] T. W. Reps. Demand interprocedural program analysis using logic

databases. In Workshop on Programming with Logic Databases, ILPS,

pages 163–196, 1993.

[RP88] B. G. Ryder and M. C. Paull. Incremental data-flow analysis algo-

rithms. ACM Transaction of Programming Languages and Systems,

10(1):1–50, 1988.

[RR93] G. Ramalingam and T. Reps. A categorized bibliography on incremen-

tal computation. In ACM Conference on Principles of Programming

Languages, pages 502–510, New York, NY, USA, 1993. ACM Press.

[RRR96] P. Rao, C. R. Ramakrishnan, and I. V. Ramakrishnan. A thread in time

saves tabling time. In Joint International Conference and Symposium

on Logic Programming. MIT Press, 1996.

[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A.

Smolka, T. W. Swift, and D. S. Warren. Efficient model checking using

tabled resolution. In Computer Aided Verification. Springer-Verlag,

July 1997.

[RRS+95] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. War-

ren. Efficient tabling mechanisms for logic programs. In International

Conference on Logic Programming, pages 697–711, 1995.

[RRW06] C. R. Ramakrishnan, I. V. Ramakrishnan, and D. S. Warren. De-

ductive spreadsheets using tabled logic programming. In International

Conference on Logic Programming. Springer, 2006. To Appear.

[RSC00] R. Rocha, F. Silva, and V. Santos Costa. YapTab: A Tabling Engine

Designed to Support Parallelism. In Workshop on Tabling in Parsing

and Deduction, 2000.

157

[RSS+97] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB:

A system for efficiently computing WFS. In Logic Programming and

Non-monotonic Reasoning, pages 431–441, 1997.

[RTD83] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-

dependent analysis for language-based editors. ACM Transaction of

Programming Languages and Systems, 5(3):449–477, 1983.

[SBS95] G. Swamy, R. K. Brayton, and V. Singhal. Incremental methods for

FSM traversal. In Intl. Conference on Computer Design (ICCD). IEEE

Computer Society, 1995.

[SdS99] R.R. Seljee and H.C.M. de Swart. Three types of redundancy in in-

tegrity checking; an optimal solution. Journal of Data and Knowledge

Engineering, 30:135–151, 1999.

[SFA00] Z. Su, M. Fahndrich, and A. Aiken. Projection merging: Reducing

redundancies in inclusion constraint graphs. In ACM Conference on

Principles of Programming Languages, pages 81–95. ACM Press, 2000.

[Sha81] M. Sharir. A strong connectivity algorithm and its application in data

flow analysis. Computer and Mathematics with Applications, 7(1):67–

72, 1981.

[SJ96] M. Staudt and M. Jarke. Incremental maintenance of externally ma-

terialized views. In VLDB - Very Large Databases, pages 75–86, 1996.

[SR03] D. Saha and C. R. Ramakrishnan. Incremental evaluation of tabled

logic programs. In International Conference on Logic Programming,

volume 2916 of LNCS, pages 389–406, 2003.

[SR05] D. Saha and C. R. Ramakrishnan. Incremental and demand-driven

points-to analysis using logic programming. In ACM Conference on

Principles and Practice of Declarative Programming. ACM Press, 2005.

[SR06] D. Saha and C. R. Ramakrishnan. A local algorithm for incremental

evaluation of logic programs. In International Conference on Logic

158

Programming, volume 4079 of LNCS, pages 56–71, Seattle, USA, Aug

2006. Springer. http://www.lmc.cs.sunysb.edu/ dsaha/local/.

[SS94] O. V. Sokolsky and S. A. Smolka. Incremental model checking in the

modal mu-calculus. In Computer Aided Verification, volume 818 of

LNCS, pages 351–363, 1994.

[SSS04] B. Sarna-Starosta and S. D. Stoller. Policy analysis for security-

enhanced linux. In Proceedings of the 2004 Workshop on Issues in

the Theory of Security (WITS), pages 1–12, April 2004. Available at

http://www.cs.sunysb.edu/˜stoller/WITS2004.html.

[Ste96] B. Steensgaard. Points-to analysis in almost linear time. In ACM Con-

ference on Principles of Programming Languages, pages 32–41. ACM

Press, 1996.

[Swa96] G. Swamy. Incremental Methods for Formal Verification and Logic

Synthesis. PhD thesis, University of California at Berkeley, 1996.

[Swi99] Terrance Swift. Tabling for non-monotonic programming. Annals of

Mathematics and Artificial Intelligence, 25(3-4):201–240, 1999.

[TS86] H. Tamaki and T. Sato. OLDT resolution with tabulation. In Inter-

national Conference on Logic Programming, pages 84–98, 1986.

[Ull89] J.D. Ullman. Principles of Database and Knowledge-base Systems, Vol-

ume II. Computer Science Press, 1989.

[UO92] T. Urṕı and A. Olivé. A method for change computation in deductive

databases. In VLDB - Very Large Databases, pages 225–237, 1992.

[WJ88] J. A. Walz and G. F. Johnson. Incremental evaluation for a general

class of circular attribute grammars. In ACM Conference on Program-

ming Language Design and Implementation, pages 209–221, New York,

NY, USA, 1988. ACM Press.

[WL04] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer

alias analysis using binary decision diagrams. In ACM Conference on

159

Programming Language Design and Implementation, pages 131–144.

ACM Press, 2004.

[XSB] XSB. The XSB logic programming system. Available at http://xsb.

sourceforge.net.

[YK00] G. Yang and M. Kifer. FLORA: Implementing an efficient DOOD

system using a tabling logic engine. In International Conference on

Computational Logic, volume 1861 of LNCS, pages 1078+, 2000.

[YRL99] J. Yur, B. G. Ryder, and W. Landi. An incremental flow- and context-

sensitive pointer aliasing analysis. In International Conference on Soft-

ware Engineering, pages 442–451, 1999.

[YRLS97] J. Yur, B. G. Ryder, W. Landi, and P. Stocks. Incremental analysis

of side effects for C software system. In International Conference on

Software Engineering, pages 422–432, 1997.

[ZSYY01] N. Zhou, Y. Shen, L. Yuan, and J. You. Implementation of a linear

tabling mechanism. Journal of Functional and Logic Programming,

2001(10), October 2001.

