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ABSTRACT
In wireless ad hoc networks, routing requires cooperation
of nodes. Since nodes often belong to different users, it
is highly important to provide incentives for them to co-
operate. However, most existing studies of the incentive-
compatible routing problem focus on individual nodes’ in-
centives, assuming that no subset of them would collude.
Clearly, this assumption is not always valid. In this pa-
per, we present a systematic study of collusion resistance in
incentive-compatible routing schemes. In particular, we con-
sider two standard solution concepts for collusion resistance
in game theory, namely Group Strategyproofness and Strong
Nash Equilibrium. We show that achieving Group Strate-
gyproofness is impossible while achieving Strong Nash Equi-
librium is possible. More specifically, we design a scheme
that is guaranteed to converge to a Strong Nash Equilib-
rium. In addition, we give a cryptographic method that
prevents profit transfer between colluding nodes, as long as
they do not fully trust each other unconditionally. This
method makes our scheme widely applicable in practice. Ex-
periments show that our solution is collusion-resistant and
has good performance.
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1. INTRODUCTION
With the increasing popularity of portable devices, wire-

less ad-hoc networks have been widely used to achieve better
connectivity at places where an infrastructure is not immedi-
ately available or cannot be directly used. The functioning
of a wireless ad hoc network depends on the cooperation
of the nodes in this network. For example, if we want to
route packets through the lowest-cost path, then we need
the information from each node about its cost for forward-
ing packets. In civilian ad hoc networks, nodes often belong
to different nodes and have their own interests; they may
not want to behave cooperatively. Consequently, it is highly
important to provide incentives for nodes to cooperate.

The problem of incentive-compatible routing has received
much attention [9, 25–27, 29]. Nevertheless, most existing
solutions focus on the economic incentives of each individ-
ual node, assuming that no subset of nodes would collude.
In many practical scenarios, this assumption is not always
valid. Therefore, it is crucial to study how to achieve collu-
sion resistance in incentive-compatible routing.

An elegant result on collusion resistance was obtained by
Wang and Li in [26]. They showed that strategyproofness
cannot be achieved when profit can be transferred between
colluding nodes. While this result is elegant and crucial,
there are fundamental questions about collusion remaining
unanswered. For example, in classic game theory, there
are standard solution concepts for collusion resistance, like
Group Strategyproofness and Strong Nash Equilibrium. Can
these concepts be achieved in the routing of wireless ad hoc
networks? These standard solution concepts are applicable
in practice if there is no profit transfer between colluding
nodes. Can we make sure that there is no such profit trans-
fer? Is there a method to prevent such profit transfer? The
objective of this paper is to present a systematic study of
collusion resistance to address the above questions.

The major contributions of this paper are as follows:

• First, we show that the standard solution concept of
Group Strategyproofness cannot be achieved in ad hoc
networks. We prove this result without assuming that
profit can be transferred between colluding nodes. This
result indicates that we have to seek collusion resis-
tance at a different level.

• Second, we show that the standard solution concept
of Strong Nash Equilibrium can be achieved in ad hoc
networks. In fact, we design a scheme in which all
Nash Equilibria are Strong Nash Equilibria. There-
fore, regardless of which Nash Equilibrium the system
converges to, nodes cannot benefit from collusion.



• Third, we show that we can prevent profit transfer
between colluding nodes, as long as they do not fully
trust each other unconditionally.1 Thus, the scheme
we design to achieve Strong Nash Equilibrium is very
practical. In particular, we show a method that makes
it impossible for each node to convince other nodes
about what action it has taken. Consequently, other
nodes are not willing to transfer profit to this node in
fear that this node may be cheating them.

• Finally, we evaluate our solution using extensive ex-
periments. Simulations on randomly generated net-
works and on a snapshot network demonstrate that
our scheme is resistant to collusion. Measurements of
the overheads of our solution show that it is very effi-
cient.

The rest of the paper is organized as follows. Section 2
presents the technical preliminaries. The impossibility of
achieving Group Strategyproofness is proved in Section 3
and the scheme to achieve Strong Nash Equilibrium is given
in Section 4. Section 5 is dedicated to our method to prevent
profit transfer between colluding nodes. Section 6 gives our
evaluation results. In Section 7, we discuss related work.
We conclude the paper in Section 8.

2. TECHNICAL PRELIMINARIES
We use a graph G = (V, E) to model a wireless ad hoc

network, where V is the set of nodes, and E ⊆ V × V is the
set of edges. We assume that G is bi-connected.

For each node vi ∈ V , there is a cost ci ∈ R
+ for sending a

unit of data to its neighbors. We adopt the assumption [25]
that a node cannot use different power levels to send data to
different neighbors, so that the cost is fixed for each node.
Further, each node vi knows the cost ci.

We model the routing procedure as a strategic game, which
we call the routing game. In a (unicast) routing game, sup-
pose that the source node is S and the destination node is D.
Then the player set of the unicast routing game is V −{S, D}.
In this game, each player node vi chooses an action based
on its own cost: ai = Ai(ci). Denote by a the profile of all
players’ actions: a = (ai)vi∈V −{S,D}. This action profile de-
cides a path for forwarding data from S to D. Each node vi

in this path receives a payment pi(a) from S for each unit of
forwarded data. In addition, regardless of whether node vi

is in the path or not, it can also receive a one-time payment
p′

i(a) from S for the entire session. (Note that we do not
study when and how payments pi(a) and p′

i(a) should be
collected in this paper. Techniques from [29] can be useful
for those issues.) The utility of node vi is defined as the
total payment node vi receives minus its cost for forwarding
data (if any). Formally, node vi’s utility is as follows:

ui(a) = n · σi(a) · (pi(a) − ci) + p′
i(a).

1Note that the type of collusion we consider here is different
from the type of collusion studied in cryptography, where
all colluding parties are controlled by a single adversary and
thus trust each other unconditionally. In the scenarios we
consider, each colluding node is independent and actually
has its own interest; the reason it colludes with other nodes
is that it wants to maximize its own utility in this way.
Therefore, in our scenarios, colluding nodes do not fully trust
each other unconditionally.

In the above equation, n ∈ N
+ is the number of units of data

sent from S to D; σi(a) = 1 if node vi is in the selected path
for forwarding the data; σi(a) = 0 if node vi is not. Clearly,
the nodes {vi|σi(a) = 1} should form the path from S to D.

Denote by aC the profile of actions for a subset C of play-
ers: aC = (ai)vi∈C . Denote by C the complement set of C:
C = V − {S, D} − C. We have the standard solution con-
cepts of Group Strategyproof Equilibrium and Strong Nash
Equilibrium as follows.

Definition 1. (Group Strategyproof Equilibrium [14,20])
An action profile a∗ is a Group Strategyproof Equilibrium if
for all nonempty subset C of player nodes, for all cost profile
c = (ci)vi∈V −{S,D}, for all action profile a, for all n ∈ N

+,
either for all vi ∈ C,

ui(a
∗
C , aC) = ui(aC ; aC);

or there exists a player node vi ∈ C such that,

ui(a
∗
C , aC) > ui(aC ; aC).

Definition 2. (Strong Nash Equilibrium [19]) An action
profile a∗ is a Strong Nash Equilibrium if for all nonempty
subset C of player nodes, for all cost profile c = (ci)vi∈V −{S,D},

for all profile aC of actions in the subset C, for all n ∈ N
+,

there exists a player node vi ∈ C such that,

ui(a
∗
C , a∗

C
) ≥ ui(aC ; a∗

C
).

In reality, any practical solution to the routing game should
satisfy additional requirements. For example, we should
have social efficiency, which means that the total cost of
the selected path must be minimum. Also, each player node
should have individual rationality, which means that its util-
ity should be always greater than or equal to 0, since other-
wise the player node would simply choose to remain out of
the game. We combine these two requirements to define the
admissibility of a solution.

Definition 3. (Admissibility) In a unicast routing game,
suppose that a∗ is a Group Strategyproof Equilibrium or a
Strong Nash Equilibrium. We say a∗ is admissible if the
following two requirements are met for all cost profile c =
(ci)vi∈V −{S,D}:

• The nodes {vi|σi(a
∗) = 1} form the lowest-cost path

from S to D.

• For all n ∈ N
+, for all player node vi, ui(a

∗) ≥ 0.

Using the above definitions, now we can formally state the
main questions addressed in Sections 3 and 4: As the sys-
tem designer, we have the freedom of choosing the functions
pi(), p′

i(), and σi()—the choice we make is called a scheme.
Is there a way to design a scheme such that the system con-
verges to an admissible Group Strategyproof Equilibrium or
an admissible Strong Nash Equilibrium? Our answer is that
the former is impossible, while the latter can be achieved.

3. IMPOSSIBILITY OF GROUP STRATE-
GYPROOFNESS

In this section, we show that Group Strategyproofness
cannot be achieved since it is contradictory to our require-
ment of admissibility.



Theorem 4. In any unicast routing game, if there is only
one lowest-cost path from S to D, then there does not exist
any admissible Group Strategyproof Equilibrium.

Proof. Clearly, any Group Strategyproof Equilibrium is
also a Strategyproof Equilibrium. So, for an arbitrary uni-
cast routing game, we show that any Strategyproof Equilib-
rium a∗ is not Group Strategyproof if it is admissible.

Denote by LCP (S, D, c) the lowest-cost path from node
S to node D when the cost profile is c. We construct a
player subset C = {i0} ∪ LCP (S, D, c), where vi0 is a node

in LCP (S, D, c) and LCP (S, D, c) is the set of nodes out of
LCP (S, D, c). For all vi ∈ C, we define

c′i = ci + pi0(a∗
c , a

∗
C

) + p′
i0

(a∗
c , a

∗
C

) + 1. (1)

Before we prove our theorem, we first prove the following
lemma:

Lemma 5. When c is the cost profile, for all vi ∈ C,

σi(a
∗
C , a∗

C
) = σi(aC , a∗

C
),

where

aC = (a∗
i (c

′
i))vi∈C . (2)

Proof. Since a∗ is admissible, when c is the cost profile,
clearly we have

σi(a
∗
C , a∗

C) = 1 ⇔ vi ∈ LCP (S, D, c).

On the other hand, considering a different scenario in which
(c′C , cC) is the cost profile, from (2) we can easily get that

σi(aC , a∗
C) = 1 ⇔ vi ∈ LCP (S, D, (c′C , cC)).

Furthermore, from (1) we know that

LCP (S, D, c) = LCP (S, D, (c′C , cC)).

Combining the above three equations, we have

σi(a
∗
C , a∗

C
) = σi(aC , a∗

C
).

Now we come back to the proof of our theorem. For all
vi ∈ C, i 6= i0, clearly σi(a

∗
C , a∗

C
) = 0. By Lemma 5, this

implies that

σi(aC , a∗
C
) = 0. (3)

Next, we combine (3) with (2). Since a∗ is Strategyproof,
considering the scenario in which (c′C , cC) is the cost profile,
we get:2

p′
i(a

∗
C , a∗

C) ≤ p′
i(aC , a∗

C). (4)

When we put (3) and (4) together, we obtain that, when c
is the cost profile,

ui(a
∗
C , a∗

C
) ≤ ui(aC , a∗

C
). (5)

Finally, we consider vi0 . From (1) we have

npi0(a
∗
C , a∗

C
) + p′

i0
(a∗

C , a∗
C

) < nc′i0 . (6)

2In fact, if we consider instead the scenario in which c is
the cost profile, we can get the inequality in the other di-
rection: p′

i(a
∗
C , a∗

C
) ≥ p′

i(aC , a∗
C
). Hence, actually we have

p′
i(a

∗
C , a∗

C
) = p′

i(aC , a∗
C
). However, to prove Lemma 5 it

suffices to have (4).

From (2), since a∗ is admissible, considering the scenario in
which (c′C , cC) is the cost profile, we have

nc′i0 ≤ npi0(aC , a∗
C
) + p′

i0
(aC , a∗

C
). (7)

We put (6) and (7) together and obtain that

n(pi0(a
∗
C , a∗

C
) − ci0) + p′

i0
(a∗

C , a∗
C
)

< n(pi0(aC , a∗
C

) − ci0) + p′
i0

(aC , a∗
C
).

(8)

Since σi0(a∗
C , a∗

C
) = 1, using (8) and Lemma 5 we get that,

when c is the cost profile,

ui0(a∗
C , a∗

C
) < ui0(aC , a∗

C
). (9)

Equations (5) and (9) together imply that a∗ is not Group
Strategyproof.

4. SCHEME ACHIEVING STRONG NASH
EQUILIBRIUM

In Section 3, we have shown that in general we cannot
guarantee the existence of admissible Group Strategyproof
Equilibrium in the routing game, and thus clearly we cannot
hope the system to converge to an admissible Group Strat-
egyproof Equilibrium. Fortunately, we can design a scheme
such that the system converges to an admissible Strong Nash
Equilibrium.

The key idea of our design is discretization of costs. In
practice, the cost ci of each node has a finite precision. So,
without loss of generality, we assume that there is a very
small real number ε ∈ R

+ such that for all player node vi,
ci is a multiple of ε. Naturally, whenever a node claims its
cost, we require that the claimed cost is also a multiple of
ε. (Nevertheless, in our scheme, the payment to each node
is not necessary a multiple of ε—this is a very important
feature of our scheme.) Based on this idea, we design a
scheme in which each node makes a claim about its cost for
forwarding a unit of data. If a node is in the lowest-cost
path, our scheme gives it incentives to maximize its claimed
cost (to the extent that it does not fall out of the lowest-cost
path); if a node is out of the lowest-cost path, our scheme
gives it incentives to minimize its claimed cost (to the extent
that it does not fall into the lowest-cost path). Consequently,
whenever the system converges to a Nash Equilibrium, each
node in the lowest-cost path has a claimed cost equal to
or slightly higher than its real cost, and each node out of
the lowest-cost path has a claimed cost equal to or slightly
lower than its real cost. Interestingly, we can show that such
a Nash Equilibrium is actually a Strong Nash Equilibrium.

Specifically, in our scheme, the payment pi for each unit
of data is equal to the claimed cost of node vi. Therefore,
each node in the lowest-cost path has incentives to increase
its claimed cost, as long as it remains in the lowest-cost
path after the increase. In contrast, the one-time payment
p′

i decreases in the claimed cost of node vi. Therefore, each
node out of the lowest-cost path has incentives to decrease
its claimed cost, as long as it remains out of the lowest-cost
path after the decrease. Of course, nodes in the lowest-cost
path also receive one-time payments. We have to make sure
that changes of one-time payments do not influence these
nodes. To achieve this goal, we make all one-time payments
smaller than ε. Hence, for all node vi in the lowest-cost path,
the total payment always increases whenever pi increases
(because the increase of pi is at least ε and the decrease of
p′

i is less than ε).



We emphasize that the above are only some intuitive thoughts
behind our design, which are not completely precise. For
precise analysis, see the theorems, lemmas, and proofs we
present below.

Suppose S wants to send n units of data to D.
• Each player node vi sends ai ∈ R

+ ∪ {0} to S,
which is its claimed cost. (So, each player’s action
is its claimed cost.)

• S chooses the lowest-cost path (LCP) to D in the
graph with the claimed costs. If there is a tie,
S breaks the tie according to the lexicographical
order. This is the path for forwarding the data
from S to D. Each node vi in this selected path
is paid pi(a) = ai for each unit of data. (Recall
that LCP () denotes “the lowest-cost path”. Here-
after, whenever there are more than one lowest-
cost paths, LCP () always refers to the one se-
lected using the above tie-breaking rule.)

• In addition, each node vi in the selected path re-
ceives a one-time payment:

p′
i(a) =

ε

1 + maxvi∈LCP (S,D,(a′
i
,a

{i}
)) a′

i

.

In the above, maxvi∈LCP (S,D,(a′
i
,a

{i}
)) a′

i is the

largest cost vi can claim, when each other node
vj still claims aj , such that vi remains in the se-
lected path. If node vi is not in the selected path,
it receives a one-time payment:

p′
i(a) =

ε

1 + ai

.

Figure 1: Scheme for Achieving Strong Nash Equi-
librium.

Fig. 1 summarizes the details of our scheme. Given this
detailed description of our scheme, now we can present the
formal analysis of our scheme. We have two major results:
(1) there exists a Nash Equilibrium; (2) all Nash Equilib-
ria are admissible Strong Nash Equilibria. We start with
proving the first result.

Theorem 6. If the above scheme is used, then there ex-
ists a Nash equilibrium.

Proof. We construct an action profile a∗ as follows. Ini-
tially, we set a∗

i = ci for each vi. Then, for each player node
vi 6∈ LCP (S, D, c), if a∗

i > 0 and LCP (S, D, (a∗
i −ε, a∗

{i}
)) =

LCP (S, D, a∗), we decrease a∗
i by ε; otherwise, keep the

value of a∗
i . For each player node vi ∈ LCP (S, D, c), if

LCP (S, D, (a∗
i + ε, a∗

{i}
)) = LCP (S, D, a∗), we increase a∗

i

by ε; otherwise, keep the value of a∗
i .

We repeat the above process until it does not make any
change to any a∗

i . When the iteration stops, we get the
action profile a∗ we want.

We note that the above process will stop in a finite number
of steps. Next, we show that a∗ is a Nash equilibrium.

For each node vi, we need to show that, for all ai, ui(a
∗
i , a∗

{i}
)

≥ ui(ai, a
∗
{i}

). We distinguish two cases:

Case A: vi 6∈ LCP (S, D, c) = LCP (S,D, a∗). Then

ui(a
∗
i , a

∗
{i}

) =
ε

1 + a∗
i

.

If ai > a∗
i , clearly vi 6∈ LCP (ai, a

∗
{i}

) and

ui(ai, a
∗
{i}

) =
ε

1 + ai

<
ε

1 + a∗
i

= ui(a
∗
i , a

∗
{i}

).

If ai < a∗
i (which is equivalent to ai ≤ a∗

i − ε), by the above
stopping criterion we know that vi ∈ LCP (ai, a

∗
{i}

). Thus,

ui(ai, a
∗
{i}

)

= n · σi(ai, a
∗

{i}
) · (pi(ai, a

∗

{i}
) − ci) + p′

i(ai, a
∗

{i}
)

= n · (ai − ci) +
ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

≤ n · (ai − ci) + ε

≤ n · (a∗
i − ε − ci) + ε

≤ −nε + ε

≤ 0 < ui(a
∗
i , a

∗
{i}

).

Case B: vi ∈ LCP (S, D, c) = LCP (S, D, a∗). Then,

ui(a
∗
i , a∗

{i}
) = n(a∗

i − ci) +
ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

If ai < a∗
i (which is, again, equivalent to ai ≤ a∗

i −ε), clearly
vi ∈ LCP (ai, a

∗
{i}

) and

ui(ai, a
∗
{i}

)

= n · σi(ai, a
∗
{i}

) · (pi(ai, a
∗
{i}

) − ci) + p′
i(ai, a

∗
{i}

)

= n(ai − ci) +
ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

≤ n(ai − ci) + ε

≤ n(a∗
i − ε − ci) + ε

≤ n(a∗
i − ci) ≤ ui(a

∗
i , a

∗
{i}

).

If ai > a∗
i , by the stopping criterion we know that vi 6∈

LCP (S, D, (ai, a
∗
{i}

)). Thus,

ui(ai, a
∗
{i}

) = p′
i(ai, a

∗
{i}

)

=
ε

1 + ai

<
ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

≤ ui(a
∗
i , a∗

{i}
).

In the above, the first inequality follows from the fact that
vi 6∈ LCP (S, D, (ai, a

∗
{i}

)) and thus

ai > max
vi∈LCP (S,D,(a′

i
,a∗

{i}
))

a′
i.

Before we go to our proof that all Nash Equilibria are
admissible Strong Nash Equilibria, we need to establish two
technical lemmas.



Lemma 7. If the above scheme is used, then for each Nash
equilibrium a∗, LCP (S, D, c) = LCP (S, D, a∗). That is, the
lowest-cost path is always selected in all Nash Equilibria.

Proof. We prove this lemma by contradiction. Suppose
that there exists a Nash equilibrium a∗ such that LCP (S, D, c)
6= LCP (S, D, a∗). We distinguish two cases.

Case A: There exists vi such that vi ∈ LCP (S, D, c), vi 6∈
LCP (S, D, a∗), a∗

i > ci. Then we consider vi’s utility when
it claims the real cost ci and all other nodes still remain with
their equilibrium actions. If vi ∈ LCP (S, D, (ci, a

∗
{i}

)),

ui(ci, a
∗
{i}

)

= n(ci − ci) +
ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

>
ε

1 + a∗
i

= ui(a
∗
i , a∗

{i}
).

In the above, the inequality is due to fact that vi 6∈ LCP (S, D, a∗)
and thus a∗

i > maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i. This is con-

tradictory to the fact that a∗ is a Nash equilibrium. If
vi 6∈ LCP (S, D, (ci, a

∗
{i}

)), we have

ui(ci, a
∗
{i}

) =
ε

1 + ci

>
ε

1 + a∗
i

= ui(a
∗
i , a∗

{i}
).

Again, this is contradictory to the fact that a∗ is a Nash
equilibrium.

Case B: For all vi such that vi ∈ LCP (S, D, c), vi 6∈
LCP (S, D, a∗), we have a∗

i ≤ ci. Assume that when LCP (S, D, c)
and LCP (S, D, a∗) have the same claimed cost, the tie break-
ing rule chooses LCP (S, D, a∗) over LCP (S, D, c). (If the
tie breaking rule chooses LCP (S, D, c) over LCP (S, D, a∗),
we have a similar proof, which we skip to save space.) Then
we know that

�

vi∈LCP (S,D,a∗)

a∗
i ≤

�

vi∈LCP (S,D,c)

a∗
i

=
�

vi∈LCP (S,D,c)∧vi 6∈LCP (S,D,a∗)

a∗
i

+
�

vi∈LCP (S,D,c)∧vi∈LCP (S,D,a∗)

a∗
i

≤
�

vi∈LCP (S,D,c)∧vi 6∈LCP (S,D,a∗)

ci

+
�

vi∈LCP (S,D,c)∧vi∈LCP (S,D,a∗)

a∗
i

≤
�

vi 6∈LCP (S,D,c)∧vi∈LCP (S,D,a∗)

ci

+
�

vi∈LCP (S,D,c)∧vi∈LCP (S,D,a∗)

a∗
i .

Using the above inequality, we can show that, there exists
vi such that vi 6∈ LCP (S, D, c), vi ∈ LCP (S, D, a∗), a∗

i < ci

(see below). Therefore,

ui(a
∗
i , a

∗
{i}

) = n(a∗
i − ci) +

ε

1 + maxvi∈LCP (a′
i
a∗
{i}

) a′
i

< n(a∗
i − ci) + ε

≤ −nε + ε

≤ 0

≤ ui(ci, a
∗
{i}

),

which is contradictory to that a∗ is a Nash equilibrium.
Finally, we give a proof that there exists vi such that

vi 6∈ LCP (S, D, c), vi ∈ LCP (S, D, a∗), a∗
i < ci. Suppose

that this is not true. Then, using (10), we get that, for all
vi such that vi 6∈ LCP (S, D, c) and vi ∈ LCP (S, D, a∗),
a∗

i = ci. Since
�

vi 6∈LCP (S,D,c)∧vi∈LCP (S,D,a∗)

a∗
i

≤
�

vi∈LCP (S,D,c)∧vi 6∈LCP (S,D,a∗)

a∗
i

(10)

we get that
�

vi 6∈LCP (S,D,c)∧vi∈LCP (S,D,a∗)

ci

≤
�

vi∈LCP (S,D,c)∧vi 6∈LCP (S,D,a∗)

a∗
i

≤
�

vi∈LCP (S,D,c)∧vi 6∈LCP (S,D,a∗)

ci,

which means that the real cost of LCP (S, D, a∗) is not more
than that of LCP (S, D, c). This is impossible because even
when their costs are equal, the tie breaking rule should not
choose LCP (S, D, c) as the lowest-cost path.

Lemma 8. If the above scheme is used, then for all Nash
Equilibrium a∗, we have that a∗

i ≥ ci ⇔ vi ∈ LCP (S, D, c)
and that a∗

i ≤ ci ⇔ vi 6∈ LCP (S, D, c).

Proof. We only need to show that vi ∈ LCP (S, D, c) ⇒
a∗

i ≥ ci and that vi 6∈ LCP (S, D, c) ⇒ a∗
i ≥ ci, which are

equivalent to this lemma.
First, we prove vi ∈ LCP (S, D, c) ⇒ a∗

i ≥ ci by con-
tradiction. Suppose that there exists vi ∈ LCP (S, D, c),
such that a∗

i < ci. Since LCP (S, D, c) = LCP (S, D, a∗) (by
Lemma 7), vi’s equilibrium utility is

ui(a
∗
i , a∗

{i}
)

= n(a∗
i − ci) +

ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

≤ −nε +
ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

< −nε + ε

≤ 0

which indicates that vi can increase its utility by declaring a
cost that brings itself out of the LCP. This is contradictory
to the fact that a∗ is a Nash equilibrium.

Next, we prove vi 6∈ LCP (S, D, c) ⇒ a∗
i ≤ ci, also by

contradiction. Suppose that there exists vi 6∈ LCP (S, D, c),
such that a∗

i > ci. Since LCP (S, D, c) = LCP (S, D, a∗) (by



Lemma 7), vi has an equilibrium utility

ui(a
∗
i , a

∗
{i}

) =
ε

1 + a∗
i

.

We claim that vi can always increase its utility by declaring
its real cost ci: If vi ∈ LCP (S, D, (ci, a

∗
{i}

)), then

ui(ci, a
∗
{i}

))

= n(ci − ci) +
ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

>
ε

1 + a∗
i

= ui(a
∗
i , a

∗

{i}
).

If vi 6∈ LCP (S, D, (ci, a
∗
{i}

)), then

ui(ci, a
∗
{i}

)) =
ε

1 + ci

>
ε

1 + a∗
i

= ui(a
∗
i , a∗

{i}
).

This completes the proof.

Now we are ready to show that all Nash Equilibria are
admissible Strong Nash Equilibria.

Theorem 9. If the above scheme is used, then all Nash
Equilibria are admissible Strong Nash Equilibria.

Proof. (Sketch) It is clear from Lemma 7 and Lemma 8
that all Nash Equilibria are admissible. Then we only need
to prove that all Nash Equilibria are strong. We prove it by
contradiction.

Suppose that there exists a Nash Equilibrium a∗ that is
not strong. Then there exists C ⊆ V and an action profile
aC of C, such that every node in C can increase its utility
when they use aC .

First, we show by contradiction that for all node vi, if
vi ∈ LCP (S, D, (a∗

C , a∗
C

)), then vi ∈ LCP (S, D, (aC , a∗
C)).

Suppose that there exists vi, vi ∈ LCP (S, D, (a∗
C , a∗

C
)), vi 6∈

LCP (S, D, (aC , a∗
C
)). Assume that the tie breaking rule

prefers LCP (S, D, (a∗
C , a∗

C
)) to LCP (S, D, (aC , a∗

C
)) when

their claimed costs are equal. (We have a similar proof when
the tie breaking rule prefers LCP (S, D, (ai, a

∗
C
)).) Then, we

have �

vi∈LCP (S,D,(aC,a∗
C

)),vi∈C

ai

+

�

vi∈LCP (S,D,(aC,a∗
C

)),vi 6∈C

a∗
i

<

�

vi∈LCP (S,D,(a∗
C

,a∗
C

)),vi∈C

ai

+

�

vi∈LCP (S,D,(a∗
C

,a∗
C

)),vi 6∈C

a∗
i

⇒

�

vi∈LCP (S,D,(aC,a∗
C

)),vi 6∈LCP (S,D,(a∗
C

,a∗
C

)),vi∈C

ai

+

�

vi∈LCP (S,D,(aC ,a∗
C

)),vi 6∈LCP (S,D,(a∗
C

,a∗
C

)),vi 6∈C

a∗
i

<

�

vi∈LCP (S,D,(a∗
C

,a∗
C

)),vi 6∈LCP (S,D,(aC ,a∗
C

)),vi∈C

ai

+

�

vi∈LCP (S,D,(a∗
C

,a∗
C

)),vi 6∈LCP (S,D,(aC,a∗
C

)),vi 6∈C

a∗
i .

Since �

vi∈LCP (S,D,(aC,a∗
C

)),vi 6∈LCP (S,D,(a∗
C

,a∗
C

))

a∗
i

≥

�

vi∈LCP (S,D,(a∗
C

,a∗
C

)),vi 6∈LCP (S,D,(aC,a∗
C

))

a∗
i ,

we have
�

vi∈LCP (S,D,(aC,a∗
C

)),vi 6∈LCP (S,D,(a∗
C

,a∗
C

)),vi∈C

(ai − a∗
i )

<
�

vi∈LCP (S,D,(a∗
C

,a∗
C

)),vi 6∈LCP (S,D,(aC,a∗
C

)),vi∈C

(ai − a∗
i ).

(11)

We can easily show that, for all vi ∈ LCP (S, D, (aC , a∗
C

)),
vi 6∈ LCP (S, D, (a∗

C , a∗
C
)), vi ∈ C, ai − a∗

i ≥ 0: Otherwise,
ai − a∗

i < 0, which implies that

ui(aC , a∗
C

)

= n(ai − ci) +
ε

1 + maxvi∈LCP (S,D,(a′
i
,aC−{i},a∗

C
)) a′

i

< n(ai − ci) + ε

≤ n(a∗
i − ε − ci) + ε

≤ −nε + ε

≤ 0

≤ ui(a
∗
C , a∗

C
).

This is contradictory to our assumption. Similarly, we can
easily show that, for all vi 6∈ LCP (S, D, (aC , a∗

C
)), vi ∈

LCP (S, D, (a∗
C , a∗

C
)), vi ∈ C, ai − a∗

i ≤ 0.
Combining the above two results with (11), we get a con-

tradiction. Therefore, we must have vi ∈ LCP (S, D, (a∗
C , a∗

C
))

⇒ vi ∈ LCP (S, D, (aC , a∗
C)). This actually means

LCP (S, D, (a∗
C , a∗

C
)) = LCP (S, D, (aC , a∗

C)). (12)

Using (12), from ∀vi ∈ C, ui(a
∗
C , a∗

C
) < ui(aC , a∗

C
) we can

easily get that

vi ∈ C ∧ vi ∈ LCP (a∗
C , a∗

C
) ⇔ a∗

i < ai;

vi ∈ C ∧ vi 6∈ LCP (a∗
C , a∗

C) ⇔ a∗
i > ai.

From the above result, it is not hard to get that LCP (a∗
C , a∗

C
)

= LCP (a∗
i , a∗

{i}
). So, if vi ∈ LCP (a∗

i , a∗
{i}

),

ui(a
∗
i , a∗

{i}
)

= n(a∗
i − ci) +

ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

< n(ai − ci) +
ε

1 + maxvi∈LCP (S,D,(a′
i
,a∗

{i}
)) a′

i

= ui(ai, a
∗
{i}

),

which is contradictory to that a∗ is a Nash equilibrium. If
vi 6∈ LCP (a∗

i , a
∗
{i}

),

ui(a
∗
i , a

∗
{i}

) =
ε

1 + a∗
i

<
ε

1 + ai

= ui(ai, a
∗
{i}

),

which is also contradictory to that a∗ is a Nash equilib-
rium.



5. PREVENTING PROFIT TRANSFER BE-
TWEEN COLLUDING NODES

As we have mentioned, the standard solution concepts of
Group Strategyproofness and Strong Nash Equilibrium are
applicable if profit cannot be transferred between colluding
nodes. In many practical scenarios, the assumption of no
profit transfer is not immediately valid. To make our results
widely applicable in practice, we provide a method to pre-
vent colluding nodes from transferring profit to each other,
as long as they do not fully trust each other uncondition-
ally. (Note that in civilian applications, nodes typically do
not trust each other unconditionally, unless they belong to
the same user.)

The main idea of our method is that we can make it im-
possible for colluding nodes to convince each other that they
have taken the actions required by the collusion. For exam-
ple, imagine that nodes v1 and v2 are trying to collude. If
v1 takes action a1 and v2 takes action a2, then v1 has an
increases of 10 in its utility but v2 has a decrease of 5 in its
utility. So, v1 would like to transfer a profit of 7 to v2, such
that both of them benefit from the collusion. However, the
possibility of this profit transfer depends on that v2 can con-
vince v1 about its action. Our method makes it impossible
for v2 to convince v1 that it indeed takes action a2. When
v2 claims that it has taken the action a2, actually it might
have taken another action a′

2. In this case, v1’s utility has
only increased by 1 and v2’s utility has only decreased by 2.
If v1 trusts v2’s claim (of having taken action a2) and trans-
fers 7 to v2, then v1 actually loses 6 in utility while v2 gains
5. Therefore, when our method is used, v1 should not trust
v2’s claim and should not be willing to transfer profit to v2.
In this way, all colluding nodes become unwilling to trans-
fer profit, and the assumption of no profit transfer becomes
valid.3

To implement our idea and develop our method, we need
to consider how a node can convince other nodes about its
own action. There are two basic approaches: Either the
node convinces other nodes by showing messages it has sent,
or the node does so by showing messages it has received.
(Of course, it can also use a combination of the two basic
approaches.) Among the sent messages, the only one related
to its own action is its message to the source node S, which
contains its claimed cost. The node may attempt to convince
other nodes about its action by showing this message, but
we can easily defeat its attempt as follows: We allow each
node to update its claimed cost by sending an additional
message to the sender. Therefore, even if other nodes see
a (digitally signed) message with claimed cost, they still do
not know what is the claimed cost recognized by the source
node S, because they have no idea whether this node has
updated its claimed cost or not.

However, the other approach is harder to prevent. In par-
ticular, there is a message received by the node which con-
tains information about its own action—the payment mes-
sage from the source node S. Since the amount of payment is

3One may suggest that v1 should transfer 7 to v2 only after
the path and payments turn out to be those produced by
collusion. However, in this case, v1 can easily cheat v2, for
example, by taking action a′

1 such that, with (a′
1, a2), v1 gets

an increase of 9 in its utility but v2 gets a decrease of 4 in its
utility. Since (a′

1, a2) decides a different path and different
payments, v1 can decline to transfer anything to v2 when v2

takes action a2.

decided by the claimed cost, showing this payment message
to other nodes can indirectly prove the node’s claimed cost
that is recognized by the sender. To deal with this difficulty,
we develop a new cryptographic technique called restricted
verifier signature.4

When the source node S makes a payment to a player
node, it signs its payment using our restricted verifier sig-
nature. Unlike traditional digital signatures, this restricted
verifier signature can be verified only by the player node (i.e.,
the payee) and a central bank.5 The player node can verify
the signature to see that the payment is valid. When the
node brings this payment to the bank, the bank can also ver-
ify the signature before clearing the transaction. Neverthe-
less, our restricted verifier signature scheme guarantees that
the player node cannot use this signed payment to convince
other nodes about its own action, because other nodes have
no way to verify the signature—they would suspect that this
node might have forged the signature to cheat them. Below
we give the details of our restricted verifier signature scheme,
which is based on the well known Shnorr signature [23], and
then briefly analyze it.

5.1 The Scheme of Restricted Verifier Signa-
ture

Let P and Q be two large primes such that P = 2Q + 1.
Denote by Z

∗
P the multiplicative group mod P ; denote by

GQ the subgroup of quadratic residues. Clearly, |GQ| =
Q. Denote by ZQ the additive group mod Q. Let g be a
generator of GQ. The above parameters P , Q, and g are all
public.

Suppose that each node vi has a private key xi ∈ ZQ and
a public key yi = gxi . Assume that there is a central bank
with private key xB ∈ ZQ and public key yB = gxB .

Suppose that Sign() is a standard digital signing algorithm
and that Verify() is the corresponding verification algorithm.
Suppose that H() is a cryptographic hash function.

To sign a message m that can only be verified by vj and
the bank, node vi computes:

m1 = gr1 (mod P),

m2 = ym+r1

B (mod P),

m3 = Signxi
(m1, m2),

m4 = gr2yr3

j (mod P),

m5 = yr2

B (mod P),

m6 = r1 · H(m1, m2, m3, m4, m5) + r2 (mod Q),

where r1, r2, r3 are picked uniformly and independently from
ZQ. The signature is (m1, m2, m3, m4, m5, m6, r3).

To verify the above signature, node vj checks that

gm6yr3

j = m
H(m1,m2,m3,m4,m5)
1 · m4 (mod P), (13)

4Our restricted verifier signature is closely related to the well
known designated verifier signature and multiple designated
verifier signature [16], but is different. Designated verifier
signature schemes allow only one participant to verify the
signature. Multiple designated verifier signature schemes
allow more than one participants to verify the signature,
but they require that each such participant should be able
to simulate the signature, which is not the case with our
restricted verifier signature scheme.
5Note that using virtual currency requires the existence of
a central bank. Our method does not require the bank to
be online when a payment is made, although the bank is
needed when the payment is finally cleared.



ym6

B = (m2/ym
B )H(m1,m2,m3,m4,m5) · m5 (mod P), (14)

and that

Verifyyi
((m1, m2), m3) = Accept. (15)

When the bank needs to verify this signature, it only needs
to check (15) and that

m2 = ym
B · mxB

1 (mod P). (16)

5.2 Analysis
Now we analyze our restricted verifier signature scheme.

We prove four properties of this scheme. First, we show
that our scheme is correct in the sense that a valid signature
can always be verified by the node vj and the central bank.
Second, we show that any signature accepted by vj contains
a valid payment that will be honored by the bank. Third, we
show that the signature cannot be forged. Finally, we show
that any party other than vj and the bank cannot verify the
signature. These four properties make it possible for us to
prevent profit transfer.

Theorem 10. (Correctness of Signature) In the above sig-
nature scheme, a valid signature can always be verified by vj

and the bank.

Proof. It is easy to see that (15) and (16) hold. So we
only need to show (13) and (14):

gm6yr3

j = gr1·H(m1,m2,m3,m4,m5)+r2yr3

j

= (gr
1)

H(m1,m2,m3,m4,m5)gr2yr3

j

= m
H(m1,m2,m3,m4,m5)
1 · m4 (mod P);

ym6

B = y
r1·H(m1,m2,m3,m4,m5)+r2

B

= (yr1

B )H(m1,m2,m3,m4,m5)yr2

B

= (m2/ym
B )H(m1,m2,m3,m4,m5) · m5 (mod P).

Theorem 11. (Binding Property) In the random oracle
model, if node vj accepts m as a signature on message m,
then there exists r1 ∈ ZQ such that (m1, m2) = (gr1 , ym+r1

B ).

Proof. (Sketch) When node vj accepts m as a signature
on message m, clearly (13) and (14) hold. Note that H()
is a cryptographic hash function. Using the random oracle
model, we can assign random values as the output of this
hash function, and (13) and (14) should still hold. From
(13) we get

gm6,1yr3

j = mH1

1 · m4 (mod P), (17)

gm6,2yr3

j = mH2

1 · m4 (mod P), (18)

where H1, H2 are two random hash values, m6,1, m6,2 are
the corresponding values of m6. Combining (17) and (18),
we get

gm6,1−m6,2 = mH1−H2

1 (mod P).

Let r1 = (m6,1 − m6,2)/(H1 − H2). The above equation is
equivalent to m1 = gr1 . Similarly we can also get from (14):
m2 = ym+r1

B .

Theorem 12. (Unforgeability) An adversary knowing nei-
ther xi nor xj cannot forge a signature satisfying (13)(14)(15).

Theorem 13. (Restriction of Verifiability) From a valid
signature m on message m, for an arbitrary different mes-
sage m′ 6= m, node vj can compute a string m̃′ that is com-
putationally indistinguishable6 from a valid signature on m′

by any party other than the bank and vi.

Proof. Node vj can compute m̃′ as follows: define m̃′
1 =

m1, m̃′
2 = m2, m̃′

3 = m3, m̃′
4 = m4, m̃′

5 = m5. Then,
compute

m̃′
6 = m6 + (m − m′)H(m1, m2, m3, m4, m5) (mod Q);

r′3 = r3 + (m6 − m̃′
6)x

−1
j (mod Q).

The string m̃′ is defined as (m̃′
1, m̃

′
2, m̃

′
3, m̃

′
4, m̃

′
5, m̃

′
6, r

′
3).

6. EVALUATIONS
In Section 4, we have presented a scheme that guaran-

tees convergence to a Strong Nash Equilibrium. Using Glo-
MoSim, we evaluate this scheme on two networks. The first
is randomly generated and the second is based on a snapshot
of an urban area in New York City. For both networks we
demonstrate that our scheme is resistant to collusion. Fur-
thermore, to evaluate the efficiency of our entire solution, we
also measure the computational overhead of our restricted
verifier signature scheme, which is computationally the most
expensive part of our solution.

6.1 Evaluation on Random Wireless Network
We consider a random wireless network with 100 nodes

distributed in a terrain area of 3000 by 3000 meters. Nodes
use IEEE 802.11 (at 2Mbps) as the MAC layer protocol.
The radio range is set to 422.757 meters.
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Figure 2: Topology of the Random Generated Net-
work.

The randomly generated network topology is shown in
Figure 2. For clarity, we only include the labels of a few
nodes. A line between two nodes means that the two nodes
are in the communication range of each other. Each node has
an initial balance of 1000. We set ε = 0.001; for each node,
the cost of forwarding a unit of data is randomly chosen
between 10ε and 100ε.

We have two evaluations done on the random wireless net-
work. The first is to illustrate the evolution of nodes’ utilities
and balances over time, while the second is to illustrate the
effect of collusion.

6Here being computationally indistinguishable means that
the string m̃′ cannot be distinguished from a valid signature
on m′ by any polynomial-time adversary. See [13] for the
precise definition.



Our first evaluation starts from a Nash Equilibrium. The
evaluation runs for 90 minutes and we observe the utility and
balance of each node every 2 minutes. We generate traffic
from each node according to Poisson arrival with mean time
of 600 seconds. The destination is randomly selected from
the rest of nodes. The number of units of data in each session
is uniformly distributed between 1 and 1000. A node with a
negative balance cannot send its own data before its balance
gets positive again.
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Figure 3: Cumulative Utility of Nodes as a Function
of Simulation Time.
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Figure 4: Balance of Nodes as a Function of Simu-
lation Time.

Figure 3 and Figure 4 show the cumulative utilities and
balances of seven typical nodes during the evaluation, re-
spectively. Generally, nodes locating in the central part of
the network or at a position connecting two node-dense ar-
eas (like node 69 and node 80) get higher balances. In con-
trast, nodes like 55 have much lower balances, because they
have less chance to earn money by forwarding others’ traf-
fic. When we compare the two figures, we can easily see
that nodes’ balances are not proportional to their cumula-
tive utilities. For example, node 69 gets the highest balance
among these nodes, but it has the second least utility in the
end. Node 5 collects the largest amount of utility among
these nodes, but its balance is significantly lower than node
69 and node 80. This is because node 69 has a high forward-
ing cost of 0.093/unit; it receives payments which are only
slightly higher than its costs. In comparison, node 5 has a
low cost of 0.024/unit; the payments it receives are much
more than its costs.

Our second evaluation shows the effect of collusion. Con-
sider a set of nodes that collude to deviate from a Nash
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(a) 5 colluding nodes.
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(b) 10 colluding nodes.

Figure 5: Effect of Collusion: Utility of Each Collud-
ing Node Minus Its Utility in the Nash Equilibrium.

Equilibrium. (Note that, without transfer of profit, “collu-
sion” actually means that a group of nodes deviate from the
equilibrium simultaneously, in hope that each of them will
benefit from the deviation.) We measure the effect of col-
lusion by calculating the difference between each colluding
node’s utility and its utility in the Nash Equilibrium. We
experiment with two different numbers of colluding nodes:
5 and 10. For each number of colluding nodes, we have 20
runs of the experiment. In each run, the source node, the
destination node, and the set of colluding nodes are ran-
domly selected. The action of each colluding node is ran-
domly chosen from four possibilities: decreasing its claimed
cost by 50%, decreasing by 20%, increasing by 20%, and in-
creasing by 50%. For example, if a node’s claimed cost is
0.1/unit in the Nash Equilibrium and it increases its claimed
cost by 50% in the collusion, then its claimed cost is 0.15 in
the collusion. In this evaluation, there are 10 units of data
in each session.

Figure 5 summarizes our experimental results for the ef-
fect of collusion with 5 and 10 colluding nodes, respectively.
From Figure 5, we can see that most colluding nodes do not
benefit from the collusion. (In fact, most colluding nodes
suffer from the collusion.) We have not found any run in
which all colluding nodes benefit from the collusion. This
result confirms that there is no collusion that could make all
colluding nodes happy.

6.2 Network Based on a Snapshot
In this section, we use a snapshot of a New York City

urban area (see Figure 6). The terrain area is about 750m
× 750m. We assume that 10% of the automobiles and 20%



Figure 6: Snapshot of New York City Urban Area
and Locations of Wireless Devices.

of the buildings are equipped with wireless devices. Thus,
the total number of wireless devices in this network is 267.
The radio range is set to 75m. In Figure 6, each dot de-
notes a wireless device. For each wireless device, the cost
of forwarding a unit of data is randomly selected between
10ε and 100ε (ε = 0.001). We evaluate the effect of collu-
sion using the same method as on the randomly generated
network, except that we have 200 runs of the experiment for
each number of colluding nodes.
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Figure 7: Distributions of the Number of Nodes
Getting Less Utility in Collusion.

Figures 7 (a) and (b) demonstrate the distributions of the

number of nodes that get less utility in collusion than in the
Nash Equilibrium. In these two figures, the height of each
bar represents the percentage of runs that have the corre-
sponding number of colluding nodes suffer from the collu-
sion. We note that the sum of the percentages in each figure
is 100%. This implies that, in all runs, we have a positive
number of colluding nodes getting less utility in collusion
than in the Nash Equilibrium. Therefore, there is no run in
which all colluding nodes benefit.

6.3 Efficiency of Restricted Verifier Signature
As we have mentioned, our scheme for Strong Nash Equi-

librium can be used together with our restricted verifier
signature to make a practical solution. In this practical
solution, most computational overheads come from our re-
stricted verifier signature. Consequently, we carry out ex-
periments to measure the efficiency of our restricted verifier
signature scheme.

We implement our restricted verifier signature scheme us-
ing Crypto++. The standard digital signing/verification al-
gorithm we use are DSA, RSA (as specified in ANSI X9.31),
and Elliptic Curve DSA (ECDSA; as specified in ANSI X9.62).
We measure the computational overheads using three differ-
ent hash functions: MD5, SHA-1, and SHA-256. The evalu-
ation is performed on a laptop with 1.4GHz Centrino CPU
and 768MB memory. Table 1 lists the computational over-
heads with two different key lengths: 1024 bits and 2048
bits. In the table, each entry has three numbers. The first
number is the signing time; the second is the node’s veri-
fication time; and the third is the bank’s verification time.
We can see that the choice of hash function has little in-
fluence on the overheads while the choice of standard sig-
nature scheme has some influence. However, regardless of
which standard signature scheme is used, our restricted ver-
ifier signature scheme remains very efficient. For the key
length of 1024 bits, all operations are guaranteed to be fin-
ished in less than 0.1 second. (In our work, it is as important
to have efficient signing as to have efficient verification, since
our routing scheme requires the source node to generate a
signature for each intermediate node in each session.)

7. RELATED WORK
A considerable amount of work has been done on the in-

centive compatibility problems in ad hoc networks. There
are two major problems: the routing problem and the packet
forwarding problem. In the routing problem, we need a rout-
ing scheme that computes the lowest cost path despite of
the fact that selfish nodes can make false claims about their
costs. In the packet forwarding problem, we need a protocol
that stimulates selfish nodes to forward packets. Below we
give a brief review of the existing solutions.

Routing in Ad Hoc Networks.
Anderegg and Eidenbenz [2] were the first to address the

(unicast) routing problem. Their solution Ad Hoc-VCG is
based on the famous VCG mechanism, which is the stan-
dard tool to achieve strategyproofness. In [9], Eidenbenz
et al. further considered the incentives of the service re-
questor and gave another VCG-based solution. A similar
problem in multicast was first addressed by Wang et al. [27].
They showed that naive applications of VCG in the multi-
cast scenario are not strategyproof, and then presented a so-
lution that achieves strategyproofness without using VCG.



Keysize MD5 SHA-1 SHA256
1024 bits 0.052s/0.058s/0.034s 0.052s/0.058s/0.035s 0.053s/0.063s/0.035s

DSA 2048 bits 0.315s/0.333s/0.211s 0.315s/0.337s/0.210s 0.318s/0.348s/0.211s

1024 bits 0.047s/0.048s/0.026s 0.047s/0.049s/0.025s 0.047s/0.053s/0.026s
ECDSA 2048 bits 0.272s/0.249s/0.125s 0.272s/0.255s/0.126s 0.272s/0.262s/0.126s

1024 bits 0.049s/0.044s/0.021s 0.047s/0.046s/0.021s 0.048s/0.049s/0.021s
RSA 2048 bits 0.283s/0.250s/0.129s 0.281s/0.250s/0.124s 0.283s/0.263s/0.125s

Table 1: Computation Overhead (Signing time/Verifying time by node/Verifying time by bank).

Then, Zhong et al. [29] studied the combined problems of
routing and packet forwarding and designed a protocol us-
ing an integrated approach of game theory and cryptogra-
phy. They showed that their solution is cooperation optimal.
In [25], Wang et al. worked on reducing over-payments in
unicast routing. Their solution OURS uses an elegant tech-
nique based on dummy packets and guarantees that the over-
payments are low regardless of which Nash Equilibrium the
system converges to.

As we have mentioned, all the above work on the rout-
ing problem focus on the incentives of each individual node.
In other words, it is assumed that nodes do not collude.
Clearly, this assumption is not always valid in practice. An
elegant result regarding collusion resistance was given by
Wang and Li in [26]: While the major results of [26] also
assume no collusion of nodes, they showed that dealing with
collusion is hard in the sense that True Group Strategyproof-
ness cannot be achieved. Here “True Group Strategyproof-
ness” is a new solution concept defined in [26]. Unlike the
standard solution concept of Strategyproofness, True Group
Strategyproofness is suitable for scenarios in which the prof-
its gained in collusion can be transferred among colluding
nodes. In comparison, in this paper we study the standard
solution concepts (of Group Strategyproofness and Strong
Nash Equilibrium) and provide a method to prevent trans-
fer of profit between colluding nodes. So, our work and the
result in [26] are complementary to each other.

Packet Forwarding in Ad Hoc Networks.
The earliest work on the packet forwarding problem was

due to Marti et al. [18]. Their major contribution is a watch-
dog and a pathrater, which monitor the reputation of nodes.
Similarly, Buchegger and Le Boudec’s solutions [4,5] also use
an approach based on reputation. In their solutions, each
node has a state machine for the reputation of other nodes;
the nodes update their states according to their observa-
tions and received reports of other nodes’ behavior. Gener-
ous TIT-FOR-TAT, proposed by Srinivasan et al. [24], is a
packet-forwarding strategy for selfish nodes. They showed
that this strategy leads to a Nash Equilibrium.

Buttyan and Hubaux [6, 7] proposed to use credit or vir-
tual money for the packet forwarding problem. Their so-
lutions require each node to have a piece of tamper-proof
hardware. Zhong et al.’s Sprite [28] is another simple credit-
based solution but it does not require tamper-proof hard-
ware. Ben Salem et al. [3] addresses the packet forward-
ing problem in multi-hop cellular networks, using a protocol
based on symmetric key cryptography. Another solution to
this problem was due to Jakobsson et al. [15], using a micro-
payment scheme.

Other Work in Networking.
In addition to the two problems we discuss above, There

are many other problems in computer networks that are
addressed using game theory [1, 10, 11, 21, 22]. Examples
include Eidenbenz’s topology control game for ad hoc net-
works [8], Lin et al.’s admission and rate control for CDMA
networks [17], and Felegyhazi and Hubaux’s spectrum shar-
ing for wireless operators [12].

8. CONCLUSION AND FUTURE WORK
Incentive-compatible routing is an important problem in

wireless ad hoc networks. In this paper, we present a sys-
tematic study of collusion resistance in incentive-compatible
routing. We focus on two standard solution concepts—
Group Strategyproofness and Strong Nash Equilibrium. We
show that the former is impossible to achieve and design a
scheme to achieve the latter. Moreover, we give a crypto-
graphic method that prevents profit transfer between collud-
ing nodes, as long as they do not trust each other uncondi-
tionally. This method can be used together with our scheme
that achieves Strong Nash Equilibrium. Putting the results
together, we have established a theoretically sound and prac-
tically useful solution for collusion resistance in incentive-
compatible routing.

Our work can be extended in several directions. One pos-
sibility is to consider other cost models, for example, models
in which a node can have different costs for different outgo-
ing links, or models in which a node needs to determine the
cost(s) with the help of its neighbors. Another possibility
is to include the source and destination nodes in the rout-
ing game and investigate their incentives in the context of
collusion resistance. Yet another possibility is to adapt our
results to the scenario with probabilistic packet losses. We
leave these topics to future study.
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