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Abstract

The flexible ligand docking problem is divided into two subprob-

lems: pose/conformation search and scoring function. For successful

virtual screening the search algorithm must be fast and able to find

the optimal binding pose and conformation of the ligand. Statis-

tical analysis of experimental data of bound ligand conformations

is presented with conclusions about the sampling requirements for

docking algorithms.

eHiTS is an exhaustive flexible docking method that systemat-

ically covers the part of the conformational and positional search

space that avoids severe steric clashes, producing highly accurate

∗To whom all correspondence should be addressed, zsolt@simbiosys.ca
†Chemistry Department, The University of Leeds, Leeds, LS2 9JT, U.K.
‡http://www.simbiosys.ca/

1

* Revised Manuscript

Page 1 of 51 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

docking poses at a speed practical for virtual high throughput screen-

ing.

The customizable scoring function of eHiTS combines novel terms

(based on local surface point contact evaluation) with traditional

empirical and statistical approaches.

Validation results of eHiTS are presented and compared to three

other docking software on a set of 91 PDB structures that are com-

mon to the validation sets published for the other programs.

1 Introduction

Structure based drug design is well established as a key component in the drug

discovery process for many pharmaceutical companies. The screening of large

libraries of compounds against targets in search of novel scaffolds suitable for

further lead refinement, is relatively commonplace. However, the high cost of

experimental screening prompts the use of computational (virtual) screening

techniques as a preliminary filter to reduce the size of the library prior to the

much more expensive experimental screening phase. One such computational

screening technique is flexible ligand docking, where the candidate ligands are

fitted to the 3D structure of the target receptor with allowance for the confor-

mational flexibility of the ligands.

The process of docking a compound into a receptor site can be computation-

ally demanding. It can be viewed as an energy minimization problem, however

most of the available molecular mechanics programs are too sensitive to local

minima to find the appropriate docking poses[14]. Various stochastic search

methods exist which attempt to solve this problem, including Simulated An-

nealing (e.g. AutoDock2[9], Dockvision[10],MCDOCK[15]), Genetic Algorithms

(GOLD[12], AutoDock3[17], DockVision[10]), Tabu Search (ProLeads[24]), etc.
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They have been reported to be successful in reproducing the experimental bind-

ing conformations of some ligand receptor complexes[12]. The search algorithm

in these methods is a random probing technique, driven solely by a scoring func-

tion. Consequently, these methods do not guarantee a systematic coverage of

the search space.

Systematic alternatives to these random trial and error approaches do exist,

including incremental construction based (FlexX[22], Hammerhead[23], DOCK4)

and multiple conformer rigid body docking (e.g. FLOG[13], DOCK3[6] or

FRED[16]). Even though these methods are systematic, unfortunately, they

still do not provide an exhaustive search of the conformational and pose space.

The incremental construction methods employ a coarse sampling of conforma-

tions using a small number of discrete rotomers. The multiple conformer rigid

docking systems use a few hundred low energy conformers of the ligand. None of

the current docking programs can guarantee screening with no false negatives,

which implies that they can miss potential solutions.

As shown later, statistical analysis of experimental data from bound ligand

conformations illustrates that sampling of low energy conformers is insufficient

to reproduce protein-ligand binding geometries, a much more exhaustive search

is required. eHiTS (electronic High Throughput Screening) offers the first truly

exhaustive systematic search algorithm that considers all poses without severe

steric clash. Employing unique graph matching algorithms and using dock ta-

bles, stored in SQL databases, eHiTS is suitable for high-throughput screening

applications.

In evaluating the eHiTS algorithm, its accuracy in reproducing known bound

conformations will be considered along with the ability to enrich database se-

lections with actives. Accuracy will be measured as the ability of the docking

algorithm to replicate the docking poses of ligands from co-crystallized proteins.
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2 Pose and conformational sampling requirements

A fundamental design goal of the eHiTS system is to provide an exhaustive

systematic search of the part of the conformational and pose space that avoids

severe steric clashes with sufficiently fine sampling to reproduce experimentally

observed binding modes. In theory, a truly exhaustive search should explore the

infinite continuum of rotational and translational space. In practice, discrete

sampling is acceptable if it is fine enough to not miss a solution.

Statistics on hydrogen bond geometry in small molecular crystal structures

[11] show a range of 1.6Å to 2.2Å distance between the hydrogen and the ac-

ceptor atoms, i.e. it can be described as 1.9Å ± 0.3Å.

Hydrophobic contacts are observed [4] in the range of 3.2Å to 4.2Å between

the atom centers of two carbons, i.e. 3.7Å ± 0.5Å.

Aromatic π stacking interactions and metal ion interactions also have their

own ranges of acceptable geometry with similar tolerances. It is clear that a

half Angstrom difference in atom positions may mean losing a crucial hydrogen

bond or cause a severe steric clash instead of a perfect van der Waals contact.

Therefore, we define sufficient sampling to mean that atom positions must be

sampled at least every half an Angstrom.

This definition of sufficient sampling for atom displacements implies a re-

quirement for rigid fragment rotation and dihedral angle sampling. A simple

trigonometric calculation shows that a tangential movement of 0.5Å is caused

by rotation of about 5◦ at a radius of 7Å. Drug-like ligands can easily reach or

exceed the size of 7Å, therefore rotations and dihedral angles must be sampled

at least every 5 degrees.

The structure shown in Figure 2 is that of the ligand from PDB code 1CX2,

and can be used to demonstrate the rotational sampling requirement. The left

side of the ligand is anchored by hydrogen bonds. The dihedral angle about

4
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the bond indicated by the red arrow will greatly influence the position of the

Fluorine at the top of the figure, because that atom is 7Å away from the axis

of rotation. If the dihedral angle changed by 5◦, then the Fluorine would move

by 0.61Å Angstrom. If a sampling algorithm missed the correct dihedral by 10

or 15 degrees then the Fluorine would end up in the center of a receptor carbon

atom causing the most severe steric clash – two atom centers at zero distance

– instead of creating a perfect hydrophobic surface contact.In other words, a

15-30+ degree sampling is far too crude to be useful for a docking program that

aims to be exhaustive.

Figure 3 shows another practical example, from experimental X-ray crystal

structure data (PDB code 1JQY), which demonstrates the inadequacy of using

only staggered or gauche conformers in a docking study. The observed zero

degree dihedral (indicated by the arrow) between two sp3 carbon atoms would

represent a high energy local conformation in a ligand in isolation and there is

nothing in the ligand structure which requires or compensates for such a strain.

Bound conformations of 5000 ligands in high resolution (less than 2.5Å)

crystal structures from the RCSB Protein Data Bank (PDB) have been analyzed

to collect statistical data on the dihedral angles of rotatable bonds. Table

1 shows how many ligands have all their dihedral angles within the given ±

range to either a staggered or a gauche value, i.e. how many bound ligand

conformations would be found within a given error if only those dihedral angles

were sampled. Another important data point is that about 10% of the bound

ligand conformers exhibit at least one eclipsed dihedral angle, i.e. 0±5◦ between

sp3 centers each bearing one additional heavy-atom neighbor. 97% of X-ray

conformations in this set deviate by more than 5◦ from conformations generated

by sampling the dihedrals of each rotatable bond every 60◦. It is clear from the

data that it is necessary to include conformations which in an isolated molecule

would be of high energy, in order to sample the conformations adequately for

5
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Figure 1: Categorization of flexible docking algorithms

Error limit Number of ligands Percentage

±5◦ 108 2.2%

±10◦ 211 4.2%

±15◦ 315 6.3%

Table 1: Statistics concerning staggered and gauche conformers in X-ray struc-

tures of bound ligands from 5000 PDB entries with 2.5Å or better resolution.

The Table shows how many ligands have all their dihedral angles within the

given ± range to either a staggered or a gauche value.
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Figure 2: The ligand structure in PDB entry 1CX2. The position of the Fluorine

atom at the top of the figure is greatly influenced by the dihedral angle of the

bond indicated by the red arrow.
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Figure 3: The bound ligand conformation in PDB entry 1JQY.
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docking.

Many researchers have performed similar analysis[18, 2, 1, 19] and come to

essentially the same conclusions regarding high-energy conformations of bound

ligands.

2.1 Search space size

The size of the search space can easily be calculated from the sampling require-

ment defined above. For an average sized ligand with six rotatable bonds, the

following formula is computed:

Translations along 3 axes ∀0.5 Å in 10Å box: (10/0.5)3 = 203

Orientations about 3 axes ∀5◦ in 360◦: (360/5)3 = 723

Dihedral angle sampling ∀5◦ in 360◦: (360/5)6 = 726

Total number of poses: 203 × 723 × 726 ≈ 2 × 1020

This number (ten to the power twenty) is so huge that brute force evaluation

of all those poses with a relatively fast scoring function – that can process 2 thou-

sand poses per second – would take 3 billion years on a single CPU. Using the

largest current supercomputer (BlueGene/L in California DOE/NNSA/LLNL

with 131 thousand CPUs, according to www.top500.org at the time of writing)

it would still take more than 20 thousand years to dock a single ligand.

Stochastic methods that employ fine enough sampling, do search this same

vast space, but instead of systematic sampling, they employ random walks.

Decisions are made based on a goal function evaluation and some stochastic

decision process whether or not to keep a given trial pose. However, new trial

poses are selected by some random alteration of an already tested pose. There

is no driving force employed towards new areas of the search space that are yet

unexplored. Therefore the poses examined by stochastic methods, if represented

as points in N-dimensional space, are comparable to Brownian movement. Such

random walks are known[7] to over-sample some regions while leaving some

9
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large areas completely unexplored. The flexible ligand docking pose space is

10-20 dimensional (depending on the number of rotatable bonds) and the sam-

pling problems of random walks are much more severe than they are in low

dimensional problem space.

Our goal was to develop an intelligent exhaustive method that can limit

the fine sampling of the search space to areas of interest where good scoring

solutions may reside, while eliminating large portions of the vast search space

where it is guaranteed that no good scoring position can be found.

3 The eHiTS method

As demonstrated above, brute force evaluation of all possible poses and confor-

mations with sufficiently fine sampling is not feasible within practical CPU time

limits. Therefore, the search space must be reduced. One reduction applied by

eHiTS is to limit the search to conformations and poses that avoid severe steric

clashes between receptor and ligand, i.e. where geometric fit is possible.

In order to explore the vast search space exhaustively in an efficient manner,

our approach involves sub-division of the task into smaller partial problems that

are easier to solve. However, unlike DOCK or FLexX, eHiTS does not use an

incremental construction method, but instead attempts to find the global opti-

mum by enumerating combinations of independent partial structure dockings.

eHiTS has a novel flexible ligand docking method that is exhaustive on the

conformations and poses that avoid severe steric clashes between receptor and

ligand. The algorithm generates all major docking modes that are compatible

with the steric and chemistry constraints.

First the binding pocket is determined by building a steric grid for the whole

receptor, dividing regions into separate pockets and identifying the possible

interaction sites. Then, a cavity description is built that consists of thousands

10
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of geometric shapes (polyhedra).

The ligand is divided into rigid fragments and connecting flexible chains.

eHiTS docks all rigid fragments to all possible places in the cavity independently

of each other. This is not an incremental construction, all rigid fragments are

docked to every possible place regardless of the other fragments. Although,

the poses are scored, no local (biased) decision is made to reject any sterically

feasible pose for any rigid fragment based on interaction score.

An exhaustive matching of compatible rigid fragment pose sets is performed

by a rapid hyper-graph clique detection algorithm. This may yield a few hundred

(small pocket, few rigid fragments) to several million (large pocket, many small

rigid fragments) acceptable combinations of poses. However, at this point, the

scores for each component have been evaluated, so it is possible to make a global

decision as to which fragment pose combination is the best.

The flexible chains are then fitted to the specific rigid fragment poses that

comprise a matching pose set. The reconstructed solutions define a rough bind-

ing pose and conformation of the ligand. These poses are refined by a local

energy minimization in the active site of the receptor, driven by the scoring

function. Figure 4 shows two snapshots of the docking (overlayed), three frag-

ments in their rigid docked poses in thin-bond representation and the final full

ligand pose after optimization in thick-bond drawing.

3.1 Geometric shape and chemical feature graph

The fragmentation of the ligand is focused on separating rigid fragments from

the flexible linkers. All ring systems are considered rigid and their conformation

is preserved as given in the input. Therefore it is desirable to use multiple ring

conformers (e.g. chair, boat and twist boat for a cyclohexane) for complete

conformational sampling.
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Figure 4: The ligand of PDB code 1azm in two stages of the eHiTS docking.

The 3 individual fragment poses (after the rough rigid docking) are shown in

thin-bond representation. The thick-bond molecule shows the ligand pose after

reconstruction and optimization. The colors represent atom types: green is

carbon, blue is nitrogen, red is oxygen, yellow is sulphur.

12

Page 12 of 51 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Figure 5: The ligand is broken into rigid fragments and flexible chains

Acyclic fragments with double or normalized (resonance) bonds and sp2 hy-

bridized atoms are also considered rigid, e.g. including the amide functional

group. Figure 5 shows an example of the fragmentation of a ligand. When-

ever a bond is broken during this fragmentation, both atoms of the bond are

duplicated, i.e. they appear both in the rigid fragment as well as in the flexi-

ble chain fragment. These are referred to as the join atoms. Distances of the

join atoms are used to determine the compatibility of rigid fragment poses in

the pose-match phase of the algorithm. The join atom positions serve the end

point constraints of the flexible chain fitting, furthermore they are used to define

the overlay transformation in the reconstruction of the complete solution poses

before optimization.

Both the cavity and the candidate ligands are described by a Geometric

Shape and Chemical Feature graph, herein referred to as GSCF graph. The

nodes of the GSCF graph represent a rigid shape by a simplified geometric
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hull. It is derived from regular polyhedra and then distorted to shrink-wrap the

actual molecular fragment or cavity region (see detailed explanation of the shape

generation below separately for the cavity and ligand fragment case). Chemical

feature flags are associated with each vertex of the polyhedron. The edges of

the GSCF graph define the connectivity between the nodes, including distance

boundaries for the acceptable relative positions of the nodes.

The cavity description consists of thousands of geometric shapes (polyhedra).

Center points are picked on a regular 0.5Å spacing grid, such that the point is

suitable to place the center of mass of a rigid fragment. Grid cells that either

violate the receptor boundary or are too close to it, are not suitable as center

points. The distance from the boundary must be at least an atom radius.

The space is measured in various directions from those centers and the regular

polyhedra is distorted so that the vector length from the center point matches

the distance measured, thus building polyhedra that represent the shape of the

available space around the center. Figure 6 demonstrates the generation of

a cavity node using a 2D cartoon for sake of simplicity. The 3D polyhedra

overlap with each other and fill the whole cavity space. Chemical feature flags

are assigned to the vertices of the polyhedra.

The distance measurement from the center to the receptor boundary is per-

formed using a 3D steric grid, which is generated within a bounding box of the

binding site. This bounding box also acts as an artificial closing of any binding

pocket that is open to the solvent water. If no receptor boundary is hit by the

scanning ray that is measuring the empty space in the direction of a vector, the

the bounding box terminates the ray placing a practical limit on the polyhedron

vector length.

The rigid fragments are also wrapped into polyhedra described by directional

vectors from their centers of mass. Again the vectors from the center to the

vertices of the polyhedra are scaled to match the distance from the center of

14
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Figure 6: Simplified 2D cartoon demonstrating the generation of a cavity de-

scriptor polygon using 12 vectors in 30 degree increments. The available space

around grid points is measured in directions dictated by regular polyhedra

shapes, then chemical property flags are assigned to the end points based on

the chemical activity of the closest receptor atoms.
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→ →

Figure 7: The ligand is broken into rigid fragments and each fragment is wrapped

into a polyhedron shape with chemical properties assigned to the vertices of the

polyhedron. The colors on the left and middle picture are atom type based.

On the right side picture with the polyhedron shape, the colors represent the

interaction flags assigned to vertices: red is hydrogen bond acceptor, blue is

hydrogen bond donor, yellow is join point of the fragment.

mass of the ligand fragment to the van der Waals surface in the direction of

the vector. Figure 7 shows an example of how a ligand is divided into rigid

fragments and shrink-wrapped into a polyhedron shape. The polyhedron is color

coded to represent the chemical features assigned to the vertices.

The polyhedrons are created by shrinking the vector lengths from the center

to the vertices, but the directions are maintained, therefore the angles between

them are not changed either. Consequently, if the self symmetric transfor-

mations of the regular polyhedra are applied to these polyhedra, then each

directional vector from center-to-vertex will be overlayed on another such vec-

tor by the transformation. Each transformation can be described as a specific

permutation of the vertices.
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3.2 Rigid fragment docking

The rigid fragment docking proceeds by placing the rigid fragment polyhedra

inside the cavity polyhedra. All combinations are explored (each rigid fragment

polyhedron with each cavity polyhedron) and all orientations of the polyhe-

dra. We use directional vectors based on the vertices of an icosahedron and a

dodecahedron combined. These regular polyhedra have 60 self-symmetric trans-

formations each, so we use those to orient the rigid fragment polyhedra inside

the cavity polyhedra.

The polyhedron representation allows a very rapid enumeration of all fitting

poses using the following method. The GSCF graph nodes contain the length

of the directional vectors to each vertex, and they also contain the decreasing

order of these lengths.

Step 1. The lengths of the ligand node vectors are checked against the cavity

vector lengths in decreasing order. If any ligand vector is larger than

its corresponding cavity vector plus ǫ grid-tolerance, then it is impossible

to fit the rigid fragment node into that cavity node in any orientation,

therefore no detailed orientation check is necessary, so the whole loop of

the following step can be skipped without any loss of solution.

Step 2. All 60 self-symmetric transformations of the regular polyhedra (dodec-

ahedron and icosahedron) are stored in the form of a permutation table of

their vertices. A loop is run to test each of the 60 orientations, using the

permutation table, in each execution of the loop. The vertices of the ligand

polyhedron are mapped to the vertices of the cavity polyhedron via the

permutation table. The directional vector lengths are compared and the

pose is rejected if the ligand vector is longer by more than ǫ grid-tolerance

for any vertex.
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Step 3. For each vertex map that passes the vector length based steric check,

the chemical feature flags of each vertex pair are scored and summed up

to give a complete chemical fit score of the given ligand fragment pose.

Step 4. The 3D coordinates are computed for the acceptable poses based on

a transformation matrix that is pre-computed and stored for each row of

the permutation table.

Note that in steps 1 and 2 a specific grid-tolerance value must be applied

to the comparison of the vector lengths, i.e. allow the ligand vector to be

longer than the corresponding cavity vector by a small amount and reject the

pose only if the ligand vector is longer than cavity vector plus ǫ. This ǫ grid-

tolerance depends on the resolution of the 3D grid that is used to generate the

cavity center points (by default a = 0.5Å resolution is used, but it is a user

adjustable parameter, higher accuracy can be reached at the expense of more

CPU time if this size is reduced). The reason is that cavity graph nodes are

generated at discrete locations controlled by the grid, and it is possible that if

the center is shifted by a fraction of a grid cell, then a larger fragment may fit.

However, this sampling error is limited by the largest possible distance of the

ideal position to the grid cell corner: ǫ = a
√

3/2.

All of the chemical property flags that apply are assigned to each vertex of

the polyhedron, both on the cavity and the ligand fragments. A scoring matrix

is defined for the flags which contains a score for each flag-to-flag interaction pair

(more details on the flag based scoring are given later in the scoring section).

The score of a rigid docking pose is computed by summing all the scores of any

flag pairs present on matched-up vertices between cavity and ligand.

For some larger rigid fragments, the 32 vectors of the combined polyhedra

will produce a surface sampling where distance between surface points is larger

than the desired 0.5Å. However, this does not limit the sampling precision of the
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docking, because multiple cavity polyhedra (partially overlapping each other)

are used for the mapping, so there are target positions for each ligand vector

with sufficient density. The cavity polyhedra are generated on a 0.5Å spacing

grid with multiple orientations considered for the same center.

Typically, the program evaluates several million mappings of the rigid frag-

ment polyhedra to cavity polyhedra. The ones that do not fit geometrically

(steric violations) are rejected and the score is computed for those that do fit.

Typically, there are tens of thousands of fitting poses (10-20 thousand for small

pockets and large fragments, 60-100 thousand for small fragments in large cav-

ities).

When the number of acceptable poses is too large to handle during the next

(pose matching) phase, a clustering algorithm is applied to group the poses that

are close to each other in RMSD metric space and a single representative is kept

from each cluster. The diversity of the poses and their coverage of the cavity

site is maintained during this clustering step.

This clustering step could potentially compromise the exhaustiveness of the

search if the cluster representatives do not cover the pose space with sufficient

resolution. The maximum number of cluster representatives is controlled by a

user adjustable parameter and by default it is set to a value that achieves a fast

(sub-second) PoseMatch run-time with an average separation between represen-

tatives of about 1-1.5Å RMSD. In terms of search space sampling, this means

that a sampling pose is generated within
√

3/2 times the separation distance

from any query pose (in the worst case), while the average error from the X-

ray pose can be estimated to be about 0.43Å-0.65Å. This range goes slightly

higher than our desired precision, but the parameter can be adjusted to achieve

more precise sampling at the cost of CPU time. There is another tolerance

applied during the PoseMatch phase that is computed from the actual average

separation distance between the poses. That tolerance is applied to the compat-
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ibility check, i.e. comparison between join point distances and connecting chain

lengths. The tolerance is dependent on the actual average pose separation, so

that it counters the loss of precision, allowing the selected poses to represent

their whole cluster (within the radii) for the purpose of matching instead of

considering strictly the particular pose. Thus the algorithm maintains the ex-

haustive coverage via the use of this calculated tolerance and the ability to refine

the search by adjusting the control parameters of the clustering.

It is very important to keep fragment poses that do not get good scores,

because even for high affinity ligands it is possible that some fragments are

acting simply as spacers and are not contributing much to the binding. In

fact, analysis of the X-ray complexes in the test set shows that many contain

fragments that either do not make any interaction with the protein, or even

make clearly repulsive interactions. Of course, the energy loss due to the “bad”

interactions must be compensated by some strong attractive interactions formed

by other fragments of the ligand.

All acceptable poses of the rigid fragments are computed regardless of other

fragments in the ligand. Therefore, the information about the acceptable poses

of a given fragment can be reused when another ligand containing the same

fragment is docked to the same receptor. This situation occurs very frequently

during a virtual screening study when many thousands (or even millions) of

drug-like ligands are docked to a given target receptor, because such ligands

often contain some typical functional groups. The DockTable extension of eHiTS

makes use of the repeating fragments to speed up the screening process by using

an SQL database to store all the results of the rigid fragment docking phase. An

efficient hash key (canonical name) is used for indexing the database to retrieve

the previous results. If no results are stored for the given rigid fragment yet,

then the docking proceeds as described above in this section, then the results

are deposited to the database.
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It is sufficient to store the 3D transformation and the score for each pose,

therefore a space efficient storage can be achieved that requires about 1MB disk

space per rigid fragment for the DB (this size does not depend on the size of the

fragment but it does depend on the size of the cavity). We have run experiments

screening various ligand libraries against various receptor targets and observed

the speed-up curve of the docking time per ligand as well as the number of

fragments deposited to the database. Significant speed-up is observed during

the first few hundred to few thousand ligand docking runs, but the speed tends

to level out between 5 and ten thousand ligands (the speed is 2-4 fold faster at

that point than docking speed without the SQL DB). The number of commonly

re-used fragments is in the order of a few thousands, therefore a limit of ten

thousand fragments has been implemented in the DockTable extension of eHiTS.

This limits keeps the disk space requirement under 10GB per receptor regardless

of the size of the ligand library docked.

3.3 Pose matching

There are several thousand alternative poses generated and scored at the rigid

docking step for each rigid fragment. The next task is to select pose-sets contain-

ing a single pose for each ligand rigid fragment such that the distances between

them are compatible with sizes of the flexible chains that should connect them.

In addition, they must not bump into each other.

One can think of this task as mapping the ligand graph (where each node

represents a rigid fragment) on to the receptor cavity graph (where each node

represents a possible placement position and orientation of a ligand rigid frag-

ment). Such graph-mapping problems are often solved by graph algorihtms

operating on a hyper-graph rather than on the graphs to be mapped. The

hyper-graph is a higher order graph, where nodes represent mappings between
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the original graphs.

This task is solved by clique detection on the following hyper-graph. Each

node of the ligand graph is represented by a set of hyper-graph nodes, one corre-

sponds to every accepted rigid fragment pose, i.e. the nodes of the hyper-graph

represent individual mappings of ligand graph nodes to a cavity graph nodes.

There are edges between those node pairs where all the following conditions

hold true:

a) the nodes correspond to poses of different ligand fragments,

b) there is no steric clash between the two poses, and

c) the distance between the join points of the fragments in the given poses is

compatible with the length of the chain that should connect them, i.e. it

is within the interval that is possible to span by the given chain.

Maximal cliques of this hyper-graph should consists of as many nodes as the

number of rigid fragments in the ligand (number of nodes of the ligand graph).

Each maximal clique defines a unique docking solution. By enumerating the

maximal cliques we can find all distinct docking modes of the ligand in the

receptor cavity.

Figure 8 shows a simple example of an adjacency bit matrix of such a hyper-

graph. The matrix M can be divided into blocks representing pose combinations

between the poses of two specific rigid fragments. The example matrix corre-

sponds to a ligand that contains 4 rigid fragments, and for the sake of simplified

example we assume only 8 poses for each fragment. Rows (and columns) 1 to 8

correspond to rigid fragment number 1, rows 9-16 correspond to rigid fragment

number 2, etc. The stronger lines indicate the boundary between the blocks

that correspond to different rigid fragments. The stars (⋆) mark the bits that

represent edges, i.e. where the column and row index corresponds to compatible
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Figure 8: Example adjacency bit matrix of the hyper-graph corresponding to

a ligand that consists of 4 rigid fragment. For each rigid fragment, there are

8 poses represented in the matrix. Rows and columns 1-8 correspond to poses

of rigid fragment 1, 9-16 belongs to rigid fragment 2, 17-24 fragment 3, 25-32

fragment 4. The stars represent fragment pose pairs that are compatible, i.e.

not bumping into each other and placed at a distance that can be spanned by

the connecting chain fragments. 23

Page 23 of 51 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

pose pairs. The diagonal blocks are empty, because they would correspond to

alternative poses of the same node, so they are not compatible, i.e. only one

pose can be selected for each node. The task is to find an S set of 4 indices such

that:

∀i, j ∈ S, i 6= j : Mi,j = 1

The red stars mark the solution maximal clique S = {3, 12, 22, 27}.

The clique detection algorithm described by Bron and Kerbrosh [3] was used

as the basis for the pose matching implemented in eHiTS. The original algorithm

was improved using the extra information available about the blocked nature of

the adjacency bit matrix of our hyper-graph. Note, that if any row i contains

an empty segment corresponding to any rigid fragment, i.e. if

∃r ∈ {0, ..., 3}, ∀j ∈ [8r, 8(r + 1) − 1] : Mi,j = 0,

then the pose corresponding to row i cannot be part of any solution, because

there is no suitable pose for rigid fragment r that would be compatible with

pose i. Rows 1,2,4,5,6,7 and 8 are all examples of such unusable rows (e.g.

row 4 has no star in columns 17 through 24 that correspond to the third rigid

fragment, this segment of row 4 is highlighted by yellow on the figure). Such

rows can all be deleted to reduce the problem size before the recursive (back-

track) algorithm is started. Furthermore, during the back-track algorithm, a

bit row is maintained that contains the logical and operation of the matrix rows

corresponding to the currently selected poses. If this bit-row contains an empty

segment corresponding to any rigid fragment not yet represented in the clique,

then it is not possible to find a completion to the current set, so the whole

search tree branch can be cut and the algorithm steps back to choose a different

candidate pose for an earlier rigid fragment.

With this problem specific optimization, the algorithm becomes very effi-

cient. In fact the worst case complexity is no longer exponential as it was for
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the general case, but a polynomial bound can be defined, where the degree of

the polynomial is equal to the number of rigid fragments.

Each maximal clique found in the hyper-graph defines a different docking

solution by selecting a pose for all the rigid fragments of the ligand in such a

way that they do not bump into each other and the distances between them are

compatible with the lengths of the flexible chains. The 3D coordinates of all

atoms within rigid fragments are defined for every solution and the sum of the

scores of the rigid fragments give a very good indication of the total interaction

score that can be achieved by each solution. Even though the number of solution

cliques may be large (it is several million for some examples), global scoring

information is available for them at very low cost (summing up a handful of

pose scores), so it is feasible to evaluate them all and select the most promising

candidates for further processing.

Note, that selecting a subset of solutions at this point in the process does

not compromise the exhaustiveness of the algorithm since the selection is based

on global scoring information. All solutions are enumerated exhaustively, the

number of PoseMatch solutions is the total number of distinct docking modes

possible. The search engine must be exhaustive in order to be able to present

all potential solutions to the scoring function for evaluation, as achieved here.

As explained in the scoring section, the full detailed and sensitive scoring

function is not employed at this phase, but a faster, crude (greedy) function is

employed. The final scoring function has also been tested in the rigid docking

phase, but it was found to be inferior to the crude function in selecting the

correct poses. This result can be explained by the fact that the final scoring

function is too sensitive to precise interaction geometries, therefore it can only

differentiate and rank optimized poses correctly.
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3.4 Flexible chain fitting

Following the rigid fragment pose set selection, it becomes necessary to deal

with the rotatable bonds joining them, i.e. the challenge of flexible chain fitting.

However, this task is much simpler than is the case in the general flexible docking

problem, because two atom positions at each end of the chain are already fixed,

as they are given by the join atoms of the selected rigid fragment poses.

The task is to find a dihedral angle sequence that will lead from the given

starting points to the given end points while avoiding steric clashes with the

receptor boundary and the rigid fragments along the way. For smaller chain

lengths, even analytical calculation of the complete algebraic solution space

would be feasible without considering the steric boundary conditions.

A more general approach has been chosen to find a suitable set of dihedral

angles that bridge the distance between the atom pairs and avoids steric clash

with the receptor while preferring angles near low energy rotomers. First, a

lookup table is used to select initial candidate chain conformers that consist

of low energy dihedrals that have ending atom pair distances similar to those

required. Then a local minimization is performed to tweak the dihedrals to

reach the exact required distances.

For the lookup table, a double diamond lattice is used, which contains all

pathways consisting of staggered and gauche dihedrals up to the desired number

of bonds. The lattice is positioned on the starting atom pair, then the ending

atom pair positions are used to locate nearby atoms in the lattice. The lookup

table associated with the diamond lattice contains information about the path

lengths (number of bonds from the starting atom) for each atom of the lattice.

Any path with the required number of bond that ends within 3Å of the desired

3D coordinates will be considered. A deterministic minimization, based on the

partial least squares fit method, is applied to tweak the chain until the end
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points match precisely and no severe boundary violations occur. This tweaking

method may produce any dihedral necessary to reach the end points and re-

solve clashes – even the highest local energy eclipsed conformation is allowed, if

necessary. However, the local optimization starts out with low energy rotomers

and will only apply the minimum necessary distortion to resolve steric clashes

and bring the end points closer to the goal, so the tweaking process stops with

a chain conformation with the lowest energy dihedrals that are suitable for the

requirements.

There is no discrete sampling applied in this dihedral refinement process,

the precision is only limited by the floating point representation of the com-

puter. Therefore the dihedral angle sampling of eHiTS is practically equivalent

to continuous (infinitesimally small) sampling.

3.5 Reconstruction and optimization

When all the flexible chains have been fitted to the rigid fragment poses, the

complete ligand is reconstructed from the fragments.

Each hyper-graph clique defines a separate solution. Each solution is con-

structed by pair-wise joining of the rigid fragments in the selected pose with

the flexible chains fitted to them. The mapped pose of each rigid fragment and

the resulting conformation of the flexible chain fitting are overlayed using the

two atoms that form the broken bond. These two atoms were replicated in

both the rigid fragment and the flexible chain, so they can be used to drive the

reconstruction.

The flexible chain fitting minimization process attempts to position the last

two atoms of the chain to overlay with the target rigid fragment, however, it

is not guaranteed that perfect (zero distance) match can be achieved. In other

words, the join atoms on the rigid fragments and those on the flexible chain
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may have different coordinates. Small transformations are carried out on the

fragments to achieve complete overlay of the join atoms prior to reassembly of

the complete ligand. This step ensures that all bond lengths and angles are

maintained from the input structure.

A continuous local energy minimization which only allows torsional changes

and rigid body transformations (rotations and translations) is applied to the

complete ligand to refine binding geometries and resolve any sampling roughness

from the initial polyhedron based rigid fragment positioning. A steepest descent

downhill optimization is applied on 6 + n variables (where n is the number

of rotatable bonds) to improve the scoring function value using the modified

Powell’s algorithm [21]. The free variables of the optimization correspond to 3

degrees of translation, 3 degrees of rigid body rotation and n degrees of torsional

conformation freedom.

The precision of atom positions obtained in this phase are not limited to any

discrete sampling, they are again limited only by the precision of the floating

point representation of the computer. The optimization is terminated when the

scoring function value does not improve in any direction in the 6+n dimensional

transformation space, i.e. local minimum is reached.

The objective function includes interaction scoring components between the

receptor and the ligand, as well as internal intra-molecular interaction compo-

nents within the ligand and conformational strain energy for the sub-optimal

dihedral angles. As a result, eHiTS is capable of generating strained dihedral

angles, where necessary, when compensated by the interaction energy - as ob-

served in many experimental crystal structures. However, the program will

prefer the low energy conformers when they are suitable for the docking pose.

There is no stochastic element in this applied optimization technique, be-

cause the goal is to find a local minimum of the objective function for every

particular solution. The global coverage of the search space is guaranteed by
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the full cavity coverage of the rigid fragment docking step and the exhaustive

algorithm of the pose matching step.

3.6 Protonation handling

The issue of protonation state is very important to the docking problem. Ligands

and receptors with different protonation states can have dramatically different

binding poses. However, it is common practice for many docking programs to

ignore this issue and require that the user define a particular protonation state

prior to running a docking experiment.

Protonation states of ligands and receptors are determined by the interaction

between the two.Thus for any particular receptor-ligand pair there will generally

be one correct protonation state. However for a different ligand, the protonation

state of the receptor may be altered, to reflect the characteristics of the ligand.

If a docking program were to pre-set the protonation state of the receptor then

possible interactions with a ligand could be lost.Similarly, presetting the proto-

nation states of ligands in a library would produce incorrect results with respect

to certain receptors. A better solution, with a more appropriate score, can be

found only if the program is run with various protonation states (not necessar-

ily the neutral or the normally lowest energy form of the receptor or ligand on

its own or in solvent, but the form required to reach the lowest energy for the

complex).

The molecule in Figure 9 has 150 possible protonation states. Table 2

shows the 5 possible protonation states for each of A and D, 2 for B and 3 for

C, combined this leads to 5∗5∗2∗3 = 150 different possible protonation states.

Although, two pairs of states for A and D can be considered equivalent via

rotations about the bond to R (swapping the roles of the 2 oxygen atoms), so

a flexible docking program could work using only 3 protonation states for those
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Figure 9: Sample ligand with 150 different possible protonation states. Func-

tional Groups A, B, C and D each have multiple forms depending on protonation.

Group Protonation states

A, D

B R − NH2, R − NH+

3

C

Table 2: Protonation states of the Functional Groups from Figure 9
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fragments giving a total of 3*3*2*3=54 instead of 150. Most docking programs

would need to dock all 150 (or at least 54) combinations separately to evaluate

the different possibilities, not even considering different protonation states of

the receptor.

eHiTS takes a unique approach to the protonation problem by systemati-

cally evaluating all possible protonation states for both the receptor and ligand

efficiently in a single run. Ambiguous properties flags are assigned for positions

that could be either protonated or deprotonated (i.e. have a lone pair).Then

during the docking algorithm both states of such surface points are evaluated

and scored, selecting the best protonation state for each individual interac-

tion independently, thus avoiding the combinatorial effect of multiple functional

groups with variable protonation states. The results of a single eHiTS run using

the ambiguous properties flags contain the cummulative results that would be

achieved by running many individual docking runs with fixed protonation states

considering all ligand protonation states (150 in the above example) against all

receptor protonation states (usually an even higher number).

4 Scoring function

There are three different scoring functions used in the eHiTS process. First,

a simple and fast chemical flag based statistical scoring function (SFs) is used

during the rigid fragment docking and pose matching phases. This function

is not too sensitive to small variations in the interaction geometry, interaction

distance and hydrogen bonding angle.

A more sensitive, empirical scoring function (SFe) is used during the final

local energy minimization phase. This scoring function has smooth curves repre-

senting the distance and angle dependency of the interactions while supporting

efficient gradient based optimization.
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The final result poses are evaluated by a third, more time consuming scoring

function (SFc) that combines both statistical and empirical components, plus

additional grid based geometrical terms as well as entropy loss estimation and

another novel scoring element based on the coverage of receptor surface area.

This final scoring function attempts to estimate the binding free energy more

accurately. The result of the final accurate scoring is used to rank the generated

solutions.

4.1 Surface map based statistical score (SF
s
)

We score the receptor-ligand interactions based on the molecular surface con-

tacts that occur using a fine (0.5Å) resolution surface point sampling. Chemical

property flags are assigned to each surface point both on the ligand and on

the receptor. The receptor surface points also receive an assigned weight based

on the pocket depth in the cavity, i.e. deeper points receive higher weights

than shallow points. A flag compatibility matrix is used to assign scores to

interacting point pairs and the point-scores are weighted by the pocket depth.

Exposed receptor points (where no ligand point is within interaction distance)

are assigned a penalty score based on the depth value. The sum of all receptor

surface point scores is computed.

The list of chemical property flags includes:

• Strong hydrogen bond donor: D

• Weak hydrogen bond donor: d

• Strong hydrogen bond acceptor: A

• Weak hydrogen bond acceptor: a

• Strong hydrophobic/lipophilic atom: H

• Weak hydrophobic/lipophilic atom: h
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• Aromatic, π stacking ring atom: R

• Aromatic, π stacking ring center: O

• Aromatic, π stacking ring edge: E

• Partial negative charge: n

• Partial positive charge: p

• Formal negative charge: N

• Formal positive charge: P

• Metal ion with unoccupied coordination: M

• Ligand atom suitable to bind to a metal ion: m

The feature flags used are listed above. An example of their use is shown in

Figure 10 demonstrating the way these flags are assigned to a Histidine side-

chain. There are strong and weak hydrogen bonding and hydrophobicity flags,

aromatic Pi-stacking indicator flags, partial and formal charge indicators and

metal ion indicator (M) with corresponding ligand flag (m) indicating which

atoms can bind to a metal ion. All applicable flags are assigned to a point

as the figure illustrates. Note, that alternative protonation states are handled

by multiple flag assignment as shown on the figure by the red highlight: both

Nitrogen atoms have the same flag-set towards the edge of the ring DApnmE,

which indicates that it may be a H-bond donor or acceptor with either positive

or negative partial charge and that it can interact with a metal ion or participate

in aromatic Pi stacking as a ring-edge. This assignment simultaneously handles

all three protonation states of Histidine.

One may notice the use of weak secondary interaction flags. Experimental

data proves that some polarized carbon atoms (e.g. in an aromatic ring next to
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Figure 10: Example of the assignment of chemical property flags for the ring of

the Histidine residue
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a nitrogen atom) can act as hydrogen bond donors[5]. On the other hand, the

heteroatoms of an aromatic ring are given secondary hydrophobic flags above

and below the plane of the ring. This fine property assignment will correctly

distinguish between the different electrostatic and chemical properties expressed

from the same atom in different directions, i.e. towards the edge and the face

of the ring. This is a major advantage of this surface based scoring system in

comparison with the traditional atom based scoring.

4.2 Empirical scoring function (SF
e
)

During the optimization phase of the eHiTS process, an empirical scoring func-

tion is employed which has the following terms:

• Hydrogen bonding term (D, H, A and Lp represent the positions of donor,

Hydrogen acceptor atoms, and lone electron pair respectively):

EH−bond = Emax ∗ fdist(‖H → A‖) ∗ cos(6 (A → Lp, D → H))

• Hydrophobicity term (S is the set of surface points with flags H or h):

ELipo =
∑

p∈Slig

Emax ∗ fdist(p, qp), qp ∈ Srec : d(p, qp) = min
q∈Srec

d(p, q)

• Aromatic π stacking (similar to ELipo, but applied on surface points with

flags E,R and O with different Emax for each type of pair)

• Electrostatic potential (Coulomb formula)

• Van der Waals contact energy (Lennard–Jones formula)

• Metal ion interactions (distance and angle dependency similar to the Hy-

drogen bonding term)
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• Penalty for incompatible contacts (e.g. polar-hydrophobic, same charge,

evaluated similarly to ELipo, but for surface points with incompatible

flags)

• Exposed surface atoms are scored against solvent properties

• Intra-molecular interactions are taken into account: ligand (conformation

score) and receptor (protonation, competing interactions reduce the score

towards ligand interactions)

Each term is configurable via a text parameter file. The base functions for

distance dependency (fdist) can be selected from a predefined set of functions.

The coefficients (Emax) and weights of the terms can be set or changed from

their defaults to fine tune the function.

4.3 Final ranking score (SF
c
)

For the final ranking of the generated solutions, the empirical scoring terms are

all computed. A statistical term is computed similar to the one described earlier

with the exception that this time each surface point pair score is multiplied by

a contact geometry factor, which is determined by the distance of the surface

points from each other and the angle of the surface normal vectors. Statisti-

cal distribution of these contact geometry descriptors have been collected from

receptor-ligand interactions in 5000 high resolution X-ray crystal structures.

The weighting factor for each surface point pair represents the fit of their actual

contact geometry to the statistical histogram of distance and angle distribution.

The following terms are also added to the final score:

• Total surface contact area between receptor and ligand

• Hydrophobic surface area of the receptor that is not buried by the ligand
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• Exposed hydrophobic surface area of the ligand

• Sum of pocket depth values for all ligand atoms

All empirical terms, the statistical score and the above listed extra terms are

combined with an adjustable set of weights to form the final score value. The

weights have been calibrated using 133 receptor ligand complexes for which both

high resolution X-ray crystal structures (in PDB) and corresponding experimen-

tal binding energy values were publicly available. A fully detailed discussion of

this scoring function (including the method of calibration) will be published

elsewhere.

5 Results

In choosing a validation set to illustrate the docking accuracy and ranking ca-

pability of the eHiTS process, it was decided to select a set of protein complexes

previously reported by other docking software. Gold and FlexX are widely con-

sidered among the most popular docking programs and Glide has been very

active in the market place over the past couple years. In examining the perfor-

mance of eHiTS, comparisons were made with these three docking programs.

Validation results have been reported for the above mentioned docking pro-

grams allowing us to report a head-to-head comparison. Validation results on

282 protein ligand complexes were reported for Glide[8], 306 for GOLD[12],

and 200 for FlexX[22]. The results presented here are from the 91 complexes

common to all three test sets, for which individual rms values were reported1.

11aaq 1abe 1acj 1acm 1aco 1aha 1apt 1azm 1baf 1cbx 1coy 1cps 1dbb 1dbj 1did 1die 1dr1

1dwd 1eap 1eed 1epb 1eta 1etr 1fkg 1fki 1ghb 1glq 1hdc 1hef 1hri 1hsl 1hyt 1icn 1ida 1igj 1ive

1ldm 1lic 1lst 1mcr 1mdr 1mrk 1mup 1nis 1pbd 1phd 1phg 1poc 1rds 1rne 1rob 1slt 1srj 1stp

1tdb 1tka 1tmn 1tpp 1ulb 1xid 1xie 2ack 2ada 2ak3 2cgr 2cht 2ctc 2dbl 2mcp 2phh 2pk4 2plv

2r07 2sim 2yhx 3cla 3cpa 3hvt 3mth 3ptb 3tpi 4aah 4cts 4dfr 4fab 4phv 5p2p 6abp 6rnt 7tim
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This set of 91 PDB codes contains a diverse set of proteins from 66 distinct

protein families. For all results shown, the standard (default) parameter set of

eHiTS was used. This set results in docking times of a few minutes/ligand on a

standard desktop PC.

It is important to note that no manual preprocessing was performed on any

of the selected PDB complexes. The protonation states, cofactors, counter-ions,

solvent molecules, partial charge assignment, etc. were all handled by eHiTS

without user intervention. This automation makes eHiTS very user-friendly and

capable of automated processing.

The ligands were docked into the original protein binding site (as provided

in the X-ray structure) and the accuracy was measured by calculating the root-

mean-squared deviation (RMSD) between the coordinates of the heavy atoms of

the ligand in the eHiTS docked pose and those in the crystal structure. Statistics

on RMSD values of the highest ranked pose by the eHiTS scoring function are

reported.

The result would further improve if eHiTS was allowed to spend more time

by local minimization of larger number of partial solutions produced by the

pose matching step. The default parameters set allows 200 poses to be entered

into the optimization phase, while the accurate parameter set would allow 640

solutions, reducing the chance of dropping the correct pose based on selection

by the initial rough scoring function. The program often generates millions of

distinct solution poses in the pose matching phase (all of them fit the steric

constraints and exhibit attractive chemical interactions), therefore processing

all of them in the energy minimization phase would be impractical. The search

engine has proven to be exhaustive within the desired precision, i.e. the closest

pose produced at the early stages of the search engine pipeline is found to be

under 1Å RMSD for all test cases, with an average of 0.4Å RMSD.

8gch
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The poses selected for minimization and finally output do not reach that

precision, indicating that there is still room for improvement concerning the

scoring function. All three components of the scoring function are responsible

for some loss of precision. Score based selection in PoseMatch often rejects

the solution with the smallest RMSD. The final local minimization phase has a

difficult task, because the scoring function has a too volatile (chaotic) shape with

many local minima close to each other in the (6+n) dimensional transformation

space. If the scoring function could be made smoother with a funnel shaped local

minimum near the X-ray pose that would significantly improve the accuracy of

the optimization step. Finally, the ranking score often does not pick up the

closest solution to be top ranking.

5.1 Comparison to GOLD

GOLD is a stochastic program that employs a Lamarkian Genetic Algorithm,

encoding the ligand conformation and the mapping of interactions points be-

tween ligand and receptor atoms. The program employs an island model, cre-

ating several small populations rather than one large one. The genetic opera-

tions include migration of individuals from one population to another, crossover

and mutation. The fitness of a new individual is assessed using a molecular-

mechanics like scoring function, which includes a hydrogen-bond term, a 4-8

intermolecular van der Waals term and a 6-12 intramolecular van der Waals

term for the internal energy of the ligand.

EHiTS contains no stochastic elements, ensuring a systematic coverage of

the search space, thus the two algorithms are fundamentally different.

Table 3 shows a summary of the docking results for eHiTS, GOLD and

FlexX. On average eHiTS gives rms deviations less than half of those given by

GOLD. Percentages of cases docked under specific limits of 0.5Å,...,2.5Å are
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also favorable for eHiTS.

5.2 Comparison to FlexX

FlexX employs an incremental construction algorithm, in which a seed fragment

(base) is identified first and placed into the active site. Subsequently a tree

search is performed that adds fragments (using a discrete set of dihedral angles)

incrementally and evaluates the intermediate substructures, eliminating those

which score badly. EHiTS differs significantly from incremental construction.

Firstly, there is no bias set by selecting an initial base fragment, since all rigid

fragments are docking independently. Secondly, eHiTS makes global decisions

on whether or not to keep a particular ligand pose, thus allowing for bad partial

structures, if the global score is good. Thirdly, eHiTS does not use a discrete set

of torsions, when rigid fragments are connected a tweaking algorithm permits

any torsion, limited only by the floating point precision of the computer.

As Table 3 shows, on average the top ranking solution of eHiTS gives rms

deviations less than 40% of those given by FlexX. Furthermore, the eHiTS

solutions fall within desired precision limits (e.g. 1.0Å, 1.5Å or 2.0Å) about

twice as often as the FlexX solutions.

5.3 Comparison to Glide

The Glide algorithm combines a systematic pose search with a stochastic re-

finement and optimization procedure. A relatively small number of low energy

conformers are generated for the core of the ligand containing most of the rotat-

able bonds after the removal of terminal rotomer groups. These conformers are

systematically positioned on a 2Å grid and evaluated with a discretized Chem-

Score scoring function (using precomputed scores from a 1Å spacing grid). A

small number of best scoring poses are further refined and optimized using a
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stochastic technique (Monte Carlo Simulated Annealing) with the OPLS-AA

force field energy function. In comparison, eHiTS does not rely on a discrete

set of low energy conformers of the flexible components of the ligand, nor does

it rely on interactions of a core fragment for filtering. All rigid fragments of the

ligand are treated equally in eHiTS and positioned exhaustively on a much finer

0.5Å grid (considering the cubic effect of the 3 dimensional space, a 0.5Å grid

yields 64 times finer sampling than a 2Å grid), and evaluated with a scoring

function that is discretised with 0.2Å binning, which yields 125 times more pre-

cise representation in 3 dimensions than the 1Å spacing scoring grid of Glide. In

the final minimization phase, eHiTS uses a deterministic gradient optimization

avoiding the use of stochastic methods, because, as correctly stated in the Glide

paper[8]: “such methods can miss key phase-space regions a certain fraction of

the time, thus precluding development of a truly robust algorithm”.

Direct comparison of the rms deviation values reported for Glide is unfair to

other docking programs as acknowledged on page 1743 of the cited publication[8]

due to the fact that the calculation was not made relative to the X-ray pose.

Glide requires a preprocessing step, where the protein-ligand complex is min-

imized by the OPLS-AA force field energy function (same as the final scoring

function that drives the minimization in Glide) to “anneal away” steric clashes,

orient the hydroxyl groups, determine protonation states and slightly alter the

atom positions of both ligand and receptor to optimize the local energy accord-

ing to the force field. The input to Glide is the altered receptor file and its

output result rmsd values are computed relative to the ligand pose altered by

the preprocessing optimization. Considering that the same scoring function is

used to minimize the poses at the end of the Glide run, from a mathematical

standpoint, the calculated rms deviation is a property of the OPLS-AA force

field energy function, i.e. the distance of two specific local minima, one close to

the X-ray pose and another one close to the pose generated by Glide. This fact
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is further supported by the observation reported by E. Perola et al [20]: when

the top 20 poses generated by GOLD are subjected to the same minimization

on the OPLS-AA force field, the results become equivalent to those generated

by Glide.

The mathematical meaning of such RMSD calculation is further demon-

strated on a simplified example using a hypothetical 1D scoring function on

Figure 11. On the figure, point X represents the X-ray pose of the ligand,

point O is the pre-optimized pose (local minimum of the scoring function cor-

responding to the well of X). Suppose, the docking program has generated raw

poses R and P during its crude positioning phase. During local minimization

they are transformed into poses T and C respectively (by downhill minimiza-

tion on the scoring function). The correct RMSD measurement would be the

distance ‖T − X‖ for top-ranking and ‖C − X‖ for closest solution. Using the

pre-optimized pose O, yields distances ‖T − O‖ and ‖C − O‖ instead. These

are distances between local minima of the scoring function (i.e. a mathematical

property of the scoring function shape) and insensitive to the exact position of

X within the shaded box corresponding to the region [A, B]. If there is any raw

docking pose generated anywhere within the region [A, B], then the RMSD of

the final (optimized) output pose from O would be zero. Therefore, calculating

RMSD against a pre-optimized pose is not a suitable measure of docking pose

accuracy. An idealistic scoring function would have a perfect funnel shape with

a single local minimum, in which case any raw docking pose against any pre-

optimized X-ray pose would yield zero RMSD, clearly demonstrating problems

with such measurement.

Similar preprocessing optimization can be performed with any scoring func-

tion. The choice of scoring function for the preprocessing will strongly bias the

results in favor of the docking program that employs the same scoring function in

its final optimization phase. To demonstrate the effect of such pre-optimization

42

Page 42 of 51 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Program Average cases cases cases cases cases

name rms rms<0.5Å rms<1Å rms<1.5Å rms<2Å rms<2.5Å

eHiTS 1.47Å 15% 42% 67% 77% 85%

GOLD 3.11Å 8% 35% 55% 65% 68%

FlexX 3.87Å 3% 20% 37% 49% 56%

Table 3: Comparison of docking accuracy of three programs on a set of 91

protein-ligand complexes. The rms deviations are computed between the top

ranking solution and the X-ray pose in the original PDB structure.

Program Average cases cases cases cases cases

name rms rms<0.5Å rms<1Å rms<1.5Å rms<2Å rms<2.5Å

eHiTS 0.66Å 45% 88% 98% 100% 100%

Glide 1.87Å 29% 46% 62% 71% 77%

Table 4: Comparison of docking results of eHiTS and Glide on a set of 91

protein-ligand complexes. The rms deviations are computed between the top

ranking solution and the pose obtained by local minimization of the X-ray pose

with the scoring function of the program.
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Figure 11: Hypothetical example demonstrating the mathematical meaning of

measuring RMSD against pre-optimized pose instead of the X-ray pose. Point

X represents the X-ray pose of the ligand, point O is the optimized X-ray pose,

T is the top-ranking solution pose (derived from R raw docking pose with opti-

mization), C is the closest solution pose (derived from P raw docking pose with

optimization).
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and result rms calculation relative to the optimized pose instead of the original

X-ray pose, an equivalent preprocessing of the X-ray ligand was performed us-

ing the eHiTS scoring function and then the result rms values were re-computed

relative to the optimized pose. The results of this type of RMS calculation are

shown in Table 4 in comparison to the rms values reported for Glide. Note,

that the same eHiTS result poses were used as in Table 3, only the RMS values

are smaller here because the target of the comparison is changed from the X-ray

pose to the optimized pose.

It should be emphasized, that these values represent a property of the scoring

function employed, i.e. distance of two specific local minima instead of the

true accuracy of the search engine employed. Since different scoring functions

are employed by eHiTS and Glide, the comparison of these results have little

meaning. Nevertheless, results generated by eHiTS are superior to the results

generated by Glide even if the rms deviations from the X-ray structure (in Table

3) are considered for eHiTS.

6 Conclusion

The new algorithm employed in eHiTS permits an exhaustive flexible docking

with a very fine sampling of atom positions for rigid fragments (less than 0.5Å

error guaranteed) and a continuous tweaking of dihedral angles for rotatable

bonds. Complete processing of all partial results can lead to the generation of

millions of sterically fitting binding poses for test cases with a large receptor

cavity and a ligand with many small rigid fragments. The eHiTS run can be

controlled with user adjustable parameters to select the desired compromise

between docking accuracy (closest solution under 1Å RMSD for most cases in

highest accuracy mode) and execution time (a few seconds per ligand for fastest

runs). The default parameter set provides a balance where the execution time
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is in the range of a few CPU minutes per ligand per processor, and solutions

within 2Å RMSD from the X-ray pose are found for most of the test cases.

Alternative parameter sets are also provided to achieve more accurate results

or faster run times.

To summarize the advantages of eHiTS, it offers a truly exhaustive search

method, which is important to minimize the chance of false negatives during a

virtual screening study. eHiTS offers highly accurate (energy minimized) dock-

ing poses. It is a deterministic system, so the results are completely reproducible

– an important feature for the scientific method.

eHiTS is a fully automated system, which does not require lengthy data

preparation. There is no need to manually assign protonation states, partial

charges, add hydrogen atoms or lone electron pairs, since eHiTS does that all

automatically. It can even detect automatically the location of the binding

pocket if the full protein is supplied without any further information. The

scoring function is highly configurable via simple text parameter files. And last,

but not least eHiTS can run very fast using the DockTable extension that reuses

fragment docking information for common functional groups in large databases

or virtual libraries.

The eHiTS software is available from SimBioSys, Inc. (www.simbiosys.ca)

for interested researchers on Linux and IRIX platforms. It is free of charge for

Academic use. The results reported here were obtained running the software

on Pentium4 processor with 1GB RAM under Linux, but the typical memory

footprint of an eHiTS run is in the range of 50MB-300MB depending on the size

of the receptor cavity and the ligand structure. The software requires about

2MB to 300MB disk space for the preprocessing data (grid and cavity graph) of

each receptor. The size of the result files varies with the size of the ligand and

the number of poses generated, typically it is in the range of few MBs.
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Figure 12: TOC Graphic.
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