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ABSTRACT 

This paper presents an approach to optimize the short-term traffic prediction performance using 
multiple topologies of dynamic neural networks and various network-related and traffic-related 
settings.  The study emphasizes the potential benefit of optimizing the prediction performance by 
deploying multi-model approaches under parameters and traffic condition settings.  The 
emphasis of the paper is on the application of temporal-processing topologies in short-term speed 
predictions in the range of 5 to 20 minute-horizons.  Three network topologies are utilized: 
Jordan/Elman, partially recurrent networks, and time-lagged feedforward networks.  The input 
patterns were constructed from data collected at the target location, as well as the upstream and 
downstream locations.  However, various combinations were also considered.  To encourage the 
networks to associate with historical information on recurrent conditions, a time factor was 
attached to the input patterns to introduce time recognition capabilities, in addition to 
information encoded in the recent past data.  The optimal prediction settings (type of topology 
and input settings) were determined such that the performance is maximized under different 
traffic conditions at the target and adjacent locations.  The optimized performance of the 
dynamic neural networks was compared to that of a statistical non-linear time series approach, 
which was outperformed in most cases.  The study also shows that no single topology has 
consistently outperformed the others for all prediction horizons considered.  However, the results 
show that the significance of introducing the time factor was more pronounced under longer 
prediction horizons.  A comparative evaluation of performance between optimal and non-optimal 
settings shows substantial improvement in most of the cases.  The procedure applied can also be 
used to identify the prediction reliability of information dissemination systems. 

KEYWORDS 

Traffic prediction, speed prediction, freeway operation, artificial neural networks, dynamic 
neural networks, temporal processing networks, and performance optimization. 
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INTRODUCTION 

Traffic information continues to play a key role in supporting the primary functions of advanced 
traffic management and information systems (ATMIS).  The last few years have witnessed major 
research and development efforts in the area of intelligent transportation systems (ITS).  
Hundreds of miles of freeway segments in major urban areas nationwide are now instrumented 
with traffic surveillance systems that communicate to the traffic management centers real time 
traffic information.  Such information is critical to both transportation system users and providers 
and is often categorized in three different modes: historical, real-time, and predictive.  
Transportation system users seek traffic information at the pre-trip planning stage and en-route.  
With accurate and reliable information, travelers can make appropriate decisions to bypass 
congested segments of the network, change departure times and/or destination, whenever 
appropriate.  Such decisions can strongly influence the demand at various points in the 
transportation network and provide opportunities for better utilization of the existing 
infrastructure capacity.  For transportation system providers, traffic information is essential for 
performance monitoring and decision support systems. 
 
For pre-trip planning and en-route decisions, travelers seek predictive more than real-time 
information to make trip decisions in advance.  Such information can effectively reduce travel 
costs in terms of travel times and delays.  Travelers can essentially avoid congested locations by 
selecting alternative routes, whenever available.  With today’s remarkable advancements in 
technology, traffic information can be disseminated to the traveling public via multiple 
innovative channels such as the Internet and wireless communications with in-vehicle navigation 
devices.  Such devices have many advantages over conventional devices (radio, TV, etc.) in that 
they can supplement the travelers, through their interactive capabilities, with information 
pertinent to their specific travel needs, as opposed to all-purpose information provided by traffic 
reports.  While real-time traffic information is now accessible to the traveling public in several 
urban areas, predictive information is still unattainable at most locations.  Having recognized the 
importance of predictive information to the users’ and providers’ decision making process, the 
research community has addressed this need with a variety of short-term traffic prediction 
models that attempt to capture the dynamics of traffic conditions.  A review of the literature on 
previously developed models and research activities in this area reveals that there is still need to 
improve on the prediction performance of existing models.  This research study presents a multi-
model approach to optimize the performance of dynamic neural networks in short-term traffic 
prediction under different network settings and traffic conditions.  The modeling approach also 
attempts to incorporate the effect of historical information by inserting an explicit representation 
of time. 

RELATED BACKGROUND 

The need to relay reliable predictive information has inspired researchers to seek robust traffic 
prediction models that are capable of forecasting traffic flow, speed, travel times, and delays in 
short-term horizons, usually in the order of 5 to 20 minutes.  Several research efforts were thus 
conducted in the last few years to support ITS applications and provide the travelers with travel 
time information at the pre-trip planning stage and en-route.  Kaysi et al. (1) and Ben-Akiva et al. 
(2) recommended that traffic routing strategies under recurring and non-recurring congestion be 
based on forecasting future traffic conditions rather than historical and/or current traffic 
conditions.  This is because travelers’ decisions are affected by future traffic conditions rather 
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than current traffic conditions.  Several prediction methods have been implemented in research in 
the past two decades.  Ben Akiva et al. (3) grouped those methods into three categories: (a) 
statistical models, (b) macroscopic models, and (c) route choice models based on dynamic traffic 
assignment.  Time series models have been extensively used in traffic forecasting for their 
simplicity and strong potential for on-line implementation (see for example; 4-18). 
 
Recently, Chen and Chien (19) conducted a study using probe vehicle data to compare the 
prediction accuracy under direct measuring of path-based travel time versus link-based travel 
times.  The study showed that under recurrent traffic conditions, path-based prediction is more 
accurate than link-based prediction.  Chien and Kuchipudi (20) presented the results of using 
real-time and historical data for travel time prediction.  Another study by Kwon et al. (21) used 
an approach to estimate travel time on freeways using flow and occupancy data from single loop 
detectors and historical travel time information.  Forecasting ranged from a few minutes into the 
future up to an hour ahead.  The study showed that current traffic conditions are good predictors 
for the near future, up to 20 minutes, while long-range predictions need the use of historical data. 
 
Recently, several studies have investigated the use of artificial neural networks to model short-
term traffic prediction.  For instance, Park and Rilett (22) proposed two modular Artificial 
Neural Networks (ANN) models for forecasting multiple-period freeway link travel times.  One 
model used a Kohonen Self Organizing Feature Map (SOFM) while the other utilized a fuzzy c-
means clustering technique for traffic patterns classification.  Rilett and Park (23) proposed a 
one-step approach for freeway corridor travel time forecasting rather than link travel time 
forecasting.  They examined the use of a spectral basis neural network with actual travel times 
from Houston, Texas.  Another study by Abdulhai et al. (24) used an advanced time delay neural 
network (TDNN) model, optimized using a Genetic Algorithm, for traffic flow prediction.  The 
results of the study indicated that prediction errors were affected by the variables pertinent to 
traffic flow prediction such as spatial contribution, the extent of the loop-back interval, 
resolution of data, and others.  Lint et al. (25) presented an approach for freeway travel time 
prediction with state-space neural networks.  Using data from simulation models, they showed 
that prediction accuracy was acceptable and favorable to traditional models.  Several other 
studies applied neural networks for predicting speed, flows, or travel times (see for instance; 26-
31). 

OBJECTIVES 

The primary objective of this study is to seek optimal settings that maximize the performance of 
dynamic neural networks in short-term traffic prediction of speed on freeways.  The study 
investigates the performance of three different dynamic neural network topologies under 
different network and traffic operating condition settings.  The three architectures belong to the 
class of dynamic or temporal-processing networks.  For each network, we investigate the effect 
of inserting time explicitly in the representation of the input patterns to strengthen the networks’ 
ability to learn from historical traffic conditions and their recurrent characteristics, in addition to 
recent past information that sensitizes the models to non-recurrent conditions. 

DESCRIPTION OF THE DYNAMIC NEURAL NETWORK MODELS 

The type of neural networks applied in this study belongs to the class of recurrent neural 
networks that is known to have closed loops (feedback) in their topological structure.  Unlike 
conventional feedforward networks or static mappers such as multilayer perceptron, dynamic 
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networks have temporal processing capabilities in the form of memory or feedback in their 
topologies.  Memories are preserved from past values information in a linear combiner that has a 
finite transient response.  Feedback topologies are referred to as recurrent networks, where the 
output of a neuron can be fed back to a neuron in the input or intermediate layers.  Such 
networks are popular in applications of time series predictions (32).  A major distinction between 
static and dynamic networks lies in the representation of short-term and long-term memory.  
Static networks have the ability to build long-term memory in their synaptic weights during 
training.  However, they do not have explicit realization of time.  On the contrary, dynamic 
models are sensitive to the sequence of presentation of information as a result of the memory 
structures or the recurrent connections.  In summary, dynamic networks are more capable of 
codifying enhanced information from the input that leads to better temporal processing 
capabilities.  In order to assess the performance of dynamical neural networks, three topological 
structures are considered: simple recurrent networks (Jordan/Elman), partial recurrent networks 
(PRN), and time-lagged feedforward networks (TLFN).  The three architectures were applied in 
the study to compare the prediction performance of each under different network configurations 
and traffic conditions.  A brief description of each model is provided next.  More elaborate 
details can be found in the cited references. 

Jordan/Elman Network 

The Jordan/Elman network is referred to as the simple recurrent network (SRN) (33).  It is a 
single hidden-layer feedforward network with feedback connections from the outputs of the 
hidden-layer neuron to the network input layer.  It was originally developed to learn temporal 
sequences or time-varying patterns.  As shown in FIGURE 1(a), the network contains context 
units located in the upper portion and used to replicate the hidden-layer output signals at the 
previous time step.  The context units are introduced to resolve conflicts arising from patterns 
that are similar, yet result in similar outputs.  The feedback provides a mechanism to 
discriminate between identical patterns occurring at different times.  The context unit is also 
referred to as a low-pass filter that creates a weighted average output of some of the more recent 
past inputs.  Therefore, the context units are also called “memory units” since they tend to 
remember information from the past events.  The training phase of this network is achieved by 
adapting all the weights using standard backpropagation procedures.  More details on this 
topology can be found in (33, 36). 

Partially Recurrent Networks (PRN) 

This network is considered a simplified version of the Jordan/Elman network without hidden 
neurons.  It is composed of an input layer of source and feedback nodes, and an output layer, 
which is composed of two types of computation nodes: output neurons and context neurons.  The 
output neurons produce the overall output, while the context neurons provide feedback to the 
input layer after a time delay.  The topological structure of the network is illustrated in FIGURE 
1(b).  More details can be found in (34, 36). 

Time-Lagged Feedforward Networks (TLFN) 

In dynamic neural networks time is explicitly included in mapping input-output relationships.  
As a special type, TLFN extends nonlinear mapping capabilities with time representation by 
integrating linear filter structures in a feedforward network.  The type of topology used in this 
study is also called focused TLFN and has memory only at the input layer.  The TLFN is 
composed of feedforward arrangement of memory and nonlinear processing elements.  It has 
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some of the advantages of feedforward networks such as stability, and can also capture 
information in input time signals.  FIGURE 1(c) shows a simplified topological structure of the 
focused TLFN.  The figure shows that memory PE (processing elements) are attached in the 
input layer only.  The input-output mapping is performed in two stages: a linear time-
representation stage at the memory PE layer and a nonlinear static stage between the 
representation layer and the output layer.  Further details the underlying mathematical operations 
of TLFN can be found in (33, 35, 36). 

STUDY AREA AND DATA COLLECTION 

The study was conducted on a freeway segment of I-4 in Orlando, Florida, using 30-second loop 
detector speed data.  The traffic surveillance system compiles data from a 40-mile six-lane 
corridor instrumented with 70 inductive dual loop detector stations spaced at nearly 0.5 miles in 
both directions.  The real time and archived data is accessible on the web at 
http://trafficinfo.engr.ucf.edu.  The loop detector data is collected in real time via a T1 link 
between the Regional Traffic Management Center (RTMC) in Orlando and the intelligent 
transportation system lab at the University of Central Florida.  Speed, volume counts, and lane 
occupancies are downloaded and compiled into an SQL server that supports multiple publicly 
accessible web applications such as real time and short-term travel time predictions between 
user-selected on- and off-ramps.  The web-based short-term traffic prediction system was 
implemented using a nonlinear time series model that was tested extensively in a previous study 
(18).  In this study the data was collected from a one-mile test section that is covered by three 
adjacent stations.  A total of 28 weekdays were randomly selected in the year 2001, where data 
was available during the entire morning peak period from 6:00 AM to 10:00 AM in the 
westbound direction.  To suppress the noise and random fluctuations in speed, the data was 
aggregated over 5-minute moving time windows.  The 28 days were randomly split into 14 days 
for training, 4 for cross-validation, and 10 for testing. 

TRAINING 

The model development process was completed using NeuroSolutions (36).  In order to achieve 
optimal performance, different settings were attempted by varying the number and type of inputs 
to each network topology.  The input patterns were composed of two portions: the recent past 
information (mandatory) and the time factor (optional).  The recent past information component 
was represented by speed data observed in the past 10 minutes at the three adjacent stations, 
individually and collectively to capture temporal and spatial variations of traffic conditions.  For 
optimization purposes, the input patterns were constructed from four spatial settings: current 
station (y), current and upstream (y, z), current and downstream (y, x), or the three stations 
combined (x, y, z).  The time factor was appended to the input patterns and toggled on and off to 
test the network’s ability to learn from similar historical traffic conditions observed at the same 
time on other weekdays.  The essence of inserting the time factor, as explained earlier, is to make 
the network time-cognizant, and thus, improve its predictive performance at relatively longer 
prediction horizons under recurrent conditions.  Each network was trained to predict the average 
5-minute speeds at 5, 10, 15, or 20-minute horizons.  During the training phase the performance 
of the networks was monitored via the cross-validation set to avoid overtraining.  Training was 
terminated when the mean square error (MSE) for the cross-validation set did not decrease for 50 
consecutive training cycles, a common procedure to prevent overtraining. 
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For each network considered, the input patterns were generated from one of the following four 
input scenarios: {y(t)}, {y(t), z(t)}, {y(t), x(t)}, or {y(t), x(t), z(t)}, where: 
y(t) = average 5-minute speed at target station at time t 
x(t) = average 5-minute speed at downstream station at time t 
z(t) = average 5-minute speed at upstream station at time t 
 
The time component was optionally attached to each of the four input scenarios.  Each network 
produces one single output that represents the average speed at the target station S(t+δ), where δ, 
the prediction horizon, was set to 5, 10, 15, or 20 minutes. 

TESTING 

In order to test the performance of each network after training was completed, a set of 10 peak 
periods collected from 10 different weekdays was presented to each network.  For each input 
pattern in the testing set, predictions were evaluated for 5, 10, 15, and 20 minute horizons.  Each 
predicted value was compared against the actual observed value to calculate two measures of 
performance: average absolute relative error (AARE) and root mean square error (RMSE).  Each 
measure is defined as follows: 
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Where 
AARE = Average absolute relative error of speed 
RMSE = Root mean square error (mph) 
Si = Predicted speed (mph) for observation i 
Vi = Actual speed (mph) for observation i 
N = Number of observations 
 
The two previous measures were used to compare the performance of the three network 
topologies under the following settings: desired prediction horizon (5, 10, 15, and 20 minutes), 
input type (y, xy, yz, and xyz), and presence of time factor (Yes/No).  In the meantime, the 
performance was also tested under various combinations of traffic conditions at each of the three 
stations.  At each station, traffic conditions were broken down into four levels of congestion: 
level 1 (speed >60 mph), level 2 (40-60 mph), level 3 (20-40 mph), and level 4 (<20 mph).  For 
each combination of the four levels of congestion at each station, the network performance was 
evaluated to determine the optimal settings.  This procedure was primarily used to answer two 
questions.  First, which network topology and what input settings are optimal for predictions at 
each of the four prediction horizons considered?  Second, what combinations of traffic 
conditions are associated with the largest errors or worst prediction performance in order to 
identify the level of confidence in our predictions?  Both questions are critical to the successful 
online implementation of a traffic prediction system.  The answer to the first question will 
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identify which network and what settings are best for variable traffic conditions.  This allows us 
to deploy a multi-model traffic prediction system that is optimized under different prediction 
horizons, input settings, and traffic conditions.  The answer to the second question underlines the 
prediction accuracy and level of uncertainty associated with the application of each model and 
each traffic condition.  This can be directly used as a reliability measure of the traffic 
information dissemination system. 

OPTIMAL SETTINGS 

The optimal settings were selected for each of the four levels of prediction horizon by 
minimizing AARE and RMSE independently.  Despite the fact that both measures are used to 
quantify the performance of prediction models, consistency between the two measures is not, by 
their mathematical definition, guaranteed, and thus, the optimal settings obtained from each may 
not necessarily be identical.  While some optimal settings were different, others were similar, 
indicating that both measures are in agreement.  For each prediction horizon, a total of 25 cases 
resulted from different combinations of congestion levels at the three stations.  The 25 cases, 
however, were determined by the testing set, and therefore, do not include all possible 
combinations of congestion levels.  Theoretically, with four levels of congestion at each station, 
the total number of combinations would amount to 64 cases (4x4x4).  However, some 
combinations were not observed in the testing set due either to its limited size or to their 
infrequent occurrence in general.  Therefore, the optimization was based on the 25 cases only.  
Clearly, additional testing with a larger data set can be similarly applied to optimize the 
performance for the remaining cases. 
 
The optimal settings for each of the four prediction horizons based on AARE are shown in 
TABLE 1 and TABLE 2.  Each table shows the optimal settings for each of the 25 cases in an 
ascending order of the AARE.  Each record in the tables shows the optimal network topology, the 
type of input, and the relevance of time factor corresponding to each case.  The tables also 
compare the performance of the NN approach to that of a non-linear time series approach that 
was developed and tested in a previous study (16, 18).  The time series model was tested under 
different traffic conditions using prediction horizons of 5, 10, and 15 minutes.  Comparisons are 
provided in each table in terms of AARE, except for 20-minute prediction horizons where the 
time series performance was not available.  The tables show that, except for a few cases that are 
shown in grey, the optimized NN approach has outperformed the time series approach in terms 
of AARE.  It should be noted also that the time series approach was derived from the past recent 
information at the target station only, and therefore, the effect of traffic conditions at adjacent 
upstream and downstream stations was not accounted for. 
 
Considering the optimized NN approach, both tables show that no particular network topology 
seemed to have outperformed the others for all cases.  The same applies to the type of inputs and 
the relevance of time factor.  For 5-minute predictions of speed, the AARE did not exceed 7.3% 
for all 25 cases.  Six cases produced errors in the range of 5% to 7% while the rest were 
consistently below 3%.  For 10-minute predictions, 19 cases exhibited errors less than 10%.  
Four cases showed errors greater than 20% and were mostly characterized with severe 
congestion at one or more of the three stations (levels 3 or 4).  Similar conclusions can be made 
for 15- and 20-minute predictions, which show consistently larger errors for most of the cases.  
Intuitively, larger prediction errors are expected with longer prediction horizons.  Even when 
such errors are uncontainable, it is imperative that we identify cases associated with such large 
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errors for reliability purposes.  Similarly, the optimal settings were also selected based on the 
RMSE for each prediction horizon.  Comparisons show some discrepancies between optimal 
settings for each case based on each measure.  Cases with identical optimal settings are marked 
with an asterisk in both tables. 

PERFORMANCE ENVELOPES 

The minimum values of AARE and RMSE corresponding to the optimal settings for all prediction 
horizons are plotted in FIGURE 2(a) and FIGURE 2(b), respectively.  The figures show the 
lower and upper bounds or performance envelopes for each case, which are associated with the 
minimum (5-minute) and maximum (20-minute) prediction horizons, respectively.  The 
performance envelopes can be used to identify cases where prediction errors do not meet a 
maximum acceptable threshold value that is appropriate for online implementation.  For 
example, if we set the AARE threshold value to 10%, then cases with prediction errors larger than 
10% should be avoided.  Consequently, when such cases are encountered in real world, the high 
levels of uncertainty in predictions will then be realized and treated appropriately by traffic 
information dissemination systems. 
 
It should be emphasized here that the large errors associated with such cases may be attributed to 
under-representation of those cases in the training data set.  This often leads to the network’s 
inability to generalize under such conditions.  Additional training with data collected from such 
infrequent conditions could essentially lead to improvement in the overall prediction 
performance.  Despite the potential improvement of performance that could result from 
additional training, it is still reasonable to expect that there will be certain conditions where the 
optimal settings cannot yield the minimum acceptable prediction performance.  As such, traffic 
prediction systems must have the capability to identify large-error prediction cases to measure 
the reliability of predictive information. 

EFFECT OF NETWORK TOPOLOGY AND TIME COMPONENT 

The optimal settings defined in the study included the network topology and the relevance of 
attaching the time component to the network input.  In this section we investigate the optimal 
network topology that is prevalent in the optimal settings for each prediction horizon.  FIGURE 
3(a) shows that no specific topology appears to be consistently prevalent in the optimal settings.  
While TLFN produced better performance in 5- and 10-minute predictions, the performance of 
Jordan/Elman and PRN was slightly better for 15- and 20-minute predictions, respectively.  For 
all cases combined, the performance of the three topologies was very comparable. 
 
Another critical factor that was examined in this study is the influence of time component on the 
prediction performance.  This component was introduced to strengthen the time realization 
feature of the network and its ability to learn from historical information.  This feature can be 
extremely useful in predicting the onset of congestion and in improving the accuracy of longer-
horizon predictions, when predicted conditions are more likely to be less dependent on the 
information relayed by the recent past values.  This can essentially lead to a model that is more 
capable of predicting traffic under both recurrent and non-recurrent conditions.  FIGURE 3(b) 
shows the percentage of cases whose optimal settings included the time component.  The figure 
clearly shows that the relevance of the time realization feature is more pronounced in longer-
horizon predictions.  For instance, nearly 96% of the cases favored the time component in their 
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optimal settings for 20-minute predictions, as opposed to nearly 63% for 5-minute predictions.  
This trend suggests the increasingly critical role of time when making longer-term predictions. 

COMPARISON BETWEEN OPTIMAL AND NON-OPTIMAL PERFORMANCE 

In order to quantify the performance improvements achieved by optimization with traffic 
conditions and network settings versus optimization with network settings only, we compare the 
optimal with the non-optimal performance for each case.  In our comparison, non-optimal 
performance refers to optimization with network settings only and without consideration of 
traffic conditions.  Optimal performance, on the other hand, refers to optimization with both 
network settings and traffic conditions.  To facilitate the comparison, the reduction in errors of 
both scenarios was utilized.  FIGURE 4(a) shows the percentage reduction in AARE for each 
prediction horizon.  The figure shows significant improvements in prediction performance for 
most of the cases as a result of optimization with traffic conditions.  Improvements as high as 
30% in case 11 and 25% in cases 11, 13, and 17 were observed.  In most cases, the reduction in 
AARE was in the range of 5% to 10% as a result of optimization with traffic conditions.  Similar 
results were attained in the comparative evaluation of performance based on RMSE.  FIGURE 
4(b) shows the improvements in terms of the reduction in RMSE (mph) for each case and each 
prediction horizon.  The reduction of RMSE was as high as 10 mph for case 9 and nearly 8 mph 
for cases 13, 19, 20, and 23.  A better illustration of the performance improvements in all cases 
combined can be seen in FIGURE 5(a) and FIGURE 5(b).  Each figure shows the cumulative 
percentage of cases with a corresponding reduction in AARE and RMSE.  For instance, the 
figures show that 90% of the cases showed improvements of 13% or less in terms of AARE 
reduction and nearly 4.5 mph in terms of RMSE reduction.  Such improvements were exclusively 
attributed to performance optimization with traffic conditions. 

CONCLUSIONS 

This study presented an approach to optimize the performance of dynamic neural networks in 
short-term traffic prediction.  Three neural network architectures, Jordan/Elman, partially 
recurrent, and focused time-lagged feedforward networks, were trained and tested under various 
network configurations and traffic conditions settings.  The input to the networks was divided 
into two main components: recent past information and a time factor.  The recent past 
information was represented by spatiotemporal observations in the past 10 minutes.  The time 
factor was arbitrarily attached to the input patterns in order to strengthen the time recognition 
capability of the networks.  This technique was primarily introduced to allow the networks to 
learn from historical information on traffic conditions that are likely to be recurrent.  This was 
necessary to improve the prediction performance during recurring conditions when future 
predictions are less dependent on information relayed by recent past data.  The predictive 
performance was measured in terms of two types of errors: average absolute relative error and 
root mean square error. 
 
The optimal settings were selected to minimize the prediction errors under different network and 
traffic condition settings for variable prediction horizons.  The optimal settings were based on 
the testing results obtained from the three network topologies trained with the same data set.  The 
network settings were varied by changing the input source from three adjacent detector stations 
and by toggling the time component on and off.  Traffic conditions were broken down into four 
levels of congestion at each of the three stations.  This resulted in a total of 25 combinations of 
different traffic conditions in the testing data set.  Each of the 25 cases was optimized 

TRB 2003 Annual Meeting CD-ROM    Paper revised from original submittal.



Ishak, Kotha, and Alecsandru  

 

11

independently to identify the optimal network topology and the optimal network settings.  The 
results of the study showed that no particular network topology has consistently outperformed 
the others for all prediction horizons and all cases.  However, the performance optimization for 
different traffic conditions has the advantage of identifying cases where none of the trained 
networks were able to produce acceptable performance.  While additional training with more 
data may improve the performance for some of those cases, it is still unequivocally critical to 
identify cases where the expected prediction performance may fall below the minimum 
acceptable by traffic management centers.  This is a critical factor in addressing information 
reliability issues of information dissemination systems developed for the traveling public.  The 
optimized prediction performance was also compared to that of a statistical non-linear time-
series approach, which was outperformed by the NN approach in most of the cases and 
prediction horizons. 
 
Another important finding is the effect of the time component on the optimal performance.  The 
results showed that the time factor appeared more frequently in the optimal settings of longer 
prediction horizons.  Nearly 96% of the cases included the time component in their optimal 
settings for 20-minute predictions, as opposed to 63% for 5-minute predictions.  This finding 
emphasizes the critical role of inserting time explicitly in the models to improve longer horizon 
predictions.  The study also presented a comparative evaluation of the prediction performance 
under optimal and non-optimal traffic condition settings.  Using the reduction in AARE and 
RMSE the performance improvement in each case and for each prediction horizon was evaluated.  
The comparative evaluation clearly demonstrates the benefit of optimizing the performance 
under different traffic conditions at the same station, and both upstream and downstream 
stations. 
 
Finally, the study presented an approach towards the development of a more efficient traffic 
prediction system with multiple neural network topologies and multiple network and traffic 
condition settings.  The approach was extensively examined at one location and the results were 
encouraging for the approach to be applied to other locations as well.  For locations that exhibit 
similar traffic conditions during the peak periods, the settings obtained in this study may be 
transferable directly without retraining.  However, testing is still recommended with data 
collected from the other locations first.  If the testing results are not satisfactory, then the current 
settings may not be applicable and the performance must be optimized at the new locations 
following the steps described in this study. 
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TABLE 1  Optimal Settings for 5- and 10-Minute Predictions Based on AARE 

(a) 5-Minute Prediction Horizon 

Congestion Indicator Optimal Settings for NN Approach 
Average Absolute Relative 

Error 

Case 
Downstream Station 

(X) 
Current Station 

(Y) 
Upstream Station 

(Z) Network Inputs 
Time 

Factor 
NN 

Approach 
Time Series 
Approach 

21 3 4 4 JORDAN-ELMAN Y Yes <0.001 0.018 
8 2 2 4 TLFN XYZ Yes 0.001 0.169 
18 3 3 3 TLFN Y No 0.001 0.031 
25 4 4 4 TLFN ZY Yes 0.001 0.018 
4* 2 1 4 PRN XY Yes 0.002 0.362 
6 2 2 2 PRN XYZ No 0.002 0.169 
19 3 3 4 JORDAN-ELMAN ZY Yes 0.002 0.031 
9 2 3 3 TLFN XY No 0.003 0.031 
10 2 3 4 TLFN ZY No 0.003 0.031 

13* 3 1 3 JORDAN-ELMAN ZY No 0.003 0.362 
20 3 4 3 TLFN XYZ No 0.003 0.018 
22 4 3 3 JORDAN-ELMAN XYZ No 0.003 0.031 
24 4 4 3 TLFN ZY No 0.003 0.018 
15 3 2 2 JORDAN-ELMAN ZY Yes 0.005 0.169 
14 3 2 1 TLFN XY Yes 0.008 0.169 

23* 4 3 4 TLFN Y No 0.011 0.031 
3 2 1 3 PRN Y Yes 0.013 0.362 

11* 3 1 1 PRN Y Yes 0.027 0.362 
5* 2 2 1 TLFN XY Yes 0.029 0.169 
1 2 1 1 PRN Y Yes 0.05 0.362 
2* 2 1 2 PRN Y Yes 0.051 0.362 

17* 3 2 4 JORDAN-ELMAN XY Yes 0.054 0.169 
12 3 1 2 PRN Y Yes 0.058 0.362 

16* 3 2 3 JORDAN-ELMAN XY Yes 0.072 0.169 
7 2 2 3 PRN Y Yes 0.073 0.169 

(b) 10-Minute Prediction Horizon 
Congestion Indicator Optimal Settings for NN Approach Average Absolute Relative 

Error 

Case 
Downstream Station 

(X) 
Current Station 

(Y) 
Upstream Station 

(Z) Network Inputs 
Time 

Factor 
NN 

Approach 
Time Series 
Approach 

9 2 3 3 TLFN ZY Yes <0.001 0.030 
21 3 4 4 Jordan-Elman XYZ No 0.002 0.015 
25 4 4 4 PRN XYZ Yes 0.002 0.015 
5 2 2 1 PRN Y Yes 0.003 0.199 
6 2 2 2 PRN XYZ No 0.003 0.199 
8 2 2 4 TLFN Y Yes 0.005 0.199 

15 3 2 2 TLFN Y Yes 0.005 0.199 
24 4 4 3 TLFN ZY No 0.006 0.015 
20 3 4 3 TLFN XYZ Yes 0.007 0.015 
23 4 3 4 PRN Y Yes 0.01 0.030 
18* 3 3 3 TLFN XY Yes 0.01 0.030 
14 3 2 1 PRN ZY Yes 0.015 0.199 
4 2 1 4 TLFN ZY No 0.02 0.465 

22* 4 3 3 PRN XY No 0.08 0.030 
10 2 3 4 TLFN XYZ No 0.088 0.030 
19* 3 3 4 Jordan-Elman XYZ Yes 0.109 0.030 
12 3 1 2 TLFN Y Yes 0.111 0.465 
2 2 1 2 TLFN Y Yes 0.113 0.465 
1* 2 1 1 TLFN Y Yes 0.117 0.465 
3 2 1 3 PRN ZY Yes 0.137 0.465 
7 2 2 3 Jordan-Elman Y No 0.144 0.199 

16* 3 2 3 Jordan-Elman XY Yes 0.196 0.199 
11* 3 1 1 TLFN Y Yes 0.356 0.465 
13* 3 1 3 Jordan-Elman XY Yes 0.394 0.465 
17* 3 2 4 Jordan-Elman XY Yes 0.409 0.199 

Cases marked with * have the same optimal settings for both AARE and RMSE. 
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TABLE 2  Optimal Settings for 15- and 20-Minute Predictions Based on AARE 

(c) 15-Minute Prediction Horizon 
Congestion Indicator Optimal Settings for NN Approach Average Absolute Relative 

Error 

Case 
Downstream Station 

(X) 
Current Station 

(Y) 
Upstream Station 

(Z) Network Inputs Time Factor 
NN 

Approach 
Time Series 
Approach 

14 3 2 1 Jordan-Elman ZY Yes <0.001 0.199 
23 4 3 4 Jordan-Elman Y Yes 0.002 0.030 
24 4 4 3 Jordan-Elman ZY Yes 0.002 0.015 
5 2 2 1 TLFN Y Yes 0.003 0.199 
6 2 2 2 TLFN XYZ Yes 0.003 0.199 
9 2 3 3 Jordan-Elman ZY Yes 0.005 0.030 
22 4 3 3 TLFN XYZ No 0.005 0.030 

25* 4 4 4 Jordan-Elman XYZ Yes 0.006 0.015 
21 3 4 4 Jordan-Elman XYZ Yes 0.007 0.015 
4* 2 1 4 Jordan-Elman XYZ Yes 0.01 0.465 
8 2 2 4 TLFN Y No 0.01 0.199 

18* 3 3 3 Jordan-Elman ZY Yes 0.015 0.030 
20* 3 4 3 Jordan-Elman XY Yes 0.02 0.015 
19* 3 3 4 Jordan-Elman ZY Yes 0.08 0.030 
15* 3 2 2 PRN Y Yes 0.088 0.199 
2* 2 1 2 PRN Y Yes 0.109 0.465 
1* 2 1 1 Jordan-Elman XY Yes 0.111 0.465 
10 2 3 4 PRN ZY No 0.113 0.030 

12* 3 1 2 PRN Y Yes 0.117 0.465 
11* 3 1 1 PRN Y Yes 0.137 0.465 

3 2 1 3 Jordan-Elman XY Yes 0.144 0.465 
7* 2 2 3 PRN Y Yes 0.196 0.199 
17 3 2 4 PRN Y Yes 0.356 0.199 

13* 3 1 3 PRN Y Yes 0.394 0.465 
16 3 2 3 PRN Y Yes 0.409 0.199 

(d) 20-Minute Prediction Horizon 
Congestion Indicator Optimal Settings for NN Approach Average Absolute Relative 

Error ** 

Case 
Downstream Station 

(X) 
Current Station 

(Y) 
Upstream Station 

(Z) Network Inputs Time Factor NN Approach 
8 2 2 4 PRN ZY Yes <0.001 
9 2 3 3 TLFN XY Yes <0.001 

18 3 3 3 TLFN XY Yes 0.003 
23 4 3 4 Jordan-Elman XYZ Yes 0.003 
22* 4 3 3 PRN Y Yes 0.008 
14 3 2 1 TLFN ZY Yes 0.010 
5 2 2 1 PRN XYZ Yes 0.015 

20 3 4 3 TLFN XY Yes 0.015 
4* 2 1 4 TLFN ZY Yes 0.017 

25* 4 4 4 Jordan-Elman XYZ Yes 0.019 
21 3 4 4 TLFN XY Yes 0.030 
6 2 2 2 PRN XY Yes 0.064 

24 4 4 3 TLFN XYZ Yes 0.073 
1 2 1 1 PRN XYZ Yes 0.076 

19 3 3 4 TLFN XY Yes 0.113 
12* 3 1 2 Jordan-Elman ZY Yes 0.134 
10 2 3 4 Jordan-Elman XYZ No 0.137 
2* 2 1 2 Jordan-Elman XYZ Yes 0.170 
3* 2 1 3 Jordan-Elman XYZ Yes 0.232 
15 3 2 2 PRN XY Yes 0.270 
11* 3 1 1 PRN XY Yes 0.316 
7* 2 2 3 PRN XY Yes 0.418 

17* 3 2 4 PRN ZY Yes 0.436 
13 3 1 3 PRN XY Yes 0.527 
16* 3 2 3 Jordan-Elman XYZ Yes 0.600 

Cases marked with * have the same optimal settings for both AARE and RMSE. 
** Time series predictions were not available for 20-minute prediction horizons 
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(a) The Jordan/Elman network. 
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(b) The partially recurrent network (PRN). 
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(c) The time-lagged feedforward network (TLFN). 
FIGURE 1  Simplified topologies of the applied dynamic neural networks. 
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(a)  Performance envelopes based on AARE. 
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(b)  Performance envelopes based on RMSE. 
FIGURE 2  Performance envelopes associated with optimal settings for each case. 
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(a) Frequency of optimal networks with prediction horizons based on AARE. 
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(b)  Percentage of cases including time factor in optimal settings. 

FIGURE 3  Effect of network topology and time factor on optimal settings. 
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(a)  Percentage reductions in AARE. 
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(b)  Reduction in RMSE. 

 
FIGURE 4  Reductions in AARE and RMSE achieved by optimization with traffic 

conditions. 
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(a)  Percentage reductions in AARE. 
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(b)  Reduction in RMSE. 

 
FIGURE 5  Performance improvements achieved by optimization with traffic conditions. 
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