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Interference in Lattice Networks
Martin Haenggi

Abstract

Lattices are important as models for the node locations in wireless networks for two main reasons: (1) When
network designers have control over the placement of the nodes, they often prefer a regular arrangement in a
lattice for coverage and interference reasons. (2) If nodesare randomly distributed or mobile, good channel access
schemes ensure that concurrent transmitters are regularlyspaced, hence the locations of the transmitting nodes are
well approximated by a lattice. In this paper, we introduce general interference bounding techniques that permit
the derivation of tight closed-form upper and lower bounds for all lattice networks, and we present and analyze
optimum or near-optimum channel access schemes for one-dimensional, square, and triangular lattices.

Index Terms

Wireless networks, interference, time-division multiple-access, geometry

I. INTRODUCTION

A. Motivation and contributions

Wireless networks where nodes are arranged regularly in a lattice have advantages in terms of coverage, for
example in sensor networks or for cellular base stations, and in terms of interference, since it is much easier to
devise good channel access schemes than in networks where nodes are randomly deployed or mobile. Despite this
advantage, relatively little work has focused on the interference characterization in such networks. Furthermore,
interference results for lattices also provide bounds on optimally scheduled general wireless networks, since the
goal of scheduling is to maximize the spacing between a receiver and its interfering transmitters, while maintaining
a certain density of transmitters.

In this context, this paper makes three contributions:

• We introduce general bounding techniques for the interference in lattice networks.
• We apply these bounds totransmitter-centricMACs (MAC schemes that schedule transmitters without con-

sidering the location of their respective receivers, such as CSMA-type scheduling without RTS/CTS). In this
case, transmitters form a lattice, but interference has to be measured at the receiver, where the interference is
necessarily larger than if it were measured at the location of the desired transmitter. The transmitter-receiver
distancer results inexcess interference. We show that quadratic approximations of the formI(r) ≈ I(o)+cexr

2,
whereI(o) is the interference at the desired transmitter andcexr

2 is the excess interference due to the offset
of the receiver, are highly accurate for smallr. These results are relevant for well scheduled wireless networks
with arbitrary node distribution.

• For networks where all nodes form a lattice, we analyze and compare the interference of different TDMA
schedulers, and we provide schemes that are very close to optimum (if not optimum) for one-dimensional,
square and triangular networks. In the one-dimensional case, we also provide results on the achievable rate
and the transport capacity.

B. Related work

While a growing body of work studies interference in random networks (see,e.g., [1], [2] and references therein),
only few papers have addressed the issue of interference in lattice networks. In [3], bounds on the interference
in triangular networks were derived using a relatively crude upper bound on the Riemann zeta function that is
within 25% of the true value for the range of2 to 4. We will derive a much tighter bound that is within 1.3%.
A TDMA scheduling scheme for square lattices that is optimumfor the case where the density of concurrent
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transmitters is1/4 is suggested in [4]. Here, we provide near-optimum scheduling schemes for any density1/m2,
m ∈ N. The interference distribution in one-dimensional networks with Rayleigh fading is analyzed in [5] for the
case where all nodes transmit, and [6] derives outage results an throughput-optimum TDMA schedulers for the
same type of network. Finally, the single-hop throughput for two-dimensional lattice networks with Rayleigh fading
is approximated in [7]. For non-fading channels, [8] provides throughput results for general TDMA schemes in
two-dimensional lattice networks. The interference is expressed using complicated infinite double sums (that are
evaluated numerically), for which we will present tight bounds.

The network models in this paper are entirely deterministic, although, of course, the interference results derived
correspond to the expected interference in fading channels.

The paper is organized as follows. We first introduce the bounding techniques (Section II), followed by three
application sections that discuss one-dimensional networks (Section III), square lattice networks (Section IV), and
triangular networks (Section V). Conclusions are drawn in Section IV.

II. B OUNDING TECHNIQUES

In this section we introduce the basic techniques that will be used to bound the interference.

A. Upper bounds

Let L ⊂ R
d be ad-dimensional lattice,i.e.,

L , {x = Gu : u ∈ Z
d} , (1)

whereG ∈ R
d×d is the generator matrix. It is assumed thatdetG 6= 0 to exclude degenerate cases. Important

cases include the square integer and the triangular latticein two dimensions, both with nearest-neighbor distance
1:

Gsq =

[
1 0
0 1

]

; Gtri =

[
1 1/2

0
√
3/2

]

(2)

The latticeL has the properties that it includes the origino = (0, . . . , 0) and that each lattice point is centered in
its Voronoi cell,i.e., if VL(x) is the Voronoi cell of lattice pointx ∈ L andUx is a uniformly randomly distributed
random variable onVL(x), thenEUx = x. The volume of each Voronoi cell isV = |detG|, and the density of
the lattice isλ = V −1 (points per unit volume).

Let L!o , L \ {o}1. Then the interference at pointz is defined as

I(z) ,
∑

x∈L!o

ℓ(x− z) ,

whereℓ(x) : Rd → R
+ is the path loss function, assumed monotonically decreasing and isotropic,i.e., there exists

a functionℓ′(r) : R+ → R
+ such thatℓ′(‖x‖) ≡ ℓ(x), where‖ · ‖ is the standard Euclidean norm. Further assume

that ℓ′(r) = o(r−d) asr →∞ (otherwise the interference is infinite) and thatℓ′(r) has aconvex tail, i.e., there is
a finite radius, defined as

rc , inf{r > 0 | ℓ′(ρ) convex forρ > r} .
All commonly and rarely used path loss functions satisfy these properties. The origin is assumed to be the desired
transmitter, so it does not contribute to the interference.The distance‖z‖ is restricted to values that ensure thatz
is not too close to an interferer,i.e., ‖z‖ < ‖gi‖, for 1 ≤ i ≤ d, wheregi are the column vectors that constituteG.

The first theorem exploits the tail convexity of the path lossfunction to yield an upper bound on the interference.
Let bx(r) be thed-dimensional ball of radiusr centered atx.

Theorem 1 (Voronoi upper bound) Without offset: LetL be a subset ofL!o such that there is no overlap between
any of the Voronoi cells of the points inL and bo(rc). Then

I(o) 6
∑

x∈L!o\L

ℓ(x) +
1

V

∑

x∈L

∫

VL(x)
ℓ(y)dy . (3)

1The superscript!o is borrowed from stochastic geometry, where it denotes a random point set, conditioned on having a point at the origin
but excluding that point.
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With offset: LetL be a subset ofL!o such thatL does not include any points whose Voronoi cells overlap with
bo(rc + ‖z‖). Then

I(z) 6
∑

x∈L!o\L

ℓ(x− z) +
1

V

∑

x∈L

∫

VL(x)
ℓ(y − z)dy . (4)

Proof: We only need to prove (4). Sinceℓ′(r) is convex forr > rc and the Voronoi cells of all points inL
lie outsidebo(rc + ‖z‖), it follows from Jensen’s inequality thatℓ(x− z) = ℓ(E(Ux)− z) 6 E(ℓ(Ux − z)) for all
x ∈ L, whereUx is uniformly distributed onVL(x).
Next we state a corollary that applies to two-dimensional lattices and provides a bound that is simple to evaluate,
as it is based on a radial outer bound on the integration region.

Corollary 2 (Radial bound for two-dimensional lattices) Let ρx = miny∈VL(x) ‖y‖ be the (minimum) distance
of the Voronoi cell of pointx to the origin, and defineRz , {ρx : x ∈ L

!o, ρx > rc + ‖z‖}. Without offset: For
any rb ∈ Ro,

I(o) <
∑

x∈L!o

ρx<rb

ℓ(x) +
2π

V

∫ ∞

rb

rℓ′(r)dr . (5)

With offset: For anyrb ∈ Rz,

I(z) <
∑

x∈L!o

ρx<rb

ℓ(x− z) +
2π

V

∫ ∞

rb−‖z‖
rℓ′(r)dr . (6)

Proof: No offset: Since the union of all Voronoi cells of the points not included in the sum is a strict subset
of R2 \ bo(rb), (5) follows from Theorem 1. With offset: The change fromo to z means thatℓ(x) is to be replaced
by ℓ(x − z) in the sum and the integral. The integral in (5) is taken overR

2 \ bo(rb), thus, with the offset, the
domain of integration isR2 \ b−z(rb). Since this integral may be tricky to calculate, we replace it conservatively
with R

2 \ bo(rb − ‖z‖) for the upper bound.
Remarks:

1) For the case where the path loss lawℓ(x) has a power law tail with exponentα, the integral evaluates to
2πb2−α/(α − 2), whereb is the lower integration bound.

2) The reason whyrb is restricted to the setR is that if rb is not the smallest distance of a Voronoi cell, thenrb
can always be increased to the next larger smallest distancewithout changing the set over which the sum is
taken, thereby yielding a better bound. In other words, for any setL chosen in Theorem 1, the corresponding
rb here should be the largest radius such thatbo(rb) does not overlap with any of the Voronoi cells of the
points inL.

3) The integral in (5) can be interpreted as the mean interference stemming from a Poisson point process of
intensityλ(r) = 1{r>ro}/V . As one would expect, outside of a certain radius from the origin, only the intensity
of the point process matters, rather than its higher-order statistics (such as second-moment measures). The
corollary provides a bound on this radius such that the interference in the lattice is upper bounded by the
interference in the Poisson point process of the same intensity.

B. Lower bounds

To obtain lower bounds, the distances of two or more points (in the convex region of the path loss function) are
replaced by their averages. Evaluating the path loss at thisaverage point, multiplied by the number of points that
the average was taken over, yields alower bound. This technique is not restricted to lattices.

Theorem 3 (Lower bound for general point sets) LetL ⊂ R
d be an arbitrary discrete set of points that includes

the origin, and letL!o , L \ {o}. For anyL ⊂ L ∩ bco(rc + ‖z‖), let x̄L = (1/|L|)
∑

x∈L x be the average of the
points inL. Then

I(z) >
∑

x∈L!o\L

ℓ(x− z) + |L|ℓ(x̄L − z) . (7)
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Proof: This follows again from Jensen’s inequality. Moving any setof lattice points (outside distancerc from
the origin) to their average yields a lower bound due to the convexity of ℓ in this regime.
In general, this theorem will be applied repeatedly; for example, many pairs of points are formed and replaced by
their averages. Better bounds can be expected if|L| is kept small, and if the points inL are located nearby.

C. Bounds on zeta function

For power law path-loss functions, the interference in lattice networks can often be expressed using the standard
zeta function (without offset) or the generalized zeta function (with offset). The following lemma provides tight
yet simple closed-form bounds on the standard and generalized Riemann zeta function.

Lemma 1 The generalized Riemann zeta function2

ζ(α, 1− z) ,
∞∑

k=1

(k − z)−α , α > 1, |z| < 1 ,

is tightly upper bounded by

ζ(α, 1− z) / (1− z)−α +

(
3
2 − z

)1−α

α− 1
. (8)

and lower bounded by

ζ(α, 1− z) > (1− z)−α +
(2− z)1−α

α− 1
. (9)

For the standard zeta functionζ(α) ≡ ζ(α, 1), an alternative upper bound that is even tighter forα > 2 is

ζ(α) /
α− 1 + 2−α

α− 1− (α− 1)2−α
, (10)

and a good lower bound is

ζ(α) '
6α

6α − 3α − 2α − 1
. (11)

Proof: The first bound (8) is an application of Theorem 1 withL = N andL = N \ {1}. Let Xk be a random
variable that is uniformly randomly distributed in[k − 1/2− z, k + 1/2− z). From Jensen’s inequality, it follows
that (EXk)

−α < E(X−α
k ) for all k > 1/2 + z andα > 0. Expressing the zeta function as

ζ(α, 1 − z) =

n∑

k=1

(k − z)−α +

∞∑

k=n+1

(EXk)
−α

for arbitraryn ∈ N and upper bounding each term(EXk)
−α by E(X−α

k ), we obtain the bounds

ζ(α, 1 − z) <

n∑

k=1

(k − z)−α +

∫ ∞

n+1/2−z
x−αdx , n ∈ N ,

which are increasingly tight asn grows. (8) is the bound forn = 1. For the lower bound (9), we change the support
of all Xk to [k − z, k + 1− z]. In this case, sinceXk > k − z, we have(k − z)−α > E(X−α

k ) and thus

ζ(α, 1− z) >

n∑

k=1

(k − z)−α +

∫ ∞

n+1−z
x−αdx , n ∈ N .

The bound (9) is the bound forn = 1. Regarding (8), we consider the special casez = 1/2. It is straightforward
to show that

ζ(α, 1/2) = (2α − 1)ζ(α) , (12)

2also called Hurwitz zeta function
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which, together with (8) forz = 1/2 yields (2α − 1)ζ(α) / 2α + 1/(α− 1), which proves (10). The lower bound
(11) stems from an application of Theorem 3 (withz = 0) and

L =
⋃

k∈N

{−6k − 1,−6k + 3, 6k − 3, 6k − 1} (13)

and averaging on the distances of the points−6k − 1 and 6k − 1, i.e., replacing them by two points at distance
6k. Hence we compare the two sums

S1 =
∑

k∈N

(3k − 1{k even})
−α + (3k + 1{k even})

−α ; S2 = 2
∑

k∈N

(3k)−α ,

whereS2 is obtained fromS1 by averaging over the two arguments3k − 1 and3k + 1 wheneverk is even. The
terms for oddk are the same inS1 andS2. From Theorem 3, we haveS1 > S2, where

S1 = ζ(α)− 1 +
∑

k∈N

(3k)−α −
∑

k∈N

(2k)−α −
∑

k∈N

(6k)−α = ζ(α)(1 + 3−α − 2−α − 6−α)− 1 ,

andS2 = 2 · 3−αζ(α).
Remarks:

1) For α < 2 (and z = 0), the first bound (8) is tighter than the second one (10). Theyare equal atα = 2,
which is the value ofα where the first bound is loosest. The difference to the actualvalue ζ(2) = π2/6 is
(10−π2)/6 ≈ 0.0217. The two bounds (10) and (11) are so tight that when plotting both curves over a range
[αl, αu] with αu−αl > 1 they appear as one. Forα ↓ 1, the upper bound is tighter, while for practical values
of α, the lower bound is.

2) A simpler and looser lower bound is

ζ(α) >
2α − 1

2α − 2
,

obtained from summing over1, 2, 4, 4, 6, 6, 8, 8, . . . instead ofN.

III. O NE-DIMENSIONAL LATTICE NETWORKS

A. Interference with offset

Here we assume that the desired transmitter is located at theorigin o, the receiver at position0 < z < 1, and
interferers at positionsZ \ {o}. Unless otherwise noted, we use the standard power path losslaw ℓ(x) = ‖x‖−α.
SinceI(z) = ζ(α, 1 − z) + ζ(α, 1 + z), we can apply Lemma 1 to obtain a tight closed-form upper bound:

I(z) / (1− z)−α + (1 + z)−α +
1

α− 1

[(
3

2
− z

)1−α

+

(
3

2
+ z

)1−α
]

(14)

Due to the symmetry of the arrangement,I(z) is an even function. For integerα, the bound is a rational function in
z2, with the numerator polynomial of degree3α− 1−1{α even}, and the denominator polynomial of degree4α− 2.
A quadratic Taylor expansion atz = 0 gives a good approximation for smallz (in this case,z < 1/4 is small
enough for a very good approximation):

I(z) ≈ 2ζ(α) + cexz
2 ,

wherecex , I ′′(0) = (1/2)d2I(z)/(dz)2|z=0 is the (transmitter-receiver)offset coefficient. We obtain

cex = α2 + α

(

1 +

(
2

3

)α+1
)

. (15)

For all practical values ofα, a good lower bound iscex > α2+α, and a good approximation iscex ≈ α2+α+1/2.
It is also possible to give a simple yet accurate approximation for the fourth-order coefficient:

c(4)ex ≈
1

12
α4 +

1

2
α3 + α2 +

1

2
α

This approximation forc(4)ex is within 1% for all α > 1. For practicalα and smallz, the quadratic term always
dominates the fourth-order one.
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Eqn. (14) can be used to find the displacementz that maximizes thetransport capacityT (z) = z log2(1 +
z−α/I(z)), wherez is the link distance, and the logarithmic term is the rateR(z). Since1+z−α/I(z) is a rational
function for integerα, a series expansion of the formR(z) ≈ c1+ c2 log z+ c3z

2 can easily be found. Multiplying
by z and setting the derivative to zero leads to solving an equation of the form1 − 2 log z/a + bz2 = 0, which
yields zopt = exp(a/2−W(abea))/2), whereW is the Lambert W function. Forα = 2, this yieldszopt = 0.223,
while a numerical investigation yieldszopt = 0.224. For α = 4, the gap is slightly larger: The analytical result is
zopt = 0.217, and the numerical one iszopt = 0.222. For non-integerα, similar series expansions can be derived
by substitutingx = zα and optimizingx. It can be concluded that the optimum value ofz is between0.2 and0.25
and rather insensitive to the value ofα.

B. Application to TDMA scheduling patterns

1) Separating transmitters:Let the nodes at positionsmZ be transmitters, each one transmitting to the next node
on the right. Focusing on the desired transmitter at the origin and its receiver at location1, the other transmitters
at positionsK = mZ \ {o} are interferers. This is anm-phase TDMA pattern, since it will requirem time slots to
give each node a transmission opportunity. The interference at location1 can be expressed as

Im =
∑

k∈K

|k − 1|−α = m−αI(1/m) , m > 1 .

With Lemma 1 and

G(m, b) ,
(m− 1)α + (m+ 1)α

(m2 − 1)α
+

(bm+ 1)α−1 + (bm− 1)α−1

m(α− 1)(b2m2 − 1)α−1
,

we have
G(m, 2) < Im < G(m, 3/2) .

The maximum achievable rate is

Rm = log2
(
1 + I−1

m

)
≈ log2

(

1 +
mα+2

2ζ(α)m2 + cex

)

, (16)

wherecex is given by (15), and the throughput isTm = Rm/m. The derivative∂Tm/∂m indicates that the optimum
m is alwaysm = 4 or m = 5, with T4 ≈ T5 for all α ∈ (1, 20]. Due to the smaller power consumption,m = 5 is
preferred in practice even ifm = 4 yielded a slightly higher throughput. So, interestingly, irrespective of the path
loss exponent,m = 5 is an excellent choice — assuming the rate of transmission isadjusted to the interference
present for that path loss exponent. A first-order Taylor expansion atα = 2 yieldsT5 ≈ 0.60+ 0.53(α− 2), which
is a very good approximation for the practical range ofα.

The throughputRm/m is identical to the transport capacityzR(z) considered in the previous subsection when
z = 1/m. Thus the result thatm = 4 or m = 5 are optimum for allα also follows from the fact thatzopt is
between1/4 and1/5 for all α.

The optimumm for one-dimensional networks with Rayleigh fading was derived in [6]. It was found that
mopt = 3 for α > 2. So in the fading case, transmitters can be packed more closely.

This m-phase TDMA scheme suffers from an imbalance in the interference from the left and right; nonetheless,
it is optimum for unidirectional traffic. For bidirectionaltraffic, a better TDMA scheme exists, as discussed next.

2) Balanced TDMA schemes for bidirectional traffic:Here we analyze TDMA schemes for bidirectional traffic,
which achieve higher throughput than in the unidirectionalcase, since it is possible to balance interference from the
two nearest interferers. These MAC schemes separate the receivers from their interfering transmitter in an optimum
way. In other words, instead of placing transmitters optimally, these schemes place transmit-receiver pairs optimally.

We use the following notation to define transmission patterns: Transmitters are indicated by T, with an arrow
on top to indicate on which side their receiver sits, and receivers are denoted by R. As a shortcut, Rk indicates a
sequence ofk receiving nodes. The period of the transmission scheme is indicated by a subscript. For example, the
unidirectional TDMA scheme withm = 3 is described as(

−→
T R R)3 or (

−→
T R2)3, and for generalm, (

−→
T Rm−1)m.

In the balanced schemes, transmitters with their receiversto the right alternate with transmitters with their
receivers to the left. Form = 3, for example, the pattern is(

−→
T R R R

←−
T R)6. This has a period of 6, but since two
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m=2

...... {{

m m-2

... {

m

any m

Fig. 1. Balanced TDMA schemes form = 2 and generalm. The two nearest interferers are at distancesm (to the left) andm (to the
right).

nodes transmit in a group of 6 nodes, it take 3 time slots for each node to transmit once. For generalm, the scheme
is (
−→
T Rm←−T Rm−2)2m. These balanced transmission patterns are illustrated in Fig. 1.

Let m = 2 and the receiver under consideration be located at the origin and listening to the transmitter at−1,
i.e., we focus on the underlined receiver in the pattern(

−→
T RR

←−
T )4. The interferers are located at

K2 =
⋃

k∈N

{−4k − 1,−4k + 2, 4k − 1, 4k − 2} ,

and the interference is

I2 =
∑

k∈K

|k|−α = ζ(α)− 1 +
∑

k∈N

(2k)−α − 2
∑

k∈N

(4k)−α = ζ(α)(1 + 2−α − 2 · 4−α)− 1 .

I2 can be bounded by bounding the zeta function using Lemma 1. Alternatively, a lower bound is obtained by
replacing the interferers at positions4k − 1 and−4k − 1 by two at position4k and applying Theorem 3:

I2 =
∑

k∈K

|k|−α > 2
∑

k∈N

(2k)−α = 21−αζ(α) >
2 · 3α

6α − 3α − 2α − 1

For m = 3,
K3 =

⋃

k∈N

{−6k − 1,−6k + 3, 6k − 3, 6k − 1} .

The exact expression is

I3 =
∑

k∈K

|k|−α = ζ(α)− 1 +
∑

k∈N

(3k)−α − (2k)−α + (6k)−α = ζ(α)(1 + 3−α − 2−α − 6−α)− 1 .

Using the lower bound forζ from Lemma 1, we obtain

I3 >
2α+1

6α − 3α − 2α − 1
.

Generalizing to arbitrarym > 1, there are interferers atKm = {k ∈ N | −2km−1,−2km+m, 2km−m, 2km−1}.
Replacing each pair−2km− 1 and2km− 1 by two interferers at2km, we have

Im > 2
∑

k∈N

(mk)−α = 2m−αζ(α) ,

which can be (further) lower bounded by any of the lower bounds on the zeta function from Lemma 1,e.g.,

Im >
2 · 6α

mα(6α − 3α − 2α − 1)
>

2

mα

[

1 +
1

2α − 2

]

.

To find a strict upper bound onIm, we replace the elements2km− 1 in Km by 2km−m+ 1, which yields

Im
(a)

6
∑

k∈N

2(2km −m)−α + (km+ 1)−α

=
∑

k∈N

2(2m)−α(k − 1/2)−α +m−α(k + 1/m)−α

= 2(2m)−αζ(α, 1/2) +m−αζ(α,−1/m)

(b)
<

1

mα

(

2 +
21−α

α− 1

)

+ (m+ 1)−α +
1

m(α− 1)

(
2

3m+ 2

)α−1

,
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Fig. 2. Throughput as a function of path loss exponentα and TDMA parameterm for balanced schemes in one-dimensional networks.
The dashed lines are the approximationslog

2
(1 +mαC(α))/m.

where(a) is strict for m > 2 and (b) follows from (8) in Lemma 1. Since the lower bound is tighter and reveals
that Im is essentially proportional tom−α, we proceed with the lower bound to find the throughput-optimum m.
The SIR isI−1

m = mαC(α), where, from (11),

C(α) =
1

2ζ(α)
≈ 1

2

(
1− 2−α − 3−α − 6−α

)
. (17)

With Rm = log2(1 +mαC(α)), the throughputTm = Rm/m is maximized at

mα
opt = −

W(a) + α

C(α)W(a)
,

(relaxing the integer constraint onm), wherea = −αe−α andW is the Lambert W function. The (real)mopt ∈ [3, 4]
for α < 7. ComparingT3 andT4 shows very little difference, and again power consumption favorsT4. A second-
order expansion ofT4 as a function ofα is T4(α) ≈ 0.64 + 0.59(α − 2). This is better than in the unidirectional
case, but the difference is not large. Noting that4αC(α) ≈ (4α−2α)/2 for practicalα, the optimum rate atm = 4
is R4 ≈ α− 1 + log2(2

α − 1), or just a bit less than2α − 1. Fig. 2 shows the throughput as a function ofm and
α, together with the approximationlog2(1 +mαC(α))/m, whereC(α) is given in (17).

IV. SQUARE LATTICES

In this section, we consider square latticesL = Z
2. In the case of the power law path loss, we may use results

on lattice sums, see,e.g., [9], to express the interference at the origin:

I(o) =
∑

x∈L!o

‖x‖−α = 4ζ(α/2)β(α/2) , (18)

where

β(x) ,
∞∑

i=1

(−1)i+1

(2i− 1)x

is the Dirichlet beta function.β(2) is Catalan’s constantK = 0.916. So, forα = 4, I = 2π2K/3 ≈ 6.03. These
expressions are not closed-form and are restricted to the origin, and thus do not provide much insight into the
behavior of the interference. We apply the techniques described in Section II to derive tight closed-form upper and
lower bounds. The path loss law assumed is againℓ(x) = ‖x‖−α.
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A. Lower interference bounds

To obtain a good approximation on (18), we group the nodes into (square) “rings” of increasing distances. In
the k-th ring, there are8k nodes at distances betweenk and

√
2k. Let D̄k be the average of the distances of the

k-th ring of nodes. Then, taking the sum over the nearest ring separately,

I(o) > 4(1 + 2−α/2) + 8

∞∑

k=2

D̄−α
k

by Theorem 3. ReplacinḡDk by an upper boundck > D̄k still provides a lower bound. A simple bound is
D̄k < k(1 +

√
2)/2. This is an upper bound since

k(1 +
√
2)

2
>

1

2

(√

k2 + i2 +
√

k2 + (k − i)2
)

, ∀0 6 i 6 k .

So choosingc = (1 +
√
2)/2 ≈ 1.207 yields the bound

I(o) > 4(1 + 2−α/2) +
8 · 2α(ζ(α− 1)− 1)

(1 +
√
2)α

.

For α = 4, this is about5.76. The exact value is6.03. Using the simple lower boundζ(α− 1)− 1 > 2/(2α − 4),
α > 2,

I(o) > 4(1 + 2−α/2) +
2α+4

(2α − 4)(1 +
√
2)α

.

The coefficientc can be sharpened. The average distance is given by

D̄k =
1

8k



4k + 4k
√
2 + 8k

k−1∑

j=1

√

1 + j2/k2



 .

Noting that
k−1∑

j=1

√

1 + j2/k2 < (k − 1)

∫ 1

0

√

1 + x2 dx ,

we obtain the bound

D̄k 6
1

2

(

1 +
√
2 + (k − 1)(

√
2− log(

√
2− 1))

)

.

For k > 1, D̄k 6 ck for

c ,

√
2

2
+

1

4
(1− log(

√
2− 1)) ≈ 1.1775 ,

which yields the sharper lower bound

I(o) > 4(1 + 2−α/2) +

∞∑

k=2

8k(ck)−α = 4(1 + 2−α/2) + 8c−α(ζ(α− 1)− 1) .

Lower bounding the zeta function using (11) in Lemma 1 yieldsthe closed-form bound

I(o) > 4(1 + 2−α/2) + 8c−α 3α−1 + 2α−1 + 1

6α−1 − 3α−1 − 2α−1 − 1
. (19)

For α = 4, this is 5.84.
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B. Upper interference bounds

Let Xi,j be a uniformly randomly distributed variable on[i − 1/2, i + 1/2] × [j − 1/2, j + 1/2]. Then for any
Z ⊂ L

!o, the lattice sum (18) is bounded by

I(o) =
∑

(i,j)∈Z2\{o}

E(Xi,j)
−α 6

∑

(i,j)∈Z

E(Xi,j)
−α +

∑

(i,j)∈Zc

E(X−α
i,j )

=
∑

(i,j)∈Z

E(Xi,j)
−α +

∫

A
‖x‖−αdx ,

whereZc = L
!o \ Z and

A = R
2 \




⋃

(i,j)∈Z

{[i − 1/2, i + 1/2] × [j − 1/2, j + 1/2]}





= Zc ⊕ u� ,

where⊕ is the morphological dilation operator and the structuringelement is the unit square centered ato, i.e.,
u� = VL(o) = {x ∈ R

2 : ‖x‖∞ 6 1/2}. The bound is tighter ifZ includes the points closer to the origin. For
exampleZ = {x ∈ Z

2 : 0 < ‖x‖ 6
√
2}. This gives the bound

I(o) < 4(1 + 2−α/2) +

∫

R2\[0,3/2]2
‖x‖−αdx .

This integral does not have a solution for generalα. For rationalα, it can be expressed using hypergeometric
functions, and for integerα, it simplifies to

α = 3 : 8
√
2/3 ; α = 4 : 2(2 + π)/9 ; α = 5 : 80

√
2/243 .

So forα = 4, we getI(o) < 6.14, which is within 1.5% of the exact value.
Changing to polar coordinates yields simpler closed-form bounds. As an application of Corollary 2, we outer-

bound the areaA by R
2 \ bo(b) with b = 3/2. This gives

I(o) < 4(1 + 2−α/2) +
2π(3/2)2−α

α− 2
, (20)

which is a decent bound forα > 3. For α = 4, I(o) < 6.40. Better bounds can be obtained by using a larger
radiusrb in Cor. 2. Adding 12 more nodes in the direct calculation and increasingrb = 3/

√
2, we obtain

I(o) < 4(1 + 2−α/2 + 2−α + 2 · 5−α/2)
2π(3/

√
2)2−α

α− 2
. (21)

This situation is illustrated in Fig. 3, where the circle hasradiusrb. The lower bound (19) and the tighter upper
bound (21) are shown in Fig. 4.

C. Transmitter-receiver offset

Let I(z) be the interference measured at locationz, with ‖z‖ < 1. First we consider the case wherez lies on
the positive real axis,i.e., z = (‖z‖, 0). Let r = ‖z‖. Let I8 denote the interference from the8 nearest interferers.
From elementary geometry, the distancex to interferer(1, 1) is given byx2 = 2− r(2− r), and the distancex′ to
(−1,−1) is given byx′2 = 2 + r(2 + r). Hence

I8(r) = (1− r)−α + (1 + r)−α + 2(2 − r(2− r))−α/2 + 2(2 + r(2 + r))−α/2 + 2(1 + r2)−α/2

= 4(1 + 2−α/2)
︸ ︷︷ ︸

I8(o)

+α2(1 + 2−α/2−1)
︸ ︷︷ ︸

c8

r2 +O(r4) .

A simple lower bound for2 < α < 12 on the excess interference coefficient isc8 > α2 + 1. Including the
interference from all other nodes:

I(z) < I8(r) +

∫

R
2
+\[0,3/2]2

‖x− z‖−αdx
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Fig. 3. Voronoi cells for square lattice. The circle of radius 3/
√
2 indicates the radial bound for the integration for the bound(21). The

interference from the 20 nearest points, marked by a cross, is summed up directly, while the interference from the other nodes is upper
bounded by integrating‖x‖−α over the outside of the circle.
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Fig. 4. Interference at the origin in a square lattice (solidcurve) and lower bound (19) and upper bound (21) (dashed).

For α = 3,

I(z) ≈ 4(1 + 2−3/2) +

(

9(1 + 2−5/2) +
20
√
2

27
+

32

27

)

︸ ︷︷ ︸

cex

‖z‖2 ,

and forα = 4,

I(z) ≈ 5 +

(

18 +
4π

9
+

32

81

)

︸ ︷︷ ︸

cex

‖z‖2 .
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Fig. 5. Balanced TDMA scheme for square lattice form = 3. The small dots are the lattice pointsZ2, the crosses the transmitters, and
the circles their receivers. Arrows indicate transmissions. The dotted lines demarcate the3× 3 boxes, in which there is one transmitter in
each time slot. The transmit-receive pattern can be shiftedand rotated, so that in4 · 32 time slots, each node gets an opportunity to transmit
to all four nearest neighbors with the same interference.

Next, consider the case where the receiver is displaced diagonally, i.e., z = (r, r)/
√
2. In this case, we have

I ′8(r) = (
√
2− r)−α + (

√
2 + r)−α + 2(1 + r(r −

√
2))−α/2 + 2(1 + r(

√
2 + r))−α/2 + 2(2 + r2)−α/2

= 4(1 + 2−α/2) + α2(1 + 2−α/2−1)
︸ ︷︷ ︸

c′8

r2 +O(r4) .

Sincec8 = c′8, it turns out that the excess interference coefficient is thesame as for the case of axial displacement.

D. Application to TDMA

1) Separating the transmitters:If the transmitting nodes are located at(mZ)2, corresponding to anm2-phase
TDMA scheme, the interference at the receiver(0, 1) is Im = m−αI(1/m), as in the one-dimensional case.
For m > 2, the nearest 8 interferers are at the following distances: One atm − 1, two at

√
1 +m2, two at

√

(m− 1)2 +m2, one atm + 1, and two at
√

(m+ 1)2 +m2. If these 8 terms are summed up directly and
the Voronoi upper bound in Cor. 2 is used to upper bound the interference from the other nodes, the radius
rb = 3m/2− 1, since the 9-th nearest node is at distance2m− 1 and the Voronoi cell ism/2 wide.

2) Balanced TDMA:As in the one-dimensional case, there is a smarter way to schedule the transmissions, such
that the two nearest interferers are at the same distance. For all m > 1, there exists a scheme such that the eight
nearest interferers are: Four at distance

√
m2 + 1, two at

√

m2 + (m− 1)2, and two at
√

m2 + (m− 1)2. The
smallest distance from the receiver to a Voronoi cell of an interferer not included in these eight is3m/2.

We believe this balanced scheme is optimum in the sense that for all sub-lattices in which one node perm×m
block transmits in each slot, this one causes the smallest interference. From the triangular lattice it is known that

we cannot do better than having the six nearest interferers at distance
√

2/
√
3m, and the average distance of the

nearest six neighbors lies within 3%-5% of this bound for allm ≤ 30. Fig. 6 illustrates the interference gain of the
balanced scheme when compared with the simple one.

V. TRIANGULAR LATTICES

A triangular lattice, where nodes are arranged in a lattice with generator matrixGtri given in (2), offers the
densest packing given the nearest-neighbor distance. It isthe preferred deployment for sensor networks with isotropic
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Fig. 6. Interference for TDMA scheme for square lattices with α = 4, multiplied bym4 for normalization. The “simple” scheme is the one
where nodes(mZ)2 transmit, the “balanced” one is the one illustrated in Fig. 5. The dashed curves are the bounds obtained by the radial
bounds in Cor. 2. Asm → ∞, the curves converge to the same value.

sensors, since the smallest number of sensors is needed to cover an area. The density is2/
√
3. More importantly

though, a triangular lattice may be a good model for a CSMA-type network. Assume a high-density network, with
λ≫ 1 nodes per unit area, and a CSMA scheme with carrier sensing radius1. With ideal sensing, the transmitting
nodes cannot be denser than a triangular grid. Hence the interference in a triangular lattice is an upper bound to
the interference in a CSMA network if transmitters are spaced at least at unit distance.

A. Lower interference bound

Again we can partition the interferers into rings of increasing radii; in this case, the rings are hexagons. The
average distance to the interferers in thek-th ring isk(1/2+

√
3/4) ≈ 0.933k, which, using Theorem 3, immediately

yields the lower bound

I(o) > 6 + 6

∞∑

k=2

k

[

k

(
1

2
+

√
3

4

)]−α

= 6 + 6

(
4

2 +
√
3

)α

(ζ(α− 1)− 1) .

Lower boundingζ(α) using Lemma 1, we obtain

I(o) > 6 +

(
4

2 +
√
3

)α 2 · 3α + 3 · 2α + 6

6α−1 − 3α−1 − 2α−1 − 1
. (22)

B. Upper interference bounds

Here we apply Cor. 2 withrb = 2/
√
3, which is the smallest distance to a Voronoi cell of a point atdistance

√
3

from the origin. This implies that the six nearest neighborsat distance1 are considered separately, and all other
points are included in the approximation. The area of a Voronoi cell is V =

√
3/2, hence the bound is

I(o) < 6 +
4π√
3

(2/
√
3)2−α

α− 2
. (23)

A tighter bound is obtained by taking the nearest 18 nodes (two rings) and integrating over the Voronoi cells of
the other points. There are six nodes at distance

√
3 and six at distance 2, andrb =

√

4 + 1/3. This situation is
illustrated in Fig. 7, where the circle has radiusrb. It follows that

I(o) < 6(1 + 2−α + 3−α/2) +
4π√
3

(13/3)1−α/2

α− 2
. (24)

The lower bound (22) and the tighter upper bound (24) are shown in Fig. 8.
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Fig. 7. Voronoi cells for triangular lattice. The circle of radius
√

13/3 indicates the radial bound for the integration for the bound(24).
The interference from the 18 nearest points, marked by a cross, is summed up directly, while the interference from the other nodes is upper
bounded by integrating‖x‖−α over the outside of the circle and multiplying by the latticedensity1/V = 2/

√
3.
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Fig. 8. Interference at the origin in a triangular network (solid) with lower bound (22) and upper bound (24) (dashed). The two bounds
are uniformly tight.

C. Transmitter-receiver offset

Here we approximate the interferenceI(z) for ‖z‖ < 1. As for the square lattice, we focus first on the case
wherez lies on the line between the origin and the node at(1, 0), i.e., z = (‖z‖, 0), and we letr = ‖z‖. The
interference from the 6 nearest interferers is given by

I6(r) = (1− r)−α + (1 + r)−α + 2(1 − r(1− r))−α/2 + 2(1 + r(1 + r))−α/2

since the distancex of point (r, 0) to interferer(1/2,
√
3/2) is given byx2 = 1 − r(1 − r). A Taylor expansion

gives

I6(r) = 6 +
3

2
α2r2 +O(r4) .
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Fig. 9. Interference at position(r, 0) in a triangular network forα = 3, 3.5, 4, 5. The solid curves are the exact numerical results, while
the dashed ones are the bounds (25).

Taking a lower bound on the interference from the other nodesyields a lower bound for the total interference:

I(r) > I(o) +
3

2
α2r2 , (25)

whereI(o) denotes the lower bond on the right-hand side of (22). A better approximation may be obtained by
decreasing the radiusrb used for the upper bounds byr, as stated in Cor. 2, but the effect of a small displacement
r on this term is relatively small. This is illustrated in Fig.9, where the actual interference and the quadratic lower
bound (25) are shown. The curvature of the interferenceI(r) nearr = 0, i.e., the excess interference, is reproduced
quite accurately by the bound. It can further be observed that while higher path loss exponents result in smaller
interference for no or very small displacements, there is a cross-over point after which asmallerα is better.

Changing the direction of the displacementz does not affect the quadratic approximation,i.e., the difference
only manifests itself forr > 1/4. So in the triangular case, the offset coefficientcex ≈ 3α2/2 for all directions.

D. Application to TDMA

1) Separating the transmitters:The most straightforward TDMA scheduling scheme for the triangular lattice
is probably the one where one node in a rhombus containingm2 nodes transmits. The generator matrix for the
transmitting lattice is then

Grh =

[
m −1{m odd}/2

0 m
√
3/2

]

.

For evenm, the transmitters form a rectangular lattice with horizontal spacingm and vertical spacingm
√
3/2. If

the receiver is to the right of each transmitter, the interference is acceptable, but this is certainly not the optimum
scheme, since the nearest interferer is at distancem− 1. An improved scheduler lets one node in a parallelogram
containing(m+ 1)m nodes transmit:

Gpar =

[
m+ 1 −m/2

0 m
√
3/2

]

2) Balanced TDMA:An even better scheme is the one inspired by the balanced one-dimensional scheme, where
in each horizontal row of nodes, the pattern(

−→
T Rm−1)m is employed. This way, the four closest interferers are all

at distancem, and the next two at
√

(m/2 + 1)2 + 3m2/4. Since these distances are close to the sphere-packing
bound, this may be the optimum scheme.

The three TDMA MACs are compared in Fig. 10.
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Fig. 10. Interference for TDMA schedulers in the triangularlattice forα = 4. For a fair comparison, the area of the corresponding Voronoi
cells is used as thex axis, and they axis is scaled byλ−α/2 = λ−2, whereλ = 1/V , since scaling the network by a factors in both
dimensions scales the density bys−2 and the interference bys−α.

VI. CONCLUSIONS

By judicious application of Jensen’s inequality, tight andgeneral upper and lower bounds on the interference in
lattice networks can be calculated. The lower bounding technique yields expressions involving the Riemann zeta
function, which, in turn, can be tightly lower bounded in closed-form (Lemma 1).

When transmitters are arranged in a lattice, but their receivers are not, such as in a cellular downlink scenario
or when a MAC scheme focuses on separating the transmitters,the interference needs to be characterized at some
distancer from the desired transmitter. We have introduced a simple yet effective quadratic approximation that
shows how the interference increases with growing link distancer. In terms of the signal-to-interference-and-noise
ratio, increasingr has two negative effects: it reduces the strength of the desired signal, and it increases the
interference. Our framework captures both.

For the case where all nodes in a network form a one-dimensional, square, or triangular network, we have
analyzed the interference induced by basic TDMA schemes, and we have suggested superiorbalancedschemes
that are optimum or near-optimum. It turns out that scheduling transmitter-receiver pairs instead of just transmitters
significantly enhances the throughput.

The interference bounds are also useful to avoid long simulation times. Normally asα ↓ 2 (in two-dimensional
networks), the diameter of the simulated networks has to be impractically large just to get a good approximation
of the total interference. The upper bounds obtained from integration over Voronoi cells (Theorem 1) demonstrate
that it is possible, with negligible loss in accuracy, to assume that the interference from nodes outside a certain
radius is the same as theexpectedinterference in a network where these nodes are distributedas a homogeneous
Poisson point process.
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