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Abstract Wireless Sensor Networks (WSNs) have found more and more applications in a variety of per-

vasive computing environments. However, how to support the development, maintenance, deployment 

and execution of applications over WSNs remains to be a nontrivial and challenging task, mainly because 

of the gap between the high level requirements from pervasive computing applications and the underlying 

operation of WSNs. Middleware for WSN can help bridge the gap and remove impediments. In recent 

years, research has been carried out to study WSN middleware from different aspects and for different 

purposes. In this paper, we provide a comprehensive review of the existing works on WSN middleware, 

seeking for a better understanding of the current issues and future directions in this field. We propose a 

reference framework to analyze the functionalities of WSN middleware in terms of the system abstrac-

tions and the services provided. We review the approaches and techniques for implementing the services. 

Based on the analysis and using a feature tree, we provide taxonomy of the features of WSN middleware 

and their relationships, and use the taxonomy to classify and evaluate existing works. We also discuss 

open problems in this important area of research.  
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1 Introduction 

In recent years, a new wave of networks la-

beled Wireless Sensor Networks (WSNs) has at-

tracted a lot of attentions from researchers in both 

academic and industrial communities. WSNs can 

be used to form the underlying sensing and net-

work infrastructure for pervasive computing envi-

ronments. A WSN consists a collection of sensor 

nodes and a sink node connected through wireless 

channels, and can be used to build distributed sys-

tems for data collection and processing, covering 
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the functions of on-field signal sensing and proc-

essing, in-network data aggregation, and 

self-organized wireless communication. WSNs 

have found many applications in different areas, 

including environmental surveillance, intelligent 

building, health monitoring, intelligent transporta-

tions, etc. [1]. 

This survey paper is concerned with middle-

ware for WSNs. Middleware refers to software 

and tools that can help hide the complexity and 

heterogeneity of the underlying hardware and 

network platforms, ease the management of sys-

tem resources, and increase the predictability of 

application executions [2]. WSN middleware is a 

kind of middleware providing the desired services 

for sensing based pervasive computing applica-

tions that make use of a wireless sensor network 

and the related embedded operating system or 

firmware of the sensor nodes.  

The motivation behind the research on WSN 

middleware derives from the gap between the 

high-level requirements from pervasive computing 

applications and the complexity of the operations 

in the underlying WSNs. The application require-

ments include high flexibility, re-usability, and re-

liability. The complexity of the operations with a 

WSN is characterized by constrained resources, 

dynamic network topology, and low level embed-

ded OS APIs. WSN middleware provides a poten-

tial solution to bridge the gap and remove the im-

pediments. In the early time of the research on 

WSN, people did not pay much attention to mid-

dleware because the simplicity of the early appli-

cations did not show much demand on the support 

from the middleware. Along with the rapid evolu-

tion of this area, the gap becomes increasingly ob-

vious and hinders the popularity of WSN based 

applications. 

WSN middleware helps the programmer de-

velop applications in several ways. First, it pro-

vides appropriate system abstractions, so that the 

application programmer can focus on the applica-

tion logic without caring too much about the lower 

level implementation details. Second, it provides 

reusable code services, such as code update, and 

data services, such as data filtering, so that the ap-

plication programmer can deploy and execute the 

application without being troubled with complex 

and tedious functions. Third, it helps the pro-

grammer in network infrastructure management 

and adaptation by providing efficient resource ser-

vices, e.g., power management. It also supports 

system integration, monitoring, as well as system 

security. 

Although middleware is a well established re-

search area in distributed computing systems, 

WSN poses new challenges to middleware re-

search. The traditional middleware techniques 

cannot be applied directly to WSNs. First, most 

distributed system middleware techniques [3, 4] 

aim at providing transparency abstractions by hid-

ing the context information but WSN-based appli-

cations are usually required to be context-aware. 

Second, although many mobile computing mid-

dleware [5, 6] supports context awareness, their 

major concern is how to continuously satisfy the 

interests of individual mobile nodes in the pres-

ence of mobility. In contrast, WSN-based systems 

are data centric reflecting the whole application’s 

interests. Thus, the locations and mobility of the 
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sensor nodes should be handled by WSN middle-

ware in a different way. For example, a node 

moving away from a phenomenon may choose to 

hand off the monitoring responsibility to a nearby 

node. Also, WSNs mostly use attribute-based ad-

dressing [1, 7] rather than relying on net-

work-wide unique node addresses. Third, data ag-

gregation in intermediate nodes of the forwarding 

path is desirable in a WSN but no such kind of 

support is provided in traditional distributed sys-

tem middleware because of the end-to-end para-

digm used. Finally, WSN requires the middleware 

to be light weight [7, 8, 9] for implementation in 

sensor nodes with limited processing and energy 

resources. WSNs also have new requirements on 

hardware (e.g. various sensors and computing 

nodes), operating systems and routing protocols 

[10], as well as the applications [11]. 

In the recent years, many works have been 

done on WSN middleware, focusing on different 

aspects and for different purposes. Although sev-

eral survey papers can be found in literature [7, 8, 

9, 12, 13, 14, 15, 16, 17, 18], each of them ad-

dresses only a subset of the issues, e.g., the system 

architecture [7, 8, 9, 16], the programming para-

digm [13, 14, 17], and the run time supporting [12, 

18]. There is no reference model for classifying 

and analyzing the middleware functionalities, and 

no detailed discussion on the implementation tech-

niques. 

This paper presents a systematic study of re-

cent research on WSN middleware to help identify 

the key services, challenging issues, and important 

techniques. Comparing with the existing surveys, 

this paper makes the following distinct contribu-

tions. First, it proposes a reference model for ana-

lyzing the functionalities and key services of 

WSN-middleware. Second, it provides a detailed 

review of the existing works on the most impor-

tant aspects in developing WSN middleware, cov-

ering the major approaches and corresponding 

techniques for implementing the services. Third, 

the paper proposes a feature tree-based taxonomy 

[19] that organizes WSN-middleware features and 

their relationships into a framework to help under-

stand and classify the existing works. The paper 

also discusses the open problems and identifies the 

directions in future research.  

The remainder of this paper is organized as 

follows. In Section 2, we describe a reference 

framework to analyze the functionalities of and 

identify the key services to be provided by WSN 

middleware. In Section 3, we survey the ap-

proaches and the corresponding techniques for 

implementing the key services. In Section 4 and 5, 

we look into the WSN runtime support and QoS 

support respectively. In Section 6, we propose a 

feature tree-based taxonomy for classifying the 

features of WSN middleware, and highlight the 

representative existing middleware projects with 

the evaluation of their advantages and disadvan-

tages. In Section 7, we discuss the challenges, 

open problems, and future directions of WSN 

middleware research. Finally, we conclude this 

paper in Section 8. 

2 A  Reference model of WSN middleware 

2.1 Model overview 

As shown in Figure 1, a complete 

WSN-middleware solution should include four 
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major components: programming abstractions, 

system services, runtime support, and QoS 

mechanisms. Programming abstractions define the 

interface of the middleware to the application pro-

grammer. System services provide implementa-

tions to achieve the abstractions. Runtime support 

serves as an extension of the embedded operating 

system to support the middleware services. QoS 

mechanisms define the QoS constrains of the sys-

tem. 

 
Fig. 1. Major components of WSN middleware 

By analyzing the requirements of WSN-based 

applications and the characteristics of WSNs, we 

propose a reference framework, shown in Figure 2, 

to describe the organization and relationships of 

the above components. It should be mentioned that 

it is not necessary for a specific WSN-middleware 

to include all the components. Also, functions of 

several components may be combined together 

and implemented as one component.  

 

Fig. 2. Reference model of WSN middleware 

In the deployment, the functions of 

WSN-middleware can be distributed to the sensor 

nodes, the sink nodes, and high level application 

terminals, as shown in Figure 3. The distributed 

middleware components located in different nodes 

of the network communicate with each other to 

achieve some common goals. 

 

 
 

Fig.3. System architecture of WSN middleware 
 

2.2 Programming abstractions  

Programming abstractions is the foundation of 

WSN-middleware. It provides the high-level pro-

gramming interfaces to the application program-

mer which separate the development of WSN 

based applications from the operations in the un-

derlying WSN infrastructures. It also provides the 

basis of developing the desirable middleware ser-

vices. Three aspects are involved when developing 

the programming abstractions: abstraction level, 

programming paradigm, and interface type.  

Abstraction Level refers to how the application 

programmer views the system. Node level ab-

straction abstracts the WSN as a distributed sys-

tem consisting of a collection of sensor nodes, and 

WSN Middleware Components  
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Mechanisms  
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Services  
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Abstractions  

Runtime- 

Support  
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provides the programmer the support for pro-

gramming the individual sensor nodes for their 

actions and cooperation [20, 21, 22]. System level 

abstraction abstracts the WSN as a single virtual 

system and allows the programmer to express a 

single centralized program (global behavior) into 

subprograms that can execute on local nodes 

(nodal behavior), leaving only a small set of pro-

gramming primitives for the programmer while 

making transparent the low-level concerns such as 

the distributed code generation, remote data access 

and management, and inter-node program flow 

coordination [23, 24]. Generally speaking, node 

level abstraction facilitates the development of 

applications with more flexibility and energy sav-

ing, and less communication and interpretation 

overhead. On the other hand, system level abstrac-

tion is easier to use because nodal behaviors can 

be generated automatically so the programmer can 

concentrate on the network-level actions, without 

worrying about how the sensor nodes collaborate 

with each other to perform the assigned task. 

Programming paradigm refers to the model of 

programming the applications. It is often depend-

ent on the applications. WSN applications can be 

classified in two dimensions: application Data 

collection feature and application dynamic feature. 

Data collections can be continuous, event-driven, 

or query-based. Application can be totally static 

and has some mobility characteristic, such as mo-

bile target or mobile sink. Correspondingly, for 

different applications, WSN middleware may use 

different programming paradigms, such as data-

base, mobile agent, and Publish/Subscribe 

(Pub/Sub). For example, the data base paradigm is 

often used for query-based data collection, while 

the Pub/Sub paradigm can be a good choice for 

event-driven applications. Mobile agent paradigm 

may be a choice for tracking mobile target appli-

cations.  

Interface type refers to the style of the pro-

gramming interface. As a matter of fact, program-

ming abstraction is embodied as the programming 

interface. Descriptive interfaces provide SQL-like 

languages for data query [25, 26], Rule-based de-

clarative languages for command execution [27], 

or XML-based specification files for context con-

figuration [28]. On the contrary, imperative inter-

faces provide imperative programming languages 

for writing the code to interact with the WSN 

network [29]. Descriptive interfaces usually re-

quire the interpretation of the queries and thus 

consume more resources, while imperative inter-

faces require the programmer to specify the logic 

of execution, and are more flexible but more dif-

ficult to use.  

The consideration of adopting a particular ab-

straction level and selecting an appropriate pro-

gramming paradigm and applicable interface de-

pends on the specific application requirements and 

the underling WSN infrastructure. Middleware 

providing similar paradigms may share the im-

plementation techniques. For example, the data-

base-based paradigm is usually implemented with 

a descriptive interface, while the event-driven 

paradigm can be implemented either with an im-

perative interface by providing the handlers to be 

recalled or with a descriptive interface by provid-

ing an event description scheme. We will discuss 



 6   J. Comp. Sci. & Tech. 

- 6 - 

them in more details in the later Sections.  

2.3 System services 

System services embody the functionalities 

and form the core of WSN-middleware. They are 

exposed to the application programmer through 

the abstraction interface, and provide the support 

for application deployment, execution, as well as 

sensor and network management. We classify the 

system services into two broad categories: com-

mon services and domain services. 

Common services are the basic services shared 

by all WSN applications. They help manage the 

application information and the WSN infrastruc-

ture. The functionalities provided by the common 

services include: 

� Code management: responsible of code  mi-

grating and code updating in a deployed network, 

� Data management: responsible of data acqui-

sition, data storage, data synchronization, data 

analysis, and data mining, 

� Resource discovery: responsible of discover-

ing newly joined sensor nodes and detecting nodes 

becoming inaccessible either as a result of mobil-

ity or loss of battery power,  

� Resource management: responsible of    

managing the node resources (e.g. energy, memory, 

A/D device, communication module) and network 

resource (e.g. topology, routing, system time), 

� Integration:  responsible of integrating WSN 

and its applications into other networks, such as 

the Internet and Grid, for broader use. 

We will explain the implementation details of 

the above services in the next Section. 

Domain services facilitate the development of 

applications in a specific domain. They can make 

use of the common services and add application 

oriented functions to provide domain specific ser-

vices. For example, EnviroTrack [30] is a WSN 

middleware that support environmental Target 

tracking. Impala [22] is a middleware for the Zet-

braBet project, a wildlife monitoring project. It has 

two layers: the upper layer contains the application 

specific protocols and functions, and the lower 

layer contains the common services such as code 

management. WSN-SHM middleware [31, 32] is 

designed for developing structural health moni-

toring applications which have the requirements of 

high frequency sampling and high resource con-

sumption. 

2.4 Runtime support 

Runtime support provides the underling exe-

cution environment of applications and can be 

seen as an extension of the embedded operating 

system which provides functions of scheduling of 

tasks, inter-process communication (IPC), memory 

control, and power control in terms of voltage 

scaling and component activation and inactivation. 

The need of runtime support in WSN middleware 

comes from the facts that the hardware and firm-

ware of the sensor nodes may not always provide 

enough support for the implementation of the 

middleware services described above. 

The functionalities of the runtime support in 

WSN middleware include local processing support, 

communication support, and storage support. 

More specifically, support is provided for 

multi-thread processing, smart task scheduling, 
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and synchronization of memory access.  

Runtime support of WSN-middleware is al-

ways embodied as a virtual machine over a spe-

cific embedded operating system. An Example is 

Mate [20] built on top of TinyOS [33]. 

2.5 QoS Mechanism  

Quality of Service (QoS) mechanisms is an 

advanced feature of WSN-middleware. Providing 

QoS support in WSN is still an open issue for re-

search [34]. QoS features are always cross layers 

and cross components, embodied in various func-

tional services. For example, the data management 

service is required to be reliable and of high accu-

racy.  

Typical parameters for expressing QoS of 

WSN network infrastructure include message de-

lay, jitter, and loss, network bandwidth, throughput, 

and latency. Typical parameters for expressing 

QoS of WSN applications include data accuracy, 

aggregation delay, coverage, and system life time. 

Middleware acts as a broker between the applica-

tions and the network infrastructure. QoS support 

may translate and control the QoS metrics between 

the application level and the network level [35]. If 

the QoS requirements from an application are not 

feasible to fulfill in the network, the middleware 

may negotiate a new QoS guarantee with both the 

application and the network. QoS support may 

also provide the implementation framework for 

simplifying the QoS-aware WSN application de-

velopment using QoS assurance algorithms. 

In the rest of the paper, we will focus on the 

approaches and techniques for implementing the 

above identified middleware components.  

 

3 Middleware system services  

3.1 Code management 

In the context of this paper, a WSN application 

consists of pieces of code that execute on the sen-

sor nodes. Code management provides services for 

code deployment, i.e., allocation and migration of 

code to sensor nodes. Code allocation determines 

a set of sensor nodes, on which the execution will 

be activated. Code migration transfers the code on 

a sensor node to another node [36]. It not only 

helps conveniently re-task the network for net-

work reprogramming (code updating), but also 

enables the data computation elements of an ap-

plication to be re-located. Code can migrate to the 

nodes close to the area where relatively large 

amounts of data are collected, enabling potentially 

high energy saving, or migrate with the mobile 

phenomena. For example, the code of an applica-

tion for fire alarm can be migrated from node to 

node along the path of fire spread. 

Generally speaking, implementation of code 

allocation involves with checking conditions using 

comparisons. In SINA [37] code allocation is im-

plemented in a sensor execution environment 

(SEE), which compares SQTL script parameters 

with the attributes of sensor nodes and executes 

the script only if there is a match. In Cougar [26], 

code allocation is implemented by a query opti-

mizer that determines the energy-efficient query 

routes [36]. Code allocation services implemented 

by a query optimizer has good expressivity but 
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brings network load, while the SEE approach has 

limited expressivity but good scalability. Another 

promising approach, as used in MiLAN [38], is to 

apply application-level QoS to control the code 

allocation in configuration adaptation. The ap-

proach enables the adaptation of the application 

operations based on the current application re-

quirements, which can be adjusted depending on 

the output of the application itself. In this way the 

code allocation is adaptive to the changing condi-

tions. However, the technique used in MiLAN re-

quires a centralized control. 

Code migration can be implemented at not 

only the middleware layer but also in the underly-

ing embedded operating systems, as in BerthaOS 

[39] and MagnetOS [40]. However, because WSN 

OS does not support code interpretation, code mi-

gration implemented at the OS level is error prone 

and subject to malicious attacks [36].  

At the middleware level, most techniques for 

task migration rely on the use of mobile code, 

moving the code to the data origins to process the 

data locally [36]. Current implementations include 

code migration through mobile code (e.g.TCL 

script in Sensorware [41], SQTL scripts in SINA 

[37]) and mobile Java object (e.g., TinyLime [42]). 

An example of mobile code is mobile agent, which 

is an execution thread encapsulating the code as 

well as the state and data. Mobile agent makes 

migration decisions autonomously. The key of this 

approach is to make the application as modular as 

possible to facilitate their injection and distribu-

tion through the network. However, the nature of 

mobile agent code does not allow hardware het-

erogeneity. So, this approach is implemented on 

top of a VM for platform independency.  

There is a trade-off between the complexity of 

the interpreter running on the nodes and the com-

plexity of mobile code. Code migration services 

implemented by mobile code with TCL and SQTL 

have the advantages of small size and high dy-

namicity, but are suffered from the complexity in 

specification and high communication cost. Im-

plementation based on mobile agent and mobile 

Java objects have good salability but high resource 

consumption. Code migration is very resource dis-

sipative and should be used only when necessary. 

To get more insights of the code management 

services, we take Agilla [29] as an example of the 

implementation techniques. Agilla is a mobile 

agent based WSN middleware. The idea behind 

Agilla is to initially deploy a network without any 

application installed. Agents that implement the 

application behavior can later be injected, effec-

tively reprogramming the network. Agilla marks 

the first time that multiple mobile agents and tuple 

spaces are used in a unified framework for WSNs.  

 
Fig. 4.  Agilla system model 
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Fig.5. Agilla middleware architecture 

 
Fig.6. Agilla mobile agent architecture 

 

The Agilla system model is shown in Figure 4. 

Each sensor node supports multiple agents, and 

maintains a tuple space and a neighbor list. The 

tuple space is local and shared by the agents re-

siding on the node. Special instructions are pro-

vided to allow the agents to remotely access an-

other node’s tuple space. The neighbor list con-

tains the addresses of all the one-hop nodes. 

Agents can migrate carrying their code and state, 

but not their own tuple spaces.  

Figure 5. shows the middleware architecture of 

Agilla. The tuple space manger implements the 

tuple space operations (e.g., out, inp and rdp) and 

reactions, and manages the contents of the local 

tuple space and reaction registry. The agent man-

ager maintains each agent’s context. It is responsi-

ble of allocating memory for an agent when it ar-

rives and de-allocating it when the agent leaves or 

dies. The context manager determines the node’s 

location as well as that of its neighbors. Instruction 

manager and Agilla engine provide runtime sup-

port. Instruction Manager is responsible of dy-

namic memory allocation, retrieving the next in-

struction to execute, and packing up the agent’s 

code into the minimal number of messages. The 

Agilla engine controls the concurrent execution of 

all the agents on a sensor node.  

Figure 6 shows the agent architecture. An 

agent consists of a stack, heap, and various regis-

ters. The heap is a random-access storage area that 

allows an agent to store variables. The registers 

contain the agent’s ID, program counter (PC), and 

the condition code. The agent ID is unique to each 

agent and is maintained across migration opera-

tions. A cloned agent is assigned a new ID. The PC 

contains the address of the next instruction, and is 

used by the code manager to fetch the next in-

struction. When a reaction fires, the reaction 

manager changes the PC to point to the first in-

struction of the reaction’s code. To allow an agent 

to resume execution from where it was when the 

reaction fired, the original PC is stored on the 

stack. The condition code records the execution 

status.  

With regards to code allocation, Agilla use a 

reaction approach. Reactions are added to the tu-

ple spaces, allowing an agent to tell Agilla that it is 

interested in tuples that match a particular tem-

plate. The tuple space manager remembers the re-

actions registered by each agent by storing them 

within the reaction registry. Whenever a tuple is 

inserted, the registry is checked to see whether the 

new tuple matches a reaction’s template. If so, the 

tuple space manager notifies the agent manager, 
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which updates the agent’s program counter to 

execute the reaction’s code.  

Code migration is implemented by moving or 

cloning an agent from one node to another. The 

tuple space manager packages up all reactions 

registered by an agent so they can be transferred 

along with the agent. When an agent moves, it 

carries its state and code and resumes executing on 

the new node. When it clones, it copies its state 

and code to another node and resumes executing 

on both the old and new nodes. The multi-hop mi-

gration is handled by the middleware and is trans-

parent to the user. 

 

3.2 Data management  

As mentioned before, WSN applications are 

data centric. Here, data refers mainly to the sensed 

data. Sometimes it also refers to the network in-

frastructure information interested by the applica-

tions. Data management in WSN middleware pro-

vides services to applications for data acquisition, 

data processing, and data storage. The approaches 

to implementing the data management services 

depend much on the application data model. 

 

3.2.1 Data acquisition  

Data acquisition is an essential service for 

WSN applications, responsible of delivering the 

relevant and accurate data required by the applica-

tion.  

For the event based data model, data acquisi-

tion support is focused on the event definition, 

event register/cancel, event detection and event 

delivery. The application specifies the interest in 

certain state changes of the data. Upon detecting 

such an event, the middleware will help send event 

notification to interested applications. TinyDB 

[25], DSware [43], Mires [44], and Impala [22] all 

support event-based data acquisition. DSware also 

supports compound event detection.  

A typical approach to implementing 

event-based data acquisition is the Pub/Sub para-

digm, which has two advantages in supporting 

event based data acquisition. First, it supports 

asynchronous communication. Second, it facili-

tates message exchanging between the sensor 

nodes and the sink node. The basic entities of 

Pub/Sub system are event subscriber and event 

publisher (some times event broker also). From 

the middleware’s point of view, the event sub-

scriber is the sink node and the event publishers 

are the sensor nodes.  

  
Fig. 7. Mire’s architecture  
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        Fig. 8. Mire’s Pub/Sub component  

As an example of the Pub/Sub approach, let us 

have a look of Mires. Figure 7. and 8. show Mires’ 

architecture and its Pub/Sub component structure 

respectively. Mire includes a core component, 

namely the Pub/Sub service, and some additional 

services. The communication between the sensor 

nodes consists of three phases. Initially, the sensor 

nodes in the network advertise their available top-

ics (e.g., temperature and humidity) collected from 

the local sensors. Next, the advertised messages 

are routed to the sink node using a multi-hop 

routing algorithm. A user application connected to 

the sink node is able to select (i.e., subscribe) the 

desired advertised topics to be monitored. Finally, 

subscribe messages are broadcasted down to the 

network nodes. After receiving the subscribed 

topics, the sensor nodes are able to publish their 

collected data to the network. The Pub/Sub service 

maintains the topic list and the subscribing appli-

cations so as to marshal the right topic to the re-

lated application. In Mires, only the messages re-

ferring to the subscribed topics are sent, hence re-

ducing the number of transmissions and energy 

consumption.  

    For query-based data model, data acquisition 

support is focused on the query processing model 

and methods. Middleware for query-based data 

model usually use a declarative interface, with 

global level abstraction and database programming 

model. Example systems are TinyDB [25], Cougar 

[26], and SensorWare [41]. They leverage the 

techniques used in the traditional database system 

to implement data acquisition services, e.g., ap-

plying distributed query [45, 46] or CACQ (con-

tinuously adaptive continuous queries over 

streams) [47, 48]. 

TinyDB is a good example to illustrate the 

query-based approach. TinyDB is a 

query-processing system that extracts information 

from the data collected by the WSN using the un-

derlying operating system TinyOS. TinyDB main-

tains a virtual database table, called SENSORS, 

whose columns contain information such as sensor 

type, sensor node identifier, and remaining battery 

power. The programmer can view the values of the 

SENSORS, and add new rows to it. Consider the 

following example. A user wants to be reported 

when the average temperature is above 80° F in 

any room on the third floor of a building moni-

tored by sensors. The user inputs the following 

database query along with the rate at which the 

sensors are to collect the data: 

SELECT AVG (temp) FROM sensors                               

(select rows from Sensors) 

WHERE floor = 3                               

 (at the 3rd floor) 

GROUP BY room                         

 (rows are grouped by room number) 

AVG (temp) > 80F   

(only groups with average temperature > 80F) 

SAMPLE PERIOD 20 seconds       

(perform every 20 seconds—rate of collection) 

TinyDB uses a controlled-flooding approach to 

disseminate the queries throughout the network. 

The system maintains a routing tree (spanning tree) 

rooted at the end point (usually the user’s physical 

location). Then, in a decentralized approach, every 

sensor node has its own query processor that 
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processes and aggregates the sensor data and 

maintains the routing information. In every period, 

the parent node closer to the root agrees with its 

children on a time interval for listening to data 

from them.  

 

3.2.2 Data processing 

Generally speaking, there are three different 

approaches to support data processing in WSNs. In 

centralized processing, all the data are collected 

and then sent to a central node for processing. In 

node level distributed processing raw data col-

lected in the sensor nodes are pre-processed to ob-

tain partial results, which are then collected by the 

sink node for further processing to get the final 

result. In network level distributed processing final 

results are obtained through both node-level dis-

tributed processing and information exchange be-

tween the sensor nodes, and between sensor nodes 

and the sink node. In the extreme case, where 

every sensor node is involved with data processing, 

routing, and is aware of the final decision, it be-

comes completely distributed processing. 

Given that the communication cost is much 

higher than the computation cost at a sensor node, 

WSN middleware should support in-network dis-

tributed data processing service, mostly through. 

data fusion / aggregation. Although in-network 

data processing services are also supported at a 

lower level by some firmware in terms of signal 

conditioning, and data fusion and data aggregation 

can also be supported at the MAC and routing 

layers, middleware support has the following dis-

tinctive features: 1) It is more independent of the 

underlying network protocols, so different strate-

gies can be applied according to different data ac-

curacy requirements from different applications or 

different network conditions. 2) It facilitates high 

level data analysis such as feature-based fusion 

and decision-based fusion.  

For event-based data model, data aggrega-

tion/fusion can be implemented in separate ser-

vices. An example is the aggregation service in 

Mires [44]. In Mires, data aggregation is imple-

mented in separate modules for functions such as 

AVG and SUM. The aggregation is executed by an 

“Aggregate Use” module that carries out an activ-

ity of de-multiplexing, passing requests for the 

correct aggregation module in accordance to its 

identifier. This way, the flexibility to add new ag-

gregation functions is guaranteed, just requiring 

the creation of a module for the new function and 

adding the association between the function and an 

identifier to a configuration file.  

In addition, for event-based data model, de-

tecting the event boundary and determining the 

event area and its center should also be considered 

in WSN middleware.  

For query-based data model, data aggrega-

tion/fusion services can be implemented by using 

the pipelining techniques [46], as used in TinyDB 

and SensorWare. 

Another data processing service is data cali-

bration for ensuring the synchronization between 

the sensor nodes. Some applications, e.g., seismo-

graphic or building health monitoring, require pre-

cise time synchronization among the readings on 
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different sensor nodes. How to achieve time syn-

chronization is an important function of the mid-

dleware. More details on implementation tech-

niques of time synchronization in WSN, e.g., 

hardware implementation, software implementa-

tion can be found in [55]. 

 

3.2.3 Data storage 

There are three approaches to implementing 

data storage support in WSNs [49, 50]. External 

storage stores the data in the base station out of the 

WSN. Local storage stores the data where it is 

generated, reducing communication but increasing 

the inquiry cost. Data centric storage provides a 

tradeoff between the previous two approaches. 

Data-centric storage is the most popular approach 

implemented in existing WSN middleware.   

Let us look at Data Service Middleware 

(DSWare) [43] as an example to show the data 

storage service implementation in 

WSN-middleware. As shown in Figure 9, DSWare 

is a specialized layer that implements various data 

services and, in doing so, provides a database like 

abstraction to WSN applications. Figure 10 shows 

the DSWare framework. The event detection 

component is responsible of providing the data 

acquisition service. The group management com-

ponent provides the support for group-based deci-

sion and is responsible of data aggregation. The 

scheduling component schedules the services to all 

DSWare components with two scheduling options: 

energy-aware scheduling and real-time scheduling. 

Here, we focus on the data storage and caching 

components.  

 

Fig.9. DSWare Framework 
 

     

Fig.10. DSWare system model  

The Data Storage component in DSWare stores 

data according to the semantics associated with the 

data. It has a data look-up operation and provides 

fault tolerance should there be node failures. It 

also has operations for storing correlated data in 

geographically adjacent regions. This has two ad-

vantages: enabling data aggregation and making it 

possible for the system to perform in-network 

processing.  

To facilitate data look-up, DSWare maps data 

to physical storage using two levels of hash func-

tions. At the first level, the hash function maps a 

key, which is a unique identifier assigned to each 

data type, to a logical storage node in the overlay 

network. As a result of this operation, the storage 

nodes form a hierarchy at this level. The second 

level involves the mapping of single logical node 

to multiple physical nodes such that a base station 

performing a query operation has the data fetched 

from one of the physical locations. There is a big 
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risk in mapping a given data type to a single node 

as this data could be lost as a result of node failure. 

Furthermore, mapping data to a single node in the 

sensor network causes bursts of traffic to the node 

which may lead to collision and higher rate power 

consumption. DSWare uses replication to store 

data in multiple physical sensor nodes that can be 

mapped onto a single logical node. Load balancing 

is achieved since queries can be directed to any 

one of the physical nodes and the lifetime of indi-

vidual nodes is prolonged since power consump-

tion is substantially reduced. With replication of 

data amongst multiple nodes come consistency 

issues. DSWare adopts “weak consistency “to 

avoid peak time traffic since only the newest data 

amongst nodes is bound to lack consistency. This 

new data is propagated to other nodes and the size 

of inconsistent data is bounded so that replication 

occurs when the workload in individual nodes is 

low. 

Data Caching in DSWare provides multiple 

copies of data that are most requested. DSWare 

spreads the cached data over the network to 

achieve high availability and faster query execu-

tion. A feedback control scheme is used to dy-

namically decide whether or not copies should re-

side in frequently queried nodes. The scheme uses 

various inputs including proportion of periodic 

queries and average response time from data 

source to guide the nodes in making decisions 

about whether or not a copy should be kept. This 

component also monitors the usage of the copies 

to decide whether to increase or reduce the num-

ber of copies, or move them to a new location. 

In conclusion, 1) Data management is an im-

portant topic in WSNs. One of the distinguished 

features that middleware offer in data management 

is the appropriate abstraction of data structure and 

operation. Without this abstraction, the developer 

has to manage the heterogeneous data and low 

level operation in the application. Various exiting 

data management algorithms can be implemented 

as reusable and alternative middleware services 

with certain of parameters. The middleware sys-

tem can even automatically adjust the service pa-

rameters according to its current status. Applica-

tion specific data management algorithms can be 

written based on those common data services. This 

also facilitates the development process. 2) Most 

existing WSN middleware provide some kind of 

data management services. However, high level 

in-network analysis services related to the WSN 

application domain, e.g. data mining, are not im-

plemented yet and need more attention. 

 

3.3 Resource and information discovery 

Resources in a WSN usually refer to the sen-

sor node hardware resource, e.g. energy, memory, 

A/D device, and communication module. The re-

source discovery service returns the data type that 

a discovered node can provide, the modes in 

which it can operate, and the transmission power 

level or residual energy level of a sensor node. On 

the hand, the information discovery service returns 

the information about the network topology, the 

network protocols, and the neighbors and the loca-

tions of the discovered nodes. The service can also 

be used to discover new nodes and find out when 
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nodes become inaccessible as a result of either 

mobility or loss of battery power. However, many 

of the above mentioned service features is not be-

ing available in existing WSN middleware yet.  

Compared to resource discovery in traditional 

networks [51, 52] which is involved with identi-

fying and locating (relocating) the services and 

resources in the system, resource and information 

discovery services in WSN are more difficult to 

implement due to the lack of unique node ID and 

the lack of generic service specification, and be-

cause the services need to be provided in a 

power-aware way. Some existing WSN middle-

ware systems adopt service discovery protocols 

from traditional computer network solutions, e.g., 

SLP [53] and Bluetooth SDP [54]. MiLAN is an 

example. Other systems, e.g., TinyLime, use tuple 

space to implement the resource discovery service. 

However, these implementations need Unique ID 

of the resource, but many WSNs are content based 

without Unique ID for sensor nodes.  

Although many localization algorithms have 

been developed for different kinds of systems, for 

example, Ultrasound, RF, and ultra-wideband, 

RSSI techniques are used for accurate localization 

via carefully placed beacons. Few existing WSN 

middleware has integrated location discovery ser-

vice. To our opinion, this is mainly because the 

implementation of this kind of service depends 

very much on hardware and the underlying envi-

ronment. For large scale use of WSN for pervasive 

computing, standard and adaptive location discov-

ery services should be provided. 

 

3.4. Resource management 

Resource and information discovery services 

described in the previous section have two main 

functions 1) providing the underlying network in-

formation to applications that are required to be 

reflective or adaptive (e.g. context-aware), 2) pro-

viding the underlying network information to 

support adaptive resource management services. 

Resource management in WSN middleware is 

mainly for providing common and reusable ser-

vices to support the applications that have the re-

quirements of self-organization. Resource man-

agement services are usually used for resource 

configuration at setup time and resource adapta-

tion at runtime, and they are essential to ensure the 

QoS of WSN which we will discuss in details 

later.  

Resource management at the OS layer is plat-

form-dependent, so changes at this level might 

affect different resource requirements of the ap-

plications running in a sensor node. On the other 

hand, application-level resource management im-

poses an extra burden on the application, and ad-

aptation mechanisms developed at this level can-

not be reused. In contrast, resource management at 

the middleware layer has more flexibility. Most 

existing WSN middleware provide services in-

cluding cluster service [56, 57], schedule service, 

and data routing service. These services are sup-

ported by finer granular services such as power 

level management, transmission level management, 

etc. These fine granular services should be sup-

ported and constrained by the underlying OS, the 

firmware, and the hardware. Otherwise, it is im-
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possible for the middleware to provide the corre-

sponding services. 

The cluster service refers to the cluster mem-

ber maintenance for layered WSN. For cluster ser-

vice, many middleware systems, including Envi-

roTrack [30], MiLAN [38], DSWare [43], AutoSec 

[58], and SINA [37] addressed the implementation 

issues according to different objectives. For exam-

ples, EnviroTrack [30] provided the cluster mem-

ber re-allocation service to re-define the clusters  

after deployment; the MiLAN [38] and AutoSec 

[58] provided automatically cluster organization 

service according to the QoS information getting 

from network infrastructure and WSN application. 

SINA [37] and DSWare [43] also provided auto-

matically cluster organization service, but the ob-

jectives are to achieve appropriate clusters so as to 

facilitate the data aggregation process. Except for 

the above examples, the work reported in [57] 

provides a function for generic cluster manage-

ment of sensor nodes. The function arises either in 

terms of non-functional requirements (e.g., secu-

rity, reliability) or according to dynamic system 

conditions. (e.g., power level, connectivity). 

The schedule service refers to the node 

wakeup/sleep scheduling. It is used to reduce the 

energy consumption by allowing the sensor nodes 

to be put to sleep and to be waken up according to 

specific policy. For example, when not being allo-

cated tasks a sensor node can sleep in order to 

save energy. Implementation of this service may 

make use of the services, such as sleep scheduling 

protocols in the MAC layer and CPU voltage 

scaling [1] in the physical layer. 

The data routing service can be implemented 

in several different ways. Some middleware such 

as Mate [20] do not provide any specific routing 

management service, but provide architecture 

which allows the implementation of arbitrary 

routing protocols. For systems that provide routing 

management services, three main approaches can 

be identified. The first approach is implementing a 

new higher level routing protocol at the middle-

ware level. An example is MagnetOS [40] that 

implements a multi-hop routing protocol in a mid-

dleware component. The second is maintaining an 

overlay, and supporting routing mechanism, as 

well as routing reconfiguration on top of this 

overlay. For example, Mires [44] makes use of a 

Pub-Sub mechanism to support the routing man-

agement. Owing to the loosely coupled interac-

tions between the nodes in the Pub-Sub paradigm, 

it is very flexible to provide new kind of data 

routing implementation. The third approach is im-

plementing a mechanism that allows for switching 

between different routing protocols, as what is 

done in Impala [22], or providing a mechanism 

that allows for the adaptation of different routing 

protocols, as what is done in MilAN [38]. As an 

example, Figure 11 shows the data routing man-

agement of MilAN. The routing management of 

MiLAN is intended to sit on top of multiple 

physical networks. It acts as a layer that allows 

network-specific plug-ins to convert MiLAN 

commands to protocol-specific ones that are 

passed through the usual network protocol stack. 

Therefore, MiLAN can continuously adapt to the 

specific features of whichever network is being 

used in the communication. 
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Fig.11. MiLAN network protocol management 

In conclusion, most existing WSN middle-

ware adopts localized resource management.  

Policy based management has been shown to be a 

good approach to supporting the design of 

self-adaptive resource management Currently, re-

source management services in existing WSN 

middleware are tightly coupled with applications 

and generic resource management services need to 

be developed.  

3.5 WSN integration 

For broader applications, WSN needs to be in-

tegrated into other exiting network infrastructures, 

such as the Internet, Gird, and database-based 

systems. Because a WSN is a “close” network, it 

is not easy to implement the integration service at 

the lower layers (e.g., OS or MAC layer) thus 

middleware should provide this service [59-63].  

For WSN middleware, integration is related to 

both task coordination as well as data sharing, and 

can be implemented at the application level or data 

level. Application level integration is more related 

to task coordination, where the applications are 

running in both the WSNs and the leverage system. 

Data level integration, on the other hand, is more 

related to data sharing, where only the data pro-

vided by the WSNs are used in the leverage sys-

tem. 

Proxy server is a common mechanism for in-

tegration implementation. The client can access 

non-standardized services in a wireless sensor 

network by inquiring a proxy server which trans-

lates the standardized protocol to the proprietary 

protocol and vice versa. For integrating WSNs into 

existing legacy middleware, authors of [65] de-

scribed an “edge server middleware” which per-

forms application-specific processing at the 

boundary between the WSN and the legacy mid-

dleware. For integrating WSNs into a Gird mid-

dleware infrastructure, several early systems have 

been reported [60, 61, 62, 63] on sensor-grid 

computing. 

The service oriented approach [28, 64] to im-

plementing WSN integration is based on standard 

open architecture technologies such as Web ser-

vices [66]. It provides a common information and 

communication format to facilitate the integration. 

In this approach, the sink node is modeled as web 

service provider that exposes the services provided 

by the network using a standard service interface. 

The WSDL language and SOAP protocol [66] are 

used for describing the services and formatting 

messages used by the underlying communication 

protocol. This approach does not combine the 

proposal to any particular underlying data dis-

semination protocol. Thus, the WSN can be used 

as a system to supply data for different applica-

tions and users.  

Based on the SOA approach, some researchers 

proposed the concept of “Sensor-web” [67, 68, 69]. 

The Sensor Web aims to make various types of 
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web-resident sensors, instruments, image devices, 

and repositories of sensor data, discoverable, ac-

cessible, and controllable via the World Wide Web. 

A lot of efforts have been made in order to over-

come the obstacles associated with connecting and 

sharing these heterogeneous sensor resources. The 

Sensor Web Enablement (SWE) standard has been 

defined by the OpenGIS Consortium (OGC), 

which is composed of a set of specifications, in-

cluding SensorML, Observation & Measurement, 

Sensor Collection Service, Sensor Planning Ser-

vice and Web Notification Service. OGC has also 

proposed a reusable, scalable, extensible, and in-

teroperable service oriented sensor Web architec-

ture, which conforms to the SWE standard, inte-

grates Sensor Web with Grid Computing, and pro-

vides middleware support for Sensor Webs. 

In comparison, the proxy server approach is 

more application dependent and less scalable be-

cause adding or removing a proxy server will im-

pact the network structure. The service oriented 

approach is more flexible and scalable, but needs 

more energy consumption. Most of the integration 

services are now still in very preliminary stage. 

WSN middleware for this kind of services are 

resting on the architecture concept level.  

4. WSN runtime support 

As mentioned in Section 2, because the under-

lying WSN platform, mostly the embedded OS, 

does not always provide enough support for im-

plementing the middleware services, WSN mid-

dleware needs to develop runtime support. Run-

time support extends the functions provided by the 

embedded OS for processing, communication, and 

storage management in order to provide a 

well-defined execution environment for the execu-

tion of application and system programs. The basic 

functions of runtime support include inter-process 

communication (IPC), memory control, and power 

control in terms of voltage scaling and component 

activation and inactivation. These functions are 

used by higher level middleware services such as 

multi-thread processing, smart task scheduling, 

synchronization of memory accessing and the 

spread signal spectrum management. Runtime 

support in WSN middleware is always embodied 

as some kind of virtual machine over the underly-

ing platform. It can be implemented as a platform 

specific kernel on top of the embedded OS, but 

with platform independent primitives for the ge-

neric WSN middleware services.  

 
Fig.12. The architecture of Mate  

Let us look at an example, Mate [20], which is 

a middleware built on top of TinyOS. Figure 12 

illustrates its architecture. Mate takes the role of a 

traditional OS kernel. Instead of system calls, it 

provides a set of primitives for programming. As 

shown in the figure, Mate has a byte code inter-

preter that runs on TinyOS which adopts a com-

ponent-based model to build sensor network ap-

plications in an event-driven operating environ-

ment. The core of the Mate architecture is a simple 
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FIFO scheduler. The scheduler maintains a queue 

of run-able contexts, and interleaves their execu-

tion. The scheduler executes a context by fetching 

its next byte code from the capsule store, and dis-

patches it to the corresponding operation compo-

nent. The Mate concurrency model is based on 

statically named resources, such as shared vari-

ables. Operations specify the shared resources that 

they use. The analysis that determines a handler’s 

complete resource usage is language-specific. 

Mate forward the programs using the Trickle algo-

rithm which uses broadcast-based suppressions to 

quickly propagate new data but minimize the 

overhead when the nodes share data. Just as with 

explicit forwarding, once a user installs a single 

copy of a program in the network, Mate installs it 

on every mote. Mate proposes a spectrum of 

re-programmability, from simply adjusting pa-

rameter to uploading complete program updates. 

The support can be used to develop more complex 

code management services, which will be dis-

cussed later.  

Another example is Magnet [40], a runtime 

based on MagnetOS, which is a power-aware, 

adaptive operating system specifically designed 

for sensor and ad hoc networks. With its support 

for a single system image, MagnetOS overcomes 

the heterogeneity of distributed, ad hoc sensor 

networks by exporting the illusion of the Java VM 

on a top of distributed sensor networks. Magnet 

has both static and dynamic components. The 

static components are responsible for rewriting 

applications in the form of object modules. The 

runtime components (dynamic components) on 

each node monitor the object’s creation, invoca-

tion, and migration.  

Task cooperation is an important component of 

runtime support, which includes the means for 

communication between distributed tasks. Task 

cooperation is useful when multiple tasks reside 

on the nodes in the WSN and need to interact with 

each other. In existing systems, e.g. TinyTime [42] 

and Agilla [29], implementation of task coordina-

tion mainly uses the tuple space approach. The 

concept of tuple space was proposed originally in 

Linda. Tuples are collections of passive data val-

ues. A tuple space is a pool of shared information, 

where tuples are inserted, removed, or read. Data 

are global and persistent in the tuple space and 

remain until explicitly removed. In WSN middle-

ware, tuple spaces are used for inter-agent com-

munication and context discovery.  In the tuple 

space, a task does not need to know its peer task 

and tasks do not need to exist simultaneously, be-

cause they do not need to communicate directly.  

Let us look at the Agilla example again for 

task coordination support. The tuple space ensures 

that the agents run autonomously by allowing 

them to communicate in a decoupled fashion. For 

example, suppose there are a fire detection agent 

and a habitat monitoring agent residing on the 

same node when fire is detected. The fire detection 

agent inserts a fire tuple into the local tuple space 

to indicate the presence of fire and activates a 

tracking agent before dying. The habitat monitor-

ing agent reacts to this tuple, and voluntarily kills 

itself to free additional resources. The fire detec-

tion agent does not need to know who receives the 

fire tuple. The sending and reception operations 
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can occur at different times, and reception can oc-

cur even when the sender is no longer present. 

This spatial and temporal decoupling ensures each 

agent operates autonomously. In Agilla, agents 

also need to coordinate with the agents residing on 

remote nodes. Agilla allows agents to coordinate 

across nodes by introducing special remote tuple 

space operations. They are synonymous with local 

operations, except that they take an additional lo-

cation parameter that specifies on which node to 

perform the operation. Note that Agilla does not 

support tuple spaces that span across nodes. Each 

node maintains a distinct and separate tuple space. 

The dedicated remote tuple space instructions rely 

on unicast communication with the specific node 

hosting the tuple space. 

5. WSN QoS support 

QoS support is important for applications with 

requirements on performance, both functional and 

non-functional. These requirements include 

fault-tolerance [70, 71], reliability [72, 73, 77], 

security [74, 75, 76], and real-time [77, 78, 79, 80].  

It is also very important for context aware applica-

tions. Under different contexts, applications can 

adopt different QoS policies. As mentioned in 

Section 2, QoS support in WSN middleware is still 

an open issue for research. First of all, the QoS 

metrics are not well defined in the context of WSN 

applications. For expressing QoS of WSN network 

performance, parameters such as packet delay, jit-

ter and loss, throughput, and latency are defined. 

For expressing QoS of WSN application perform-

ance, new parameters are defined, including data 

accuracy, aggregation delay, aggregation degree, 

coverage, and precision [34]. The literature [34] 

surveyed both of above parameters, and proposed 

that in WSN middleware level, collective QoS 

metrics should be considered. Because WSN are 

always densely deployed, and single sensor accu-

racy or time delay between two respective sensors 

may not be meaningful. Collective behavior and 

effect of a set of logically related sensors become 

very important. However, neither did [34] or other 

existing work provide a clear definition of collec-

tive QoS metrics and how to implement them in 

WSN middleware. 

Implementation of QoS support in WSN mid-

dleware depends on the middleware services we 

have described before, mainly the resource dis-

covery service and the resource management ser-

vice. Provision of QoS in WSN middleware, on 

the other hand, also affects other services, such as 

data acquisition in the data management service. 

WSN middleware may provide a QoS support 

implementation framework with the fundamental 

QoS assurance algorithms to simplify the devel-

opment process. For example, in [70] a framework 

is proposed with fault-tolerant algorithms. But a 

typical implementation approach of QoS support 

in WSN middleware is to translate and control the 

QoS between the application and the networks. 

That is, if the QoS requirements from an applica-

tion are not feasible to be satisfied in the network 

the middleware may negotiate a new quality of 

service with both the application and the network.  
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Fig.13. QoS support in MiLAN 

Take MiLAN as an example. Let us look at 

how existing systems implement QoS support. As 

shown in Figure 13, MiLAN assumes that applica-

tion performance can be described by the QoS ex-

pressed in different variables of interest to the ap-

plication. The QoS variables depend on which 

sensors provide data to the application. Each sen-

sor has a certain QoS in characterizing each of the 

application's variables. In order to determine how 

to best serve the application, MiLAN needs to 

know the variables of interest to the application, 

the required QoS for each variable, and the level 

of QoS that the data from each sensor or set of 

sensors can provide for each variable. Note that all 

of these may change according to the application's 

current state.  

During the initialization of the application, the 

QoS information is conveyed from the application 

to MilAN via State-based Variable Requirements 

Graph and Sensor QoS Graph. The State-based 

Variable Requirements Graph specifies to MiLAN 

the application's minimum acceptable QoS for 

each variable based on the current state of the ap-

plication. For a given application, the QoS for 

each variable can be satisfied using the data from 

one or more sensors. Given the information from 

the two kinds of graphs as well as the current ap-

plication state, MiLAN can determine which sets 

of sensors satisfy all of the application QoS re-

quirements for each variable. These sets of sensors 

define the application feasible set FA where each 

element in FA is a set of sensors that provides QoS 

greater than or equal to the application-specified 

minimum acceptable QoS for each specified vari-

able. MiLAN also determines which sets of sensor 

nodes can be supported by the network using 

Sensor QoS Graph. The subsets of the nodes that 

can be supported by the network define a network 

feasible set FN. MiLAN combines these two con-

straints to obtain an overall set of feasible set F = 

FA ∩FN.  

QoS support in WSN-middleware is still in a 

very preliminary stage. Although work has been 

reported, there is a lack of implementation and 

simulation results. 

6. Taxonomy of WSN middleware features 

Current works on developing middleware for 

WSNs have focused on different aspects and for 

different purposes. In this section, we highlight the 

characteristics of WSN middleware and propose 

taxonomy of the desirable features. We first clas-

sify the features of WSN middleware by using 

feature trees, and then based on the classification 

provide an overview of the exiting works. The use 

of a feature tree facilitates structuring the middle-

ware features and describing the relationships be-

tween them. 

The feature tree is derived by analyzing the 

system model and the implementation approaches 

of WSN middleware functions discussed in the 
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previous sections. In Figure 14, (for clear format, 

we put it after the main text) the solid dots repre-

sent the necessary features, while the hollow dots 

represent optional or alternative features. Features 

can be decomposed into sub features. The rela-

tionship between sub features can be either the 

inclusive relationship, denoted by solid branch 

cross, or the alternative relationship, denoted by 

the hollow branch cross.  

As seen in the root tree (see Fig.14.(a)), the 

features are from both the WSN middleware and 

the underlying network. The features from the 

middleware include the services provided by and 

system architecture of the target middleware. The 

features from the WSN consist of two parts. The 

first part contains the features describing the char-

acteristics of the applications that the target mid-

dleware can support. The second part contains the 

features that describe the underlying WSN plat-

form support of the target middleware. 

The middleware feature sub-tree (see 

Fig.14.(a)) itself has two sub-trees: middleware 

service features (see Fig.14.(b)) and architecture 

features (see Fig.14.(c)). Middleware service fea-

tures are composed of functional features, which 

are related to the middleware services, and 

none-functional features, which are related to the 

QoS support. The architecture features are com-

posed of the programming abstraction features and 

the implementation features. We have discussed 

the programming abstraction features in Section 

2.2. 

Implementation-related features have two 

main perspectives: the feature of coordination 

among the processes and the context features. In 

the branch representing the process coordination, 

the procedure oriented method is not very applica-

ble to the WSN Middleware due to its poor scal-

ability [81]. Object oriented method is scalable, 

but it is based on the object context, which is too 

heavy weight for the WSN context. Message ori-

ented and tuple space oriented methods can scale 

easily and support the event-driven paradigm [82]. 

Thus, they are often used in the WSN middleware. 

In the branch representing the context fea-

tures, hardware transparent features are those that 

hide the hardware implementation details from 

user. The features supporting heterogeneous 

hardware transparency hide the differences of 

various hardware platforms. These kinds of fea-

tures are rarely supported because the diversity of 

the WSN hardware and the tight application de-

pendent characteristics. Remote transparency 

means hiding the location and other network at-

tributes details from the user. Remote transparency 

does not fit WSN systems which need the infor-

mation to support the applications and manage the 

resources.  

For context features, in order to achieve re-

source management adaptation, developers must 

introduce open resource configuration and recon-

figuration. This requires the context to be reflec-

tive [83]. Computational reflection refers to the 

ability to reason about (being aware of), and alter 

(being adaptive to) its own behavior. Both “proac-

tive” and “reactive” middleware systems belong to 

the category of adaptive middleware. Compared to 

“reactive “middleware systems, which react only 
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by themselves when changes occur within the 

network, “proactive” middleware systems enable 

applications (or middleware) to actively partici-

pate in the process of configuring the network 

where the middleware operates . 

The branch representing the WSN network 

features (see Fig.14.(d)) includes the features of 

WSN applications such as the application dynamic 

features and the application data collection fea-

tures (see the right branch of Fig.14(d)) as ex-

plained in [84]. Application data collection feature 

defines the data acquiring approach. By observer 

initiated approach, the data acquiring process is 

initiated by the data query command. By event 

driven approach, data will be sent to the sink node 

whenever a defined event occurs. By continuous 

approach, data is sent to the sink node during 

every defined period. The application dynamic 

features define the mobility characteristic of WSN 

application. Mobility can be divided into three 

classes, namely mobile target, mobile sensors and 

mobile sink). Location discovery service of WSN 

middleware is especially important for mobile 

sensors model. WSN infrastructure features (see 

the left branch of Fig.14.(d)) also have important 

impact on the WSN middleware. For example, if 

TinyOS is used, then synchronization process co-

ordination can be easily implemented because of 

the inherent support from the TinyOS’s active 

message mechanism. 

An overview of the exiting works can be 

found in Table 1 (for clear format, we put it after 

the main text), which compares the existing WSN 

middleware systems and proposals by applying the 

feature tree. We also provide Table 2 (for clear 

format, we put it after the main text), which sum-

marizes the exiting WSN middleware by classify-

ing them into Test-beds, simulation and testing 

tools, and evaluation results. 

7. Challenges and directions 

Before concluding this paper, in this section, 

we discuss the challenges, research issues, and fu-

ture directions in the area of WSN middleware.  

We classify the challenges in designing and 

implementing WSN-middleware into three main 

types. The first type of the challenges comes from 

the conflict between the contexts of distributed 

computing and the embedded sensor devices. Dis-

tributed computing should support scalability, re-

liability, dependability, and heterogeneity, but this 

demands carefully the design under the context of 

resource limited devices and dynamic network to-

pology.  

The second type of challenges comes from the 

trade-offs between the degree of application speci-

ficity and middleware generality. It is important to 

integrate application knowledge into the services 

provided by the middleware because it can sig-

nificantly improve the resource and energy effi-

ciency of the operations. However, since middle-

ware is designed to support and optimize a broad 

range of applications, tradeoffs need to be ex-

plored between the degree of application-specific 

requirements and the generality of the middleware. 

A practical policy is to embed the unique features 

of an application into the application code or 

specification, which can be interpreted by the 
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middleware at runtime. 

The third type of challenges comes from the 

new context of QoS. Due to the limited resources, 

it is very likely that the performance requirements 

of all the running applications cannot be simulta-

neously satisfied. Therefore, it’s necessary for the 

middleware to smartly trade the QoS of various 

applications against each other. 

Existing works use different approaches to 

provide different WSN- middleware services. For 

example, the database-based approach is more ap-

propriate for data management services, and mo-

bile agent is more appropriate for code manage-

ment services. In fact, the mobile agent approach 

can also be used in data management services es-

pecially in distributed in-network data processing 

services. So how to choose or integrate different 

approaches, make their advantages together de-

serves consideration.  

With regards to the system architecture, most 

of the current middleware have not considered 

how to integrate the components into generic mid-

dleware architecture to help developers match dif-

ferent requirements. Because many features need 

to be considered in the design of WSN middleware, 

re-factoring WSN middleware with aspects [85] is 

helpful. Services should be reusable, and a generic 

framework with customizable component-based 

architecture is desirable.  Component based ar-

chitecture has good support for dynamic configu-

ration, and it can make use of the component in-

terface definition to provide slandered service in-

terface. Components need not always exist, and 

they can be initialized when needed, so as to save 

the system resource. The relationship between 

components and services should be carefully con-

sidered. Moreover, design patterns are widely used 

in traditional middleware, but until now, there is a 

very few study on design patterns for WSN mid-

dleware [86]. Also, Domain specific design of 

WSN middleware functions deserves more atten-

tion. 

   Furthermore, evaluation metrics, as well as 

testing and simulation tools for WSN-middleware 

are needed.  

Finally, WSN middleware can be seen as a 

kind of lower layer pervasive computing middle-

ware. Until now, all the exiting works on WSN 

middleware have focused on the sensor networks. 

In the future, more kinds of sensor nodes, RFID, 

and camera sensors will put new challenges to this 

research field.  Also, with the maturity of new 

kinds of sensor networks, such as delay tolerant 

sensor networks, sensor and actuator networks, 

and mobile sensor networks, we will face new re-

search issues for developing WSN-middleware, in 

order to detail with the more complex heterogene-

ity problem. So, we should consider more integra-

tion of WSN-middleware and higher level perva-

sive computing middleware. WSN middleware 

focus on information gathering from the physical 

world and pervasive computing middleware focus 

on the use of the information, the appropriate divi-

sion of functions and cooperation between these 

two kinds of middleware are very important for 

supporting efficient pervasive computing applica-

tions. 
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8. Conclusion  

In this paper, we have presented a review of 

the state of arts of middleware for wireless sensor 

networks. We described a reference model for 

WSN middleware architecture as a basis for our 

discussion. We discussed and evaluated the pro-

gramming abstractions and middleware services of 

the model in detail. Using a feature tree-based 

taxonomy, we classified the features of WSN mid-

dleware and compared existing projects and pro-

posals. We also discussed the challenges as well as 

future research directions in developing WSN 

middleware. 

The main objective of this paper is to provide a 

comprehensive understanding of the current issues 

in this area for better future academic research and 

industrial practice of WSN-middleware. WSN is a 

new and rapidly evolving field, and advances and 

new capabilities are constantly being introduced 

into the design of WSN middleware. This paper is 

presenting what essentially constitutes a “snap 

shot” of the state of the art around the time of its 

writing, as is unavoidable the case of any survey 

of a thriving research field. We do, however, be-

lieve that the core information and principles pre-

sented will remain relevant and useful for the 

reader. 

 

 

 
Fig.14 (a).  Root feature tree of WSN middleware  

Fig.14 (b).  Feature tree of middleware services 
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Fig.14 (c).  Feature tree of middleware architecture 
 

 
Fig.14 (d).  Feature tree of WSN  

 
 
Fig.14. Feature trees of WSN middleware 

 
 

 

 

 

Table 1 overview of existing projects and proposals 
Programming abstraction features Middleware service features    Features 

Proposal Interface type Abstraction 

Level  

Programming 

Paradigm  

Functional Un-functional  

Sensor Ware Declarative Local Database CodeManagement None 

MagnetOS Imperative (java language) Global  virtual machine  CodeManagement 

ResourceManagement 

None 

Mate 

 

Imperative (motle,byte code) Local  virtual machine  CodeManagement 

ResourceManagement 

Security 

MiLAN None None None ResourceManagement 

Resource discovery 

None 

SINA Declarative(cells data format SQTL) Global   Database DataManagement None 

TinyDB Declarative (ACQP language) Global   Database 

Graphic UI  

DataManagement 

Resourcemanagement 

None 

Cougar Declarative (XML data format , SQL-like language ) Global   Graphic UI  DataManagement None 

Impala None None Mobile agent Code Management 

ResourceManagement 

Security 
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Storage supporting 

Agilla Imperative (compile-like ) Local   Mobile agent  Code Management None 

FACTS Declarative (Facts, rules, functions, XML like ) Global  Rule based  CodeManagemet 

DataManagemet 

None 

AutoSec 

 

None None None Service discovery 

Resourcemanagement 

None 

DSWare Declarative Global   None Data management 

ResourceManagement 

Storage supporting  

Real-time  

Reliability  

A service approach Declarative (XML,SOAP) 

 

Global   None Data management 

Integration 

Resource discovery 

None 

Mire Imperative Local  Graphic UI  Data management None 

Enviro Track Imperative object-based 

(context object and tracking objects ) 

Global   None Data management 

Resource discovery 

Resourcemanagement 

None 

 
Internal Implementation 

Features 

Supporting Application features based WSN structure features 

Context 

     Features 

 

 

proposal 
Process Communica-

tion 
Transparent Reflective  

Application  

Dynamic 

Application  

Dada collection  

Network 

Level 

Node 

Level  

Sensor Ware Asynchronous Tuple 

oriented 

Homo None Mobile phe-

nomena  

All None Linux IPAQ 

MagnetOS 

 

Asynchronous Homo/  

hetero 

None All  All 

 

Ad-hoc on-demand 

routing 

based 

Build on PC 

Mate 

 

Synchronous 

Asynchronous 

Homo None All All Content-based routing TinyOS 

based; 

MiLAN Synchronous 

Asynchronous 

hetero Proactive All Event driven Switch between dif-

ferent protocols 

None 

SINA ASynchronous Remote 

Homo 

None Static  Enquire  Cluster-based None 

TinyDB Asynchronous 

 

Homo None Static/mobile 

sensor 

Enquire/ Event 

driven 

Spanning tree based 

Routing 

TinyOS 

mote 

 

Cougar Asynchronous Remote 

Homo 

 

None Static  Enquire  

 

Directed diffusion 

routing 

Cluster-based 

None 

Impala 

(designed for 

ZebraNet) 

Asynchronous homo Adaptive  Mobile sensors 

 

Event driven  Switch between dif-

ferent protocols 

iPAQ / PC 

Linux 

 

Agilla Asynchronous 

(tuple based ) 

homo None All  Any  

 

Multi-protocol routing Tiny OS, 

MICA2, 

FACTS Asynchronous 

Tuple oriented 

homo None All Event driven  None None 

AutoSec 

 

Asynchronous 

Broker based 

homo Proactive 

 

All No None Tiny OS 

 

DSWare Asynchronous 

Pub-Sub based 

homo None All Event driven  Cluster-based 

 

None 

A service ap-

proach 

Asynchronous 

(Pub-Sub) 

homo Re-

mote 

Reflective 

Proactive 

All Event driven  Directed diffusion None 

Mire Asynchronous 

(Pub-Sub) 

homo None All  Event driven  Cluster-based 

 

TinyOS 

Enviro Track Asynchronous 

Synchronous 

homo None Mobile- phe-

nomena 

Continues / 

Event drivent 

Group based 

Content-based 

Routing 

TinyOS. 

 

 

Table 2 Summary of existing WSN middleware production  
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Proposal  Test environ-

ment  

Simulation and testing 

tools  

Published Evaluation  Results   

Sensor Ware  Prototype  SensorSim Framework size, execution delays, Energy consumption 

MagnetOS JVM Custom simulator  Internal algorithm Comparison in Simulator 

Mate Prototype TOSSIM Byte code overhead, installation costs, code infection performance  

MiLAN None  None  None  

SINA Simulation  GloMosim SINA networking overhead, application performance 

TinyDB Simulation  

Prototype 

Custom environment Query routing performance in simulation ,sample accuracy and sampling fre-

quency in prototypes  

Cougar None  None None 

Impala Simulation ZnetSim System Implementation and Overhead, Impala event processing time, Software 

transmission volume. 

Agilla Prototype Mica 2 Reliability of remote tuple space and agent migration operations, overhead of 

Agilla’s instructions. Case Study. 

FACTS None None None 

AutoSec Simulation Custom environment Information collection overhead, Overall performance efficiency 

DSWare Simulation  

 

GloMoSim Performance in Reduction of Communication, Impact of Node Density, Per-

formance in Reaction Time 

Mire None  None  Case study 

Enviro Track prototype Mica 2  Communication Performance Data, Effect of Sensory Radius on Maximum 

Trackable Speed 

Service ori-

ented  

Middleware  

None  None  WSDL documents for describing 

The WSN services and the SOAP messages format and content. 
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