
Middleware for Wireless Sensor Networks: A Survey - 1 -

Middleware for Wireless Sensor Networks: A Survey ∗∗∗∗

Miaomiao Wang1,2, Jiannong Cao2, Jing Li1 and Sajal K. Dasi3
1Department of Computer Science,
The University of Science and Technology of China, Hefei, Anhui, 230027, China
2Internets and Mobile Computing Lab, Department of Computing,
The Hong Kong Polytechnic University, Kowloon, Hong Kong
3Department of Computer Science and Engineering,
The University of Texas at Arlington, Arlington, USA

E-mail: {csmmwang,csjcao}@comp.polyu.edu.hk; lij@otcaix.iscas.ac.cn; das@uta.edu

Abstract Wireless Sensor Networks (WSNs) have found more and more applications in a variety of per-

vasive computing environments. However, how to support the development, maintenance, deployment

and execution of applications over WSNs remains to be a nontrivial and challenging task, mainly because

of the gap between the high level requirements from pervasive computing applications and the underlying

operation of WSNs. Middleware for WSN can help bridge the gap and remove impediments. In recent

years, research has been carried out to study WSN middleware from different aspects and for different

purposes. In this paper, we provide a comprehensive review of the existing works on WSN middleware,

seeking for a better understanding of the current issues and future directions in this field. We propose a

reference framework to analyze the functionalities of WSN middleware in terms of the system abstrac-

tions and the services provided. We review the approaches and techniques for implementing the services.

Based on the analysis and using a feature tree, we provide taxonomy of the features of WSN middleware

and their relationships, and use the taxonomy to classify and evaluate existing works. We also discuss

open problems in this important area of research.

Keywords Middleware, Wireless sensor network, Pervasive computing

∗ PAPER CLASSIFICATION

Supported by Hong Kong Polytechnic University under the ICRG grant NO.G-YE57, Hong Kong RGC under the Grant of A

Research Center Ubiquitous Computing, and the National Hi-Tech Research and Development 863 Program of China under

Grant No.2006AA01Z231

1 Introduction

In recent years, a new wave of networks la-

beled Wireless Sensor Networks (WSNs) has at-

tracted a lot of attentions from researchers in both

academic and industrial communities. WSNs can

be used to form the underlying sensing and net-

work infrastructure for pervasive computing envi-

ronments. A WSN consists a collection of sensor

nodes and a sink node connected through wireless

channels, and can be used to build distributed sys-

tems for data collection and processing, covering

 2 J. Comp. Sci. & Tech.

- 2 -

the functions of on-field signal sensing and proc-

essing, in-network data aggregation, and

self-organized wireless communication. WSNs

have found many applications in different areas,

including environmental surveillance, intelligent

building, health monitoring, intelligent transporta-

tions, etc. [1].

This survey paper is concerned with middle-

ware for WSNs. Middleware refers to software

and tools that can help hide the complexity and

heterogeneity of the underlying hardware and

network platforms, ease the management of sys-

tem resources, and increase the predictability of

application executions [2]. WSN middleware is a

kind of middleware providing the desired services

for sensing based pervasive computing applica-

tions that make use of a wireless sensor network

and the related embedded operating system or

firmware of the sensor nodes.

The motivation behind the research on WSN

middleware derives from the gap between the

high-level requirements from pervasive computing

applications and the complexity of the operations

in the underlying WSNs. The application require-

ments include high flexibility, re-usability, and re-

liability. The complexity of the operations with a

WSN is characterized by constrained resources,

dynamic network topology, and low level embed-

ded OS APIs. WSN middleware provides a poten-

tial solution to bridge the gap and remove the im-

pediments. In the early time of the research on

WSN, people did not pay much attention to mid-

dleware because the simplicity of the early appli-

cations did not show much demand on the support

from the middleware. Along with the rapid evolu-

tion of this area, the gap becomes increasingly ob-

vious and hinders the popularity of WSN based

applications.

WSN middleware helps the programmer de-

velop applications in several ways. First, it pro-

vides appropriate system abstractions, so that the

application programmer can focus on the applica-

tion logic without caring too much about the lower

level implementation details. Second, it provides

reusable code services, such as code update, and

data services, such as data filtering, so that the ap-

plication programmer can deploy and execute the

application without being troubled with complex

and tedious functions. Third, it helps the pro-

grammer in network infrastructure management

and adaptation by providing efficient resource ser-

vices, e.g., power management. It also supports

system integration, monitoring, as well as system

security.

Although middleware is a well established re-

search area in distributed computing systems,

WSN poses new challenges to middleware re-

search. The traditional middleware techniques

cannot be applied directly to WSNs. First, most

distributed system middleware techniques [3, 4]

aim at providing transparency abstractions by hid-

ing the context information but WSN-based appli-

cations are usually required to be context-aware.

Second, although many mobile computing mid-

dleware [5, 6] supports context awareness, their

major concern is how to continuously satisfy the

interests of individual mobile nodes in the pres-

ence of mobility. In contrast, WSN-based systems

are data centric reflecting the whole application’s

interests. Thus, the locations and mobility of the

Middleware for Wireless Sensor Networks: A Survey - 3 -

sensor nodes should be handled by WSN middle-

ware in a different way. For example, a node

moving away from a phenomenon may choose to

hand off the monitoring responsibility to a nearby

node. Also, WSNs mostly use attribute-based ad-

dressing [1, 7] rather than relying on net-

work-wide unique node addresses. Third, data ag-

gregation in intermediate nodes of the forwarding

path is desirable in a WSN but no such kind of

support is provided in traditional distributed sys-

tem middleware because of the end-to-end para-

digm used. Finally, WSN requires the middleware

to be light weight [7, 8, 9] for implementation in

sensor nodes with limited processing and energy

resources. WSNs also have new requirements on

hardware (e.g. various sensors and computing

nodes), operating systems and routing protocols

[10], as well as the applications [11].

In the recent years, many works have been

done on WSN middleware, focusing on different

aspects and for different purposes. Although sev-

eral survey papers can be found in literature [7, 8,

9, 12, 13, 14, 15, 16, 17, 18], each of them ad-

dresses only a subset of the issues, e.g., the system

architecture [7, 8, 9, 16], the programming para-

digm [13, 14, 17], and the run time supporting [12,

18]. There is no reference model for classifying

and analyzing the middleware functionalities, and

no detailed discussion on the implementation tech-

niques.

This paper presents a systematic study of re-

cent research on WSN middleware to help identify

the key services, challenging issues, and important

techniques. Comparing with the existing surveys,

this paper makes the following distinct contribu-

tions. First, it proposes a reference model for ana-

lyzing the functionalities and key services of

WSN-middleware. Second, it provides a detailed

review of the existing works on the most impor-

tant aspects in developing WSN middleware, cov-

ering the major approaches and corresponding

techniques for implementing the services. Third,

the paper proposes a feature tree-based taxonomy

[19] that organizes WSN-middleware features and

their relationships into a framework to help under-

stand and classify the existing works. The paper

also discusses the open problems and identifies the

directions in future research.

The remainder of this paper is organized as

follows. In Section 2, we describe a reference

framework to analyze the functionalities of and

identify the key services to be provided by WSN

middleware. In Section 3, we survey the ap-

proaches and the corresponding techniques for

implementing the key services. In Section 4 and 5,

we look into the WSN runtime support and QoS

support respectively. In Section 6, we propose a

feature tree-based taxonomy for classifying the

features of WSN middleware, and highlight the

representative existing middleware projects with

the evaluation of their advantages and disadvan-

tages. In Section 7, we discuss the challenges,

open problems, and future directions of WSN

middleware research. Finally, we conclude this

paper in Section 8.

2 A Reference model of WSN middleware

2.1 Model overview

As shown in Figure 1, a complete

WSN-middleware solution should include four

 4 J. Comp. Sci. & Tech.

- 4 -

major components: programming abstractions,

system services, runtime support, and QoS

mechanisms. Programming abstractions define the

interface of the middleware to the application pro-

grammer. System services provide implementa-

tions to achieve the abstractions. Runtime support

serves as an extension of the embedded operating

system to support the middleware services. QoS

mechanisms define the QoS constrains of the sys-

tem.

Fig. 1. Major components of WSN middleware

By analyzing the requirements of WSN-based

applications and the characteristics of WSNs, we

propose a reference framework, shown in Figure 2,

to describe the organization and relationships of

the above components. It should be mentioned that

it is not necessary for a specific WSN-middleware

to include all the components. Also, functions of

several components may be combined together

and implemented as one component.

Fig. 2. Reference model of WSN middleware

In the deployment, the functions of

WSN-middleware can be distributed to the sensor

nodes, the sink nodes, and high level application

terminals, as shown in Figure 3. The distributed

middleware components located in different nodes

of the network communicate with each other to

achieve some common goals.

Fig.3. System architecture of WSN middleware

2.2 Programming abstractions

Programming abstractions is the foundation of

WSN-middleware. It provides the high-level pro-

gramming interfaces to the application program-

mer which separate the development of WSN

based applications from the operations in the un-

derlying WSN infrastructures. It also provides the

basis of developing the desirable middleware ser-

vices. Three aspects are involved when developing

the programming abstractions: abstraction level,

programming paradigm, and interface type.

Abstraction Level refers to how the application

programmer views the system. Node level ab-

straction abstracts the WSN as a distributed sys-

tem consisting of a collection of sensor nodes, and

WSN Middleware Components

QOS

Mechanisms

System

Services

Programming

Abstractions

Runtime-

Support

Middleware for Wireless Sensor Networks: A Survey - 5 -

provides the programmer the support for pro-

gramming the individual sensor nodes for their

actions and cooperation [20, 21, 22]. System level

abstraction abstracts the WSN as a single virtual

system and allows the programmer to express a

single centralized program (global behavior) into

subprograms that can execute on local nodes

(nodal behavior), leaving only a small set of pro-

gramming primitives for the programmer while

making transparent the low-level concerns such as

the distributed code generation, remote data access

and management, and inter-node program flow

coordination [23, 24]. Generally speaking, node

level abstraction facilitates the development of

applications with more flexibility and energy sav-

ing, and less communication and interpretation

overhead. On the other hand, system level abstrac-

tion is easier to use because nodal behaviors can

be generated automatically so the programmer can

concentrate on the network-level actions, without

worrying about how the sensor nodes collaborate

with each other to perform the assigned task.

Programming paradigm refers to the model of

programming the applications. It is often depend-

ent on the applications. WSN applications can be

classified in two dimensions: application Data

collection feature and application dynamic feature.

Data collections can be continuous, event-driven,

or query-based. Application can be totally static

and has some mobility characteristic, such as mo-

bile target or mobile sink. Correspondingly, for

different applications, WSN middleware may use

different programming paradigms, such as data-

base, mobile agent, and Publish/Subscribe

(Pub/Sub). For example, the data base paradigm is

often used for query-based data collection, while

the Pub/Sub paradigm can be a good choice for

event-driven applications. Mobile agent paradigm

may be a choice for tracking mobile target appli-

cations.

Interface type refers to the style of the pro-

gramming interface. As a matter of fact, program-

ming abstraction is embodied as the programming

interface. Descriptive interfaces provide SQL-like

languages for data query [25, 26], Rule-based de-

clarative languages for command execution [27],

or XML-based specification files for context con-

figuration [28]. On the contrary, imperative inter-

faces provide imperative programming languages

for writing the code to interact with the WSN

network [29]. Descriptive interfaces usually re-

quire the interpretation of the queries and thus

consume more resources, while imperative inter-

faces require the programmer to specify the logic

of execution, and are more flexible but more dif-

ficult to use.

The consideration of adopting a particular ab-

straction level and selecting an appropriate pro-

gramming paradigm and applicable interface de-

pends on the specific application requirements and

the underling WSN infrastructure. Middleware

providing similar paradigms may share the im-

plementation techniques. For example, the data-

base-based paradigm is usually implemented with

a descriptive interface, while the event-driven

paradigm can be implemented either with an im-

perative interface by providing the handlers to be

recalled or with a descriptive interface by provid-

ing an event description scheme. We will discuss

 6 J. Comp. Sci. & Tech.

- 6 -

them in more details in the later Sections.

2.3 System services

System services embody the functionalities

and form the core of WSN-middleware. They are

exposed to the application programmer through

the abstraction interface, and provide the support

for application deployment, execution, as well as

sensor and network management. We classify the

system services into two broad categories: com-

mon services and domain services.

Common services are the basic services shared

by all WSN applications. They help manage the

application information and the WSN infrastruc-

ture. The functionalities provided by the common

services include:

� Code management: responsible of code mi-

grating and code updating in a deployed network,

� Data management: responsible of data acqui-

sition, data storage, data synchronization, data

analysis, and data mining,

� Resource discovery: responsible of discover-

ing newly joined sensor nodes and detecting nodes

becoming inaccessible either as a result of mobil-

ity or loss of battery power,

� Resource management: responsible of

managing the node resources (e.g. energy, memory,

A/D device, communication module) and network

resource (e.g. topology, routing, system time),

� Integration: responsible of integrating WSN

and its applications into other networks, such as

the Internet and Grid, for broader use.

We will explain the implementation details of

the above services in the next Section.

Domain services facilitate the development of

applications in a specific domain. They can make

use of the common services and add application

oriented functions to provide domain specific ser-

vices. For example, EnviroTrack [30] is a WSN

middleware that support environmental Target

tracking. Impala [22] is a middleware for the Zet-

braBet project, a wildlife monitoring project. It has

two layers: the upper layer contains the application

specific protocols and functions, and the lower

layer contains the common services such as code

management. WSN-SHM middleware [31, 32] is

designed for developing structural health moni-

toring applications which have the requirements of

high frequency sampling and high resource con-

sumption.

2.4 Runtime support

Runtime support provides the underling exe-

cution environment of applications and can be

seen as an extension of the embedded operating

system which provides functions of scheduling of

tasks, inter-process communication (IPC), memory

control, and power control in terms of voltage

scaling and component activation and inactivation.

The need of runtime support in WSN middleware

comes from the facts that the hardware and firm-

ware of the sensor nodes may not always provide

enough support for the implementation of the

middleware services described above.

The functionalities of the runtime support in

WSN middleware include local processing support,

communication support, and storage support.

More specifically, support is provided for

multi-thread processing, smart task scheduling,

Middleware for Wireless Sensor Networks: A Survey - 7 -

and synchronization of memory access.

Runtime support of WSN-middleware is al-

ways embodied as a virtual machine over a spe-

cific embedded operating system. An Example is

Mate [20] built on top of TinyOS [33].

2.5 QoS Mechanism

Quality of Service (QoS) mechanisms is an

advanced feature of WSN-middleware. Providing

QoS support in WSN is still an open issue for re-

search [34]. QoS features are always cross layers

and cross components, embodied in various func-

tional services. For example, the data management

service is required to be reliable and of high accu-

racy.

Typical parameters for expressing QoS of

WSN network infrastructure include message de-

lay, jitter, and loss, network bandwidth, throughput,

and latency. Typical parameters for expressing

QoS of WSN applications include data accuracy,

aggregation delay, coverage, and system life time.

Middleware acts as a broker between the applica-

tions and the network infrastructure. QoS support

may translate and control the QoS metrics between

the application level and the network level [35]. If

the QoS requirements from an application are not

feasible to fulfill in the network, the middleware

may negotiate a new QoS guarantee with both the

application and the network. QoS support may

also provide the implementation framework for

simplifying the QoS-aware WSN application de-

velopment using QoS assurance algorithms.

In the rest of the paper, we will focus on the

approaches and techniques for implementing the

above identified middleware components.

3 Middleware system services

3.1 Code management

In the context of this paper, a WSN application

consists of pieces of code that execute on the sen-

sor nodes. Code management provides services for

code deployment, i.e., allocation and migration of

code to sensor nodes. Code allocation determines

a set of sensor nodes, on which the execution will

be activated. Code migration transfers the code on

a sensor node to another node [36]. It not only

helps conveniently re-task the network for net-

work reprogramming (code updating), but also

enables the data computation elements of an ap-

plication to be re-located. Code can migrate to the

nodes close to the area where relatively large

amounts of data are collected, enabling potentially

high energy saving, or migrate with the mobile

phenomena. For example, the code of an applica-

tion for fire alarm can be migrated from node to

node along the path of fire spread.

Generally speaking, implementation of code

allocation involves with checking conditions using

comparisons. In SINA [37] code allocation is im-

plemented in a sensor execution environment

(SEE), which compares SQTL script parameters

with the attributes of sensor nodes and executes

the script only if there is a match. In Cougar [26],

code allocation is implemented by a query opti-

mizer that determines the energy-efficient query

routes [36]. Code allocation services implemented

by a query optimizer has good expressivity but

 8 J. Comp. Sci. & Tech.

- 8 -

brings network load, while the SEE approach has

limited expressivity but good scalability. Another

promising approach, as used in MiLAN [38], is to

apply application-level QoS to control the code

allocation in configuration adaptation. The ap-

proach enables the adaptation of the application

operations based on the current application re-

quirements, which can be adjusted depending on

the output of the application itself. In this way the

code allocation is adaptive to the changing condi-

tions. However, the technique used in MiLAN re-

quires a centralized control.

Code migration can be implemented at not

only the middleware layer but also in the underly-

ing embedded operating systems, as in BerthaOS

[39] and MagnetOS [40]. However, because WSN

OS does not support code interpretation, code mi-

gration implemented at the OS level is error prone

and subject to malicious attacks [36].

At the middleware level, most techniques for

task migration rely on the use of mobile code,

moving the code to the data origins to process the

data locally [36]. Current implementations include

code migration through mobile code (e.g.TCL

script in Sensorware [41], SQTL scripts in SINA

[37]) and mobile Java object (e.g., TinyLime [42]).

An example of mobile code is mobile agent, which

is an execution thread encapsulating the code as

well as the state and data. Mobile agent makes

migration decisions autonomously. The key of this

approach is to make the application as modular as

possible to facilitate their injection and distribu-

tion through the network. However, the nature of

mobile agent code does not allow hardware het-

erogeneity. So, this approach is implemented on

top of a VM for platform independency.

There is a trade-off between the complexity of

the interpreter running on the nodes and the com-

plexity of mobile code. Code migration services

implemented by mobile code with TCL and SQTL

have the advantages of small size and high dy-

namicity, but are suffered from the complexity in

specification and high communication cost. Im-

plementation based on mobile agent and mobile

Java objects have good salability but high resource

consumption. Code migration is very resource dis-

sipative and should be used only when necessary.

To get more insights of the code management

services, we take Agilla [29] as an example of the

implementation techniques. Agilla is a mobile

agent based WSN middleware. The idea behind

Agilla is to initially deploy a network without any

application installed. Agents that implement the

application behavior can later be injected, effec-

tively reprogramming the network. Agilla marks

the first time that multiple mobile agents and tuple

spaces are used in a unified framework for WSNs.

Fig. 4. Agilla system model

Middleware for Wireless Sensor Networks: A Survey - 9 -

Fig.5. Agilla middleware architecture

Fig.6. Agilla mobile agent architecture

The Agilla system model is shown in Figure 4.

Each sensor node supports multiple agents, and

maintains a tuple space and a neighbor list. The

tuple space is local and shared by the agents re-

siding on the node. Special instructions are pro-

vided to allow the agents to remotely access an-

other node’s tuple space. The neighbor list con-

tains the addresses of all the one-hop nodes.

Agents can migrate carrying their code and state,

but not their own tuple spaces.

Figure 5. shows the middleware architecture of

Agilla. The tuple space manger implements the

tuple space operations (e.g., out, inp and rdp) and

reactions, and manages the contents of the local

tuple space and reaction registry. The agent man-

ager maintains each agent’s context. It is responsi-

ble of allocating memory for an agent when it ar-

rives and de-allocating it when the agent leaves or

dies. The context manager determines the node’s

location as well as that of its neighbors. Instruction

manager and Agilla engine provide runtime sup-

port. Instruction Manager is responsible of dy-

namic memory allocation, retrieving the next in-

struction to execute, and packing up the agent’s

code into the minimal number of messages. The

Agilla engine controls the concurrent execution of

all the agents on a sensor node.

Figure 6 shows the agent architecture. An

agent consists of a stack, heap, and various regis-

ters. The heap is a random-access storage area that

allows an agent to store variables. The registers

contain the agent’s ID, program counter (PC), and

the condition code. The agent ID is unique to each

agent and is maintained across migration opera-

tions. A cloned agent is assigned a new ID. The PC

contains the address of the next instruction, and is

used by the code manager to fetch the next in-

struction. When a reaction fires, the reaction

manager changes the PC to point to the first in-

struction of the reaction’s code. To allow an agent

to resume execution from where it was when the

reaction fired, the original PC is stored on the

stack. The condition code records the execution

status.

With regards to code allocation, Agilla use a

reaction approach. Reactions are added to the tu-

ple spaces, allowing an agent to tell Agilla that it is

interested in tuples that match a particular tem-

plate. The tuple space manager remembers the re-

actions registered by each agent by storing them

within the reaction registry. Whenever a tuple is

inserted, the registry is checked to see whether the

new tuple matches a reaction’s template. If so, the

tuple space manager notifies the agent manager,

 10 J. Comp. Sci. & Tech.

- 10 -

which updates the agent’s program counter to

execute the reaction’s code.

Code migration is implemented by moving or

cloning an agent from one node to another. The

tuple space manager packages up all reactions

registered by an agent so they can be transferred

along with the agent. When an agent moves, it

carries its state and code and resumes executing on

the new node. When it clones, it copies its state

and code to another node and resumes executing

on both the old and new nodes. The multi-hop mi-

gration is handled by the middleware and is trans-

parent to the user.

3.2 Data management

As mentioned before, WSN applications are

data centric. Here, data refers mainly to the sensed

data. Sometimes it also refers to the network in-

frastructure information interested by the applica-

tions. Data management in WSN middleware pro-

vides services to applications for data acquisition,

data processing, and data storage. The approaches

to implementing the data management services

depend much on the application data model.

3.2.1 Data acquisition

Data acquisition is an essential service for

WSN applications, responsible of delivering the

relevant and accurate data required by the applica-

tion.

For the event based data model, data acquisi-

tion support is focused on the event definition,

event register/cancel, event detection and event

delivery. The application specifies the interest in

certain state changes of the data. Upon detecting

such an event, the middleware will help send event

notification to interested applications. TinyDB

[25], DSware [43], Mires [44], and Impala [22] all

support event-based data acquisition. DSware also

supports compound event detection.

A typical approach to implementing

event-based data acquisition is the Pub/Sub para-

digm, which has two advantages in supporting

event based data acquisition. First, it supports

asynchronous communication. Second, it facili-

tates message exchanging between the sensor

nodes and the sink node. The basic entities of

Pub/Sub system are event subscriber and event

publisher (some times event broker also). From

the middleware’s point of view, the event sub-

scriber is the sink node and the event publishers

are the sensor nodes.

Fig. 7. Mire’s architecture

Middleware for Wireless Sensor Networks: A Survey - 11 -

 Fig. 8. Mire’s Pub/Sub component

As an example of the Pub/Sub approach, let us

have a look of Mires. Figure 7. and 8. show Mires’

architecture and its Pub/Sub component structure

respectively. Mire includes a core component,

namely the Pub/Sub service, and some additional

services. The communication between the sensor

nodes consists of three phases. Initially, the sensor

nodes in the network advertise their available top-

ics (e.g., temperature and humidity) collected from

the local sensors. Next, the advertised messages

are routed to the sink node using a multi-hop

routing algorithm. A user application connected to

the sink node is able to select (i.e., subscribe) the

desired advertised topics to be monitored. Finally,

subscribe messages are broadcasted down to the

network nodes. After receiving the subscribed

topics, the sensor nodes are able to publish their

collected data to the network. The Pub/Sub service

maintains the topic list and the subscribing appli-

cations so as to marshal the right topic to the re-

lated application. In Mires, only the messages re-

ferring to the subscribed topics are sent, hence re-

ducing the number of transmissions and energy

consumption.

 For query-based data model, data acquisition

support is focused on the query processing model

and methods. Middleware for query-based data

model usually use a declarative interface, with

global level abstraction and database programming

model. Example systems are TinyDB [25], Cougar

[26], and SensorWare [41]. They leverage the

techniques used in the traditional database system

to implement data acquisition services, e.g., ap-

plying distributed query [45, 46] or CACQ (con-

tinuously adaptive continuous queries over

streams) [47, 48].

TinyDB is a good example to illustrate the

query-based approach. TinyDB is a

query-processing system that extracts information

from the data collected by the WSN using the un-

derlying operating system TinyOS. TinyDB main-

tains a virtual database table, called SENSORS,

whose columns contain information such as sensor

type, sensor node identifier, and remaining battery

power. The programmer can view the values of the

SENSORS, and add new rows to it. Consider the

following example. A user wants to be reported

when the average temperature is above 80° F in

any room on the third floor of a building moni-

tored by sensors. The user inputs the following

database query along with the rate at which the

sensors are to collect the data:

SELECT AVG (temp) FROM sensors

(select rows from Sensors)

WHERE floor = 3

 (at the 3rd floor)

GROUP BY room

 (rows are grouped by room number)

AVG (temp) > 80F

(only groups with average temperature > 80F)

SAMPLE PERIOD 20 seconds

(perform every 20 seconds—rate of collection)

TinyDB uses a controlled-flooding approach to

disseminate the queries throughout the network.

The system maintains a routing tree (spanning tree)

rooted at the end point (usually the user’s physical

location). Then, in a decentralized approach, every

sensor node has its own query processor that

 12 J. Comp. Sci. & Tech.

- 12 -

processes and aggregates the sensor data and

maintains the routing information. In every period,

the parent node closer to the root agrees with its

children on a time interval for listening to data

from them.

3.2.2 Data processing

Generally speaking, there are three different

approaches to support data processing in WSNs. In

centralized processing, all the data are collected

and then sent to a central node for processing. In

node level distributed processing raw data col-

lected in the sensor nodes are pre-processed to ob-

tain partial results, which are then collected by the

sink node for further processing to get the final

result. In network level distributed processing final

results are obtained through both node-level dis-

tributed processing and information exchange be-

tween the sensor nodes, and between sensor nodes

and the sink node. In the extreme case, where

every sensor node is involved with data processing,

routing, and is aware of the final decision, it be-

comes completely distributed processing.

Given that the communication cost is much

higher than the computation cost at a sensor node,

WSN middleware should support in-network dis-

tributed data processing service, mostly through.

data fusion / aggregation. Although in-network

data processing services are also supported at a

lower level by some firmware in terms of signal

conditioning, and data fusion and data aggregation

can also be supported at the MAC and routing

layers, middleware support has the following dis-

tinctive features: 1) It is more independent of the

underlying network protocols, so different strate-

gies can be applied according to different data ac-

curacy requirements from different applications or

different network conditions. 2) It facilitates high

level data analysis such as feature-based fusion

and decision-based fusion.

For event-based data model, data aggrega-

tion/fusion can be implemented in separate ser-

vices. An example is the aggregation service in

Mires [44]. In Mires, data aggregation is imple-

mented in separate modules for functions such as

AVG and SUM. The aggregation is executed by an

“Aggregate Use” module that carries out an activ-

ity of de-multiplexing, passing requests for the

correct aggregation module in accordance to its

identifier. This way, the flexibility to add new ag-

gregation functions is guaranteed, just requiring

the creation of a module for the new function and

adding the association between the function and an

identifier to a configuration file.

In addition, for event-based data model, de-

tecting the event boundary and determining the

event area and its center should also be considered

in WSN middleware.

For query-based data model, data aggrega-

tion/fusion services can be implemented by using

the pipelining techniques [46], as used in TinyDB

and SensorWare.

Another data processing service is data cali-

bration for ensuring the synchronization between

the sensor nodes. Some applications, e.g., seismo-

graphic or building health monitoring, require pre-

cise time synchronization among the readings on

Middleware for Wireless Sensor Networks: A Survey - 13 -

different sensor nodes. How to achieve time syn-

chronization is an important function of the mid-

dleware. More details on implementation tech-

niques of time synchronization in WSN, e.g.,

hardware implementation, software implementa-

tion can be found in [55].

3.2.3 Data storage

There are three approaches to implementing

data storage support in WSNs [49, 50]. External

storage stores the data in the base station out of the

WSN. Local storage stores the data where it is

generated, reducing communication but increasing

the inquiry cost. Data centric storage provides a

tradeoff between the previous two approaches.

Data-centric storage is the most popular approach

implemented in existing WSN middleware.

Let us look at Data Service Middleware

(DSWare) [43] as an example to show the data

storage service implementation in

WSN-middleware. As shown in Figure 9, DSWare

is a specialized layer that implements various data

services and, in doing so, provides a database like

abstraction to WSN applications. Figure 10 shows

the DSWare framework. The event detection

component is responsible of providing the data

acquisition service. The group management com-

ponent provides the support for group-based deci-

sion and is responsible of data aggregation. The

scheduling component schedules the services to all

DSWare components with two scheduling options:

energy-aware scheduling and real-time scheduling.

Here, we focus on the data storage and caching

components.

Fig.9. DSWare Framework

Fig.10. DSWare system model

The Data Storage component in DSWare stores

data according to the semantics associated with the

data. It has a data look-up operation and provides

fault tolerance should there be node failures. It

also has operations for storing correlated data in

geographically adjacent regions. This has two ad-

vantages: enabling data aggregation and making it

possible for the system to perform in-network

processing.

To facilitate data look-up, DSWare maps data

to physical storage using two levels of hash func-

tions. At the first level, the hash function maps a

key, which is a unique identifier assigned to each

data type, to a logical storage node in the overlay

network. As a result of this operation, the storage

nodes form a hierarchy at this level. The second

level involves the mapping of single logical node

to multiple physical nodes such that a base station

performing a query operation has the data fetched

from one of the physical locations. There is a big

 14 J. Comp. Sci. & Tech.

- 14 -

risk in mapping a given data type to a single node

as this data could be lost as a result of node failure.

Furthermore, mapping data to a single node in the

sensor network causes bursts of traffic to the node

which may lead to collision and higher rate power

consumption. DSWare uses replication to store

data in multiple physical sensor nodes that can be

mapped onto a single logical node. Load balancing

is achieved since queries can be directed to any

one of the physical nodes and the lifetime of indi-

vidual nodes is prolonged since power consump-

tion is substantially reduced. With replication of

data amongst multiple nodes come consistency

issues. DSWare adopts “weak consistency “to

avoid peak time traffic since only the newest data

amongst nodes is bound to lack consistency. This

new data is propagated to other nodes and the size

of inconsistent data is bounded so that replication

occurs when the workload in individual nodes is

low.

Data Caching in DSWare provides multiple

copies of data that are most requested. DSWare

spreads the cached data over the network to

achieve high availability and faster query execu-

tion. A feedback control scheme is used to dy-

namically decide whether or not copies should re-

side in frequently queried nodes. The scheme uses

various inputs including proportion of periodic

queries and average response time from data

source to guide the nodes in making decisions

about whether or not a copy should be kept. This

component also monitors the usage of the copies

to decide whether to increase or reduce the num-

ber of copies, or move them to a new location.

In conclusion, 1) Data management is an im-

portant topic in WSNs. One of the distinguished

features that middleware offer in data management

is the appropriate abstraction of data structure and

operation. Without this abstraction, the developer

has to manage the heterogeneous data and low

level operation in the application. Various exiting

data management algorithms can be implemented

as reusable and alternative middleware services

with certain of parameters. The middleware sys-

tem can even automatically adjust the service pa-

rameters according to its current status. Applica-

tion specific data management algorithms can be

written based on those common data services. This

also facilitates the development process. 2) Most

existing WSN middleware provide some kind of

data management services. However, high level

in-network analysis services related to the WSN

application domain, e.g. data mining, are not im-

plemented yet and need more attention.

3.3 Resource and information discovery

Resources in a WSN usually refer to the sen-

sor node hardware resource, e.g. energy, memory,

A/D device, and communication module. The re-

source discovery service returns the data type that

a discovered node can provide, the modes in

which it can operate, and the transmission power

level or residual energy level of a sensor node. On

the hand, the information discovery service returns

the information about the network topology, the

network protocols, and the neighbors and the loca-

tions of the discovered nodes. The service can also

be used to discover new nodes and find out when

Middleware for Wireless Sensor Networks: A Survey - 15 -

nodes become inaccessible as a result of either

mobility or loss of battery power. However, many

of the above mentioned service features is not be-

ing available in existing WSN middleware yet.

Compared to resource discovery in traditional

networks [51, 52] which is involved with identi-

fying and locating (relocating) the services and

resources in the system, resource and information

discovery services in WSN are more difficult to

implement due to the lack of unique node ID and

the lack of generic service specification, and be-

cause the services need to be provided in a

power-aware way. Some existing WSN middle-

ware systems adopt service discovery protocols

from traditional computer network solutions, e.g.,

SLP [53] and Bluetooth SDP [54]. MiLAN is an

example. Other systems, e.g., TinyLime, use tuple

space to implement the resource discovery service.

However, these implementations need Unique ID

of the resource, but many WSNs are content based

without Unique ID for sensor nodes.

Although many localization algorithms have

been developed for different kinds of systems, for

example, Ultrasound, RF, and ultra-wideband,

RSSI techniques are used for accurate localization

via carefully placed beacons. Few existing WSN

middleware has integrated location discovery ser-

vice. To our opinion, this is mainly because the

implementation of this kind of service depends

very much on hardware and the underlying envi-

ronment. For large scale use of WSN for pervasive

computing, standard and adaptive location discov-

ery services should be provided.

3.4. Resource management

Resource and information discovery services

described in the previous section have two main

functions 1) providing the underlying network in-

formation to applications that are required to be

reflective or adaptive (e.g. context-aware), 2) pro-

viding the underlying network information to

support adaptive resource management services.

Resource management in WSN middleware is

mainly for providing common and reusable ser-

vices to support the applications that have the re-

quirements of self-organization. Resource man-

agement services are usually used for resource

configuration at setup time and resource adapta-

tion at runtime, and they are essential to ensure the

QoS of WSN which we will discuss in details

later.

Resource management at the OS layer is plat-

form-dependent, so changes at this level might

affect different resource requirements of the ap-

plications running in a sensor node. On the other

hand, application-level resource management im-

poses an extra burden on the application, and ad-

aptation mechanisms developed at this level can-

not be reused. In contrast, resource management at

the middleware layer has more flexibility. Most

existing WSN middleware provide services in-

cluding cluster service [56, 57], schedule service,

and data routing service. These services are sup-

ported by finer granular services such as power

level management, transmission level management,

etc. These fine granular services should be sup-

ported and constrained by the underlying OS, the

firmware, and the hardware. Otherwise, it is im-

 16 J. Comp. Sci. & Tech.

- 16 -

possible for the middleware to provide the corre-

sponding services.

The cluster service refers to the cluster mem-

ber maintenance for layered WSN. For cluster ser-

vice, many middleware systems, including Envi-

roTrack [30], MiLAN [38], DSWare [43], AutoSec

[58], and SINA [37] addressed the implementation

issues according to different objectives. For exam-

ples, EnviroTrack [30] provided the cluster mem-

ber re-allocation service to re-define the clusters

after deployment; the MiLAN [38] and AutoSec

[58] provided automatically cluster organization

service according to the QoS information getting

from network infrastructure and WSN application.

SINA [37] and DSWare [43] also provided auto-

matically cluster organization service, but the ob-

jectives are to achieve appropriate clusters so as to

facilitate the data aggregation process. Except for

the above examples, the work reported in [57]

provides a function for generic cluster manage-

ment of sensor nodes. The function arises either in

terms of non-functional requirements (e.g., secu-

rity, reliability) or according to dynamic system

conditions. (e.g., power level, connectivity).

The schedule service refers to the node

wakeup/sleep scheduling. It is used to reduce the

energy consumption by allowing the sensor nodes

to be put to sleep and to be waken up according to

specific policy. For example, when not being allo-

cated tasks a sensor node can sleep in order to

save energy. Implementation of this service may

make use of the services, such as sleep scheduling

protocols in the MAC layer and CPU voltage

scaling [1] in the physical layer.

The data routing service can be implemented

in several different ways. Some middleware such

as Mate [20] do not provide any specific routing

management service, but provide architecture

which allows the implementation of arbitrary

routing protocols. For systems that provide routing

management services, three main approaches can

be identified. The first approach is implementing a

new higher level routing protocol at the middle-

ware level. An example is MagnetOS [40] that

implements a multi-hop routing protocol in a mid-

dleware component. The second is maintaining an

overlay, and supporting routing mechanism, as

well as routing reconfiguration on top of this

overlay. For example, Mires [44] makes use of a

Pub-Sub mechanism to support the routing man-

agement. Owing to the loosely coupled interac-

tions between the nodes in the Pub-Sub paradigm,

it is very flexible to provide new kind of data

routing implementation. The third approach is im-

plementing a mechanism that allows for switching

between different routing protocols, as what is

done in Impala [22], or providing a mechanism

that allows for the adaptation of different routing

protocols, as what is done in MilAN [38]. As an

example, Figure 11 shows the data routing man-

agement of MilAN. The routing management of

MiLAN is intended to sit on top of multiple

physical networks. It acts as a layer that allows

network-specific plug-ins to convert MiLAN

commands to protocol-specific ones that are

passed through the usual network protocol stack.

Therefore, MiLAN can continuously adapt to the

specific features of whichever network is being

used in the communication.

Middleware for Wireless Sensor Networks: A Survey - 17 -

Fig.11. MiLAN network protocol management

In conclusion, most existing WSN middle-

ware adopts localized resource management.

Policy based management has been shown to be a

good approach to supporting the design of

self-adaptive resource management Currently, re-

source management services in existing WSN

middleware are tightly coupled with applications

and generic resource management services need to

be developed.

3.5 WSN integration

For broader applications, WSN needs to be in-

tegrated into other exiting network infrastructures,

such as the Internet, Gird, and database-based

systems. Because a WSN is a “close” network, it

is not easy to implement the integration service at

the lower layers (e.g., OS or MAC layer) thus

middleware should provide this service [59-63].

For WSN middleware, integration is related to

both task coordination as well as data sharing, and

can be implemented at the application level or data

level. Application level integration is more related

to task coordination, where the applications are

running in both the WSNs and the leverage system.

Data level integration, on the other hand, is more

related to data sharing, where only the data pro-

vided by the WSNs are used in the leverage sys-

tem.

Proxy server is a common mechanism for in-

tegration implementation. The client can access

non-standardized services in a wireless sensor

network by inquiring a proxy server which trans-

lates the standardized protocol to the proprietary

protocol and vice versa. For integrating WSNs into

existing legacy middleware, authors of [65] de-

scribed an “edge server middleware” which per-

forms application-specific processing at the

boundary between the WSN and the legacy mid-

dleware. For integrating WSNs into a Gird mid-

dleware infrastructure, several early systems have

been reported [60, 61, 62, 63] on sensor-grid

computing.

The service oriented approach [28, 64] to im-

plementing WSN integration is based on standard

open architecture technologies such as Web ser-

vices [66]. It provides a common information and

communication format to facilitate the integration.

In this approach, the sink node is modeled as web

service provider that exposes the services provided

by the network using a standard service interface.

The WSDL language and SOAP protocol [66] are

used for describing the services and formatting

messages used by the underlying communication

protocol. This approach does not combine the

proposal to any particular underlying data dis-

semination protocol. Thus, the WSN can be used

as a system to supply data for different applica-

tions and users.

Based on the SOA approach, some researchers

proposed the concept of “Sensor-web” [67, 68, 69].

The Sensor Web aims to make various types of

 18 J. Comp. Sci. & Tech.

- 18 -

web-resident sensors, instruments, image devices,

and repositories of sensor data, discoverable, ac-

cessible, and controllable via the World Wide Web.

A lot of efforts have been made in order to over-

come the obstacles associated with connecting and

sharing these heterogeneous sensor resources. The

Sensor Web Enablement (SWE) standard has been

defined by the OpenGIS Consortium (OGC),

which is composed of a set of specifications, in-

cluding SensorML, Observation & Measurement,

Sensor Collection Service, Sensor Planning Ser-

vice and Web Notification Service. OGC has also

proposed a reusable, scalable, extensible, and in-

teroperable service oriented sensor Web architec-

ture, which conforms to the SWE standard, inte-

grates Sensor Web with Grid Computing, and pro-

vides middleware support for Sensor Webs.

In comparison, the proxy server approach is

more application dependent and less scalable be-

cause adding or removing a proxy server will im-

pact the network structure. The service oriented

approach is more flexible and scalable, but needs

more energy consumption. Most of the integration

services are now still in very preliminary stage.

WSN middleware for this kind of services are

resting on the architecture concept level.

4. WSN runtime support

As mentioned in Section 2, because the under-

lying WSN platform, mostly the embedded OS,

does not always provide enough support for im-

plementing the middleware services, WSN mid-

dleware needs to develop runtime support. Run-

time support extends the functions provided by the

embedded OS for processing, communication, and

storage management in order to provide a

well-defined execution environment for the execu-

tion of application and system programs. The basic

functions of runtime support include inter-process

communication (IPC), memory control, and power

control in terms of voltage scaling and component

activation and inactivation. These functions are

used by higher level middleware services such as

multi-thread processing, smart task scheduling,

synchronization of memory accessing and the

spread signal spectrum management. Runtime

support in WSN middleware is always embodied

as some kind of virtual machine over the underly-

ing platform. It can be implemented as a platform

specific kernel on top of the embedded OS, but

with platform independent primitives for the ge-

neric WSN middleware services.

Fig.12. The architecture of Mate

Let us look at an example, Mate [20], which is

a middleware built on top of TinyOS. Figure 12

illustrates its architecture. Mate takes the role of a

traditional OS kernel. Instead of system calls, it

provides a set of primitives for programming. As

shown in the figure, Mate has a byte code inter-

preter that runs on TinyOS which adopts a com-

ponent-based model to build sensor network ap-

plications in an event-driven operating environ-

ment. The core of the Mate architecture is a simple

Middleware for Wireless Sensor Networks: A Survey - 19 -

FIFO scheduler. The scheduler maintains a queue

of run-able contexts, and interleaves their execu-

tion. The scheduler executes a context by fetching

its next byte code from the capsule store, and dis-

patches it to the corresponding operation compo-

nent. The Mate concurrency model is based on

statically named resources, such as shared vari-

ables. Operations specify the shared resources that

they use. The analysis that determines a handler’s

complete resource usage is language-specific.

Mate forward the programs using the Trickle algo-

rithm which uses broadcast-based suppressions to

quickly propagate new data but minimize the

overhead when the nodes share data. Just as with

explicit forwarding, once a user installs a single

copy of a program in the network, Mate installs it

on every mote. Mate proposes a spectrum of

re-programmability, from simply adjusting pa-

rameter to uploading complete program updates.

The support can be used to develop more complex

code management services, which will be dis-

cussed later.

Another example is Magnet [40], a runtime

based on MagnetOS, which is a power-aware,

adaptive operating system specifically designed

for sensor and ad hoc networks. With its support

for a single system image, MagnetOS overcomes

the heterogeneity of distributed, ad hoc sensor

networks by exporting the illusion of the Java VM

on a top of distributed sensor networks. Magnet

has both static and dynamic components. The

static components are responsible for rewriting

applications in the form of object modules. The

runtime components (dynamic components) on

each node monitor the object’s creation, invoca-

tion, and migration.

Task cooperation is an important component of

runtime support, which includes the means for

communication between distributed tasks. Task

cooperation is useful when multiple tasks reside

on the nodes in the WSN and need to interact with

each other. In existing systems, e.g. TinyTime [42]

and Agilla [29], implementation of task coordina-

tion mainly uses the tuple space approach. The

concept of tuple space was proposed originally in

Linda. Tuples are collections of passive data val-

ues. A tuple space is a pool of shared information,

where tuples are inserted, removed, or read. Data

are global and persistent in the tuple space and

remain until explicitly removed. In WSN middle-

ware, tuple spaces are used for inter-agent com-

munication and context discovery. In the tuple

space, a task does not need to know its peer task

and tasks do not need to exist simultaneously, be-

cause they do not need to communicate directly.

Let us look at the Agilla example again for

task coordination support. The tuple space ensures

that the agents run autonomously by allowing

them to communicate in a decoupled fashion. For

example, suppose there are a fire detection agent

and a habitat monitoring agent residing on the

same node when fire is detected. The fire detection

agent inserts a fire tuple into the local tuple space

to indicate the presence of fire and activates a

tracking agent before dying. The habitat monitor-

ing agent reacts to this tuple, and voluntarily kills

itself to free additional resources. The fire detec-

tion agent does not need to know who receives the

fire tuple. The sending and reception operations

 20 J. Comp. Sci. & Tech.

- 20 -

can occur at different times, and reception can oc-

cur even when the sender is no longer present.

This spatial and temporal decoupling ensures each

agent operates autonomously. In Agilla, agents

also need to coordinate with the agents residing on

remote nodes. Agilla allows agents to coordinate

across nodes by introducing special remote tuple

space operations. They are synonymous with local

operations, except that they take an additional lo-

cation parameter that specifies on which node to

perform the operation. Note that Agilla does not

support tuple spaces that span across nodes. Each

node maintains a distinct and separate tuple space.

The dedicated remote tuple space instructions rely

on unicast communication with the specific node

hosting the tuple space.

5. WSN QoS support

QoS support is important for applications with

requirements on performance, both functional and

non-functional. These requirements include

fault-tolerance [70, 71], reliability [72, 73, 77],

security [74, 75, 76], and real-time [77, 78, 79, 80].

It is also very important for context aware applica-

tions. Under different contexts, applications can

adopt different QoS policies. As mentioned in

Section 2, QoS support in WSN middleware is still

an open issue for research. First of all, the QoS

metrics are not well defined in the context of WSN

applications. For expressing QoS of WSN network

performance, parameters such as packet delay, jit-

ter and loss, throughput, and latency are defined.

For expressing QoS of WSN application perform-

ance, new parameters are defined, including data

accuracy, aggregation delay, aggregation degree,

coverage, and precision [34]. The literature [34]

surveyed both of above parameters, and proposed

that in WSN middleware level, collective QoS

metrics should be considered. Because WSN are

always densely deployed, and single sensor accu-

racy or time delay between two respective sensors

may not be meaningful. Collective behavior and

effect of a set of logically related sensors become

very important. However, neither did [34] or other

existing work provide a clear definition of collec-

tive QoS metrics and how to implement them in

WSN middleware.

Implementation of QoS support in WSN mid-

dleware depends on the middleware services we

have described before, mainly the resource dis-

covery service and the resource management ser-

vice. Provision of QoS in WSN middleware, on

the other hand, also affects other services, such as

data acquisition in the data management service.

WSN middleware may provide a QoS support

implementation framework with the fundamental

QoS assurance algorithms to simplify the devel-

opment process. For example, in [70] a framework

is proposed with fault-tolerant algorithms. But a

typical implementation approach of QoS support

in WSN middleware is to translate and control the

QoS between the application and the networks.

That is, if the QoS requirements from an applica-

tion are not feasible to be satisfied in the network

the middleware may negotiate a new quality of

service with both the application and the network.

Middleware for Wireless Sensor Networks: A Survey - 21 -

Fig.13. QoS support in MiLAN

Take MiLAN as an example. Let us look at

how existing systems implement QoS support. As

shown in Figure 13, MiLAN assumes that applica-

tion performance can be described by the QoS ex-

pressed in different variables of interest to the ap-

plication. The QoS variables depend on which

sensors provide data to the application. Each sen-

sor has a certain QoS in characterizing each of the

application's variables. In order to determine how

to best serve the application, MiLAN needs to

know the variables of interest to the application,

the required QoS for each variable, and the level

of QoS that the data from each sensor or set of

sensors can provide for each variable. Note that all

of these may change according to the application's

current state.

During the initialization of the application, the

QoS information is conveyed from the application

to MilAN via State-based Variable Requirements

Graph and Sensor QoS Graph. The State-based

Variable Requirements Graph specifies to MiLAN

the application's minimum acceptable QoS for

each variable based on the current state of the ap-

plication. For a given application, the QoS for

each variable can be satisfied using the data from

one or more sensors. Given the information from

the two kinds of graphs as well as the current ap-

plication state, MiLAN can determine which sets

of sensors satisfy all of the application QoS re-

quirements for each variable. These sets of sensors

define the application feasible set FA where each

element in FA is a set of sensors that provides QoS

greater than or equal to the application-specified

minimum acceptable QoS for each specified vari-

able. MiLAN also determines which sets of sensor

nodes can be supported by the network using

Sensor QoS Graph. The subsets of the nodes that

can be supported by the network define a network

feasible set FN. MiLAN combines these two con-

straints to obtain an overall set of feasible set F =

FA ∩FN.

QoS support in WSN-middleware is still in a

very preliminary stage. Although work has been

reported, there is a lack of implementation and

simulation results.

6. Taxonomy of WSN middleware features

Current works on developing middleware for

WSNs have focused on different aspects and for

different purposes. In this section, we highlight the

characteristics of WSN middleware and propose

taxonomy of the desirable features. We first clas-

sify the features of WSN middleware by using

feature trees, and then based on the classification

provide an overview of the exiting works. The use

of a feature tree facilitates structuring the middle-

ware features and describing the relationships be-

tween them.

The feature tree is derived by analyzing the

system model and the implementation approaches

of WSN middleware functions discussed in the

 22 J. Comp. Sci. & Tech.

- 22 -

previous sections. In Figure 14, (for clear format,

we put it after the main text) the solid dots repre-

sent the necessary features, while the hollow dots

represent optional or alternative features. Features

can be decomposed into sub features. The rela-

tionship between sub features can be either the

inclusive relationship, denoted by solid branch

cross, or the alternative relationship, denoted by

the hollow branch cross.

As seen in the root tree (see Fig.14.(a)), the

features are from both the WSN middleware and

the underlying network. The features from the

middleware include the services provided by and

system architecture of the target middleware. The

features from the WSN consist of two parts. The

first part contains the features describing the char-

acteristics of the applications that the target mid-

dleware can support. The second part contains the

features that describe the underlying WSN plat-

form support of the target middleware.

The middleware feature sub-tree (see

Fig.14.(a)) itself has two sub-trees: middleware

service features (see Fig.14.(b)) and architecture

features (see Fig.14.(c)). Middleware service fea-

tures are composed of functional features, which

are related to the middleware services, and

none-functional features, which are related to the

QoS support. The architecture features are com-

posed of the programming abstraction features and

the implementation features. We have discussed

the programming abstraction features in Section

2.2.

Implementation-related features have two

main perspectives: the feature of coordination

among the processes and the context features. In

the branch representing the process coordination,

the procedure oriented method is not very applica-

ble to the WSN Middleware due to its poor scal-

ability [81]. Object oriented method is scalable,

but it is based on the object context, which is too

heavy weight for the WSN context. Message ori-

ented and tuple space oriented methods can scale

easily and support the event-driven paradigm [82].

Thus, they are often used in the WSN middleware.

In the branch representing the context fea-

tures, hardware transparent features are those that

hide the hardware implementation details from

user. The features supporting heterogeneous

hardware transparency hide the differences of

various hardware platforms. These kinds of fea-

tures are rarely supported because the diversity of

the WSN hardware and the tight application de-

pendent characteristics. Remote transparency

means hiding the location and other network at-

tributes details from the user. Remote transparency

does not fit WSN systems which need the infor-

mation to support the applications and manage the

resources.

For context features, in order to achieve re-

source management adaptation, developers must

introduce open resource configuration and recon-

figuration. This requires the context to be reflec-

tive [83]. Computational reflection refers to the

ability to reason about (being aware of), and alter

(being adaptive to) its own behavior. Both “proac-

tive” and “reactive” middleware systems belong to

the category of adaptive middleware. Compared to

“reactive “middleware systems, which react only

Middleware for Wireless Sensor Networks: A Survey - 23 -

by themselves when changes occur within the

network, “proactive” middleware systems enable

applications (or middleware) to actively partici-

pate in the process of configuring the network

where the middleware operates .

The branch representing the WSN network

features (see Fig.14.(d)) includes the features of

WSN applications such as the application dynamic

features and the application data collection fea-

tures (see the right branch of Fig.14(d)) as ex-

plained in [84]. Application data collection feature

defines the data acquiring approach. By observer

initiated approach, the data acquiring process is

initiated by the data query command. By event

driven approach, data will be sent to the sink node

whenever a defined event occurs. By continuous

approach, data is sent to the sink node during

every defined period. The application dynamic

features define the mobility characteristic of WSN

application. Mobility can be divided into three

classes, namely mobile target, mobile sensors and

mobile sink). Location discovery service of WSN

middleware is especially important for mobile

sensors model. WSN infrastructure features (see

the left branch of Fig.14.(d)) also have important

impact on the WSN middleware. For example, if

TinyOS is used, then synchronization process co-

ordination can be easily implemented because of

the inherent support from the TinyOS’s active

message mechanism.

An overview of the exiting works can be

found in Table 1 (for clear format, we put it after

the main text), which compares the existing WSN

middleware systems and proposals by applying the

feature tree. We also provide Table 2 (for clear

format, we put it after the main text), which sum-

marizes the exiting WSN middleware by classify-

ing them into Test-beds, simulation and testing

tools, and evaluation results.

7. Challenges and directions

Before concluding this paper, in this section,

we discuss the challenges, research issues, and fu-

ture directions in the area of WSN middleware.

We classify the challenges in designing and

implementing WSN-middleware into three main

types. The first type of the challenges comes from

the conflict between the contexts of distributed

computing and the embedded sensor devices. Dis-

tributed computing should support scalability, re-

liability, dependability, and heterogeneity, but this

demands carefully the design under the context of

resource limited devices and dynamic network to-

pology.

The second type of challenges comes from the

trade-offs between the degree of application speci-

ficity and middleware generality. It is important to

integrate application knowledge into the services

provided by the middleware because it can sig-

nificantly improve the resource and energy effi-

ciency of the operations. However, since middle-

ware is designed to support and optimize a broad

range of applications, tradeoffs need to be ex-

plored between the degree of application-specific

requirements and the generality of the middleware.

A practical policy is to embed the unique features

of an application into the application code or

specification, which can be interpreted by the

 24 J. Comp. Sci. & Tech.

- 24 -

middleware at runtime.

The third type of challenges comes from the

new context of QoS. Due to the limited resources,

it is very likely that the performance requirements

of all the running applications cannot be simulta-

neously satisfied. Therefore, it’s necessary for the

middleware to smartly trade the QoS of various

applications against each other.

Existing works use different approaches to

provide different WSN- middleware services. For

example, the database-based approach is more ap-

propriate for data management services, and mo-

bile agent is more appropriate for code manage-

ment services. In fact, the mobile agent approach

can also be used in data management services es-

pecially in distributed in-network data processing

services. So how to choose or integrate different

approaches, make their advantages together de-

serves consideration.

With regards to the system architecture, most

of the current middleware have not considered

how to integrate the components into generic mid-

dleware architecture to help developers match dif-

ferent requirements. Because many features need

to be considered in the design of WSN middleware,

re-factoring WSN middleware with aspects [85] is

helpful. Services should be reusable, and a generic

framework with customizable component-based

architecture is desirable. Component based ar-

chitecture has good support for dynamic configu-

ration, and it can make use of the component in-

terface definition to provide slandered service in-

terface. Components need not always exist, and

they can be initialized when needed, so as to save

the system resource. The relationship between

components and services should be carefully con-

sidered. Moreover, design patterns are widely used

in traditional middleware, but until now, there is a

very few study on design patterns for WSN mid-

dleware [86]. Also, Domain specific design of

WSN middleware functions deserves more atten-

tion.

 Furthermore, evaluation metrics, as well as

testing and simulation tools for WSN-middleware

are needed.

Finally, WSN middleware can be seen as a

kind of lower layer pervasive computing middle-

ware. Until now, all the exiting works on WSN

middleware have focused on the sensor networks.

In the future, more kinds of sensor nodes, RFID,

and camera sensors will put new challenges to this

research field. Also, with the maturity of new

kinds of sensor networks, such as delay tolerant

sensor networks, sensor and actuator networks,

and mobile sensor networks, we will face new re-

search issues for developing WSN-middleware, in

order to detail with the more complex heterogene-

ity problem. So, we should consider more integra-

tion of WSN-middleware and higher level perva-

sive computing middleware. WSN middleware

focus on information gathering from the physical

world and pervasive computing middleware focus

on the use of the information, the appropriate divi-

sion of functions and cooperation between these

two kinds of middleware are very important for

supporting efficient pervasive computing applica-

tions.

Middleware for Wireless Sensor Networks: A Survey - 25 -

8. Conclusion

In this paper, we have presented a review of

the state of arts of middleware for wireless sensor

networks. We described a reference model for

WSN middleware architecture as a basis for our

discussion. We discussed and evaluated the pro-

gramming abstractions and middleware services of

the model in detail. Using a feature tree-based

taxonomy, we classified the features of WSN mid-

dleware and compared existing projects and pro-

posals. We also discussed the challenges as well as

future research directions in developing WSN

middleware.

The main objective of this paper is to provide a

comprehensive understanding of the current issues

in this area for better future academic research and

industrial practice of WSN-middleware. WSN is a

new and rapidly evolving field, and advances and

new capabilities are constantly being introduced

into the design of WSN middleware. This paper is

presenting what essentially constitutes a “snap

shot” of the state of the art around the time of its

writing, as is unavoidable the case of any survey

of a thriving research field. We do, however, be-

lieve that the core information and principles pre-

sented will remain relevant and useful for the

reader.

Fig.14 (a). Root feature tree of WSN middleware

Fig.14 (b). Feature tree of middleware services

 26 J. Comp. Sci. & Tech.

- 26 -

Fig.14 (c). Feature tree of middleware architecture

Fig.14 (d). Feature tree of WSN

Fig.14. Feature trees of WSN middleware

Table 1 overview of existing projects and proposals
Programming abstraction features Middleware service features Features

Proposal Interface type Abstraction

Level

Programming

Paradigm

Functional Un-functional

Sensor Ware Declarative Local Database CodeManagement None

MagnetOS Imperative (java language) Global virtual machine CodeManagement

ResourceManagement

None

Mate

Imperative (motle,byte code) Local virtual machine CodeManagement

ResourceManagement

Security

MiLAN None None None ResourceManagement

Resource discovery

None

SINA Declarative(cells data format SQTL) Global Database DataManagement None

TinyDB Declarative (ACQP language) Global Database

Graphic UI

DataManagement

Resourcemanagement

None

Cougar Declarative (XML data format , SQL-like language) Global Graphic UI DataManagement None

Impala None None Mobile agent Code Management

ResourceManagement

Security

Middleware for Wireless Sensor Networks: A Survey - 27 -

Storage supporting

Agilla Imperative (compile-like) Local Mobile agent Code Management None

FACTS Declarative (Facts, rules, functions, XML like) Global Rule based CodeManagemet

DataManagemet

None

AutoSec

None None None Service discovery

Resourcemanagement

None

DSWare Declarative Global None Data management

ResourceManagement

Storage supporting

Real-time

Reliability

A service approach Declarative (XML,SOAP)

Global None Data management

Integration

Resource discovery

None

Mire Imperative Local Graphic UI Data management None

Enviro Track Imperative object-based

(context object and tracking objects)

Global None Data management

Resource discovery

Resourcemanagement

None

Internal Implementation

Features

Supporting Application features based WSN structure features

Context

 Features

proposal
Process Communica-

tion
Transparent Reflective

Application

Dynamic

Application

Dada collection

Network

Level

Node

Level

Sensor Ware Asynchronous Tuple

oriented

Homo None Mobile phe-

nomena

All None Linux IPAQ

MagnetOS

Asynchronous Homo/

hetero

None All All

Ad-hoc on-demand

routing

based

Build on PC

Mate

Synchronous

Asynchronous

Homo None All All Content-based routing TinyOS

based;

MiLAN Synchronous

Asynchronous

hetero Proactive All Event driven Switch between dif-

ferent protocols

None

SINA ASynchronous Remote

Homo

None Static Enquire Cluster-based None

TinyDB Asynchronous

Homo None Static/mobile

sensor

Enquire/ Event

driven

Spanning tree based

Routing

TinyOS

mote

Cougar Asynchronous Remote

Homo

None Static Enquire

Directed diffusion

routing

Cluster-based

None

Impala

(designed for

ZebraNet)

Asynchronous homo Adaptive Mobile sensors

Event driven Switch between dif-

ferent protocols

iPAQ / PC

Linux

Agilla Asynchronous

(tuple based)

homo None All Any

Multi-protocol routing Tiny OS,

MICA2,

FACTS Asynchronous

Tuple oriented

homo None All Event driven None None

AutoSec

Asynchronous

Broker based

homo Proactive

All No None Tiny OS

DSWare Asynchronous

Pub-Sub based

homo None All Event driven Cluster-based

None

A service ap-

proach

Asynchronous

(Pub-Sub)

homo Re-

mote

Reflective

Proactive

All Event driven Directed diffusion None

Mire Asynchronous

(Pub-Sub)

homo None All Event driven Cluster-based

TinyOS

Enviro Track Asynchronous

Synchronous

homo None Mobile- phe-

nomena

Continues /

Event drivent

Group based

Content-based

Routing

TinyOS.

Table 2 Summary of existing WSN middleware production

 28 J. Comp. Sci. & Tech.

- 28 -

Proposal Test environ-

ment

Simulation and testing

tools

Published Evaluation Results

Sensor Ware Prototype SensorSim Framework size, execution delays, Energy consumption

MagnetOS JVM Custom simulator Internal algorithm Comparison in Simulator

Mate Prototype TOSSIM Byte code overhead, installation costs, code infection performance

MiLAN None None None

SINA Simulation GloMosim SINA networking overhead, application performance

TinyDB Simulation

Prototype

Custom environment Query routing performance in simulation ,sample accuracy and sampling fre-

quency in prototypes

Cougar None None None

Impala Simulation ZnetSim System Implementation and Overhead, Impala event processing time, Software

transmission volume.

Agilla Prototype Mica 2 Reliability of remote tuple space and agent migration operations, overhead of

Agilla’s instructions. Case Study.

FACTS None None None

AutoSec Simulation Custom environment Information collection overhead, Overall performance efficiency

DSWare Simulation

GloMoSim Performance in Reduction of Communication, Impact of Node Density, Per-

formance in Reaction Time

Mire None None Case study

Enviro Track prototype Mica 2 Communication Performance Data, Effect of Sensory Radius on Maximum

Trackable Speed

Service ori-

ented

Middleware

None None WSDL documents for describing

The WSN services and the SOAP messages format and content.

Acknowledgement(s) Supported by Hong Kong

Polytechnic University under the ICRG grant

NO.G-YE57, Hong Kong RGC under the Grant of

A Research Center Ubiquitous Computing, and the

National Hi-Tech Research and Development 863

Program of China under Grant

No.2006AA01Z231

References

[1] IF Akyildiz, W Su, Y Sankarasubramaniam, E

Cayirci. A Survey on Sensor Networks. IEEE

Communications Magazine, 2002, 40(8):

102–114.

[2] Cecilia Mascolo, Stephen Hailes. Survey of

Middleware for Networked Embedded Sys-

tems. Technical Report for project: Recon-

figurable Ubiquitous Networked Embedded

Systems, University College London, 2005.

[3] Java Soft, Java Remote Invocation specifica-

tion, revision 1.5, JDK1.2 edition, Oct.1998,

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/

[4] OMG. The Common Object Request Broker:

Architecture and Specification, Rev. 2.2,

1998, http://en.wikipedia.org/wiki/CORBA

[5] Licia Capra, Wolfgang Emmerich, Cecilia

Mascolo. Middleware for Mobile Computing.

Technical Report. Department of Computer

Science, University College London, 2005.

[6] A.L. Murphy, G.P. Picco, and G.-C. Roman.

Lime: A Middleware for Physical and Logical

Mobility. In Proc. of the 21st Int. Conf. on

Distributed Computing Systems, Orland,

USA, May 2001, pp. 524-533.

Middleware for Wireless Sensor Networks: A Survey - 29 -

[7] Kay R¨omer, Oliver Kasten, Friedemann

Mattern. Middleware Challenges for Wireless

Sensor Networks. Mobile Computing and

Communications Review, 2002, 6(1):12-17.

[8] Matthew Wolenetz, Rajnish Kumar, Junsuk

Shin. Umakishore Ramachandran. Middle-

ware Guidelines for Future Sensor Networks.

Technical Report 30332–0280, College of

Computing Georgia Institute of Technology

Atlanta, Georgia, 2004.

[9] Bartolome Rubio, Manuel Diaz, Jose M.

Troya. Programming Approaches and Chal-

lenges for Wireless Sensor Networks. In Proc.

of the 2nd International Conf. on Systems and

Networks Communications (ICSNC07) Cap

Esterel, French Riviera, France, August 25-31,

2007, pp36.

[10] Q. Jiang, D. Manivannan. Routing Protocols

for Sensor Networks. In Proc. of the 1st

IEEE Consumer Comm. and Networking

Conf. (CCNC 04), Las Vegas NV, USA, 2004,

IEEE Press, pp. 93–98.

[11] C. Chong, S.P. Kumar. Sensor Networks:

Evolution, Opportunities, and Challenges. In

Proc. of the IEEE, 91(8), August 2003.

[12] S. M. Sadjadi. A Survey of Adaptive Mid-

dleware. Technical Report, Software Engi-

neering and Network Systems Laboratory,

Department of Computer Science and Engi-

neering, Michigan State University, 2005.

[13] Wassim Masri, Zoubir Mammeri. Middle-

ware for Wireless Sensor Networks: A Com-

parative Analysis. In Proc. of the 2007 IFIP

International Conference on Network and

Parallel Computing, Dalian, China,

Sept.18-21, 2007.

[14] Karen Henricksen, Ricky Robinson, A survey

of middleware for sensor networks:

state-of-the-art and future directions. In Proc.

of the Int’l workshop on Middleware for

sensor networks table of contents, Melbourne,

Australia, 2006, pp: 60 – 65.

[15] Salem Hadim, Nader Mohamed. Middleware

for Wireless Sensor Networks: A. Survey. In

Proc. of the 1st Int’l Conf. Comm. System

Software and Middleware (Comsware06),

New Delhi, India, Jan. 8-12, 2006.

[16] J. Hill, R. Szewczyk, A. Woo, S.Hollar, D.

Culler, K. Pister. System Architecture Direc-

tions for Networked Sensors. In Proc. of the

9th Int’l Conf. Architectural Support for Pro-

gramming Languages and Operating Systems

(ASPLOS-IX), New York, NY, USA, ACM

Press, 2000, pp. 93–104.

[17] Kay R¨ome. Programming Paradigms and

Middleware for Sensor Networks. Technical

 30 J. Comp. Sci. & Tech.

- 30 -

report, Institute for Pervasive Computing,

ETH Zurich, 2002.

[18] Nuno Costa, António Pereira, Carlos Serôdio.

Virtual Machines Applied to WSN’s: The

state-of-the-art and classification. In Proc. of

the 2nd International Conference on Systems

and Networks Communications (ICSNC 07),

Cap Esterel, French Riviera, France August

25-31, 2007.

[19] K Kang, S Cohen, J Hess, W Nowak, S Pe-

terson. Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report,

CMU/SEI-90-TR-21, Pittsburgh, Software

Engineering Institute Carnegie Mellon Uni-

versity, PA, 1990.

[20] P. Levis, D. Culler. Mate: A Tiny Virtual Ma-

chine for Sensor Networks. In Proc. of the

10th Int’l Conf. Architectural Support for

Programming Languages and Operating Sys-

tems (ASPLOS-X), ACM Press, 2002, pp.

85–95.

[21] P. Levis, D. Gay, D. Culler. Bridging the Gap:

Programming Sensor Networks with Applica-

tion Specific Virtual Machines. In Proc. of

the 6th Symp. Operating Systems Design and

Implementation (OSDI 04), San Francisco,

USA 273-288, 2004.

[22] T.Liu, M. Martonosi, Impala: A Middleware

System for Managing Autonomic, Parallel

Sensor Systems. PPoPP’03, San Diego, Cali-

fornia, USA, June 2003.

[23] M. Welsh, G. Mainland, Programming Sensor

Networks Using Abstract Regions. Of the 1st

Usenix/ACM Symp. Networked Systems De-

sign and Implementation (NSDI 04), San

Francisco, CA, March, 2004, pp. 29–42.

[24] R. Gummadi et al. Macro-programming

Wireless Sensor Networks Using Kairos. In

Proc. of the Int’l Conf. Distributed Comput-

ing in Sensor Systems (DCOSS 05), LNCS

3560, Springer, 2005, pp. 126–140.

[25] S.R. Madden, M.J. Franklin, J.M. Hellerstein.

TinyDB: An Acquisitioned Query Processing

System for Sensor Networks. ACM Trans.

Database Systems, vol. 30, no. 1, 2005, pp.

122–173.

[26] P. Bonnet, J. Gehrke, P. Seshadri. Towards

Sensor Database Systems. Proc. of the 2nd

Int’l Conf. Mobile Data Management (MDM

01), Hong Kong, China, 2001, pp 314–810.

[27] Kirsten Terfloth, Georg Wittenburg, Jochen

Schiller. FACTS – A Rule-based Middleware

Architecture. In Proc. of the IEEE/ACM In-

ternational Conference on Information. Proc-

essing in Sensor Networks (IPSN), Los An-

geles, USA, 2006.

Middleware for Wireless Sensor Networks: A Survey - 31 -

[28] Fla’ Via, Paulo F. Pires. A Service Approach

for Architecting Application Independent

Wireless Sensor Networks. Cluster Comput-

ing, Springer Science Business Media, Inc.

Manufactured in the Netherlands. 8, 2005_C,

2005, pp.211–221.

[29] C. Fok, G. Roman, and C. Lu. Mobile Agent

Middleware for Sensor Networks: An Appli-

cation Case Study. In Proc. of the 4th Int’l

Conf. Information Processing in Sensor Net-

works (IPSN 05), UCLA, Los Angeles, Cali-

fornia, USA. Apr. 25-27, 2005, pp. 382–387.

[30] T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J.

George, S. George, T. He, L. Luo, S. Son, R.

Stoleru, J. Stankovic, A. Wood. EnviroTrack:

Towards an Environmental Computing Para-

digm for Distributed Sensor Networks. In

Proc. of the 24th Int’l Conf. on Distributed

Computing Systems (ICDCS 04) March

23-26, Tokyo, Japan, 2004.

[31] Krishna Chintalapudi, Jeongyeup Paek, Om-

prakash Gnawali, Tat S. Fu, Karthik Dantu,

John Caffrey, Ramesh Govindan, Erik John-

son, Sami Masri. Structural Damage Detec-

tion and Localization using NETSHM. In

Proc. of the 5th int’l conference on Informa-

tion processing in sensor networks (IPSN 06),

Nashville, TN, USA, April 19-21, 2006.

[32] D. Musiani, K. Lin, T. Simunic Rosing. Ac-

tive sensing platform for wireless structural

health monitoring. In Proc. of the 5th interna-

tional conference on Information processing

in sensor networks. (IPSN 07), Cambridge,

Massachusetts, April 25-27, 2007.

[33] TinyOS communities. TinyOS specification,

http://www.tinyos.net

[34] D. Chen, P.K. Varshney. QoS support in

wireless sensor networks: a survey. In Proc.

of the Int’l. Con. On Wireless Networks

(ICWN 04), Las Vegas, Nevada, USA, June

21, 2004.

[35] Mohsen Sharifi, Majid Alkaee Taleghan,

Amirhosein Taherkordi. A Middleware Layer

Mechanism for QoS Support in Wireless

Sensor Networks. In Proc. of the Int’l Conf.

on Networking, Int’l Conf. on Systems and

Int’l Conference on Mobile Communications

and Learning Technologies (ICNICONSMCL

06), Mexico, 2006.

[36] Mauri Kuorilehto, Marko H¨annik¨ainen,

Timo D. H¨am¨ al ¨ainen. A Survey of Appli-

cation Distribution in Wireless Sensor Net-

works. EURASIP Journal on Wireless Com-

munications and Networking, 2005, 38(5).

[37] C. Srisathapornphat, C. Jaikaeo, C. Shen.

Sensor Information Networking Architecture.

 32 J. Comp. Sci. & Tech.

- 32 -

In Proc. of the Int’l Workshop Parallel, IEEE

CS Press, 2000, pp. 23–30.

[38] W.B. Heinzelman et al. Middleware to Sup-

port Sensor Network Applications. IEEE

Network, vol. 18, no. 1, 2004, pp. 6–14.

[39] J. Lifton, D. Seetharam, M. Broxton, J. Para-

diso. Pushpin. Computing system overview: a

platform for distributed, embedded, ubiqui-

tous sensor networks. In Proc. of the 1st Int’l

Conference on Pervasive Computing (Perva-

sive’02), Zurich, Switzerland, August 2002,

pp.139–151.

[40] R. Barr et al. On the Need for System-Level

Support for Ad hoc and Sensor Networks.

Operating Systems Review, vol. 36, no. 2,

2002, pp. 1–5.

[41] Athanassios Boulis, Chih-Chieh Han, Mani B.

Srivastava. Design and Implementation of a

Framework for Efficient and Programmable

Sensor Networks. In Proc. of the first Inter-

national Conference on Mobile Systems, Ap-

plications, and Services (MobiSys 03). SAN

Francisco CA, USA May 5-8, 2003.

[42] Carlo Curino, Matteo Giani, Marco Giorgetta,

Alessandro Giusti. TinyLIME: Bridging Mo-

bile and Sensor Networks through Middle-

ware. In Proc. of the 3rd IEEE Int’l Conf. on

Pervasive Computing and Communications,

Kauai island, Hawaii, March 8-12, 2005.

[43] S. Li, S. Son, J. Stankovic. Event Detection

Services Using Data Service Middleware in

Distributed Sensor Networks. In Proc. of the

2nd Int’l Workshop Information Processing in

Sensor Networks (IPSN 03), Palo Alto, Cali-

fornia, USA, April 22-23, 2003, pp. 502–517.

[44] E. Souto et al. A Message-Oriented Middle-

ware for Sensor Networks. In Proc. of the 2nd

Int’l Workshop Middleware for Pervasive and

Ad-Hoc Computing (MPAC 04), Toronto,

Canada, Oct 2004, ACM Press, pp. 127–134.

[45] Madden S, Szewczyk R, Franlin M J, Culler

D. Supporting aggregate queries over ad-hoc

wireless sensor networks. In Proc. of the

IEEE workshop on Mobile Computing Sys-

tems and Applications, 2002.

[46] S. Madden et al. TAG: A Tiny aggregation

Service for Ad-hoc Sensor Networks. In Proc.

of the 5th Symp. Operating Systems Design

and Implementation (OSDI 02), Boston MA,

ACM Press, 2002, pp. 131–146.

[47] Madden S, Frankin M J. Fjording the stream:

An architecture for queries over streaming

sensor data. In Proc. of the 18th International

Conference on Data Engineering (ICDE 02),

San Jose, California, USA. IEEE computer

Press, 2002, pp. 555-666

Middleware for Wireless Sensor Networks: A Survey - 33 -

[48] Madden S, Shah M, Hellerstein J M, Raman

V. Continuously Adaptive continuous queries

over streams. In Proc. of the ACM SIGMOD

Int’l Conf on Management of Data, Madison,

USA, Jun, 2002, pp.49-60.

[49] Ratnasamy S, Estrin D,et al. Data-centric

storage in sensornets. In Proc 1st ACM Int’l

Workshop on Wireless Senosor Networks and

Applications (WSNA 02), Alanta, GA, Sep-

tember 2002, pp.78-87.

[50] Sameer Tilak, Nael B. Abu-Ghazaleh, Wendi

Heinzelman. Collaborative storage manage-

ment in sensor networks. International Jour-

nal of Ad Hoc and Ubiquitous Computing,

2005 - Vol. 1, No.1/2.pp. 47 – 58.

[51] Hector A. Duran-Limon, Gordon S. Blair,

Geoff Coulson. Adaptive Resource Manage-

ment in Middleware: A Survey. Distributed

Systems Online, IEEE. Vol. 5, No. 7, July

2004.

[52] Toni A. Bishop, Ramesh K. Karne. A survey

of middleware. Technical Report, Computer

& Information Science Dept, Towson Uni-

versity Towson University, 2000.

[53] E. Guttman, C. Perkins, J. Veizades, M. Day.

Service location protocol, version 2, IETF,

RFC 2608, June 1999.

http://en.wikipedia.org/wiki/Service_Locatio

n_Protocol

[54] Bluetooth Special Interest Group. Bluetooth

specification, version 1.1. February 2001.

http://en.wikipedia.org/wiki/Bluetooth

[55] Bharath Sundararaman, Ugo Buy, and Ajay D.

Kshemkalyani. Clock Synchronization for

Wireless Sensor Networks: A Survey. Tech-

nical Report, Department of Computer Sci-

ence, University of Illinois at Chicago, 2005.

[56] Yao-Chung Chang, Z.-S.L., Jiann-Liang

Chen. Cluster Based Self-Organization Man-

agement Protocols for Wireless Sensor Net-

works. IEEE Transactions on Consumer

Electronics, 2006. 52(1): p. 75-80.

[57] Mardoqueu Souza Vieira, N.S.R. A Recon-

figurable Group Management Middleware

Service for Wireless Sensor Networks. In

Proc. of the 3rd International Workshop on

Middleware for Pervasive and Ad-Hoc

Computing. Grenoble, France, 2005.

[58] Q. Han, N. Venkatasubramanian. Autosec: An

Integrated Middleware Framework for Dy-

namic Service Brokering. IEEE Distributed

Systems Online, vol. 2, no. 7, 2001.

[59] Kwang-il Hwang, J.I., NhoKyung Park,

Doo-seop Eom. A Design and Implementa-

tion of Wireless Sensor Gateway for Efficient

Querying and Managing through World Wide

 34 J. Comp. Sci. & Tech.

- 34 -

Web. IEEE Transactions on Consumer Elec-

tronics. 2003 vol. 49, pp. 1090-1097

[60] Vipul Hingne, Anupam Joshi, Elias Houstis,

John Michopoulos. On the Grid and Sensor

Networks. In Proc. of the IEEE 4th Interna-

tional Workshop on Grid Computing (GRID

03), Phoenix, Arizona, USA. Nov. 17, 2003.

[61] Mark Gaynor, Steven L. Moulton, Matt

Welsh, Ed LaCombe, Austin Rowan, John

Wynne. Integrating Wireless sensor networks

with the grid, Distributed Systems Online,

IEEE Computer Society, July- August, 2004.

[62] Jan Humble, Chris Greenhalgh, Alastair

Hamsphire, Henk L. Muller, Stefan Rennick

Egglestone. A Generic Architecture for Sen-

sor Data Integration with the Grid. Lecture

Notes in Computer Science (LNCS) 3458, P.

Herrero, M.S. Pérez, and V. Robles (Eds.),

Springer-Verlag Berlin Heidelberg 2005, pp.

99–107, 2005.

[63] Chen-Khong Tham, Rajkumar Buyya.

SensorGrid: Integrating Sensor Networks and

Grid Computing. Techical Report (61),

National University of Singapore 2003.

[64] Manish Kushwaha, Isaac Amundson,

Xenofon Koutsoukos, Sandeep Neema, Janos

Sztipanovits. OASiS: A Programming

Framework for Service-Oriented Sensor

Networks. Technical Report, Institute for

Software Integrated Systems (ISIS),

Vanderbilt University Nashville, TN 37235,

USA, 2007.

[65] Sean Rooney, Daniel Bauer, Paolo Scotton.

Edge Server Software Architecture for Sensor

Applications, In Proc. of the Symposium on

Applications and the Internet (SAINT 05)

Trento, Italy, 31 Jan. - 4 Feb. 2005.

[66] W3C (World Wide Web Consortium) Note.

Web Services Description Language (WSDL)

http://www.w3.org/TR/2001/NOTE-wsdl-200

10315

[67] Nickerson BG, Sun Z. A Sensor Web Lan-

guage for Mesh Architectures. In Proc. of the

3rd Annual Communication Networks and

Services Research Conference, Halifax,

Canada. May 16-18, 2005.

[68] Vincent Tao, Steve Liang, Arie Croitoru,

Zia Moin Haider, and Chris Wang.

GeoSWIFT: Open Geospatial Sensing Ser-

vices for Sensor Web. In GeoSensor Net-

works, Anthony Stefanidis and Silvia Nittel,

CRC Press, Volume 1, Part 5 June 2005 , pp.

267 – 274.

[69] Reichardt M. Sensor Web Enablement: An

OGC White Paper. Open Geospatial Consor-

tium (OCG), 2005

Middleware for Wireless Sensor Networks: A Survey - 35 -

http://www.crisisgrid.org/html/ogc-swe.html

[70] L.B. Ruiz, I.G. Siqueira, L.B. Oliverira. Fault

management in event-driven wireless sensor

networks. In Proc. of the 7th ACM/IEEE Int’l.

Symposium on Modeling, Analysis and

Simulation of Wireless and Mobile Systems,

Italy, 2004.

[71] Xuan wen Luo, Ming Dong, and Yinlun

Huang. On Distributed Fault-Tolerant Detec-

tion in Wireless Sensor Networks. IEEE

transaction on computers, VOL. 55, NO. 1,

Jan. 2006.

[72] Gregory Chockler, Murat Demirbas, Seth

Gilbert, Calvin Newport. A Middleware

Framework for Robust Applications in Wire-

less Ad Hoc Networks. Technical Report,

MIT Computer Science and Artificial Intelli-

gence Laboratory Cambridge, MA 02139,

USA. 2006.

[73] Vana Kalogeraki. Middleware for Reliable

Real-Time Sensor Data Management In Lec-

ture Notes in Computer Science (LNCS) 4125,

G. Moro et al. (Eds.), Springer Berlin/ Hei-

delberg 2007, pp. 235–246.

[74] Perrig A, Szewczyk R, Tygar J, Wen V, Culler

D. SPINS: Security Protocols for Sensor

Networks. Wireless Networks, ACM Wireless

Network Vol.8, 521-534, 2002.

[75] Jeffery Undercoffer et al. On Security for

Sensor Networks. Technical Presentations,

CADIP Research Symposium, Otc. 25 -26,

2002, http://www.cs.umbc.edu/cadip

[76] C. Karlof, N. Sastry, and D. Wagner. TinySec:

Security for TinyOS. Presentation given at

NEST group meeting, Nov. 21, 2002.

[77] E. Felemban et al. Probabilistic QoS guaran-

tee in reliability and timeliness domains in

wireless sensor networks. In Proc. of the

IEEE INFOCOM, Miami, March 13-17, 2005,

vol.4, pp. 2646-2657.

[78] J.A. Stankovic et al. Real-time communica-

tion and coordination in embedded sensor

networks. In Proc. of IEEE, vol. 91, no. 7,

2003.

[79] Luca Caviglione, Franco Davoli. Peer-to-Peer

Middleware for Bandwidth Allocation in

Sensor Networks, IEEE communication let-

ters, VOL. 9, NO. 2, February 2005.

[80] M. Younis et al. On handling QoS traffic in

wireless sensor networks. In Proc. of the 37th

Hawaii Int. Conf. on System Sciences, vol.

40, no. 8, 2004, pp. 102-116.

[81] Isabelle Rouvellou, Stanley M. Sutton Jr.,

Stefan Tai. Multidimensional Separation of

Concerns in Middleware. Technical Report,

IBM T. J. Watson Research Center, New York,

 36 J. Comp. Sci. & Tech.

- 36 -

USA, 2001.

[82] Ren´e Meier, Vinny Cahill. Taxonomy of

Distributed Event-Based Programming Sys-

tems. Technical Report, Department of

Computer Science, Trinity College Dublin,

Ireland, 2004.

[83] F.C. Delicato et al. Reflective middleware for

wireless sensor networks. In Proc. of the 20th

Annual ACM Symposium on Applied Com-

puting (ACM SAC), USA, 2005.

[84] Sameer Tilak, Nael B. Abu-Ghazaleh, Wendi

Heinzelman. A Taxonomy of Wireless Mi-

cro-Sensor Network Models. Technical Re-

port, Computer System Research Laboratory,

Dept. of CS, Binghamton University Bing-

hamton, NY, 2005.

[85] C. Zhang and H. A. Jacobsen. Aspectizing

middelware systems. Technical Report

CSRG-466, University of Toronto, 2003.

[86] Kenji Tei, Yoshiaki Fukazawa, Shinichi

Honiden. Applying Design Patterns to Wire-

less Sensor Network Programming. Technical

Report, Waseda University, Okubo, 2007.

Miaomiao Wang She is a Ph.D. student majoring

in Computer Science at the University of Science

and Technology (USTC). Now she is a research

assistant in the Department of Computing at Hong

Kong Polytechnic University. Her current research

interest includes: Wireless Sensor Network, Soft-

ware Architecture, and Pervasive Computing.

Jiannong Cao He received Ph.D. degree in

Computer Science from Washington State Univer-

sity, USA, 1990. He is a professor in the Depart-

ment of Computing at Hong Kong Polytechnic

University. He is the Coordinator in Asia of Tech-

nical Committee on Distributed Computing

(TPDC) of IEEE Computer Society. He is a vice

chairman and member of the Technical Committee

on Computer Architecture, an executive member

of the Technical Committee on System Software,

and a senior member of China Computer Federa-

tion. He is a senior member of the IEEE (including

the IEEE Computer Society and the IEEE Com-

munication Society), and a member of the ACM.

His main research interests include: Wireless Sen-

sor Network, Distributed Computing, and Mid-

dleware.

Jing Li He received Ph.D. degree in Computer

Science from University of Science and Technol-

ogy (USTC) in 1993. He is a guest professor in

USTC. His main research interests include: Soft-

ware Architecture, Distributed Object Technology,

Network Distributed Computing, Middleware and

Middleware for Wireless Sensor Networks: A Survey - 37 -

Web technology.

Sajal K. Das He received Ph.D. degree in Com-

puter Science from University of Central Florida

in 1988. He is the Director of Center for Research

in Wireless Mobility and Networking in Depart-

ment of Computer Science and Engineering at

University Texas. He is Association for Comput-

ing Machinery (ACM), ACM Special Interest

Group in Mobile Computing (SIGMOBILE), In-

stitute of Electrical and Electronics Engineers

(IEEE), IEEE Computer Society, IEEE Technical

Committee on Parallel Processing (TCPP), IEEE

Technical Committee on Communications

(TCCC), and IEEE Technical Committee on Su-

percomputing. His main research interests include:

Wireless Multimedia, Sensor Networks/Computer

Security, Pervasive Computing, Parallel and Dis-

tributed Processing.

