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Abstract— The Internet connectivity in the Autonomous Sys-
tem (AS) level reflects the commercial relationship between ASes.
A connection between two ASes could be of typecustomer-
provider when one AS is a provider of the other AS, or of type
peer-peer, if they are peering ASes. This commercial relationship
induces a global hierarchical structure which is a key ingredient
in the ability to understand the topological structure of the AS
connectivity graph. Unfortunately, it is very difficult to collect
data regarding the actual type of the relationships between ASes,
and in general this information is not part of the collected
AS connectivity data. The Type of Relationship (ToR) problem
attempts to address this shortcoming, by inferring the type of
relationship between connected ASes based on their routing
policies. However, the approaches presented so far are local in
nature and do not capture the global hierarchical structure.

In this work we define a novel way to infer this type of
relationship from the collected data, taking into consideration
both local policies and global hierarchy constrains. We define
the Acyclic Type of RelationshipAToR problem that captures this
global hierarchy and present an efficient algorithm that allows
determining if there is a hierarchical assignment without invalid
paths. We then show that the related general optimization prob-
lem is NP-complete and present a2

3
approximation algorithm

where the objective function is to minimize the total number of
local policy mismatch. We support our approach by extensive
experiments and simulation results showing that our algorithms
classify the type of relationship between ASes much better than
all previous algorithms.

I. I NTRODUCTION AND RELATED WORK

The current Internet consists of over 20000 Autonomous
Systems (ASes) interconnected by a set of thousands links.
Each AS is a collection of routers under a single administrative
authority, and routing between ASes is done using the Border
Gateway Protocol (BGP) [1]. One of the well appreciated
advantages of BGP is its ability to use policy based routing
where each AS defines its own local policy. In practice, the
policy of an AS reflects its commercial relationship with other
ASes. Thus, the AS connectivity graph has a hierarchical
structure in which connected ASes havecustomer-provider
relationship if a small AS is connected to a larger AS, and
they havepeer-peerrelationship if they have comparable size
(other types of relationship such assibling-sibling also exist,
but they apply to less than 2% of the connections) [2], [3].

Despite the increasing effort to reveal and characterize the
topological structure of the Internet by several projects that
collect real up-to-date data, the hierarchical structure, induced
by the commercial relationship between connected ASes, is

typically not part of the collected information. Thus, in order to
get this more complete view, one should infer this relationships
from the collected information. This is usually done using
guidelines and assumptions regarding the policy used and
knowledge regarding the gathered information. For instance,
the Internet Routing Registry [4] is a union of world-wide rout-
ing policy databases that use the Routing Policy Specification
Language (RPSL) [5] . These databases contain, among other
things, the local connectivity and the local import/export policy
of the registered ASes. In [6] and [7] the authors analyzed
the RPSL policies of ASes in the IRR and inferred the type
of relationship between registered ASes. Nevertheless, using
the IRR database to infer the hierarchical structure of the
AS connectivity map has several drawbacks. First, in some
cases, entries in the IRR may be invalid and contain out-of-
date data [8]. Second, this database is not complete enough.
In particular, only 36000 links, most of them are located in
Europe, out of over 130000 [7] are registered and share this
information.

While the IRR database contains the local policy of reg-
istered AS, it is not part of the information gathered by
other projects. In these cases, other techniques should be
used in order to infer the type of relationship. The Route-
Views project [9] is a BGP based database that collects
a snapshot of the Internet AS level topology on a daily
basis, based on BGP routing tables from about 60 different
sources. The DIMES project [10] samples the Internet using
distributed agents located at thousands hosts around the world,
performing periodictracerouteto a set of IP addresses. While
these projects gather information using different methods, the
collected data of both databases consists of a set of routing
paths (between ASes) that reflect the routing policy of these
ASes. In order to infer the type of relationship from such
routing paths, one should understand how the policy in the
AS level affects these paths.

According to the guidelines presented in [3] and in [2] an
AS usually exports its routes and its customer routes to its
providers and peers, but it does not export its provider or peer
routes to other providers or peers. In contrast, an AS usually
exports its routes and its customer routes, as well as all its
provider or peer routes to its customers and sibling. This policy
indicates that BGP paths are valley-free, and step-free, i.e. after
traversing aprovider-customeror a peer-peerlink, the path
cannot traverse acustomer-provideror peer-peerlink [11].
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Fig. 1. A ToR instace with two paths
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Fig. 2. A ToR instace - A possible solution

Gao [11] was the first to infer the AS relationships from
BGP routing tables, based on this valley-free nature of the
routing paths. She developed a heuristic algorithm assuming
that typically a provider has a larger size than its customer,
and the size of an AS is usually proportional to its degree in
the AS level connectivity graph. Thus, for each routing path,
the AS with the highest degree is set as atop providerwith
respect to the path, inducingcustomer-providerrelationship to
preceding and subsequent links in the path. The experimental
results of [11] indicate that 90% of the links in the Route-
Views database are of typecustomer-provider, 8% are of type
peer-peer, and 1.5% are of typesibling-sibling.

Subsequently, the Type of RelationshipToR problem was
formally defined as a maximization problem in [12] as follows:

Definition 1.1: Given an undirected graphG = (V, E), and
a set of pathsP , label the edges inE as either−1, 0 or +1 to
maximize the number of valid paths inP , where a valid path
can be one of the following types forM, N ≥ 0:

1) −1, ... (N times),+1, ... (M times).
2) −1, ... (N times),0, +1, ... (M times).
For example, consider the instance of theToR problem

depicted in Fig. 1. This instance consists of nine ASes and
two paths. A possible solution to that instance, containing only
valid paths, is depicted in Fig. 21. In this solution both paths
are of type 1, namely they consist of severalcustomer-provider
links followed by severalprovider-customerlinks.

The technique proposed in [12] to solve theToR problem
combines data from multiple vantage points, where each BGP
routing table gives partial view of the Internet from one AS.
This technique does not rely on the degree of the ASes. The
authors ranked the ASes based on their position in the graph,
induced by a single BGP routing table. Then they infer the
relationship by comparing the ranks of ASes as it derived from
multiple sources.

In [13] and independently in [14] the authors showed that
the decision version of theToRproblem is NP-complete in the

1A directed edge in the graph going from nodev to nodeu means thatv
is a customer ofu.

p1 = (AS1, AS2, AS3, AS4, AS5, AS6)
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Fig. 3. A ToR instace - every solution contains cycle

general case. Moreover, they presented a linear time algorithm
that determines if there is a fully valid solution (i.e without any
invalid path). This algorithm maps aToR instance into a2SAT
formula by converting every two consecutive edges in any of
the paths into a clause with two literals. Finding a Truth assign-
ment to this formula induces a valley-free solution, while if
the formula cannot be satisfied theToR instance must contain
at leat one valley2. In [14] the authors also proved that the
maximum version of the problem (i.e. maximizing the number
of valid paths) cannot be approximated within1/n1−ε (for
any ε > 0) for general instances withn paths unless NP=co-
RP. This is done using approximation-preserving polynomial
reduction from the Maximum Independent Set problem [16].

The formal definition of theToR problem indeed captures
the fact that BGP paths are valley-free and step-free. However,
it has an inherent drawback - it does not consider the hierarchi-
cal structure of the AS graph. In particular, in the real Internet
the directed graph imposed by the assignment of thecustomer-
provider relationship cannot contain cycles (see [17], [18]). A
national AS, for example, that provides services to a regional
AS that provides services to a local AS cannot be also the
customer of the local AS. Consider the solution to theToR
instance depicted in Fig. 2. In this solution both paths are
valley-free, however it contains a directed cycle, violating the
hierarchical structure of the graph. One can achieve an acyclic
solution to this specific instance, by changing the direction of
the edge(AS4, AS5). In contrast, every optimal solution to
the ToR instance depicted in Fig. 3 contains a cycle3.

In this paper we address this drawback by defining a new
problem, the Acyclic Type of Relationship (AToR) problem,
taking into account the acyclic structure of the AS connectivity
graph. In this case, given a set of routing paths, the objective
function is to maximize (or minimize) the number of valid
(invalid) paths, keeping the directed graph acyclic. This new
problem captures the type of relationship between connected
ASes more accurately. Note, that while these two problems
look similar, their analysis is quite different. In particular, in
the ToR problem one should only satisfy local conditions in

2Note that2SAT is solvable in polynomial time. See e.g. [15].
3To dismiss the cycle(AS1, AS2, ..., AS8, AS1), at least one vertex must

have two outgoing edges, namely both edges attached to that vertex must be
directed out. Since every two consecutive edges, in this instance, belong to a
path, this two consecutive edges induce a valley (in this particular path).
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which every two consecutive edges in all the paths should be
valley-free. On the other hand, in the newAToRproblem, in
addition to these local conditions, one should satisfy a more
global condition ensuring that the assignment is acyclic. For
that reason, techniques and algorithms that have been used
with respect to theToRproblem, cannot be adopted and used
to analyze and solve theAToRproblem.

In Section II we formally define theAToRproblem. Then,
in Section III we present an efficient algorithm determining
whether an acyclic solution without invalid paths exists. The
general case is discussed in Section IV. We consider a variant
of this problem in which the objective function is to minimize
the total number of valleys. This variant captures the fact
that in some cases the export policy executed by an AS does
not follow the export policy presented above. Thus, due to
the locality of the policy, paths that traverse such ASes may
contain valleys. We show that similar to the original problem
(in which the objective function is to maximize the number of
valid paths), the decision version of this variant of the problem
is NP-hard, and we present2

3 -approximation algorithm for the
maximum version of the problem. In Section V we consider
practical aspects of inferring the actual type of relationships
between ASes. This includes heuristics to infer alsopeer-peer
and sibling-sibling relationships. In Section VI we examine
our algorithms over real up-to-date data gathered from the
Route-Views database, and perform simulations over several
random graph. We also compare our algorithms against other
approaches presented in [13], [14], [12], [11]. We summarize
our work and present some conclusions in Section VII.

II. M ODEL AND PROBLEM DEFINITION

The AS connectivity map is modelled by a graphG =
{V,E}. A node in the graph represents an AS, and an edge
represents a peering relation between two ASes. Assigning
an orientation to a particular edge in the graph indicates the
business relationship between its corresponding ASes. Thus,
an edge(v, u) is directed fromv to u if v is a customer
of u (and respectivelyu is a provider ofv). On the other
hand, an undirected edge indicates that the corresponding ASes
connected bypeer-peerrelationship. An orientation to some of
the edges, defines the type of relationships between connected
ASes. As explained in Secion I, a directed cycle that contains
at least one directed edge (i.e. acustomer-provideredge)
violates the hierarchical structure of the graph. On the other
hand, ASes from the same hierarchy level can be connected by
peer-peerlinks. Thus, cycles that consist of undirected edges
alone (i.e. all the links composing these cycles are of type
peer-peer), implying that the participants ASes are in the same
hierarchy level, are permitted. With respect to this observation,
we use the termhierarchical cycleto describe a directed cycle
that contains at least one directed edge. We use the termvalid
pathto indicate that the path does not contain valleys nor steps.
Thus,p = {v1, v2, ..., vn} is a valid path if for all1 < i < n,
the edge(vi−1, vi) is directed fromvi−1, to vi or the edge
(vi+1, vi) is directed fromvi+1, to vi. A path is invalid if
it is not valid. Considering the hierarchy structure of the AS

graph and using the policy guidelines discussed in Section I,
we define theAToR (Acyclic Type of Relationship) problem
as follows:

Definition 2.1: Given an undirected graphG and a set of
pathsP , assign orientation to some of the edges ofG such
that the directed graph does not containhierarchical cycles
(i.e. directed cycles that contains at least one directed edge),
and the number of valid paths is maximized.

In some cases an instance to theAToRproblem includes only
the set of pathsP while the graphG is omitted. In such cases,
one may consider a graphG′ = (V ′, E′) that is imposed by the
set of paths, namelyV ′ = {v|v ∈ P}, andE′ = {e|e ∈ P}.

The decision version of the problem,k-AToR, is defined as
follow:

Definition 2.2: Given an undirected graphG, a set of paths
P , and an integerk, test if it is possible to give orientation to
some of the edges ofG such that the directed graph does not
containhierarchical cycle, and the number of invalid paths is
at mostk.

In sections III and IV we present theoretical analysis both
for the AToR and the k-AToR problems. In these analyses
we consider solutions that contain only directed edges (i.e.
edges of typecustomer-provider). One can argue that this
requirement is stricter than necessary and therefore does not
reflect the real practical problem. Yet, as we prove in the next
lemma, every solution that containspeer-peerlinks can be
converted to a solution that contains onlycustomer-provider
links by giving an orientation to thepeer-peerlinks. Clearly,
in a solution that contains only directed edge, every directed
cycle is ahierarchical cycleand acyclic solution is a solution
that does not containhierarchical cycles.

Lemma 2.1:Given an instance(G,P ) to theAToRproblem
and a solutionS that assigns an orientation to some of the
edges ofG, such that the directed graph does not contain
hierarchical cyclesand the number of valid paths isk, there
is a solutionS′ that assigns an orientation toall the edge ofG,
such that the directed graph does not contain directed cycles
and the number of valid paths is at leastk.

Proof: Denote byE1 the set of edges that have an
orientation with respect toS, and denote byG1 = (V, E1)
the graph imposed by this set of edges. Clearly,G1 does not
contain directed cycles. We buildS′ gradually by assigning
orientation to the set of undirected edgesE\E1 (i.e. converting
the set ofpeer-peerlinks into customer-providerlinks). We
show that each such step does not reduce the number of valid
paths and preserves the acyclic property of the graph.

Consider apeer-peerlink e = (v, u), namelye ∈ E \ E1.
The graphG1 does not contain directed cycles therefore,
if there is a directed pathp = (v, ..., u) then there is no
directed pathp′ = (u, ..., v) (otherwise, their concatenation
is a directed cycle in contradiction to the assumption)4. Thus,
if there is a directed path fromv to u we assigne from v to
u. Otherwise, we assigne from u to v. In both cases, after
addinge to E1, the graphG1 is still acyclic.

4Note thatp andp′ are not necessarily inP .

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

S-
20

06
-1

5 
- 

20
06



Next, we show that every valid path remains valid by
assigning direction to a linke. Clearly, paths that do not
traversee are not affected so we need to show that every
valid path that traversese remains valid. Consider a valid path
that traversese. According to the discussion above, this path
consists ofN customer-providerlinks followed by e which
is a peer-peerlink followed by M provider-customerlinks
(whereN, M ≥ 0). If e is assigned to be acustomer-provider
links then the new path consists ofN + 1 customer-provider
links followed M provider-customer. On the other hand if
e is assigned to be aprovider-customerlinks then the new
path consists ofN customer-providerlinks followed M + 1
provider-customer. In both cases the new path is valid.

III. T HE 0-AToRPROBLEM

In this section we present an efficient algorithm for the0-
AToRproblem. In other words, given an instance(G,P ) to the
AToRproblem, the algorithm determines if there is a solution
without any invalid paths. In such case, the algorithm finds
such a solution. For simplicity, we present and analyze the
algorithm over a special case of the0-AToR, called the0-
AToR2problem, in which the length of all paths is exactly
two links. Although this version seems to be simpler than the
0-AToRproblem, it does not. In particular, in the following
lemma we show that the complexity of the0-AToR2problem
is identical to the complexity of the0-AToRproblem5.

Definition 3.1: Given an instance(G,P ) to the 0-AToR
problem, we say that there is aSatisfyingassignment to(G,P )
if there is an orientation to the edges such that the directed
graph is acyclic and all the paths are valley-free.

Lemma 3.1:Given an instance(G,P ) to the0-AToRprob-
lem, there is an instance(G,P2) to the0-AToR2problem such
that there is aSatisfyingassignment to(G,P ) if and only if
there is aSatisfyingassignment to(G,P2).

Proof: P2 is generated in the following way: for eachp =
{AS1, AS2, ...ASn} ∈ P producen−2 pathsp1, ...pn−2 such
that pi = {ASi, ASi+1, ASi+2}. For each assignment, if the
pathpi is invalid than the pathp is invalid as well (it contains
valley in ASi, ASi+1, ASi+2). On the other hand, if the path
p is invalid, at least one of the pathsp1, ...pn−2 is invalid
(if p contains valley at(ASi, ASi+1, ASi+2) then the path
pi contains a valley as well). Clearly, an acyclic assignment
to (G,P ), induces an acyclic assignment to(G,P2) and vice
versa, since both instances consist of the same graph.

As discussed above, the directed graph imposed by a solu-
tion to an instance of the0-AToR2problem does not contain
directed cycles. Thus, one can present this solution as an
orderingπ of the vertices of a graph such that for each directed
edge (vi, vj) ∈ E, going from vi to vj , π(vi) < π(vj).
Clearly, the directed graph induced by such ordering is acyclic.
Moreover, this solution does not contain valleys, namely for
each pathp = (vi, vj , vk) π(vj) > π(vi) or π(vj) > π(vk).
The following algorithm determines if such an ordering exists.

5Recal that in this section we consider solutions that assign an orientation
to all the edges. In this case, a valid path is a valley-free path (i.e. a path that
does not contain valleys).

Algorithm ATOR(G = (V,E), P = (p1, ..., pn))

1. P2 = φ
2. For all pi = {AS1, AS2, ...ASm} ∈ P .
3. for(i = 1 to m− 2)
4. P2 = P2 ∪ {ASi, ASi+1, ASi+2}
5. i=1
6. For all v ∈ V, π(v) = −1.

7. while P2 6= φ do
8. Find v ∈ V such that

∀p = (vi, vj , vk) ∈ P2, v 6= vj

9. If suchv does not exist
returnNO SOLUTION.

10. setπ(v) = i.
11. i=i+1.
12. P2‘ = {p|v ∈ p}.
13. P2 = P2 \ P2‘

14. while i ≤ |V |
15. if π(v) = −1, setπ(v) = i.
16. i = i + 1.

17. returnπ.

In the first stage (steps 1 to 4) the algorithm generates a
set of pathsP2 according to the construction described in
Lemma 3.1, such that the length of each path inP2 is exactly
two and (G,P ) has aSatisfyingassignment if and only if
(G,P2) has aSatisfyingassignment. Steps 5 and 6 are for
initialization. Then, in every iteration the algorithm finds a
vertex that does not appear in the middle of any path. Giving
this vertex the current lowest value in the ordering insures
that the associated paths are valid. On the other hand, if such
vertex does not exist, it means that at least one path contains
this vertex in the middle. Thus, giving this vertex the current
lowest value in the ordering makes this path invalid.

In each iteration at least one path is removed (steps 12
and 13), and thus at most|P2| iterations are performed. In each
iteration, the algorithm goes through the vertices and pick one
vertex (Step 8). Moreover,|P2| = |P | ·(N−2) whereN is the
average length of a path inP . Therefore, the time complexity
of the algorithm isO(|P | ·N · |V |).

If the algorithm finds a solution (i.e. it does not returnNO
SOLUTION) the peering relationships are induced as follow:
For each edge(v, u) in the graph,v is a customer ofu (and
respectivelyu is a provider ofv) if and only if π(v) < π(u).
Next we show the correctness of the algorithm.

If an instance(G,P ) of the0-AToRproblem has aSatisfying
assignment, clearly a sub-instance (i.e. an instance that consists
of a subset ofP ) has aSatisfyingassignment as well. Thus,

Observation 3.1:Given an instances(G,P ) and (G,P ′)
to the 0-AToRproblem, such thatP ′ ⊆ P . If (G,P ′) does
not have aSatisfyingassignment then(G, P ) does not have a
Satisfyingassignment.

Given an instances(G = (V,E), P ) of the0-AToRproblem,
denote byGp = (Vp, Ep) the graph imposed byP (i.e. Vp =
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{v|v ∈ P} andEp = {e|e ∈ P}). Clearly, the ordering of any
vertex v such thatv ∈ V \ Vp does not affect the validity of
any path (since this vertex does not appear in any path), thus:

Observation 3.2:Given an instances(G,P ) to the0-AToR
problem. (G,P ) has aSatisfyingassignment if and only if
(Gp, P ) has aSatisfyingassignment.

Theorem 3.1:Given an instances(G,P ) to the 0-AToR
problem, if AlgorithmATORreturns orderingπ of the vertices
of a graph, then this ordering induces aSatisfyingassignment.

Proof: Clearly, the directed graph induced by the order-
ing is acyclic. We show that this directed graph is valley-free
with respect to the set of pathsP2. Without loss of generality,
assume thatp = (vx, vy, vz) is removed fromP2 in the
i’th iteration. According to steps 8 and 10 of the algorithm
π(vx) = i or π(vz) = i. Moreover,π(vy) was not set yet,
thusπ(vy) > i and thereforep is valley-free.

Now, recall thatP2 is constructed according to Lemma 3.1,
thus the directed graph imposed by the orderingπ, is valley-
free with respect to the set of pathsP as well.

Theorem 3.2:Given an instances(G,P ) of the 0-AToR2
problem, if Algorithm ATOR returns NO SOLUTION, then
there is noSatisfyingassignment.

Proof: Without loss of generality, assume that the al-
gorithm returnNO SOLUTIONin the i’th iteration and the
set of paths that was removed in the firsti − 1 iterations is
P ′′2 . Denote byP ′2 the remaining paths, namelyP ′2 = P2 \P ′′2 .
We show that the instance(G′, P ′2), does not have aSatisfying
assignment, whereG′ = (V ′, E′) is a subgraph ofG in which
V ′ = {v|v ∈ P ′2} andE′ = {(v, u)|(v, u) ∈ E

⋂
v, u ∈ V ′}.

Assume that there an orderingπ that induces aSatisfying
assignment. Denote byv the node withπ(v) = 1. Recall
that v ∈ V ′, thereforev ∈ P ′2. According to steps 8 and 9
in the algorithm,∀v ∈ P ′2, ∃p = (vx, vy, vz) ∈ P ′2 such that
v ≡ vy. Thus, sinceπ(vx) > 1, π(vz) > 1, andπ(vy) = 1,
p contains a valley, so(G′, P ′2) does not have aSatisfying
assignment. According to Observation 3.2,(G,P ′2) does not
have aSatisfyingassignment and according to Observation 3.1
(G,P2) does not have aSatisfyingassignment.

Again, recall thatP2 is constructed according to Lemma 3.1,
thus the instance(G,P ) does not have aSatisfyingassignment
as well.

Discussion:One may notice that theAToR2problem resem-
bles to the well knownBETWEENNESSproblem, studied in
the field of Computational Biology [19]. The input to the
BETWEENNESSproblem consists of a set of pointsS =
{x1, x2, ..., xn} and a set of constraints, where each constraint
is a triplet {xi, xj , xk} ∈ S × S × S. A solution to the
problem is a total order on its points such that every constraint
{xi, xj , xk} satisfiesxi < xj < xk or xk < xj < xi,
namelyxj is betweenxi and xk (see [19]). With respect to
our problem, the set of triplet corresponds to the set of paths
with length two. While in theBETWEENNESSproblem xj

must be betweenxi andxk, in the AToRproblemxj can be
betweenxi and xk or bigger thanxi and xk (i.e. xj must
not be lower thanxi andxk). Despite the appeared similarity

AS6

AS5

AS2

AS1

p={AS1, AS2, AS3, AS4, AS5, AS6, AS7}

AS7AS3

AS4

Fig. 4. One invalid path - Multiple valleys

between the problems their complexity is completely different.
Thus, while determining if there is asatisfying assignment
to the AToR2problem (and finding such an assignment) can
be done in polynomial time (using the algorithm described
above), determining if there is asatisfying assignment to
the BETWEENNESSproblem is NP-hard [20]. The intuition
behind this difference is the fact that in theAToR problem,
determining the ordering of one edge of a path satisfies this
path (i.e. the path is valid). On the other hand determining
the ordering of single point in a triplet, does not necessarily
satisfies this triplet, in theBETWEENNESSproblem.

IV. T HE k-AToRPROBLEM

While determining if there is a solution without invalid paths
(i.e. finding a solution to the0-AToRproblem) can be done in
polynomial time, the general case is much more complex. In
particular, the reduction presented in [14] for theToRproblem
holds for theAToRproblem. Thus, the general decision version
(called thek-AToR problem) is NP-hard and the maximum
version of the problem (i.e. maximizing the number of valid
paths) cannot be approximated within1/n1−ε (for any ε > 0)
for general instances withn paths unless NP=co-RP.

In this section we consider a variant of the problem in
which the objective function is to minimize the total number
of valleys. This problem is different from the original problem
since one invalid path may contain more than one valley (see
Fig. 4), and on the other hand, if several paths traverse a
common AS, one valley (in the common AS) may cause to
several invalid paths (see Fig. 5). The objective function of this
variant of the problem is motivated by the fact that in some
cases ASes (mistakenly or purposely) do not follow the export
policy discussed in Section I. In particular, in such cases, an
AS may export its provider routes to other providers. Thus,
due to the locality of the policy, paths that traverse such ASes
may contain valleys. We show that the decision version of this
variant of the problem is NP-hard using a reduction from the
Feedback Vertex Set (FVS) problem [21], [16] and we also
present a2

3 -approximation algorithm to the maximum version
of the problem.

AS1AS6

AS3

AS4 AS5

AS2

AS7

p1 ={AS7, AS2, AS1, AS3, AS6}
p2 ={AS5, AS2, AS1, AS3}
p3 ={AS4, AS2, AS1, AS3}

Fig. 5. One valley - Multiple invalid paths
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Consider an instance of thek-AToRproblem in which all
the paths contain exactly two edges (we refer this problem
as k-AToR2problem). In this case an invalid path contains
exactly one valley and therefore if there is no duplicated paths,
every valley corresponds to one invalid path. Thus, given a
graphG and a set of pathsP , we build an instance(G,P2)
to the k-AToR2such that for any assignment, the number of
valleys with respect to the set of pathsP is equal to the
number of invalid paths with respect to the set of pathsP2.
Thus, for eachp = {AS1, AS2, ...ASn} ∈ P we produce
n− 2 pathsp1, ...pn−2 such thatpi = {ASi, ASi+1, ASi+2},
then we remove all the duplicate paths. In this case, given
an assignment of the edges inG, every valley in the edges
(v1, v2) and(v2, v3) with respect toP , corresponds to invalid
path(v1, v2, v3) with respect toP2. Based on this observation,
henceforth we consider only thek-AToR2problem.

Theorem 4.1:The k-AToR2problem is NP-hard.
We prove the Theorem using a reduction from the Feedback

Vertex Set (FVS) problem. In the FVS, given a directed graph
G = (V, A) and a positive integerk ≤ |V |, one should find if
there is a subsetV ′ ⊆ V such that|V ′| ≤ k and the deletion
of V ′ results in an acyclic graph.

Given a directed graphG = (V, A) and a positive numberk,
we construct an instance to thek-AToR2problem that consist
of |V | + 2|A| paths. For eachv ∈ V we match a pathpv =
{v1, v2, v3}. For eache = (v, u) ∈ A we match two paths:
pv,e = {v2, v3, e} and pe,u = {e, u1, u2}. The details of the
proof are omitted for the sake of brevity.

Next, we present a23 -approximation algorithm to thek-
AToR2problem. For each vertexv ∈ V , denote byEv the set
of the paths such thatv is an end point of each path in the set.
Similarly denote byMv the set of the paths such thatv is in the
middle of each path in the set. Formally,Ev = {p|p ∈ P, p =
{v, u, w} ∪ p = {u,w, v}}, Mv = {p|p ∈ P, p = {u, v, w}}.

Algorithm k-ATOR2(G = (V, E), P = (p1, ..., pn))

1. P2 = φ
2. For all pi = {AS1, AS2, ...ASm} ∈ P .
3. for(i = 1 to m− 2)
4. P2 = P2 ∪ {ASi, ASi+1, ASi+2}
5. i=1
6. For all v ∈ V, π(v) = −1.

7. while P2 6= φ do
8. Let v be the vertex inV such that

∀u ∈ V, |Mv|/|Ev| ≤ |Mu|/|Eu|
9. setπ(v) = i.

10. i=i+1.
11. P2‘ = {p|v ∈ p}.
12. P2 = P2 \ P2‘

13. while i ≤ |V |
14. if π(v) = −1, setπ(v) = i.
15. i = i + 1.

16. returnπ.

The algorithm is similar to the algorithm presented in
Section III. In particular, the algorithm presented in Section III
is a special case of this algorithm in which the vertex, selected
in Step 8 must follows|Mv|/|Ev| = 0 (i.e. |Mv| = 0)6. Next
we prove that this algorithm is a23 -approximation algorithm.

Lemma 4.1:The vertexv that is selected in Step 8 fulfil
|Mv|/|Ev| ≤ 1

2 .
Proof: In every pathp = {v1, v2, v3} two vertices (v1

and v3) are end points and one vertex (v2) is in the middle.
Thus, |P | =

∑
v∈V |Mv| = 1

2

∑
v∈V |Ev|, and at least one

vertexv ∈ V satisfies|Mv|/|Ev| ≤ 1
2 and therefore the vertex

selected in Step 8 fulfil|Mv|/|Ev| ≤ 1
2 .

Theorem 4.2:Given an instances(G,P2) of the k-AToR2
problem, the Algorithmk-ATOR2returns an orderingπ such
that the directed graph induced by this ordering is acyclic and
the total number of valley-free pathsPvalid is at least23 ·|Sopt|,
whereSopt is the optimal solution.

Proof: The algorithm returns an ordering over the
vertices, thus the directed graph induced by this ordering is
acyclic. Assume thatp = (vx, vy, vz) is removed fromP2

in the i’th iteration. If p ∈ Ev then according to Step 9 in
the algorithmπ(vx) = i or π(vz) = i. Moreover,π(vy) was
not set yet, thusπ(vy) > i and thereforep is valley-free.
On the other hand, ifp ∈ Mv then π(vy) = i while π(vx)
and π(vz) were not set yet. In this caseπ(vx), π(vz) > i
and p is an invalid path. According to this observation, in
each iteration,|Ev| paths turn to be valid paths while|Mv|
paths turn to be invalid paths. According to Lemma 4.1
|Mv|/|Ev| ≤ 1

2 therefore the total number of valid paths is
at least double the number of invalid paths. In other words,
Pvalid ≥ 2(|P2| − Pvalid) and hencePvalid ≥ 2

3 · |P2| ≥
2
3 · |Sopt|.

One may observe that the proof is independent of the value
of |Sopt|. Thus, the theorem proves a stronger results. In
particular, the algorithm guarantee that at least2

3 of the paths
are valley-free regardless on the optimal solution.

While we consider an objective function that minimize the
total number of valleys, other objective targets may be con-
sidered as well. In particular, one may consider an objective
target that minimizes the total number of directed cycles. This
objective target may be interesting from a theoretical point of
view, but it seems that it does not have a practical interest.
While invalid paths and valleys may appear in the internet
for several reasons (e.g. export policy misconfiguration) the
hierarchical acyclic structure of the internet is a result of
the business relationship between ASes. Large ASes always
provide services to small AS and this ordering imposes an
acyclic structure.

V. PRACTICAL CONSIDERATION

In this section we show how the theoretical algorithms
presented in sections III and IV can be used to solve the

6Note thatEv andMv are defined with respect to the set of pathsP2 in
the algorithm.
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AS5AS1 AS4AS3 AS6 AS7AS2

Fig. 6. Sapec of Solutions

practical problem of inferring the correct type of relationships
from the collected data. In practice we may have to choose
between more than one solution and we also have to consider
other type of relationships, namelypeer-peerand sibling-
sibling that were not considered in these algorithms.

Consider the algorithms presented in sections III and IV.
While these algorithms find a specific ordering, the space of
possible solutions may contain more than one ordering. In
particular, in Step 8 of both algorithms, more than one vertex
may satisfy the required condition (i.e. minimizing|Mv|/|Ev|)
and therefore different orders found by the algorithm may in-
duce different peering relationships. In particular, the ordering
found by the algorithm may induce peering relationship that
are different from the real relationships. To obtain a more
accurate solution, one should use heuristics and guidelines
that consider the topological structure of the graph and the
gathering process of the data.

Considering the fact that the overwhelming majority of
ASes are small7, most of the routing paths obtained by BGP
routing tables are between small ASes (i.e. the source and
the destination of the path are small ASes). Thus, most
of the routing paths consist of severalcustomer-provider
links follows by severalprovider-customerlinks. For instance,
consider the routing path depicts in Figure 6. One possible
solution may determine thatAS(i) is a customer ofAS(i+1)
(i.e. AS7 is the top provider). In this case, the vertices are
picked by Step 8 of the algorithm in the following order:
AS1, AS2, AS3, AS4, AS5, AS6, AS7. In a more realistic
solution AS4 is defined to be the top provider. In this case,
the vertices are picked by Step 8 of the algorithm in the
following order:AS1, AS7, AS2, AS6, AS3, AS5, AS4. Our
heuristic is based on this observation and we choose the
vertices assigned to a single path in rotation, i.e. after picking
a vertex from one end of a path8 we prefer that the next vertex
picked from this path will be from the second end of the path.

A. Finding Peer-PeerRelationships

The algorithms described in previous sections give orien-
tation to all edges in the graph, and therefore determines
a customer-providerrelationship between adjacent ASes. In
practice some of the edges may be of typepeer-peer. While
Lemma 2.1 proved that everypeer-peerlink can be converted
to a customer-providerlink without harming the solution, the
opposite does not hold. Namely, not everycustomer-provider
link can be converted to apeer-peerlink.

With respect to this observation, we need to assignpeer-
peer relationship to some of the links reserving the quality of
the solution, namely without increasing the number of invalid

7The term small AS refers to the hierarchy level of the AS
8In this case, we refer to the entire long path before it was sliced into short

paths according Lemma 3.1.

paths and without violating the hierarchical, acyclic structure
of the graph. We handle this task in two stages, during the
execution of the algorithm, and after the assignment of the
customer-providerlinks.

In the first step, we refine the algorithms by assigningpeer-
peer relationship to some of the links. In Algorithmk-AToR
we omit Step 15, while in AlgorithmAToRwe omit Step 16
(i.e. i = i+1). Thus, all the remaining vertices have the same
value in the topological sort, which is greater than the values
of all other vertices. The peering relationship is induced as
follow: Given an edge(v, u), the edge is of typepeer-peer
if and only if π(v) = π(u), and v is a customer ofu if
and only if π(v) < π(u). Thus, all the edges connecting the
remaining vertices are of typepeer-peerwhile other edges are
of type customer-provider. In this case, the graph does not
containhierarchical cycle, but cycles that consist ofpeer-peer
links alone are possible. Recall that two ASes connected by
peer-peerlink, means that they are in the same hierarchy level.
Thus, these kind of cycles are permitted and they do not violate
the hierarchical structure of the AS graph . In addition, for each
valid pathp = (vi, vj , vk), π(vi) < π(vj) or π(vk) < π(vj)
thus the following five options are possible:

π(vi) < π(vj) = π(vk), π(vi) < π(vj) < π(vk),
π(vi) < π(vj) > π(vk), π(vi) = π(vj) > π(vk),
π(vi) > π(vj) > π(vk)

One can see that in all cases, the peering relationship that
are derived from each assignment induces a valid path.

In the second step, we convertcustomer-providerlinks
into peer-peersimilar to the way described in [22]. First,
we find a set ofpeer-peercandidates. Acustomer-provider
link is added to this set if it can be converted topeer-peer
link without violating the hierarchical structure of the graph
and without increasing the number of invalid paths. While
converting any single link from the candidate set is permitted,
converting simultaneously more than one link may violating
the hierarchical structure or increase the number of invalid
paths. Thus, we convert the links in the set one after the other,
preferring links that connect nodes that their vertex degrees
are on the same order, testing each time if the graph remain
acyclic and if the number of invalid path is not increased.

B. Finding Sibling-SiblingRelationships

A solution of the Algorithmk-AToRpresented in Section IV
may contain invalid paths. In particular, when|Mv|/|Ev| >
0 with respect to Step 8 in the algorithm, it means that
at least one valley traverses vertexv. While these kind of
anomalies can be explained by an unexpected policy, it may
reflect asibling-sibling relationship between connected ASes.
Thus, invalid paths may be settled by assigningsibling-
sibling relationship to one of the edge on each valley. Similar
to the discussion regardingpeer-peerlinks in Section V-A,
converting acustomer-providerlink into sibling-sibling link
may violate the hierarchical structure of the graph. We convert
customer-providerlink into sibling-sibling in the following
way. First, we find a set ofsibling-sibling candidates. This
set consists of all the edges that are traversed by at least one

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

S-
20

06
-1

5 
- 

20
06



valley. Then we convert the links in the set one after another,
preferring links that connect nodes that their vertex degrees are
on the same order, until the set is empty or until all the paths
become valid, testing every step if the graph remain acyclic.

VI. EXPERIMENTS AND SIMULATION RESULTS

In this section we examine practical versions of the al-
gorithms presented above over real data gathered from the
Route-Views project [9]. We also simulate the algorithms over
several random graphs, and compare the obtained results to
other approaches presented in [11], [12], [13].

As mentioned in Section I, the Route-Views database con-
sists of 54 BGP routing tables from different sources. Each
table contains a set of AS paths from a single source to almost
all other ASes in the AS connectivity map. We use data from
April 2006 that consists of 21505 ASes, 45783 links and over
1,500,000 paths. First, we execute AlgorithmAToRover the
entire database. The algorithm returnsNO SOLUTION, namely
every assignment contains cycles or invalid path. Moreover,
we found out using the algorithm presented in [13], [14] (and
similar to the results presented in [13] over older data), that
the simpler0-ToR problem (i.e. regardless the existence of
cycles), does not have a valley-free solution as well9.

Next, we execute the different algorithms over the entire
Route-Views database. To verify and evaluate the results
obtained by the algorithms, one needs to compare these results
against actual data, namely one needs to obtain information
regarding the real type of relationship of links in the AS
connectivity graph, and compare the relationships inferred
by the algorithms against the relationships of these links.
In contrast to previous work that validate the results against
the type of relationships of few ASes (usually contacting
the network administrators of these ASes and asking for
internal information regarding the actual type of relationships
of each AS [11], [22]), we use a general and much more
extensive method consisting of a data, collected from the
IRR database [4]. This database contains among other things,
the export policy of registered ASes. We use the methods
presented in [7] and [6] to infer the peering relationships
between these ASes. While the IRR database contains 36,000
links and the Route-Views database contains 49,500 links, the
intersection of these databases consists of 10,000 links (i.e.
10,000 links appears in both databases). Thus, we compare the
solution, obtained by the algorithms to the orientation induced
by the IRR database with respect to these intersected links.

Result analysis and measurement:Given an edge(u, v),
the export policy ofu to v and the export policy ofv to
u determines the type of relationship of this edge [3], [2]. In
particular, an AS may export its routes and its customer routes
or it may export its routes and its customer routes, as well as
all its provider or peer routes. We denote the first case asType
I and the second case asType II. Table I show how the export
policy of an edge(u, v) is derived from this export policy. For

9We refer to the0-ToRproblem as the decision version of theToRproblem
that determines if there is a solution without any invalid path.

example, ifu exports tov its routes and its customer routes
(i.e. Type I) and u exports tov its routes and its customer
routes, as well as all its provider or peer routes (i.e.Type II,
it means thatu is a customer ofv.

Type of relationship Export policy Export policy
u− v of u to v of v to u

customer-provider Type I Type II
provider-customer Type II Type I

peer-peer Type I Type I
sibling-sibling Type II Type II

TABLE I

EXPORT POLICY AND TYPE OFRELATIONSHIP

If the orientation of an edge, assigned by a specific al-
gorithm is different from the actual orientation of the edge,
it means that there is a mismatch between the export policy
inferred by the algorithm to the actual export policy of one
or both nodes. We say that the orientation of an edge is fully
mismatched if the export policy of both nodes is incorrect. We
say that the orientation of an edge is partly mismatched if the
export policy of one node is incorrect.

Table II presents the number of partial and full mismatch
edges of each graph and each algorithm (CR - our algorithm,
presented in Section IV;BPP - the algorithm presented
in [13]; Gao - the algorithm presented in [11]; andSARK-
the algorithm presented in [12]). The table also depicts the
number of cases in which the export policy derived by the
algorithm is different from the actual policy. One can see that
the results, obtained by our algorithm are better compared to
the results obtained by other algorithms. Moreover, while the
solution obtained byCR is acyclic, the solutions obtained by
BPP, SARK, Gao, contain directed cycles. An interesting result
is that the number of partial mismatch (in all algorithms) is
extremely higher compare to the number of full mismatch
which may emphasize the difficulty to identifypeer-peer
relationship (a partial mismatch is usually caused by confusing
betweenpeer-peerandcustomer-providerrelationships).

Algorithm Partial Mismatch Full Mismatch Policy Mismatch
CR 1463 93 1649
BPP 1526 104 1734

SARK 2329 192 2713
Gao 1610 109 1828

TABLE II

EXPERIMENTS RESULTSROUTE-V IEWS VS. IRR

While the experiment presented above is performed over
real data, its validation using the IRR database may lead
to biased validation results. In particular, as mentioned in
Section I, in some cases entries in the IRR may be invalid
and contain data that is out-of-date or not updated. Second,
as pointed out in [7], in some cases the interpretation of the
export policy may be ambiguous. For that reason we perform
simulations, examining the different algorithms over several
random graphs. This process consists of the following steps.
First, we generated a random graph and assign a type of
relationship to its edges. Then, we simulate the gathering
process of BGP routing tables, by modelling each BGP routing
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table as a policy-based shortest path tree. This modelling is
motivated by the assumptions that each BGP routing table
contains paths from a single source to the entire ASes, and
under the policy discussed so far routing is done along
shortest paths10. Finally, we execute the different algorithms
and measure their inaccuracy, i.e. in how many edges, each
algorithm failed to assign the correct type of relationship.

We consider several random graphs all of them consists of
22,000 vertices. As was suggested in [7] about third of the
links in the AS graph are of typecustomer-providerwhile
almost all the rest of the links are of typepeer-peer. In the first
graph we use the guidelines from [20], [6], [21] and divide the
set of nodes of the graph into five hierarchical groups, where
the number of ASes in each group increases exponentially.
Thus, the set of nodes of each graph is divided in the following
way: 10 ASes are in level 1, 140 ASes are in level 2, 1350
ASes are in level 3, 3500 ASes are in level 4, and about 17000
ASes are in level 5. According to this hierarchy, ASes from
the same groups are connected by apeer-peerrelationship
while ASes from different groups are connected by acustomer-
provider relationship. In order to guarantee the reachability of
the nodes in the graph with respect to the policy enforced11,
we build the graph such that each AS has, on the average,
two providers. We call this graphlayered graph. The second
graph captures the fact that the vertex degree distribution of
the customer-providersubgraph follows the power-law while
the peer-peervertex degree distribution does not [7]. Thus,
in this graph thecustomer-providersubgraph is modelled by
a Barabasi-Albert graph [23] while thepeer-peersubgraph is
modelled by a random graph. We call this graphBarabasi-
Albert graph. The ten top providers in both graph are fully
connected by a set of 45peer-peerlinks.

Barabasi-Albert / Layered graph
Algorithm Partial Mismatch Full Mismatch Policy Mismatch

CR 304 / 221 7 / 0 318 / 221
BPP 730 / 1808 22 / 44 774 / 1896

SARK 9980 / 5590 806 / 35 11592 / 5660
Gao 833 / 417 26 / 1 885 / 419

TABLE III

SIMULATION RESULTS OF THE RANDOM GRAPHS

Table III presents the number of partial and full mismatch
edges of each graph and each algorithm. It also presents the
number of cases in which the export policy derived by the
algorithm is different from the actual policy. Similar to the
experiments over the Route-View database, in both graphs
the results obtain by our algorithm are much better compared
to other algorithms. These results stand out mainly when the
number of full mismatch is considered. Likewise, the solutions
obtained by our algorithm is the only one that preserve the
hierarchical acyclic structure of the graph.

10For further discussion regarding this modelling see Section 2 in [7]
11In general, when routing policy is considered, connectivity does not

necessarily mean reachability, namely if two ASes are physically connected
via one or more physical paths it does not necessarily means that there is a
permitted path with respect to the adopted policy.

VII. D ISCUSSION

In this paper we studied the Type of Relationship problem.
We observed that the conventional definition of the problem
does not consider the hierarchical acyclic structure of the
AS connectivity map. Base on this observation we defined
a new problem the Acyclic Type of Relationship problem that
takes into account this hierarchical structure. We proved that
determining if there is a solution without invalid paths can
be solved in a polynomial time, and presented an efficient
algorithm for this case. We also presented a2

3 approximation
algorithm for a variant of the problem, considering the total
number of valleys. Our experiments and simulation results
show that our algorithms classify the type of relationship
between ASes much better than all previous approaches.
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