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Abstract. Given two elliptic curves over a finite field having the same cardinality and endomorphism
ring, it is known that the curves admit an isogeny between them, but finding such an isogeny is be-
lieved to be computationally difficult. The fastest known classical algorithm takes exponential time,
and prior to our work no faster quantum algorithm was known. Recently, public-key cryptosystems
based on the presumed hardness of this problem have been proposed as candidates for post-quantum
cryptography. In this paper, we give a subexponential-time quantum algorithm for constructing iso-
genies, assuming the Generalized Riemann Hypothesis (but with no other assumptions). This result
suggests that isogeny-based cryptosystems may be uncompetitive with more mainstream quantum-
resistant cryptosystems such as lattice-based cryptosystems. As part of our algorithm, we also obtain
a second result of independent interest: we provide a new subexponential-time classical algorithm for
evaluating a horizontal isogeny given its kernel ideal, assuming (only) GRH, eliminating the heuristic
assumptions required by prior algorithms.

1 Introduction

Consider the problem of constructing an isogeny between two given isogenous ordinary elliptic
curves defined over a finite field F, and having the same endomorphism ring. (For ease of exposition,
we say that two such curves are endomorphic.) This problem has led to several applications in elliptic
curve cryptography, both constructive and destructive. The fastest known probabilistic algorithm
for solving this problem is that of Galbraith, Hess, and Smart [12]. Their algorithm is exponential,
with a worst-case (and average-case) running time roughly proportional to ¥/g.

Although quantum computers are known to compromise several cryptographic protocols of an
algebraic nature [9, 13, 30], until now there has been no nontrivial quantum algorithm for construct-
ing isogenies. Consequently, public-key cryptosystems based on isogenies have been proposed from
time to time, beginning with a proposal of Couveignes [7]. More recently, Rostovtsev and Stol-
bunov [25] and Stolbunov [32] proposed refined versions of these cryptosystems with the specific
aim of obtaining cryptographic protocols that resist attacks by quantum computers.

In this work, we give a subexponential-time quantum algorithm for constructing an isogeny
between two given endomorphic elliptic curves, and show that the running time of our algorithm is
bounded above by Lq(%, @) under the Generalized Riemann Hypothesis (GRH). This result raises
serious questions about the viability of isogeny-based cryptosystems in the context of quantum
computers. Indeed, prior implementation results [32, Table 1] indicate that the performance of
isogeny-based cryptosystems is already marginal even when only accounting for previously known
classical attacks. Hence, even though subexponential attacks in general are not necessarily fatal
to a cryptosystem (as demonstrated by the widespread popularity of RSA), the poor performance
of isogeny-based cryptosystems suggests that they may be uncompetitive with other approaches
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such as lattice-based cryptography [21], for which quantum attacks are not known to offer any
advantage.

Our algorithm works by reducing the problem of isogeny construction to the abelian hidden shift
problem (see Section 5). By an algorithm of Kuperberg [18], the abelian hidden shift problem can
be solved using a subexponential number of queries to certain functions. However, prior to our work
there was no known subexponential-time algorithm to evaluate the functions arising in the applica-
tion to isogenies. Our main technical contribution, described in Section 4, is a subexponential-time
(classical) algorithm to compute a certain group action on a set of endomorphic elliptic curves,
thereby giving a subexponential-time reduction to the hidden shift problem.

Kuperberg’s algorithm for the abelian hidden shift problem uses superpolynomial space, so the
same is true of the most straightforward version of our algorithm. However, we also obtain an
algorithm using polynomial space by taking advantage of an alternative approach to the abelian
hidden shift problem introduced by Regev [22]. Note that Regev only explicitly considered the case
of the hidden shift problem in a cyclic group whose order is a power of 2, and even in that case did
not compute the constant in the exponent of the running time. As a side result, we fill both of these
gaps in the Appendix, showing that the hidden shift problem in any finite abelian group A can be

solved in time L A|(%, v/2) by a quantum computer using only polynomial space. Consequently, we

give a polynomial-space quantum algorithm for isogeny construction using time Lq(%, @ ++/2).

The group relevant to isogeny construction is not always cyclic, so this extension is necessary for
our application.

Another contribution of this paper, described in Section 7, is a new (classical) probabilistic
algorithm for evaluating the isogeny corresponding to a given kernel ideal and a given starting
curve, whose running time is provably subexponential under GRH. In contrast to previous such
algorithms, our analysis is conditional solely upon GRH, with no additional assumptions. This
result may be of independent interest in the computational theory of elliptic curves and elliptic
curve cryptography.

2 TIsogenies

Let E and E’ be elliptic curves defined over a field F'. An isogeny ¢: E — E’ is an algebraic
morphism satisfying ¢(oo0) = oo (equivalently, ¢(P + Q) = ¢(P) + ¢(Q) for arbitrary points P,Q €
E). The degree of an isogeny is its degree as an algebraic map. The endomorphism ring End(E) is
the set of isogenies from F(F) to itself, together with the constant homomorphism. This set forms
a ring under pointwise addition and composition.

When F' is a finite field, the rank of End(E) as a Z-module is either 2 or 4. We say E is
supersingular if the rank is 4, and ordinary otherwise. A supersingular curve cannot be isogenous
to an ordinary curve. Supersingular curves are relatively rare, both in mathematics (they have
density zero [28]) and in cryptography (they are less secure, because of the MOV reduction [20]).
Thus, we assume in this paper that all curves are ordinary.

An isogeny ¢: E — E' is separable or inseparable according to whether K(E)/¢*(K(E')) is
separable or inseparable. The inseparable part of any isogeny is easy to classify and evaluate, since
every inseparable isogeny factors through the Frobenius map [31, I11.2.12]. Hence we only consider
separable isogenies.

Over a finite field F,, two elliptic curves E and E’ are isogenous if and only if #E(F,) =
#E'(F,) [33]. We say that two isogenous ordinary elliptic curves over a finite field are endomorphic
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if their endomorphism rings are equal. The endomorphism ring of an ordinary elliptic curve over a
finite field is an imaginary quadratic order O of discriminant A < 0. The set of all isomorphism
classes (over F,) of endomorphic curves with endomorphism ring O, is denoted Ell, ,(OA), where
n is the cardinality of any such curve. We represent elements of Ell, ,(O ) by taking the j-invariant
of any representative curve in the isomorphism class.

An isogeny between endomorphic curves is called a horizontal isogeny. Any separable horizontal
isogeny ¢: E — E’ between curves in Ell; ,,(O) can be specified, up to isomorphism, by giving F
and ker ¢ [31, 111.4.12]. The kernel of an isogeny, in turn, can be represented as an ideal in O [35,
Thm. 4.5]. Denote by ¢y: E — E} the isogeny corresponding to an ideal b (keeping in mind that
¢p is only defined up to isomorphism of Ej). Principal ideals correspond to isomorphisms, so any
other ideal equivalent to b in the ideal class group Cl(OA) of O induces the same isogeny, up to
isomorphism [35, Thm. 3.11]. Hence one obtains a well-defined group action

1 Cl(O,) x Elly ,(04) = Ell; ,(04)
[6] + j(E) = j(Es)

where [b] denotes the ideal class of b. This group action is free and transitive [35, Thm. 4.5], and
thus Ell,,,(Oa) forms a principal homogeneous space over Cl(Oa).

Isogeny graphs under GRH

Our runtime analysis in Section 4 relies on the following result which states, roughly, that random
short products of small primes in C1(O ) yield nearly uniformly random elements of C1(O ), under
GRH.

Theorem 2.1. Let O be an imaginary quadratic order of discriminant A < 0 and conductor c.
Set G = Cl(O,). Let B and x be real numbers satisfying B > 2 and x > (In|A|)P. Let S, be the
multiset AU A~1 where

A={[p] € G:ged(c,p) =1 and N(p) < z is prime}

with N(p) denoting the norm of p. Then, assuming GRH, there exists a positive absolute constant
C > 1, depending only on B, such that for all A, a random walk of length

In |G|
>
b= Clnln |A

in the Cayley graph Cay(G,Sy) from any starting vertex lands in any fixed subset S C G with
probability at least %%

Proof. Apply Corollary 1.3 of [15] with the parameters

— K = the field of fractions of O

- G=Cl(0n)

—q=|A]

Observe that by Remark 1.2(a) of [15], Corollary 1.3 of [15] applies to the ring class group G =
Cl(O,), since ring class groups are quotients of narrow ray class groups [8, p. 160]. By Corollary 1.3

of [15], Theorem 2.1 holds for all sufficiently large values of |A|, i.e., for all but finitely many |A]|.
To prove the theorem for all |A|, simply take a larger (but still finite) value of C.
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Corollary 2.2 Theorem 2.1 holds even if the definition of the set A is changed to
A={[p] € G:ged(mA,p) =1 and N(p) < x is prime}
where m is any integer having at most O(z'/2~¢log|A|) prime divisors.

Proof. The alternative definition of the set A differs from the original definition by no more than
O(z'/?>=¢1og |A|) primes. As indicated in [15, p. 1497], the contribution of these primes can be
absorbed into the error term O(z'/2 log(x) log(xq)), and hence does not affect the conclusion of the
theorem.

3 Isogeny-based cryptosystems

Given j(FE) and j(E'), finding an ideal class [b] € C1(Oa) such that [b] x j(E) = j(E') (i.e., the so-
called quotient of j(E) and j(E')) appears to be a hard problem, with the fastest known algorithm
to date using O(ql/ 4) operations [12]. This fact has led to the design of public-key cryptosystems
and protocols based on the conjectured infeasibility of finding quotients in Ell;,,(Oa).

Isogeny-based cryptosystems first appeared in an unpublished manuscript of Couveignes [7],
where the author proposes homogeneous spaces in general as an alternative to (and generalization
of) discrete logarithms over groups, and cites as a specific example the space Ell; ,(Oa) [7, §5.1].
More recently, the idea of cryptosystems based on homogeneous spaces and isogenies between
endomorphic curves has been revived by Rostovtsev and Stolbunov [25] and Stolbunov [32], with
resistance to quantum attacks being cited as an explicit design goal [25, §11][32, §7.2]. We are not
concerned here with the details of their cryptographic protocols; for our purposes, it suffices to
note that the ability to evaluate quotients in Ell;,,(O) leads to a total break of the protocols (i.e.,
recovery of the private key).

An interesting property of isogeny-based cryptosystems is that they do not require the ability
to evaluate the group action * efficiently on arbitrary inputs. It is enough to sample from random
smooth ideals (for which % can be evaluated efficiently) when performing operations such as key
generation [32, §6.2]. However, in order to attack these cryptosystems using our approach, we do
require the ability to evaluate arbitrary instances of [b] % j(E). We turn to this problem in the next
section.

4 Computing the action of C1(O4) on Ell(O,)

In this section, we describe a new classical (i.e., non-quantum) algorithm to evaluate the group
action [b] * j(E) of Cl(Oa) on Ell,,(Oa), where A < 0 is an imaginary quadratic discriminant.
The algorithm takes as input an ideal class [b] of O and an isomorphism class of elliptic curves
(represented by their j-invariant), and outputs a j-invariant j(E') € Ell;,,(OA).

Throughout this section, I is an ordinary elliptic curve defined over a finite field F, of cardinality
n and endomorphism ring Oa. We are given an ideal class [b] in C1(O4), and we wish to evaluate
[6] * 7(E). We use the notation

Ln(3.¢) = exp[(c+ o(1))VIn N Inln NJ.

For convenience, we denote Lmax{\ALq}(%’ ¢) by L(},¢).



Constructing elliptic curve isogenies in quantum subexponential time 5

Algorithm 1 Computing a factor base
Input: A, ¢, and a parameter z

Output: A factor base F, or nil

1: Set L+ [L(3,2)], k+ [InL], F + 0

2: for all primes p < L do

3:  if kronecker(A,p) =1 then

4: i+ 0
5: repeat
6: 11+ 1
7 g < primeForm(A, p)
8: until ¢ > 2k or g # nil
9: if g # nil then
10: F«+ Fu{g,9°}
11: else
12: Return nil
13: end if
14: end if
15: end for
16: Return F

In Section 4.1 we show that, under GRH, our algorithm has a running time of Lq(%, @), which
is subexponential in the input size. We stress that although similar algorithms have appeared
in several previous works, our algorithm is the first to achieve provably subexponential running
time without appealing to any conditional hypotheses other than GRH. Section 8 discusses the
relationship between our work and earlier work on this problem.

We present our algorithm in several stages.

Computing a factor base. Algorithm 1 computes a factor base for Cl(O,) consisting of all split
primes up to L(%,z). The optimal value of the parameter z is determined in Section 4.1. The
algorithm is based on, and indeed almost identical to, Algorithm 11.1 in [5]. The subroutine
primeForm [5, §3.4] calculates a quadratic form corresponding to a prime ideal of norm p, and
the subroutine kronecker [5, §3.4.3] calculates the Kronecker symbol. The map o denotes complex
conjugation.

Computing a relation. Given an ideal class [b] € Cl(Oa), Algorithm 2 produces a relation vector
z=(21,...,2f) € 71 for [b], with respect to a factor base F = {pi,... ,pr}, satisfying [b] = F7 :=
pit - 'p;f, with the additional property that the L>-norm |z|o, of z is less than O(In|A|) for some
absolute implied constant (cf. Proposition 4.6). It is similar to Algorithm 11.2 in [5], except that we
impose a constraint on |v|, in Step 2 in order to keep |z|o, small, and (for performance reasons)
we use Bernstein’s algorithm instead of trial division to find smooth elements.

We remark that Corollary 9.3.12 of [5] together with the restriction C' > 1 in Theorem 2.1
implies that there exists a value of ¢ satisfying the inequality in Algorithm 2.

Computing j(E'). Algorithm 3 is the main algorithm of this section. It takes as input a discriminant
A <0, an ideal class [b] € C1(Oa), and a j-invariant j(£) € Ell; ,(Oa) where ¢ is relatively prime
to 6, and produces the element j(E') € Ell; ,(Oa) such that [b] x j(E) = j(E’). Eliminating the
primes dividing gn is necessary for the computation of the isogenies in the final step of the algorithm.

Algorithm 3 is correct since the ideals b and F* belong to the same ideal class, and thus act
identically on Ell,,,(Oa).
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Algorithm 2 Computing a relation

Input: A, g, n, z, [b], and an integer t satisfying Ch’l‘fllni(‘oﬁ)‘
rem 2.1/Corollary 2.2

Output: A relation vector z € Z/ such that [b] = [FZ], or nil

1: Using Algorithm 1, compute a factor base. Discard any primes dividing gn to obtain a new factor base F =

{p1.p2,...,ps}

<t < Cln|A| where C is the constant of Theo-

2: Set S« 0, P« {N(p):peF}

3: Set £+ L(3, L)

4: for t =0to £ do

5: Select v € Zé.\mfl uniformly at random subject to the condition that |v|e =t

6:  Calculate the reduced ideal ay in the ideal class [b] - [F"]

7. Set S+ SUN(ay)

8: end for

9: Using Bernstein’s algorithm [2], find a P-smooth element N(ay) € S (if there exists one), or else return nil

10: Find the prime factorization of the integer N(ay)

11: Using Seysen’s algorithm [29, Thm. 3.1] on the prime factorization of N(ay), factor the ideal a, over F to obtain
ay = F2 for some a € Z

12: Retunz=a—v

Algorithm 3 Computing j(E')
Input: A, g, [b], and a j-invariant j(E) € Ellg,»(OA)
Output: The element j(E’) € Elly,»(O) such that [b] * j(E) = j(E")
1: Using Algorithm 2 with any valid choice of ¢, compute a relation z € Zf such that [b] = [F*] = [pi*p32 - - - p;f]
2: Compute a sequence of isogenies (¢1,...,ps) such that the composition ¢.: E — FE. of the sequence has kernel
Elpitp3? ~~~p;f], using the method of [4, §3]
3: Return j(E.)

4.1 Runtime analysis

Here we determine the theoretical running time of Algorithm 3, as well as the optimal value of
the parameter z in Algorithm 1. As is typical for subexponential-time factorization algorithms
involving a factor base, these two quantities depend on each other, and hence both are calculated
simultaneously.

Proposition 4.1 Algorithm 1 takes time L(%, z) and succeeds with probability at least 1/4.

Proof. Since the body of Algorithm 1 is identical to Algorithm 11.1 in [5], the proposition follows
from Lemmas 11.3.1 and 11.3.2 of [5].

Proposition 4.2 The running time of Algorithm 2 is at most L(%,2) + L(3, &), assuming GRH.

Proof. Step 2 of the algorithm requires L(%,z) norm computations. Step 3 is negligible. Step 6
requires C'In |A| multiplications in the class group, each of which requires O((In |A])!*¢) bit oper-
ations [26]. Hence the for loop in Steps 4-8 has running time L(3, &) - O((In |A])?*¢). Bernstein’s
algorithm [2] in Step 9 has a running time of b(log, b)?*¢ where b = L(3, 2) + L(3, ) is the com-
bined size of S and P. Finding the prime factorization in Step 10 costs L(%, z) using trial division,
and Seysen’s algorithm [29, Thm. 3.1] in Step 11 has negligible cost under ERH (and hence GRH).

Accordingly, we find that the running time is

L(3,2) + O((In |A[)***) - L(3, 55) + b(logy b)**° + L(3,2) = L(5,2) + L(3, 33),
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as desired.

Remark 4.3. If we use quantum algorithms, then the performance boost obtained from Bernstein’s
algorithm is not necessary, since quantum computers can factor integers in polynomial time [30].
This allows for some simplification in Algorithm 2 in the quantum setting: there is no need to store
elements of S (since one can test directly for smooth integers via factoring), and the algorithm no
longer requires superpolynomial space.

Proposition 4.4 Under GRH, the probability that a single iteration of the for loop of Algorithm 2

produces an F-smooth ideal ay is at least L(3, —2).

Proof. We adopt the notation used in Theorem 2.1 and Corollary 2.2. Apply Corollary 2.2 with
the values m = qn, B =3, and z = f = L(%,2) > (In|A|)B. Observe that m has at most O(log q)
prime divisors, and

O(log q) < Lo(},2(5 =) < L(3,2(3 —¢)) = a'/*%.

Therefore Corollary 2.2 applies. The ideal class [b] - [FY] is equal to the ideal class obtained by
taking the walk of length ¢ in the Cayley graph Cay(G, S,), having initial vertex [b], and whose
edges correspond to the nonzero coordinates of the vector v. Hence a random choice of vector v
under the constraints of Algorithm 2 yields the same probability distribution as a random walk in
Cay(G, S;) starting from [b].

Let S be the set of reduced ideals in G with L(1,z)-smooth norm. By [5, Lemma 11.4.4],
|S| > \/EL\AI(%, — 1) > V/|A|L(3,—£)- Hence, by Corollary 2.2, the probability that ay lies in

S is at least
1@21._\’|A|.L(1 1).
21G| 2 |G

Finally, Theorem 9.3.11 of [5] states that —V||G?‘ > 77+ Hence the probability that ay is F-smooth
is at least

1 1 1
2 Inl|A| (=%
The result follows.

Corollary 4.5 Under GRH, the probability that Algorithm 2 succeeds is at least 1 — %

Proof. Algorithm 2 loops through ¢ = L(%, é) vectors v, and by Proposition 4.4, each such choice

of v has an independent 1/¢ chance of producing a smooth ideal a,. Therefore the probability of

success is at least
1 1 ! Z >1 1
¢ e’

The following proposition shows that the relation vector z produced by Algorithm 2 is guaran-
teed to have small coefficients.

as desired.

Proposition 4.6 Any vector z output by Algorithm 2 satisfies |z|oo < (C'+ 1)1In |A].
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Proof. Since z = a — v, we have |z|s < |a]oo + |V]oo- But |v|ee < C'ln|A| by construction, and the
norm of a, is less than /|A|/3 [5, Prop. 9.1.7], which implies

laloo < logy v/|A]/3 < logy /|A] < In|A|.
This completes the proof.

Finally, we analyze the running time of Algorithm 3.

Theorem 4.7. Under GRH, Algorithm 8 succeeds with probability at least i(l — %) and runs in
time at most

L(L, L) + max{L(3,32), L(3,2)(In ¢)**}.

Proof. We have shown that Algorithm 1 has running time L(%, z) and success probability at least
1/4, and Algorithm 2 has running time L(%, z) + L(%, é) and success probability at least 1 — %
Assuming that both these algorithms succeed, the computation of the individual isogenies ¢; in
Step 2 of Algorithm 3 proceeds in one of two ways, depending on whether the characteristic of F,
is large [4, §3.1] or small [4, §3.2]. The large characteristic algorithm fails when the characteristic
is small, whereas the small characteristic algorithm succeeds in all situations, but is slightly slower
in large characteristic. For simplicity, we consider only the more general algorithm.

The general algorithm proceeds in two steps. In the first step, we compute the kernel polynomial
of the isogeny. The time to perform one such calculation is O((¢(In ¢) max(¢,1n ¢)?)'*¢) in all cases
([19, Thm. 1] for characteristic > 5 and [10, Thm. 1] for characteristic 2 or 3). In the second
step, we evaluate the isogeny using Vélu’s formulae [34]. This second step has a running time of
O(£?¢(In q)1+¢) [14, p. 214]. Hence the running time of Step 2 is at most

2] (O((£(In ) max(£, 11 9)*)' %) + O(£***(1n g)' ).
By Proposition 4.6, this expression is at most

(C+1)(In ]A\)(max{L(%, 32), L(%, 2)(Ingq)3*e} + L(%, 22)(In ¢)' )
= maX{L(%, 32), L(%, z)(In q)3+5}.

The theorem follows.

S

Corollary 4.8 Under GRH, Algorithm 3 has a worst-case running time of at most Lq(%, 5 )

Proof. Using the inequality |A| < 4¢q, we may rewrite Theorem 4.7 in terms of ¢q. We obtain
L(3, 1) + max{L(3,32), L(3,2)(In q)**°} < Ly(3, £ + 32).

The optimal choice of z = 2—\1/3 yields the running time bound of Lq(%, @)
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5 A quantum algorithm for constructing isogenies

Our quantum algorithm for constructing isogenies uses a reduction to the abelian hidden shift
problem. To define this problem, let A be a known finite abelian group (with the group operation
written multiplicatively) and let fo, f1 : A — S be black-box functions, where S is a known finite
set. We say that fo, f1 hide a shift s € A if fj is injective and fi(z) = fo(zs) (i.e., fi is a shifted
version of fp). The goal of the hidden shift problem is to determine s using queries to such black-box
functions. Note that this problem is equivalent to the hidden subgroup problem in the A-dihedral
group, the nonabelian group A x Zy where Zs acts on A by inversion.

Isogeny construction is easily reduced to the hidden shift problem using the group action defined
in Section 2. Given endomorphic curves Fy, Fq with endomorphism ring O, we define functions
fo, fi : CI(Oa) — Ell;,,(O4) that hide [s] € Cl(O4), where [s] is the ideal class such that [s] x
J(Ep) = j(E1). Specifically, let f.([b]) = [b] * j(E.). Then it is immediate that fo, fi hide [s].

Lemma 5.1. The function fo is injective and f1([b]) = fo([b][s]).

Proof. Since * is a group action,

If there are distinct ideal classes [b], [b/] such that fo([b]) = fo([b']), then [b] x j(Ey) = [b] * j(Ep),
which contradicts the fact that the action is free and transitive [35, Thm. 4.5]. Thus fj is injective.

This reduction allows us to apply quantum algorithms for the hidden shift problem to construct
isogenies. The hidden shift problem can be solved in quantum subexponential time assuming we
can evaluate the group action in subexponential time. The latter is possible due to Algorithm 3.

We consider two different approaches to solving the hidden shift problem in subexponential time
on a quantum computer. The first, due to Kuperberg [18], has a faster running time but requires
superpolynomial space. The second approach generalizes an algorithm of Regev [22]. It uses only
polynomial space, but is slower than Kuperberg’s original algorithm.

Method 1: Kuperberg’s algorithm. Kuperberg’s approach to the abelian hidden shift problem is
based on the idea of performing a Clebsch-Gordan sieve on coset states. The following appears as
Theorem 7.1 of [18].

Theorem 5.1. The abelian hidden shift problem has a [quantum] algorithm with time and query
complezity 2°0V™) | where n is the length of the output, uniformly for all finitely generated abelian
groups.

In our context, 200V7) = 20(VInl4D gince |C1(O4)] = O(VAIn A) [5, Thm. 9.3.11]. Furthermore,
20(vIn|Al) — L(%,0(1)) = L(3,0) regardless of the value of the implied constant in the exponent,
since the exponent on the left has no y/InIn[A] term, whereas L(3,0) does. As mentioned above,

Kuperberg’s algorithm also requires superpolynomial space (specifically, 20(vVn) space).
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Algorithm 4 Isogeny construction
Input: A finite field Fy, a discriminant A < 0, and Weierstrass equations of endomorphic elliptic curves Eg, E1
Output: [s] € C1(Oa) such that [s] * j(Eo) = j(E1)
1: Decompose Cl(Oa) = ([b1]) ® - - - @ ([br]) where [([b;])] = n;
2: Solve the hidden shift problem defined by functions fo, fi : Zn, X+ - +XZn, — Ellg »(O4) satisfying fe(z1,...,zr) =
([61]%* -+ - [bk]™*) % j(E.), giving some (81,...,8k) € Zn, X -+ X Zn,,
3: Output [s] = [b1]"! - - - [bg]%*

Method 2: Regev’s algorithm. Regev [22] showed that a variant of Kuperberg’s sieve leads to a
slightly slower algorithm using only polynomial space. In particular, he proved Theorem 5.2 below
in the case where A is a cyclic group whose order is a power of 2 (without giving an explicit value
for the constant in the exponent). Theorem 5.2 generalizes Regev’s algorithm to arbitrary finite
abelian groups. A detailed proof of Theorem 5.2 appears in the Appendix (see Theorem A.1).

Theorem 5.2. Let A be a finite abelian group and let functions fy, f1 hide some unknown s € A.
Then there is a quantum algorithm that finds s with time and query complexity L|A‘(%, V2) using
space poly(log | Al).

We now return to the original problem of constructing isogenies. Note that to use the hidden
shift approach, the group Cl(O4) must be known. Furthermore, we need to invoke Algorithm 3,
which assumes that A is known. Thus, we assume in this section that the discriminant A is given
as part of the input. This requirement poses no difficulty, since all the cryptosystems described
in Section 3 (namely, those of [7,25,32]) stipulate that O is a maximal order, in which case its
discriminant can be computed easily: simply calculate the number of points #E on the curve (and
hence the trace t(E) := ¢+ 1—#E) using Schoof’s algorithm [27], factor ¢(F)2 — 4¢, and divide this
value by its largest square factor to obtain A. For the sake of completeness, we show in Section 6
how to handle the case of unknown A without increasing the asymptotic running time.

Assuming A is known, we decompose Cl(O4) as a direct sum of cyclic groups, with a known
generator for each, and then solve the hidden shift problem. The overall procedure is described in
Algorithm 4.

Theorem 5.3. Assuming GRH, Algorithm 4 runs in time Ly(3, @) (respectively, Ly(3, @ +v2))
using Theorem 5.1 (respectively, Theorem 5.2) to solve the hidden shift problem.

Proof. We perform Step 1 using [6, Algorithm 10], which determines the structure of an abelian
group given a generating set and a unique representation for the group elements. We represent
the elements uniquely using reduced quadratic forms, and we use the fact that, under ERH (and
hence GRH), the set of ideal classes of norm at most 61n?|A| form a generating set [1, p. 376].
By Theorem 5.1 (resp. Theorem 5.2), Step 2 uses L(3,0(1)) = L(3,0) (resp. L(3,v/2)) evaluations

of the functions f;. By Corollary 4.8, these functions can be evaluated in time Lq(%, @) using

Algorithm 3, assuming GRH. Overall, Step 2 takes time L,(2, @—1—0(1)) = Ly(3, @) if Theorem 5.1

is used, or Lq(%, @ +4/2) if Theorem 5.2 is used. The cost of Step 3 is negligible.

Remark 5.4. Note that the running time of the algorithm is ultimately limited by two factors: the
best known quantum algorithm for the hidden shift problem takes superpolynomial time, and the
best known classical or quantum algorithm for computing the action * is the one described in
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Algorithm 3. Improving only one of these results to take polynomial time would still result in a
superpolynomial-time algorithm.

Remark 5.5. In general, any cryptosystem whose security relies on the difficulty of finding quotients
in a principal homogeneous space can be broken in subexponential time by a quantum computer
using our approach, provided that the group action can be evaluted in subexponential time. How-
ever, in the specific case of isogeny-based cryptosystems, there was no known method to evaluate
the group action in subexponential time on arbitrary inputs prior to this work. Algorithm 3 of
Section 4 fills that gap, allowing isogeny computation to be approached as a hidden shift problem.

6 Constructing isogenies when the endomorphism ring is unknown

Algorithm 4 assumes that for the given elliptic curves Ey, F'1, we know the discriminant A such
that End(Ey) = End(E;) = Oa. If A is unknown, we can compute it in time Lq(%, @) using |3,
Algorithm 1]. However, that algorithm requires extra heuristic assumptions in addition to GRH. In
this section we describe how Algorithm 4 can be modified to work when A is unknown, assuming
only GRH.

Without knowing A, we cannot directly perform computations in Cl(Oa). However, using
Schoof’s algorithm [27] to count the points on Ej, we can determine A = t(Fy)? — 4q. Given

A, we can perform computations in CI(O 4). In particular, we define a group action

31 CLO,) X Elly 1 (Oa) — Elly,(On)
[6] % j(E) = j(Ep).

This action naturally extends the action * to the larger group C1(O 4). Indeed, consider the function
7: Cl(O4) — Cl(O4) defined as follows: for any [b] € C1(O4), let ([b]) be the ideal class of bOA
in C1(OA), where b is any representative of [b] in ClI(O4). The homomorphism 7 is well-defined
and surjective (see [8, Eqn. 7.25] for the case where O, is maximal; the general case is similar),
and the action % factors through , i.e., [b] % j = 7([b]) * j.

Given A, we can compute the action % using Algorithm 3. Indeed, we simply provide A instead
of A as input to Algorithm 3. Steps 1 and 2 of Algorithm 3 are valid for any discriminant, and hence
using A presents no difficulties in these steps. In Step 3, we compute the isogenies ¢; corresponding
to the ideals p; using the method of [4, §3]. We show that this procedure applied to p; € CI(O4)
yields results identical to those obtained from using m(p;) € Cl(OA). As in [4, §3], we write p; =
(¢,c+d-Frob,) and w(p;) = (¢, +d' - Frob,), where Frob, is the Frobenius map and ¢ (resp. ¢') is
the norm of p; (resp. m(p;)). Observe that the two ideals p; and 7 (p;) have the same norm [8, Prop.
7.20], and thus ¢ = ¢’. The values of ¢ and d need not be identical to ¢’ and d’, but fortunately these
values are used only in one place, namely, to disambiguate between p; and p; by computing whether
Froby(P) = (—c¢/d)P for points P € ker ¢; C E[{]. In fact, we claim that the value of —c/d mod ¢
is preserved by 7. To see this, note that the index of p; in m(p;) is equal to f = (A/A)/2 [8, 7.2
and 7.20]. Hence, multiplying a non-integer generator of 7(p;) by f yields a non-integer generator
of p;. Thus we may choose generators such that ¢ = fc¢’ and d = fd'. Moreover, f is nonzero mod
¢ (by Step 3 of Algorithm 1). It follows that —c/d = —fc//fd' = — /d’ mod ¢.

Using A in place of A degrades the performance of the algorithm, since |A| > |A|. However,
|A] is in any case still bounded by O(q), so the running time bound of Lq(3, @) for Algorithm 3
still holds.
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Algorithm 5 Isogeny construction with unknown A

Input: A finite field Fy and Weierstrass equations of endomorphic elliptic curves Eo, E1

Output: [5] € CI(O4) such that [§] % j(Eo) = j(E1)

: Compute A = t(Ep)? — 4q

Decompose CL(O 1) = ([b1]) @ - -- @ ([b;]) where [([b;])] = 7y

Find a generating set for ker(w), the stabilizer of j(Eo) with respect to the action #*

Decompose CI(O 4)/ ker(m) = ([b1] ker(m)) & - - - & ([b] ker(m)) where |([b;] ker(7))| = |{w([b;]))| = n;

Solve the hidden shift problem defined by functions fo, fl  Lny X+ XLy, — Ellg n(O4) satisfying fc(xl, ceyTg) =
([b1]"* - - [bg]™F) % j(E.), giving some (s1,...,8k) € Zn, X -+ X Ln,,

6: Output [§] = [61]°! - - - [bg]®*

We now show how to use % to determine ker(w). If we can determine ker(r), then we can
effectively perform computations in Cl(Oa) = CI(O 4)/ ker(7). Generators for ker(7) can be found
by solving the abelian stabilizer problem defined by the action %. In the abelian stabilizer problem,
we are given an action of an abelian group on a finite set; the goal is to find the stabilizer subgroup
of a given set element. Kitaev [17] showed that this problem can be solved by a quantum computer
in polynomial time. Since ker(7) is the stabilizer of j(FE) for any elliptic curve E with End(E) = O,
we can find a generating set for ker(7) in polynomial time. (Note that the abelian stabilizer problem
is a special case of the well-known abelian hidden subgroup problem; in particular, the subgroup
ker(r) is hidden by the function f : CI(O 4) — Ellg,(OA) defined by f([b]) = [b] * j(E) = j(Es),
meaning that f is constant on cosets of ker(m) in C1(O 4) and distinct on different cosets.)

Putting these ideas together, Algorithm 5 shows how to construct isogenies in subexponential
time even when A is unknown.

Theorem 6.1. Algorithm 5 runs in time Lq(3, @) (resp. Lg(3, @ + V/2)) using Theorem 5.1
(resp. Theorem 5.2).

Proof. Step 1 takes polynomial time using Schoof’s algorithm [27]. Step 2 takes polynomial time
using [6]. Step 3 takes polynomially many queries to f (and polynomially many other opera-
tions) using [17]; each query to f can be implemented in time Lq(%,g) using the modifica-
tion of Algorithm 3 described above. In Step 4, although we have generators for CI(O4) and
ker(m), we cannot directly apply [6] since we do not have unique representatives for the ele-
ments of the quotient CI(O )/ ker(m). However, using the technique of representing cosets by
uniform superpositons [36, Section 4.2], there is a polynomial-time quantum algorithm that pro-
duces [b1],...,[bg] € C1(Oy) such that CI(O )/ ker(w) = ([b1] ker(n)) @ --- @ ([bg] ker(n)), where
[b] ker(m) denotes the coset of kerm in CI(O4) with representative [b]. This effectively gives a
decomposition of the isomorphic group Cl(Oa) = (w([b1])) & --- & (7([bx])), except that we can-
not efficiently compute 7. However, in Step 5 we define the hidden shift problem in terms of the
action %, so the decomposition of CI(O 4)/ker(m) suffices. Since % factors through * and 7 is a
homomorphism, ([by]* ---[bg]**) % j(Ep) = (w([b1])** - - w([bx])**) * j(Ep). Thus, by Lemma 5.1,
fo, f hide [b1]°% - - [bg]®*, which shows that the output is correct. As in Theorem 5.3, Step 5 takes
1 V3

time L,(35,%") using Theorem 5.1 and the modification of Algorithm 3 described above (or time

Lq(3, @ + /2) with Theorem 5.2). Finally, Step 6 is negligible.

Note that the output of Algorithm 5 is an element of CI(O ), not Cl(O4), but it nevertheless
defines an isogeny from Ej to Ej.
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Algorithm 6 Evaluating prime degree isogenies

Input: A discriminant A < 0, an elliptic curve E/Fq with End(E) = Oa, a point P € E(F,) such that [End(E) :
Z[Froby]] and #E(F,) are coprime, and an End(E)-ideal £ = (¢, c + dFrobg) of prime norm ¢ # char(F;) not
dividing the index [End(FE) : Z[Frobg]]

Output: The unique elliptic curve E’ admitting a normalized isogeny ¢: E — E’ with kernel E[£], and the z-
coordinate of ¢(P) for A # —3, —4 or the square (resp. cube) of the z-coordinate otherwise

1: Using Algorithm 2 with any valid choice of ¢, compute a relation z € Z/ such that [£] = [F*] = [p;'p32 ---p;f]
2: Compute a sequence of isogenies (¢, ..., ¢s) such that the composition ¢.: E — E. of the sequence has kernel

Elpitp3? ~~~p;f], using the method of [4, §3]

Using Cornacchia’s algorithm, find a generator a € O of the fractional ideal £/(p7'p32 - - - p;f)

Evaluate ¢.(P) € E.(Fq)

5: Write o = (u + vFrob,)/z, compute the isomorphism 7: E. = E’ with *(wg/) = (u/2)ws., and compute

Q = n(¢c(P))
6: Compute z~* mod #F(Fyn) and R = (27 (u + v Froby))(Q)
7: Put r = z(R)!°21/2 and return (E',r)

7 A classical algorithm for evaluating isogenies

Algorithm 3 from Section 4, which computes the action of Cl(Ox) on (isomorphism classes of)
elliptic curves, extends readily to yield an algorithm for evaluating isogenies in subexponential
time. Since every isogeny factors into a composition of isogenies of prime degree, we focus on the
case of prime degree for simplicity.

Fix an elliptic curve I over F,. For each Elkies prime ¢, there exist up to isomorphism at
most two horizontal isogenies ¢: F — E’ of degree £. As in [4,16], we distinguish between the two
cases by specifying the exact ideal £ C End(E) = O of norm ¢ corresponding to the kernel of ¢.
Likewise, as in [4, 16], to distinguish between two isogenies that are identical up to isomorphism,
we impose the condition

¢*(wer) = wg

where wg denotes the invariant differential of E. The (unique) isogeny of kernel £ satisfying these
conditions is said to be a normalized isogeny.

The procedure for evaluating ¢ given F and £ is outlined in Algorithm 6. This algorithm is
identical to Algorithm 3 except that Steps 3-7 are new. Observe that Step 3 of Algorithm 6 is
identical to Steps 20-23 of [16, Algorithm 3], and Steps 4-7 of Algorithm 6 are identical to Steps 4—
7 of [16, Algorithm 4]. From the runtime analysis in [16, §4.4], we see that the running time of
Steps 3—7 is dominated by the running time of Step 2. Hence Algorithm 6 also has an asymptotic
running time of Lq(%, @) We remark that Algorithm 6 improves upon [16, Algorithm 4] in the
sense that no unproven assumptions (other than GRH) are needed for proving its correctness or its
running time bound.

8 Related work

We conclude by discussing the relationship of our results to prior work.

The question of how efficiently isogenies can be computed was first considered by Galbraith [11].
The central idea of speeding up an isogeny computation by reducing an ideal modulo principal ideals
to obtain a smooth ideal is originally due to Galbraith, Hess, and Smart [12]. Their algorithm re-
mains the best known classical algorithm for computing an isogeny between two given endomorphic
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curves, with an exponential running time of O(pl/ 4) under heuristic assumptions. No attempt is
made in [12] to improve the running time to subexponential, in part because their main application
(extending Weil descent) does not benefit from such optimization.

Broker, Charles, and Lauter [4] use the same central idea of computing modulo ideal classes to
give an algorithm for evaluating isogenies between endomorphic curves, given a kernel ideal. Their
algorithm runs in polynomial time, but only for small discriminants. The algorithm of Jao and
Soukharev [16] may be viewed as a generalization of [4] to large discriminants. It represents the
first (heuristically) subexponential algorithm for evaluating isogenies of a given kernel ideal, with
a heuristic running time of Lq(%, @) We remark that the aforementioned innovation in Galbraith
et al. [12], of calculating modulo ideal classes, has found application in other related problems as
well. For example, the algorithm of Bisson and Sutherland [3], discovered independently, uses the
same idea to compute endomorphism rings in (heuristically) Lq(3, @) time.

We stress that, with the exception of [4], which is restricted in scope to small discriminants, all
the results mentioned above make heuristic assumptions of varying severity [3, §4][11, p. 126][12,
p. 37][16, p. 224] in addition to the Generalized Riemann Hypothesis in the course of proving their
respective runtime claims. Our work is the first to achieve provably subexponential running time
with no heuristic assumptions other than GRH.

In practice, the heuristic algorithms in [3] and [16] run slightly faster than the algorithms
described in Sections 4 and 7, because they make use of an optimized exponent distribution (orig-
inating from [3]) that minimizes the number of large degree isogenies appearing in ¢.. Our work
does not use this optimization, because doing so would reintroduce the need for additional heuristic
assumptions.

Lattice-based approaches

An alternative approach to computing isogenies, given in Couveignes [7, p. 11] and Stolbunov [32, p.
227], is to treat the class group as a Z-module and use lattice basis reduction to compute the group
action. In practice, the lattice-based approach works well for moderate parameter sizes. However,
the method asymptotically requires exponential time (even with known quantum algorithms), and
thus is slower than our approach.

The basic idea of the lattice-based approach is to choose a factor base F of small primes with
the property that F generates C1(O). We then have a surjective homomorphism ¢: Z/ — C1(O,)
where f = |F|. The kernel L of this homomorphism is a lattice in Z/. As a pre-computation, we
find an LLL-reduced basis for L. The group Z//L is then isomorphic to C1(O) via v. Given a
group element g € Zf /L, we can compute the action of g on Ell; ,(OA) as follows. Solve the closest
vector problem (CVP) on L to obtain a short vector ¢’ congruent to g mod L, and then compute
the action of ¢’ on Ell; ,,(OA) directly. The running time of the latter step is directly proportional
to the norm of ¢'.

The proposed method works relatively well in practice, taking 229 seconds to compute a specially
selected 428-bit example on PC hardware [32, Table 1]. Nevertheless, it suffers from drawbacks that
make it unsuitable for theoretical analysis. Under GRH, the dimension f of the lattice must be
6(In |A])? in order to guarantee v is surjective [1]. Even under aggressive heuristic assumptions, a
bound of f ~ In|A]| is still necessary [32, p. 224]. The best available algorithms for solving CVP on
lattices of this size require either exponential time to achieve a polynomial approximation factor, or
polynomial time with an (almost) exponential approximation factor of 2/ f /Inf [24]. Since the
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computation of the action of ¢’ on Ell,,,(OA) takes time proportional to the approximation factor,
either choice yields a slower algorithm than ours.

Note that these approaches apparently do not benefit from known quantum algorithms. Al-
though algorithms for the abelian hidden shift problem can be applied to find short vectors in
lattices [23], the overhead involved means that when the result of Theorem 5.1 (or Theorem 5.2) is
applied, the resulting algorithms are no faster than the best known classical algorithms. Addition-
ally, this approach only applies to the unique shortest vector problem, and is not known to apply
to CVP, which may be even harder.
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A Subexponential-time quantum algorithm for the general abelian hidden
shift problem with polynomial space

Following Kuperberg’s discovery of a subexponential-time quantum algorithm for the hidden shift
problem in any finite abelian group A [18], Regev presented a modification of Kuperberg’s algorithm
that requires only polynomial space, with a slight increase in the running time [24]. However, Regev
only explicitly considered the case A = Zgn, and while he showed that the running time is L 4 (%, c),
he did not determine the value of the constant c.

In this appendix we describe a polynomial-space quantum algorithm for the general abelian
hidden shift problem using time L A|(%, v/2). We use several of the same techniques employed by
Kuperberg [18, Algorithm 5.1 and Thm. 7.1] to go beyond the case A = Zon, adapted to work with
a Regev-style sieve that only uses polynomial space.

Let A = Zn, X -+ X Zp, be a finite abelian group. Consider the hidden shift problem with
hidden shift s = (s1,...,s¢) € A. By Fourier sampling, one (coherent) evaluation of the hiding
functions fy, f1 is sufficient to produce the state

= s (100 e [am (224 220 | ) )
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with a known value x = (z1,...,2¢) €r A (see for example the proof of Theorem 7.1 in [18]), where
x €r A denotes that = occurs uniformly at random from A. For simplicity, we begin by considering
the case where A = Zy is cyclic. Then Fourier sampling produces states

(0} + w= 1))

‘wx> = \/i

where z €g Zy is known and w := e2™/N,

If we could make states |1,) with chosen values of z, then we could determine s. In particular,
the following observation is attributed to Peter Hgyer in [18]:

Lemma A.1. Given one copy each of the states [11), [2), [Y4), ..., [thge-1), where 28 = Q(N), one
can reconstruct s in polynomial time with probability 2(1).

Proof. We have

-1 2k—1

|thyi) = Z w*ly).

Apply the inverse quantum Fourier transform over Zy (which takes time poly(log V)
measure in the computational basis. The Fourier transform of |s), namely \/_1N Zé\[:_olw

?r

<.
Il
o

[17]) and
Y|s), has

overlap squared with this state of 2% /N, which implies the claim.

We aim to produce states of the form |1)9;) using a sieve that combines states to prepare new
ones with more desirable labels. A basic building block is Algorithm 7, which can be used to produce
states with smaller labels.

Lemma A.2. Algorithm 7 runs in time 2¥ poly(log N) and succeeds with probability 2(1) provided
4k < B/B' < 2" /k.

Proof. The running time is dominated by the brute force calculation in Step 6 and the projection
in Step 10, both of which can be performed in time 2* poly(log N).
The probability of aborting in Step 2 for any one x; is 1 — 2—L2 7l

< 2B
=~ "B
bound, the overall probability of aborting in this step is at most kzg' < 1/2. Conditioned on not
aborting in Step 2, z; €g {0,1,...,2B'|B/2B’| — 1}.

Let -3/ = q(2B') + 17 where 0 < 77 < 2B’ (¢ is the measurement outcome, which is

so by the union

independent of j). By the uniformity of the z;s, each r/ = z - 4/ mod 2B’ is uniformly dis-
tributed over {0,1,...,2B" — 1}. Thus the output label is 2’ = = - (y* — y*) = |r* — r*| where
r*,r* €r {0,1,...,2B" — 1}. A simple calculation shows that the distribution of |r* — r*| is
s for A=0
Pr(jr —r*| = 4) = {gg,_A o :
SB2 fOI'AG{l,,2B—1}

Thus the probability that we abort in Steps 12-16 is 1/2, and conditioned on not aborting in these
steps, ' €r {0,1,..., B’ — 1}. Thus the algorithm is correct if it reaches Step 17.

It remains to show that the algorithm succeeds with constant probability. We have already
bounded the probability that we abort in Step 2 and Steps 12-16. Since y = 0 occurs with proba-
bility 2% and at most one state |y”) can be unpaired (and this only happens when v is odd), the
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Algorithm 7 Combining states to give smaller labels

Input: Parameters B, B’ and states [¢z,),. .., [tz,) with known z1,...,zx €r {0,1,..., B — 1}
Output: State |¢p,/) with known z’ €r {0,1,...,B' — 1}

1: if Ji: x; > 2B’|B/2B’| then

2 Abort

3: end if

4: Introduce an ancilla register and compute

1

& X Sl y/B)

y€{0,1}*

. k
where -y =7 | Ty
5: Measure the ancilla register, giving an outcome ¢ and a state

RN s(zyl)| j
Y w ly”)
N

where y', ..., y” # 0F are the k-bit strings such that |(z-’)/2B’'] = ¢

6: Compute y',...,y" by brute force

7: if v =1 then

8:  Abort

9: end if

10: Project onto span{|y'),|y*)} or span{|y®),|y*)} or ... or span{|y?*/2I71) |2*/2)}, giving an outcome

span{ly*), [y*))

11: Let 2’ =z - (y* — y*) where z - y* > z - y* WLOG

12: if 2’ € {1,..., B’ — 1} then

13:  Abort with probability B'/(2B' — z')

14: else if 2’ € {B’,...,2B’ — 1} then

15:  Abort

16: end if

17: Relabel |y*) — |0) and |y*) — |1), giving a state [1,)

projection in Step 10 fails with probability at most v~ 4+ 27% < 1/3 + o(1). We claim that the
probability of aborting in Step 8 (i.e., the probability that v = 1) is also bounded away from 1.
Call a value of ¢ bad if v = 1. Since 0 < z-y < k(B — 1), there are at most kB/2B’ possible values
of ¢, and in particular, there can be at most kB /2B’ bad values of ¢. Since the probability of any
particular bad ¢ is 1/2%, the probability that ¢ is bad is at most kB/B’2¥! < 1/2. This completes
the proof.

We also use a combination procedure that zeros out low-order bits, as described in Algorithm 8.
Note that we only use this in the case where N is a power of 2. We use the notation xS := {zz :
z € S} for any x € Z and S C Z.

Lemma A.3. Algorithm 8 runs in time 2¥ poly(log N) and succeeds with probability (1) provided
k>0 —0+1.

Proof. The proof is similar to that of Lemma A.2. Again the running time is dominated by the
brute force calculation in Step 3 and the projection in Step 7, both of which can be performed in
time 2% poly(log N).
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Algorithm 8 Combining states to cancel low-order bits

Input: Parameters £, ¢’ and states |1z, ), ..., [ts,) with known x1,...,zx €r 2°{0,1,...,N/2° — 1}
Output: State |1,/) with known =’ €r 25/{07 1,..., N/2Z/ -1}
1: Introduce an ancilla register and compute

1 s(z- ’
7o > W@ Vy)lz -y mod 2°)

y€{0,1}*

2: Measure the ancilla register, giving an outcome r and a state
L zu: ws(x'yj) |yj>
Vv =

where y', ...,y # 0* are the k-bit strings such that z - y’ mod 2! =

3: Compute 3, ...,y” by brute force

4: if v =1 then

5:  Abort

6: end if

7: Project onto span{|y'), |y} or span{|y®),|y*)} or ... or span{|y?l"/Z 1) |y2*/2))}  giving an outcome

span{|y”), [y*)}
8: Relabel |y*) — |0) and |y*) — |1), giving a state |1),/) with 2’ =z - (y* — y*) mod N

Algorithm 9 Sieving quantum states
Input: Procedures to prepare states from a set So and to combine k states from S;_1 to make a state from .S; with
probability at least p for each ¢ € {1,...,m}
QOutput: State from S,
1: repeat
2 while for all 7 we have fewer than k states from S; do
3: Make a state from Sy
4: end while
5
6:

Combine k states from some S; to make a state from S;y1 with probability at least p
until there is a state from S,,

We claim that the algorithm is correct if it reaches Step 8. Observe that -3/ mod N = ¢/2¢ +r
where 7 is independent of j. Since y7 # 0, 2 -y mod N e€r 2¢{0,1,...,N/2! — 1}, so ¢ €r
{0,1,...,N/2" —1}, and hence 2’ = (¢* — ¢*)2 mod N eg 2¢{0,1,...,N/2¢ — 1} as required.

The projection in Step 7 fails with probability at most 1/3 + o(1). It remains to show that the
algorithm reaches Step 7 with probability £2(1), i.e., to upper bound the probability that v = 1.
Call a value of r bad if v = 1. There are 2¢ ¢ possible values of r, so in particular there are at most
2¢~¢ had values of r. Since the probability of any particular bad r is 1/2¥, the probability that r
is bad is at most 2¢~¢F <1 /2. This completes the proof.

Algorithm 8 differs from the analogous procedure in [22] in that the latter requires v = O(1),
which is established in the analysis using a second moment argument. The modification of pairing
as many values of y as possible allows us to use a simpler analysis (with essentially the same
performance).

We apply these combination procedures in the generalized sieve of Algorithm 9, which is equiv-
alent to Regev’s “pipeline of routines” [22].
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Lemma A.4. Suppose me=2¥ = o(1). Then Algorithm 9 is correct, succeeds with probability 1—o(1)
using koMM grate preparations and combination operations, and uses space O(mk).

Proof. 1f Algorithm 9 outputs a state from .S, then it is correct. Since the algorithm never stores
more than O(mk) states at a time, it uses space O(mk). It remains to show that the algorithm is
likely to succeed using only k(T°)™ gtate preparations and combination operations.

If we could perform combinations deterministically, we would need

1 state from 5,,,
k states from S,,_1,

k? states from Sy,_o,

k™ states from Sjy.

Since the combinations only succeed with probability p, we lower bound the probability of eventually
producing (2k/p)™~* states from S; for each i € {1,...,m} (so in particular, we produce one state
from S,,). Given (2k/p)™~+! states from S;_ 1, the expected number of successful combinations
is p(2k/p)™~1 /k = 2(2k/p)™ ¢, whereas only (2k/p)™ " successful combinations are needed. By
the Chernoff bound, the probability of having fewer than (2k/p)™~* successful combinations is at
most e P(25/P)" ™" Thus, by the union bound, the probability that the algorithm fails is at most

m—1 _

i=1

so the probability of success is 1 — o(1).
Finally, the number of states from Sy is (2k/p)™ = k(0+oW)™ and the total number of combi-
nations is 7o (2k/p)™ " Jk = k(+o())m,

When using the sieve, we have the freedom to choose the relationship between k and m to
optimize the running time. Suppose that mk = (1 + o(1)) logy N (intuitively, to cancel log, N bits
of the label), and also suppose that the combination operation takes time 2% poly(log N) (as in
Lemma A.2 and Lemma A.3). Then if we take k = ¢y/logy N logylogy N, we find that the overall

running time of Algorithm 9 is 2F2(+e()mlogsk poly(log N) = Ln(3,¢+ o). Choosing ¢ = %

gives the best running time, L N(%, V2).

We now consider how to apply the sieve. To use Lemma A.1, our goal is to prepare states of
the form [|¢;) for j € {0,1,...,|logy N|}. First we show how to prepare the state |11) in time
LN(%, v/2) using Algorithm 7 as the combination procedure in Algorithm 9. For i € {0,1,...,m},
the ith stage of the sieve produces states with labels from S; = {0,1,...,B; — 1}. Lemma A.5
below shows that there is a choice of the B; with By = N, B, = 2, and successive ratios of the
B;s satisfying the conditions of Lemma A.2, such that 2Fk(+e()m — LN(%, V/2). Tt then follows
that Algorithm 9 produces a uniformly random label from S, = {0, 1} with constant probability
in time Ly(3,v/2), and in particular can be used to produce a copy of [¢1) in time Ly(3,v/2).
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Lemma A.5. There is a constant Ny such that for all N > Ny, letting B; = | N/p'| where p =
(N/2)/™ and

logy N/2 logy N
k= |4/1logy Nlogylog, N —|—=2°Y | _ g, /02"
{\/2 082 1V 1082 1082 J mn {k — log, 2/4;-‘ < logy logy N |7

we have By = N, B, = 2, and 4k < B;_1/B; < 2F/k for alli € {1,...,m}.

Proof. Clearly By = N, and the value of p is chosen so that B,, = 2.

For i € {1,...,m}, we have
Bia N/ _ N/pTE
B; [N/pt) T N/pt—1 1—p'/N°

Since p!/N < p™/N = 1/2, we have B;_1/B; < 2p. Then using

k—logg 2k ok
< N 2) log N/2 —
p< (NJ2) s = =
gives B;j_1/B; < 2F/k as claimed.
Similarly, we have
B, N/p™] _ N/p=t -1 :
ZIZL/p JZ /p ' :p_pZ/sz_%‘

B, [N/7] N/
Since

p= (N/2)@("1°g2 logy N/logy N) _ 2@(\/10g2 Nlogglogy N) _ 2@(k)

we have p — % > 4k for sufficiently large V. This completes the proof.

)

If N is odd, then division by 2 is an automorphism of Zy. Thus we can prepare |¢;) by
performing the above sieve under the automorphism x ++ 277z. It follows that the abelian hidden
shift problem in a cyclic group of odd order N can be solved in time L N(%, \/5)

Now suppose that N = 2™ is a power of 2. In this case, we first use Algorithm 8 to cancel
low-order bits and then use Algorithm 7 to cancel high-order bits. Note that if all states |¢,) have
labels z with a common factor—say, 2/|z—then we can view the labels as elements of Zon—; and
apply Algorithm 7 to affect the n — j most significant bits. Specifically, to make the state |1)9;), we
apply Algorithm 9 using Algorithm 8 as the combination procedure that produces states from S;
using states from S;_1 for ¢ € {1,...,mq1 + 1}, and Algorithm 7 (on the n — j most significant bits)
as the combination procedure for i € {my +2,...,my + mgy + 1}, taking

g _ ok=1irg 1, ..., 2n=k=1i _ 11 forie {0,1,...,m}
‘) 29{0,1,...,B; — 1} forie {mi+1,...,mi+mg+1}
where now
By =2V [pmm my = [j/(k—1)]

_ o(n—j—1)/m> _|_n—J
P 27 % " log, 2k
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and again k = L\/% logy N log, logy N |. When making states in S; from states in S;_; for i €

{1,...,m1}, we cancel k — 1 bits with k states, so the condition of Lemma A.3 is satisfied. For
i=m1+1, wecancel j—(k—1)my =j—(k—1)[j/(k—1)] <j—(k—1)[j/(k—1)—1] = k—1 bits,
so again the condition of Lemma A.3 is satisfied. For i € {my +2,...,m1 +mo + 1}, Lemma A.5
implies that the conditions of Lemma A.2 are satisfied provided 2"~7 > Ny. (If 277 < Ny then we
only need to perform the first m1+1 stages of the sieve, producing a state uniformly at random from
Smy+1; in this case [ Sy, +1| = O(1), so O(1) repetitions suffice to produce a copy of |1,;).) Finally,
since (m1 + ma + 1)k = (1 + o(1))n, the discussion following Lemma A.4 shows that Algorithm 9
takes time Ly(%,V/2).

So far we have covered the case where the group is A = Zy with N either odd or a power of
2. Now consider the case of a general finite abelian group A = Zy, X --- X Zy,. By the Chinese
remainder theorem, we can assume without loss of generality that each N; is either odd or a power
of 2. Consider what happens if we apply Algorithm 7 or Algorithm 8 to one component of a product
of cyclic groups. Suppose we combine k states of the form of Eqn. (¢). For each i € {1,...,k}, let
x; € ZN, X - -+ X L, denote the label of the ith state, with z; ; € Zn; for j € {1,...,t}. To address
the £th component of A, the combination procedure prepares a state

T DL e %ZZZW””SJ (S wiy)

e{m}k i=1 j=1

for some function h (a quotient in Algorithm 7 or a remainder in Algorithm 8). For j # ¢, if
z;; = 0 for all i € {1,...,k} then 2/ = Zle zi j(yF —yr) = 0, so components that are initially
zero remain zero. Thus, if we can prepare states |i,) with x, €r Zy, and all other components
zero, we effectively reduce the problem to the cyclic case.

To prepare such states, we use a new combination procedure, Algorithm 10. Without loss of
generality, our goal is to zero out the first ¢ — 1 components, leaving the last one uniformly random
from Zp,. Algorithm 10 is similar to Algorithm 7, viewing the first ¢ — 1 components of the label
Ti € Ly, X -+ X Zp, as the mixed-radix integer

t—1 7j—1
plas) = xij [ Ny
j=1  j'=1

Because we are merely trying to zero out certain components, we no longer require uniformity of
the states output by the sieve, which simplifies the procedure and its analysis.

Lemma A.6. Algorithm 10 runs in time 2 poly(log N) and succeeds with probability £2(1) provided
B/B' < 2k)2k.

Proof. As in Lemma A.2 and Lemma A.3, the running time is dominated by the brute force calcula-
tion in Step 3 and the projection in Step 7, both of which can be performed in time 2 poly(log N).

We claim that the algorithm is correct if it reaches Step 8. Since S°F i1 ,u(ml)yZ = ¢B’' + 1 where
q is independent of j and 0 < r/ < B’, we have

Jj—
Z HN,_ZZ:EZJ Yi HN,_ZM:EZ —y,)—r*—r*<B'

j=11i=1
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Algorithm 10 Combining non-cyclic states to reduce undesired components

Input: Parameters B, B’ and states |¢z,),..., |¢s,) with known z1,...,2, € Zn, X --+ X Zn, satisfying p(x;) €
{0,1,...,B—1} for each i € {1,...,k}, with z,; €r Zn,
Output: State |1),/) with known 2’ € Zn, X --- X Zn, satisfying p(z’) € {0,1,..., B" — 1}, with z} €r Zn,
1: Introduce an ancilla register and compute

> exp (m > %) W[, nlei)yi/B'))

ye{0,1}+ i=1j=1

@‘}_‘
S

2: Measure the ancilla register, giving an outcome ¢ and a state

v k t
% Z exp <27ri Z Z —yi%j% ) |yj>
=1

i=1 j=1

where y!,...,y” # 0F are the k-bit strings such that \_Zle w(zi)yl /B’ = q

3: Compute y*,...,y" by brute force

4: if v =1 then

5. Abort

6: end if

7: Project onto span{|y'),|y*)} or span{|y®),|y*)} or ... or span{|y?*/2 1) [y21*/2))}, giving an outcome

span{|y*), |y")}
8: Relabel |y*) — |0) and |y*) — |1) where Zf:l w(zi)yd > Zle u(zi)y; WLOG, giving a state [i,/) with

zh = S @iyl —yl) for each j € {1,...,t}

as required. Since y* # y* and the z;; are uniformly random, z; = Zle zi+(yF — yr) is uniformly
random as required.

The projection in Step 7 fails with probability at most 1/3 + o(1). We claim the algorithm
reaches Step 7 with probability {2(1). To show this, we need to upper bound the probability that
v = 1. Call a value of ¢ bad if v = 1. Since 0 < Zle w(x;)y; < k(B — 1), there are at most kB/B’
possible values of ¢, and in particular, there can be at most kB/B’ bad values of ¢. Since the
probability of any particular bad ¢ is 1/2¥, the probability that ¢ is bad is at most kB/B'2F < 1/2.

This completes the proof.

To apply Algorithm 10 as the combination procedure for Algorithm 9, we require a straightfor-
ward variant of Lemma A.5, as follows.

Lemma A.7. There is a constant N} such that for all N > N{, letting B; = | N/p'| where p =
NY™ and

log, N log, N
= |/ 3 logy Nlogylogy N = —2 | = 2
& {\/2 082 1V 1082 1082 "7 % T logy 4k © logylogy N /7

we have By = N, By, = 1, and B;_1/B; < 2¥/2k for alli € {1,...,m}.

Proof. Clearly By = N, and the value of p is chosen so that B, = 1.
We have B,,,_1 < N/p™™! = p, and since

k—logg 4k ok

< N loggN — __
p— 2 4k7
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Algorithm 11 Abelian hidden shift problem

Input: Black box for the hidden shift problem in an abelian group A
Output: Hidden shift s

1: Write A =Zn, X --- X Zn, where each N; is either odd or a power of 2

2: for alli e {1,...,t} do

3: if N; is odd then

4: for all j € {0,..., |log, N;|} do

5: Apply Algorithm 9, first using Algorithm 10 to zero out all components except the ith one and then
using Algorithm 7 under the Zny,-automorphism z — 279z to produce a copy of [Y0,....0,2i 0,...,0)) (see
the proof of Theorem A.1 for detailed parameters)

6: end for

7 else

8: Let N; =27

9: for all j € {0,...,n — 1} do

10: Apply Algorithm 9, first using Algorithm 10 to zero out all components except the ith one, then using
Algorithm 8 to make states [v(o,...,0,2,0,...,0)) With 2j|237 and finally using Algorithm 7 to produce a copy
of [¥(o,....0,27 0,...,0)) (see the proof of Theorem A.1 for detailed parameters)

11: end for

12: end if

13: Apply Lemma A.1 with N = N; to give s;

14: end for

15: Output s = (s1,...,5¢)

the claimed inequality holds for ¢ = m.
Forie{l,...,m— 1},

Biy _ IN/P'H _ N/t p
B; [N/pt] T N/pi=1 1—pi/N’

Since p'/N < p™~1/N = 1/p, we have B;_1/B; < p/(1 — 1/p). Then using
p= N@(\/logz logy N/logy N) _ 28(«/1og2 N log, log, N)7

we have p > 2 provided N > N for some constant N}, which implies B;_1/B; < 2k /2k. This
completes the proof.

Combining these ideas, the overall procedure is presented in Algorithm 11.
Theorem A.1. Algorithm 11 runs in time L‘A|(%, V2).

Proof. In Step 1, if the structure of the group is not initially known, it can be determined in
polynomial time using [6]. Given the structure of the group, for each term Zy we can easily factor
N = 2"M where M is odd; then Zy = Zon X Z)p, and we obtain a decomposition of the desired
form.

Now suppose without loss of generality that we are trying to determine s; (i.e., ¢ =t in Step 2).
The main contribution to the running time comes from the sieves in Step 5 (for N; odd) and Step 10
(for N; a power of 2).

First suppose that NV; is odd. It suffices to handle the case where j7 = 0, so we are making the
state |¢(,...0,1))- Then we apply Algorithm 9 with

{r € A: u(z) < B;} for i € {0,1,...,m1}
{reA:p(r)=0and 2y < B;} forie{mi+1,...,ma}

i
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where |
B, — L(N/NJ)/pi] - for i€ {0,1,...,ma}
|Ni/py ™| forie{mi+1,...,mi+ma}
with
logy N/N,
= Hm _ | loga N/Ni.
P1 (N/Nt) mi ’Vk - log2 4k-‘
log Nt/2
P = (/2) e Lc ~log, 2k-‘

and k = L\/ % logy N log, logy N |. We use Algorithm 10 as the combination procedure for the first m

stages of Algorithm 9. By Lemma A.7, the condition of Lemma A.6 is satisfied provided N/N; > N{;
otherwise we can produce a state with a label from S,,, in only O(1) trials. Then we proceed to
apply Algorithm 7 as the combination procedure for the remaining my stages of Algorithm 9. By
Lemma A.5, the conditions of Lemma A.2 are satisfied provided N; > Ny; otherwise, producing
states with labels from S,,, already suffices to produce the desired state with constant probability.
Since (my +ma)k = (1 + o(1))logy N, Step 5 takes time L) 4(3,v/2) (see the discussion following
the proof of Lemma A.4).
Now suppose that Ny = 2™ is a power of 2. Then we apply Algorithm 9 with

{x € A: p(z) < B} fori€{0,1,...,my}
g — {zeA:pux)=0and z; € 2(k=1)if0, 1, ... ,2"_(k_1)i}} forie {my+1,...,m +ma}
' ; forie{m1+m2+1...
: = J R ) ’
{xeA:p(x)=0and 2, € 27{0,1,...,B; — 1}} My +ma + m + 1}
where '
o [(N/Ny)/ph | for i € {0,1,...,m1}
' |27 Jpimm M2 | for i€ {my +mg + 1,...,m1 +mg +mg + 1}
with
[ logy N/N; ]|
— (N/N, 1/mq — 2
pr=(N/N) " k= log, 4k
my = |j/(k—1)]
. Tn—j—11
_ 9(n—j=1)/ms | =J
ps "8 T B " logy 2k

and again k = L\/ % logy N log, logy N |. We use Algorithm 10 as the combination procedure for the

first m, stages, Algorithm 8 for the next mo+1 stages, and Algorithm 7 (on the n—j most significant
bits) for the final mg stages. By Lemma A.7 and Lemma A.5, the conditions of Lemma A.6 and
Lemma A.2 are satisfied, respectively. Since we cancel at most & — 1 bits in each stage that uses
Algorithm 8, the conditions of Lemma A.3 are satisfied for the intermediate stages. Finally, since
(m1 4+ ma+ms+ 1)k = (14 o0(1))logy N, Step 10 takes time L|A‘(%, V2).

The loops in Step 2, Step 4, and Step 9 only introduce polynomial overhead. Step 13 takes
polynomial time and Step 15 is negligible. Thus the overall running time is L A|(%7 V/2) as claimed.



