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Animal studies have demonstrated that restoration of blood
flow to severely ischemic myocardium is a prerequisite for
myocardial salvage. However, it has been shown that the
restoration of blood flow to ischemic myocardium may be
associated with deleterious changes of the myocardium, includ-
ing arrhythmias, enzyme release, and contractile dysfunction.
These changes were considered to be additional injuries to the
myocardium manifested at the time of reperfusion. The reper-
fusion was accompanied by a burst of oxygen free radical gen-
eration and their role as main mediators of the reperfusion
injury have been well accepted. Reactive oxygen species
(ROS) and cellular redox status regulate many important cellu-
lar activities. The role of antioxidant as a therapy for reperfu-
sion injury has thus been tried with mixed and mostly negative
results. Further studies are needed if the antioxidant therapies
for ischemia reperfusion injury were to be effective.
(Chang Gung Med J 2005;28:369-77)
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It is well known that there is a positive correlation
between the levels of dietary saturated fat and the

mortality from coronary heart disease (CHD).(1) An
interesting statistics however, showed that compared
to other developed countries such as the USA,
France has a much lower incidence of CHD despite
the fact that they consume comparable amounts of
dietary fat. This phenomenon, termed the French
Paradox,(2) is thought to result from a higher con-
sumption of red wines by the French.(3,4) Although
some researchers suggest that the beneficial effects
of alcohol are probably due to its hemostatic
activity,(5,6) it is now clear that wine, particularly red
wine, is rich in phenolic compounds, and some of
which have significant cardioprotective activities.(7,8)

The natural phenolic compounds include two
major classes, the flavonoids and non-flavonoids.
The non-flavonoid compounds in wine include stil-
bene, hydroxyl cinnamates and hydroxybenzoates.
The compound that is responsible for possible car-
diovascular benefits is the stilbene resveratrol.(7,9)

Resveratrol (RSV, trans-3, 5, 4’-trihydroxystilbene)
was first isolated from the roots of the oriental herb
and medicinal plant Polygonum Cuspidatum.(10) It
was also synthesized by leaf tissue from grapevine in
response to fungal infection.(11) In a grape, RSV is
found mainly in the skin. Among red wines, RSV
contents varied from 2 to 10 µg/ml, while white
wines had concentrations around 1 to 2 µg/ml.

Many studies have shown that RSV is a potent
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antioxidant.(12-14) It prevents copper ion induced lipid
peroxidation of the low density lipoprotein.(12,15) In
addition to its antioxidant activity, RSV has also
been shown to suppress cell proliferation,(16-18) pro-
mote cell differentiation,(19) induce apoptosis,(20-22)

inhibit inflammation,(13,23) scavange reactive oxygen
species,(24) inhibit platelet aggregation,(25) and have
cancer chemopreventive activity.(26) More recently,
RSV was found to protect endothelial cells from
oxidative damage and ameliorate ischemia-reperfu-
sion injuries in a number of experimental models. In
the present article, we review the roles of ROS in
ischemia-reperfusion injury (IR injury) of the heart
and the effect of some antioxidants in ameriolating
the myocardial IR injury.

Redox imbalance and myocardial IR Injury
Inadequate blood supply to a region of the body

for a certain period followed by the resumption of
blood flow is termed ischemia-reperfusion.
Ischemia-reperfusion results in varying degrees of
tissue damage depending on the duration and extent
of the hypoperfusion.

Myocardial damage induced by ischemia-reper-
fusion is due, at least in part, to the generation of
ROS.(27-31) Evidence supporting ROS as a culprit of
myocardial IR injury came from several direct and
indirect observations. There have been reports show-
ing a close correlation between the production of
ROS and simultaneous consumption of endogenous
antioxidants.(32-35) Indirect evidence consistent with
this view is the cardioprotective effects of free radi-
cal scavengers and antioxidant supplements.(36-38) In
addition, direct genetic manipulations to overexpress
or underexpress genes participating in the antioxi-
dant defense also exhibit profound influence on the
outcome of IR injury.(39-45) It would seem that the link
between ROS and IR injury has appeared to have
been clear-cut, however, contradicting results have
been reported regarding the effects of antioxidants on
IR injury.

Inadequate perfusion of a tissue/organ leads to
oxygen (O2) and adenosine triphosphate (ATP)
depletion, and the accumulation of toxic metabolites.
Another effect of hypoperfusion is the conversion of
xanthin dehydrogenase to xanthin oxidase, which
upon reperfusion, catalyzes the conversion of hypox-
anthine to xanthine with the concomitant production
of ROS.

Fig. 1 Production of an oxygen radical by xanthine oxidase

Oxygen radicals (O•2-) are also produced by the
electron transport system of the mitohondria and
nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase. The highly toxic ROS are con-
verted to hydrogen peroxide (H2O2) by superoxide
dismutase (SOD), and then to H2O by catalase and/or
glutathione oxidase (Fig. 2). However, under
ischemic conditions, the endogenous antioxidant sys-
tem is eroded and the tendency for metal ion assisted
conversion of H2O2 into the destructive hydroxyl rad-
ical (OH•-) is increased.(46)

Fig. 2 ROS metabolism under normal and ischemic condi-
tions

In addition to IR injuries, ROS have also been
implicated in many clinical conditions including ath-
erosclerosis, autoimmune diseases, alcoholic liver
disease, and various inflammation related disorders.
Accumulated evidence has shown that ROS produc-
tion is a key event in reperfusion injury when oxygen
is reintroduced to ischemic tissues.(46-49) ROS, espe-
cially hydroxyl radical, cause the oxidation of pro-
teins, lipids and nucleic acids, resulting in the struc-
tural and functional changes of proteins, disruption
of membrane intergrity, and genetic mutations,
respectively. ROS also cause severe functional and
metabolic disorders, and such effects can be sys-
temic, leading to multi-organ failure. ROS mediated
reperfusion injury has been observed in heart, liver,
lung, kidney and intestine. The IR injury of the heart
is discussed below.

IR injury to vascular endothelium
ROS increase in concentration upon reperfusion
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of the ischemic myocardium.(50) The formation of
ROS exerts oxidative stress to the myocardium that
may cause heart failure. The major ROS that are
responsible for the oxidative stress are superoxide
anion (O•2-), hydroxyl radical (OH•-) and H2O2 In
the vascular walls, the enzyme systems involved in
the production of these radicals including xanthine
oxidase, NADPH oxidase and the endothelial nitric
oxide (NO) synthase (eNOS). Because of its loca-
tion, the endothelium is probably the prime target for
ROS damage.

The endothelium-dependent vasorelaxation
activity is highly sensitive to IR injury. Elevated lev-
els of ROS reduce the bioavailability of NO through
reacting with NO to form peroxynitrite.(51) The
reduced NO availability aggravates local oxidative
stress by the formation of peroxynitrite and a
reduced blood flow due to decreased NO availability.
ROS have also shown to disrupt the integrity of the
endothelial cell junctions leading to increased
endothelial permeability, tissue edema and protein
leakage.(52) Additional endothelial dysfunction related
to ROS include production of proinflammatory cyto-
icines, activation of complement system, decreased
production of prostacyclin (PGI2), increased produc-
tion of platelet activation factor (PAF), and throm-
boxane A2 (TXA2) and increased expression of adhe-
sion molecules.(53)

The decreased PGI2 and increased PAF and
TXA2 productions by endothelium would certainly
compromise the nonthrombogenic nature of the vas-
cular surface. In an in vitro study, we showed that
oxidized low density lipoprotein (oxLDL) dose-
dependently reduced the ability of endothelial cells
(EC) to stabilize platelets from adenosine diphos-
phate-induced (ADP-induced) aggregation and
platelet [Ca+2]i rise (Fig. 3). Treatment of EC with
RSV (from 5 µM to 20 µM) prior to oxLDL expo-
sure effectively preserved the anti-platelet aggrega-
tion activity of the EC. The exposure time required
for the maximal effect of RSV appeared to be short;
30 min incubation and 2 hr incubation were equally
effective.

IR injury to myocardium
In the myocardium, O2 is reduced via (1) the

mitochondrial electron transport system
(cytochrome oxidase system), which reduces 95% of
O2 to H2O by tetravalent reduction without the pro-

duction of ROS,(54) (2) the univalent pathway in
which ROS are produced (Fig. 2). The endogenous
antioxidant systems endow tissue with substantial
ability to balance the ROS effect under normoxic
conditions. However, under ischemia followed by
reperfusion, the antioxidant defense is undermined
and the oxidative damage to the tissue is ensured.

• Metabolic disorder

A shortage of oxygen supply at the mitochon-
dria level results in intracellular acidosis and an
increased concentration of inorganic phosphate due

Fig. 3 RSV attenuates oxLDL-induced reduction of the anti-
platelet aggregation activity of the endothelial cells. EC were
treated with oxLDL as indicated for 1 hr with or without a 30
min prexposure to RSV before they were coincubated with
platelets and ADP (4 µM). Platelet activation was measured
by aggregation (Panel A) and intraplatelet Ca+2 rise (Panel B).
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to the breakdown of high energy phosphates. These
early metabolic changes weaken the contractility of
the ischemic zone.(55) The onset of anaerobic respira-
tion and lactate release is another metabolic alter-
ation which allows production of a small amount of
ATP without the consumption of oxygen. However,
prolonged ischemia results in a decrease in lactate
production because anaerobic glycolysis is inhibited
by further intracellular acidosis, and thus, a further
drop in the intracellular ATP and creatine phosphate
concentrations. At this stage of ischemia, the ionic
conditions of the myocytes are altered, with an
increase of the intracellular Na+1 and a decrease of
K+1 and Mg+2. Sodium ion extrusion through sar-
colemmal Na+1/K+1 - ATPase is inhibited by a lack of
ATP. Na+1 influx leads to Ca+2 influx since the
Na+1/Ca+2 exchanger operates in reverse mode in Na+1

–overloaded, depolarized cells. As a result, ischemic
cells develop cytosolic Ca+2 –overload. A Ca+2 –over-
loaded ischemic cardiomyocyte may develop uncon-
trolled activation of the contractile machinery (con-
tracture) upon reoxygenation.(56,57)

It has been shown that ischemic, Ca+2 –over-
loaded cardiomyocytes develop hypercontracture
immediately upon reperfusion.(56,58) Reperfusion
brings about the rapid recovery of the oxidative ATP
production if the cytochrome oxidase system of the
mitochondria was not damaged during the ischemic
period. ATP provides energy for cardiomyocytes to
recover from cytosolic ion imbalance and reactivate
the contractile function. However, the contractile
activation is usually faster than Ca+2 recovery and it
leads to a Ca+2 - dependent hypercontracture.

ROS may damage sarcoplasmic reticulum caus-
ing Ca+2 release and an increase of the cytosolic Ca+2

levels.(59) This suggests that ROS formation and Ca+2

surge might be involved in the contractile dysfunc-
tion of the ischemic myocardium (Fig. 4).

• Antioxidants and myocardial IR injury

It has become clear that redox balance is impli-
cated in cell metabolism, signal transduction and
gene expression.(60,61) Cellular redox imbalance may
compromise cell function and even cause cell death.
Oxidative damage to protein, lipid and nucleic acid
by ROS is well recognized. These oxidation reac-
tions are believed to be implicated in numerous dis-
eases in many organ systems including the cardio-
vascular system. However, antioxidants have also

been shown to cause apoptosis of both normal and
transformed cells. These observations strongly sug-
gest that normal cellular function requires an optimal
redox environment. The endogenous antioxidants in
an ischemic tissue are believed to be eroded along
the duration of the ischemia. To justify the use of
antioxidants to prevent or ameriolate IR injury of a
tissue or organ, it is necessary to establish a time-
dependent change of the antioxidant profile of the
tissue following ischemia-reperfusion. Animal stud-
ies have consistently shown a depletion of myocar-
dial nonenzymatic antioxidant levels. However,
changes in the enzymatic antioxidants have been
controversial,(34,62-64) a decrease, increase, or maintain-
ing no change in activities have been reported. In
humans, the formation and release of oxidized glu-
tathione (GSSG) in the coronary sinus following
myocardial IR has been reported.(65) The release of

Fig. 4 Possible mechanism underlying ischemia reperfusion
induced myocardial contractile stunning.
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GSSG was positively correlated with the duration of
the ischemic period suggesting the consumption of
glutathione (GSH) during cardiac ischemia. Work by
De Vecchi et al., (1998)(66) showed massive reduction
of glutathione in myocardium during bypass surgery
and such glutathionine loss might be related to left
ventricle dysfunction in ischemic human heart.

• Antioxidants as therapeutics

Numerous studies have evaluated the effects of
antioxidants on IR injury in animals or in patients
undergoing bypass surgery. Treatment of intestinal
IR injury by antioxidants (Vitamins C and E, manitol
and methyl prednisolone) in an animal model has
been reported.(67) They showed that treatment with
vit. C and manitol attenuated the IR injury, while
treatment with vit. E and methyl prednisolone had no
significant effect. Vitamins C, E, and thiol com-
pounds, either alone or in combinations, have been
used to evaluate the therapeutic effect on IR injury in
patients undergoing cardiopulmonary bypass.(68-71)

The results were mixed, as follows: protection by a
high dose of vit. C (250 mg/kg bw) was observed in
one study,(71) other studies showed that vitamin sup-
plement was correlated with reduction in IR injury-
related biochemical parameters, however, they were
not consistently correlated with a more functional
recovery, or clinical improvement.(68-70)

• Resveratrol ameriolates cardiac IR injury-Animal

study

The effects of RSV administration on IR-
induced cardiac injury have been studied in Sprague-
Dawley rats subjected to myocardial ischemia by a
temporary occlusion of the left main coronary
artery.(72) In studies by Hung and colleagues, animals
were infused with a boulus of RSV, at the desired
doses, from the jugular vein 15 min before coronary
occlusion.(14) Adminstration of RSV was found to
have no effect on the hemodynamic parameters of
the sham operated animals.(15,73,74) Occlusion of the
coronary artery induced severe ventricular arrhyth-
mias in animals of the vehicle group, which began
after 6-7 min of occlusion, peaked after 8-12 min,
and usually subsided at approximately 15 min. In the
vehicle group, 100% of the animals developed ven-
tricular tarchycardia (VT) and from 63% to 73% of
the animals developed ventricular fibrillation (VF).
Administration of RSV at 2.3x10-5 g/kg had no effect

on ischemia-induced arrhythmias, or on mortality.(14)

A 5-min period of left main coronary artery
occlusion, followed by 30-min reperfusion induced
rhythm disturbances, and the severity of the distur-
bances is positively correlated with the ischemic
duration. IR protocol-induced arrhythmias have been
reported as relative to superoxide anion produc-
tion.(75,76) Administration of RSV at 15 min before IR,
effectively reduced IR induced VT, VF, and the mor-
tality rate of the experimental animals.(14)

In the same series of studies, Hung and col-
leagues evaluated myocardial damage by measuring
plasma lactate dehydrogenase (LDH) level and the
infarct size of the occluded zone. The left main coro-
nary artery was occluded for 5-min followed by a 30-
min reperfusion period. Blood samples were taken at
the end of the reperfusion. They found that RSV pre-
treatment reduced plasma LDH activity by more than
50% compared to the control animals.

To evaluate the effect of RSV on the infarct size,
the left main coronary artery was occluded for 1 hr
and reperfused for 3 hrs, or occluded for 4 hrs with-
out reperfusion, and the infarct area was identified by
staining with triphenyl tetrazolium chloride and
–Evans blue.(77) Hung and colleagues found that RSV
pretreatment reduced the infarct size, again, by more
than 50%(74) compared to the control animals. These
results clearly indicated that RSV possesses cardio-
protective effect against IR induced injury of the
myocardium.

Conclusions
Despite the fact that the in vivo measurement of

ROS is rather difficult, the elevated production of
ROS during IR is generally believed to be associated
with myocardial tissue damage. Multiple enzymes
and cell types are responsible for the accelerated
ROS formation. However, because cells contain
numerous antioxidant activities, it is therefore,
uncertain whether an increase in ROS production is
an accurate indication of oxidative damage. In addi-
tion, although oxidative damage of protein, lipids
and nucleic acid by ROS have been well established,
it has not been clear whether ROS produced at the
time of reperfusion directly damage the myocardium. 

The incomplete understanding of the roles of
ROS in the IR injury plus the seemingly inconsistent
results regarding the antioxidant effects in IR have
hampered their therapeutic applications. Although
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vit. C, vit. E, and several thio compounds have been
evaluated for alleviating IR injury in patients under-
going cardiopulmonary bypass, either alone or in
combinations,(68-71) their beneficial effects still await
further establishement.

Reports by Hung and colleagues(14,15,73,74) clearly
demonstrated that RSV administered 15 min before
occlusion effectively alleviates ischemia-reperfusion
induced rhythm disturbances and mortality. They
found that the protective effects of RSV against ven-
tricular arrhymia and mortality rate are NO-indepen-
dent, while the protective effect against cardiomy-
ocyte damage (LDTT and creatine kinase release)
and infarction size are NO-dependent.(74) However,
the mechanism underlying the protective effects of
RSV against ischemia-reperfusion injury to date has
not been fully elucidated, or their possible cytotoxic
effect been evaluated. In addition, the possible exis-
tence of interspecies heterogeneity of the response to
IR between human and rat also needs to be clarified.
Before we can address all these issues, RSV and its
derivatives will not be able to find their way into
clinical applications in order to prevent or treat
myocardial IR injury.
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