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Abstract—This work is devoted to the study of dispersed
spectrum cognitive radio (CR) systems over independent and
non-identically distributed generalized fading channels. More
specifically, this is performed in terms of the high-order statistics
of the channel capacity overη−µ fading channels. A generic
analytic expression is derived for the correspondingn-th statisti-
cal moment, which is subsequently employed for deducing exact
closed-form expressions for the first four moments. Using these
expressions, important statistical metrics such as the amount of
dispersion, amount of fading, skewness and kurtosis are derived
in closed form and can be efficiently used in providing insights
on the performance of dispersed CR systems. The obtained
numerical results reveal interesting outcomes that could be useful
for the channel selection, either for sharing or aggregation in
heterogeneous networks which is the core structure of future
wireless communication systems.

Index Terms—Cognitive radio, dispersed spectrum, channel
capacity, high-order statistics, amount of dispersion.

I. I NTRODUCTION

COGNITIVE radio (CR) is becoming an emerging tech-
nology for the next generation of wireless communica-

tion systems, i.e. 5th Generation (5G). CR can be efficiently
implemented in heterogeneous networks (HetNets), wherein
channels can be allocated from heterogeneous bands (i.e.
non-adjacent bands) and their sharing or aggregation feature
among several basestations and multiple users. These new
cognitive-wise technologies deal with the dispersed nature of
the heterogeneous spectrum bands. Thus, adispersed spectrum
CR over generalized fading channels can be assumed in order
to study the performance of the next generation wireless
communication systems with CR capabilities (see [1] and the
references therein).
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Ergodic capacity, one of the most important performance
metrics of wireless communication systems, has been exten-
sively studied in the technical literature (see [2] and references
therein). Furthermore, higher-order statistics (HOS) is auseful
tool for calibrating the maximum dispersion in the channel ca-
pacity [3]. Considering that this dispersion is heavily affected
by the heterogeneity that inherently exists in contemporary
wireless communication networks, HOS can effectively leadto
reliable communication designs. It is notable that HOS of the
channel capacity can provide critical information on the dis-
persion of capacity around a signal-to-noise ratio (SNR) value
and thus insightful gains can be extracted for the transmission
throughput reliability [3], [4]. The latter is very important in a
new feature of 3GPP LTE-Advanced communication systems,
calledcarrier aggregation, where multiple component carriers
aggregated at the receiver side of a user equipment to get a
wider bandwidth and, hence, increased data rate [5].

Prior works on the HOS of the capacity over generalized
fading channels have been focused on the diversity receivers.
In particular, Yilmaz and Alouini studied in [3] the HOS of the
channel capacity for a receiver equipped with a maximal ratio
combiner (MRC) over correlated generalized fading channels,
where the HOS expressions were given in integral form. In [6],
Sagiaset al.studied the HOS of the capacity for several diver-
sity receivers over independent and non-identically distributed
(i.n.i.d.) Nakagami-m fading channels and also proposed a
new performance metric, calledfading figure(FF), which -
similarly with the amount of fading(AoF )- is based on the
variance of the capacity.

The first published work with performance analysis of ad
hoc dispersed spectrum over Nakagami-m fading channels
was presented in [1]. In this important paper, Qaraqeet al.
studied the average symbol error probability of dispersed
spectrum CR systems, for both ucorrelated/correlated fading
environment. Moreover, in [1] the effective transport capacity
of ad hoc dispersed spectrum CR networks in 3D node dis-
tribution was investigated. Former works in this topic focused
mostly on time delay estimation issues for localization and
positioning applications [7]. To the best of our knowledge,
the performance of dispersed spectrum CR systems have not
been studied considering the HOS of the channel capacity over
generalized fading envioronment.

The main of contribution of this paper is based on the
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analysis of HOS of the channel capacity. The study of HOS
has attracted a lot of attention in wireless communications;
however, most contributions are devoted to the analysis of the
level crossing rate and average fade durations. On the contrary,
the HOS of the capacity has been addressed in very few pub-
lished works. Thus, the proposed contribution is meaningful,
since it addresses the HOS of the channel capacity of dispersed
spectrum CR systems over generalized fading channels. The
derived results are novel and also are given in closed form for
general fading channels as opposed to previously published
works. Specifically, in this paper, a dispersed spectrum CR
system with generalized fading channels is considered and the
expressions for the HOS of the channel capacity are presented
in closed form. Theη − µ fading channel model is assumed
for the dispersed spectrum CR, as a generalized fading model,
which incorporates many special cases like the Nakagami−q,
Nakagami−m, Rayleigh and one-sided Gaussian distribution.
Useful statistical metrics such asFF , amount of dispersion
(AoD), skewness(S) and kurtosis (K) are analytically pre-
sented. Having defined the channel capacity of our model, we
obtain the HOS expressions in closed form, which are useful
in analyzing statistical metrics such as theAoD [3], [4]. In
addition to theAoD, that measures the maximum dispersion
of the channel capacity in CR systems, we derive in closed
form theFF , S andK, highlighting further the behavior of the
dispersed spectrum CR. All the aforementioned performance
metrics can be efficiently used for the best channel selection in
heterogeneous wireless networks with spectrum sharing and/or
aggregation capabilities.

The remainder of this paper is organized as follows: Section
II describes the considered system and channel model. Section
III is devoted to the derivation of the HOS of the channel
capacity overη−µ fading channels for the dispersed spectrum
cognitive radio. The respective numerical results and analysis
are provided in Section IV while concluding remarks are
finally given in Section V.

II. SYSTEM AND CHANNEL MODEL

We consider a dispersed spectrum CR which is similar to the
ones studied in [1], [7], [8]. Secondary users (SUs) perform
spectrum sensing to identify which bands are available and
thus to exploit the benefits of frequency diversity by combining
the instantaneous SNRs,γis, from each diversity band. By
assumingL available frequency diversity bands, the end-to-
end SNR at the output of each SU’s receiver is given by

γend =

L∑

i=1

γi. (1)

Each frequency diversity channel is assumed to be slow
and frequency non-selective and subject to i.n.i.d.η−µ fading.
The η−µ distribution is a generalized fading model that has
been shown to provide accurate characterization ofsmall-
scale fading in non-line-of-sight (NLOS) communications.
It was presented for first time by the pioneering work of
Yacoub in [9] and shown thatη−µ is a flexible fading
model including as special cases the Nakagami−q (Hoyt),
Nakagami−m, Rayleigh and one-sided Gaussian distributions.

The η−µ fading model is expressed by two parameters,η
andµ and is valid for two different formats, namely,Format-
1 and Format-2. In the former, theη parameter represents
the ratio of the powers between the multipath waves in the
in-phase and quadrature components, whereas in the latter
it represents the correlation coefficient between the scattered
wave in-phase and quadrature components of each cluster
of multipath. Furthermore, theµ parameter denotes, in both
formats, the inverse of the normalized variance and is related
to the respective number of multipath clusters [9]–[11].

The probability density function (PDF) of the instantaneous
SNR in η−µ fading channels is given by [12, Eq. (3)]

fγη−µ
(γ) =

2
√
πµµ+ 1

2 hµ

Γ(µ)Hµ− 1
2

γµ− 1
2

γµ+ 1
2

e−2µh γ
γ Iµ− 1

2

(
2µHγ

γ

)

,

(2)
whereγ and γ denotes the instantaneous and average SNR,
respectively,Γ(x) is the Gamma function andIn(x) is the
modified Bessel function of the first kind with argumentx
and ordern. The parametersh andH are defined as follows

hF−1 =
(2 + η−1 + η)

4
, (3)

HF−1 =
(η−1 − η)

4
(4)

with 0 < η < ∞ for Format-1 and

hF−2 =
1

(1− η2)
, (5)

HF−2 =
η

(1− η2)
(6)

with −1 < η < 1 for Format-2.
Furthermore,

µ =

[
E(R2)

]2

2Var(R2)

[

1 +
H

h

]

, (7)

for both formats withE(.) and Var(.) denoting statistical
expectation and variance of the envelopeR, respectively [9].

With the aid of the finite series representation for integer
values ofµ [13, eq. (8.467)],In(x) in (2) can be equivalently
re-written as [11], [14]–[17]

Iµ− 1
2

(
2µHγ

γ

)

=

µ−1
∑

l=0

(−1)lΓ(µ+ l)γl+ 1
2 e

2µHγ
γ

l!
√
πΓ(µ− l)(4µHγ)l+

1
2

+

µ−1
∑

l=0

(−1)µΓ(µ+ l)γl+ 1
2 e−

2µHγ
γ

l!
√
πΓ(µ− l)(4µHγ)l+

1
2

.

(8)

By substituting (8) into (2) and carrying out basic algebraic
manipulations, it follows that

fγη−µ
(γ) =

µ−1
∑

k=0

(µ)kµ
µ−khµγµ−k−1

k!Hµ+kΓ(µ− k)22k γµ−k

×
[

(−1)ke−2µ(h−H) γ
γ + (−1)µe−2µ(h+H) γ

γ

]

,

(9)

which is valid forµ ∈ N.
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III. H IGHER-ORDER STATISTICS OF THECHANNEL

CAPACITY

The average spectral efficiency (i.e., the average ergodic
capacity normalized to the available bandwidthB) can be
expressed as [3], [6]

E (Sn) = E[logn2 (1 + γend)], (10)

where n ∈ N denotes the order of the statistics, which is
particularly useful in quantifying the maximum dispersionof
the channel capacity [2]. By substituting (1) into (10), the
following L−fold integral is readily deduced,

E(Sn) =

∫
∞

0

∫
∞

0

· · ·
∫

∞

0

logn2

(

1 +
∑L

i=1
γi

)

× f (γ1, γ2, · · · , γL) dγ1dγ2 · · · dγL,
(11)

wheref(γ1, γ2, · · · , γL) denotes the joint PDF of the instanta-
neous SNRs. Evaluating (11) in closed form is, unfortunately,
intractable even for the case thatγis are statistically indepen-
dent. In addition, the involved complexity increases signifi-
cantly as the number of the aggregated channel bandwidths
increase. Motivated by this, we attempt to derive an analytic
expression for the higher-order capacity statistics over i.n.i.d
η−µ fading channels.

A. Ergodic Capacity for i.n.i.d. fading

For i.n.i.d η−µ fading channels, the PDF of theγend can
be expressed as [18, Eq. (3)]

fγend
(γ) =

L∑

k=1

µk∑

j=1

Ckj

Γ(j)
γj−1e−Akγ

+

L∑

k=1

µk∑

j=1

Dkj

Γ(j)
γj−1e−Bkγ ,

(12)

whereCkj , Dkj , are the residues of the moment generating
function,Mγend

(s), to the poles−Ak and−Bk, respectively,
with multiplicity j. Based on this, the residuesCkj , Dkj in
(12) are given by [18, Eqs. (4) and (5)] as

Ckj =
1

(µk − j)!

L∏

i=1

(
2µi

γ̄i

)2µi

hµi

×











L∏

i=1
i6=k

1
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



[
L∏
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1

(s+Bi)µi

]






µk−j
∣
∣
∣
∣
s=−Ak

(13)

and

Dkj =
1

(µk − j)!

L∏

i=1

(
2µi

γ̄i

)2µi

hµi

×






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L∏
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1

(s+Ai)µi
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

L∏
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i6=k

1

(s+Bi)µi











µk−j
∣
∣
∣
∣
s=−Bk

,

(14)

whereAi = 2µi(hi −Hi)/γ̄i andBi = 2µi(hi +Hi)/γ̄i.

To this effect, the average spectral efficiency, for the specific
case thatµ is an arbitrary integer, can be given by [18, eq.
(11)]

E(S) =
1

ln 2

L∑

k=1

µk∑

j=1

Ckj

Γ(j)
Ij(Ak)+

1

ln 2

L∑

k=1

µk∑

j=1

Dkj

Γ(j)
Ij(Bk),

(15)
where

In(x) = Γ(n)ex
n∑

j=1

Γ(−n+ j, x)

xj
(16)

andΓ(a, x) is the upper incomplete gamma function [13].

B. Higher-Order Statistics

With the aid of (11) and by employing the PDF for MRC
in (12), one obtains:

E(Sn) =
1

lnn 2

∫
∞

0

lnn(1 + γ)

×





L∑

k=1

µk∑

j=1

Ckj

Γ(j)
γj−1e−Akγ +

L∑

k=1

µk∑

j=1

Dkj

Γ(j)
γj−1e−Bkγ



 dγ,

(20)

which upon expanding (20), it can be equivalently re-written
as

E(Sn) =
1

lnn 2

L∑

k=1

µk∑

j=1

Ckj

Γ(j)

∫
∞

0

lnn(1 + γ)

γ1−jeAkγ
dγ

+
1

lnn 2

L∑

k=1

µk∑

j=1

Dkj

Γ(j)

∫
∞

0

lnn(1 + γ)

γ1−jeBkγ
dγ.

(21)

Importantly, the above integrals can be expressed in closed-
form with the aid of [19, eqs. (33) and (37)]. To this end, by
performing the necessary change of variables, substituting in
(22) and carrying out some algebraic manipulations yields

E(Sn) =
1

lnn 2

L∑

k=1

µk∑

j=1

Ckj

Γ(j)
Jj,n

(

1,
1

Ak

, 1

)

+
1

lnn 2

L∑

k=1

µk∑

j=1

Dkj

Γ(j)
Jj,n

(

1,
1

Bk

, 1

)

,

(22)

where

Jj,n

(

1,
1

Ak

, 1

)

=n!eAk

j−1
∑

l=0

(−1)j−l−1

A1+l
k

(
j − 1

l

)

×Gn+2,0
n+1,n+2










Ak

∣
∣
∣
∣
∣

n+11′s
︷ ︸︸ ︷

1, 1, . . . , 1

0, 0, . . . , 0,
︸ ︷︷ ︸

n+1 0′s

1+l










(23)
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and

Jj,n

(

1,
1

Bk

, 1

)

=n!eBk

j−1
∑

l=0

(−1)j−l−1

B1+l
k

(
j − 1

l

)

×Gn+2,0
n+1,n+2










Bk

∣
∣
∣
∣
∣

n+1 1′s
︷ ︸︸ ︷

1, 1, . . . , 1

0, 0, . . . , 0,
︸ ︷︷ ︸

n+1 0′s

1+l










(24)

with G(.) denoting the MeijerG−function [13, eq. (9.30)].
Therefore, by substituting (23) and (24) into (22), the follow-
ing closed-form expression is deduced

E(Sn) =

L∑

k=1

µk∑

j=1

j−1
∑

l=0

(−1)j−l−1Ckjn!e
Ak

lnn(2)Γ(j)A1+l
k

(
j − 1

l

)

×Gn+2,0
n+1,n+2










Ak

∣
∣
∣
∣
∣

n+1 1′s

︷ ︸︸ ︷

1, 1, . . . , 1

0, 0, . . . , 0,
︸ ︷︷ ︸

n+10′s

1+l










+
L∑

k=1

µk∑

j=1

j−1
∑

l=0

(−1)j−l−1Dkjn!e
Bk

lnn(2)Γ(j)B1+l
k

(
j − 1

l

)

×Gn+2,0
n+1,n+2










Bk

∣
∣
∣
∣
∣

n+1 1′s
︷ ︸︸ ︷

1, 1, . . . , 1

0, 0, . . . , 0,
︸ ︷︷ ︸

n+10′s

1+l










.

(25)

For the special case ofn = 1, it readily follows that:

E(S) =

L∑

k=1

µk∑

j=1

j−1
∑

l=0

(−1)j−l−1

ln(2)Γ(j)

(
j − 1

l

)

×




Ckje

Ak

A1+l
k

G3,0
2,3



Ak

∣
∣
∣
∣
∣

1,1

0,0,1+l





+
Dkje

Bk

B1+l
k

G3,0
2,3



Bk

∣
∣
∣
∣
∣

1,1

0,0,1+l







 .

(26)

It is noted here that according to [13, eq. (9.31.1)], the
Meijer G−function in (26) can be alternatively expressed as

G3,0
2,3

(

Ak

∣
∣
∣
∣

1,1

0,0,1

)

= G2,0
1,2

(

Ak

∣
∣
∣
∣

1

0,0

)

= Γ (0, Ak) . (27)

As a result, (26) can be also expressed as

E(S) =

L∑

k=1

µk∑

j=1

j−1
∑

l=0

(−1)j−k−1

ln(2)Γ(j)

(
j − 1

l

)

×
[

Ckje
Ak

A1+l
k

Γ (0, Ak) +
Dkje

Bk

B1+l
k

Γ (0, Bk)

]

,

(28)

which is a simplified algebraic representation. To this effect,
by substituting the above expression into (26), one obtainsthe

analytic expression in (15). Likewise, the second, third and
fourth moment are readily deduced yielding:

E(S2) =

L∑

k=1

µk∑

j=1

j−1
∑

l=0

2(−1)j−l−1Ckje
Ak

ln2(2)Γ(j)A1+l
k
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j − 1

l

)
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Ak

∣
∣
∣
∣
∣
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



+
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µk∑
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∑
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l
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
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(29)

E(S3) =
L∑

k=1

µk∑

j=1
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∑

l=0
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Ak
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k
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l

)
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∣
∣
∣
∣
∣
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



+
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k=1

µk∑

j=1

j−1
∑

l=0

6(−1)j−l−1Dkje
Bk

ln3(2)Γ(j)B1+l
k

(
j − 1

l

)

×G5,0
4,5



Bk

∣
∣
∣
∣
∣

1,1,1,1

0,0,0,0,1+l



 ,

(30)

and

E(S4) =
L∑

k=1

µk∑

j=1

j−1
∑

l=0

24(−1)j−l−1Ckje
Ak

ln4(2)Γ(j)A1+l
k

(
j − 1

l

)

×G6,0
5,6



Ak

∣
∣
∣
∣
∣

1,1,1,1,1

0,0,0,0,0,1+l





+

L∑

k=1

µk∑

j=1

j−1
∑

l=0

24(−1)j−l−1Dkje
Bk

ln4(2)Γ(j)B1+l
k

(
j − 1

l

)

×G6,0
5,6



Bk

∣
∣
∣
∣
∣

1,1,1,1,1

0,0,0,0,0,1+l



 ,

(31)

respectively. In what follows, the above analytic expressions
are analyzed in determining useful statistical measures.

C. Performance Metrics

Using (25), new analytic expressions can be straightfor-
wardly deduced for important system’s performance metrics.
To this end, the first four statistical moments are derived,
which are respectively presented at the top of this page.
Based on these expressions, the following measures, can be
introduced as

• Variance of the channel capacity, (Var):
Var = E(S2)− (E(S))2, (32)

• Fading Figure, (FF ):

FF =
E(S2)

(E(S))2
− 1, (33)
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Fig. 1. Average spectral efficiency versus average SNR in thefirst branch for
different values ofL and unequal SNRs and fading parameters (γ2 = 2dB,
γ
3

= 4dB, µ1 = 1.0, µ2 = 2.0, µ3 = 3.0 and η1 = 2.3, η2 = 1.2,
η3 = 0.4)
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Fig. 2. Fading Figure versus average SNR in the first branch for different
values ofL and unequal SNR and fading parameters (γ2 = γ3 = 1dB,
µ1 = 1.0, µ2 = 2.0, µ3 = 3.0 andη1 = 2.3, η2 = 1.2, η3 = 0.4).

• Amount of Dispersion, (AoD):

AoD =
E(S2)

E(S)
− E(S), (34)

• Skewness, (S):

S =
E(S3)− (E(S))3

√

{E(S2)]− (E(S))2}3
, (35)

• Kurtosis, (K):

K =
E(S4)− (E(S))4

{E(S2)− (E(S))2}2
. (36)

Notably, by substituting (26), (29), (30) and (31) into the above
metrics accordingly, exact closed-form expressions are readily
deduced for the above performance measures.
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Fig. 3. Amount of dispersion versus average SNR in the first branch for
different values ofL and unequal SNR and fading parameters(γ2 = γ3 =

1dB, µ1 = 1.0, µ2 = 2.0, µ3 = 3.0 andη1 = 2.3, η2 = 1.2, η3 = 0.4).

IV. N UMERICAL RESULTS AN DISCUSSION

The proposed closed-form expressions are validated via
Monte Carlo simulations, where an excellent match between
analytical and simulation results is shown. This is performed
by means of the average spectral efficiency, the fading figure,
the AoD, theS and theK for different number of receiving
paths. Specifically, Fig. 1 demonstrates the average spectral
efficiency as a function of the average SNR at the first branch
for the case of one, two and three branches. The average
SNR in the other two branches are arbitrarily selected as
γ2 = 2 dB and γ3 = 4 dB whereas the corresponding
fading parameters areµ1 = 1.0, µ2 = 2.0, µ3 = 3.0 and
η1 = 2.3, η2 = 1.2, η3 = 0.4, respectively1. One can notice
that the average spectral efficiency increases significantly as
γ1 increases while it is shown that the effect and usefulness of
frequency diversity of dispersed spectrum CR is particularly
critical at lower SNR values. For example, forγ1 = 5 dB,
there is 15% difference between one and two branches and
about 45% difference between one and three branches.

Figs. 2 and 3 illustrate the fading figure and the amount of
dispersion as a function of the average SNR in the first branch.
Regarding the former, one can observe a rapid reduction as the
value of SNR and/orL increase. Indicatively, the difference
betweenγ1 = 2dB andγ1 = 10dB is about60% for L = 1.
Likewise, for γ1 = 1 dB, the fading figure for the case of
L = 1 is over 75% larger compared to the case ofL = 2. The
same also holds inversely for the amount of dispersion which
appears to increase for low and moderate SNR values, contrary
to the high SNR regime where it begins to decrease both for
one or two antenna receivers at the UE. Also, forL = 1
the AoD reaches its highest value around 5 dB whereas for
L = 2 the highest value ofAoD is around 13 dB. Moreover,

1Also, an exponential power decay profile can also be applied in our
examples where similar plots to the ones presented in [6], [18] will be derived.
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Fig. 4. Skewness versus average SNR in the first branch for twodifferent
scenarios(Scenario A : γ2 = 2dB; µ1 = 1 and µ2 = 2; η1 = 2.3 and
η2 = 1.2. ScenarioB : γ

2
= 3dB; µ1 = 1 and µ2 = 2; η1 = 1.2 and

η2 = 0.4.)

considering the reliability percentage i.e. 100×(1 − AoD)
[3], the data throughput is reliable when the channel capacity
values do not variate significantly. Therefore, for reliable
transmission of the information signals at the cognitive UE, the
SNR for transmission should be selected greater than the SNR
for which theAoD takes its maximum value. As expected, in
both cases the deviation between different values ofL reduces
at the high SNR regime since the effect of fading becomes
relatively less critical in comparison to moderate or low SNR
values.

The correspondingS andK statistical measures are depicted
in Figs. 4 and 5, respectively, as a function of the average
SNR in the first branch for unequal SNR and fading values.
Specifically, two scenarios are considered for one and two
branches:ScenarioA : γ2 = 2 dB; µ1 = 1 and µ2 = 2;
η1 = 2.3 and η2 = 1.2. Scenario B : γ2 = 3 dB; µ1 = 1
and µ2 = 2; η1 = 1.2 and η2 = 0.4. One can notice the
corresponding increase as the number of paths increases by
one. In fact, for the considered scenario it is shown that the
increased severity of multipath fading can be compensated
by increasing the number of paths. Yet, this appears to be
particularly critical for low and moderate SNR values as in the
high SNR regime the effect of fading and multipath branches
is, as expected, relatively reduced.

V. CONCLUSION

The present work was devoted to the analysis of the HOS
of the channel capacity of dispersed spectrum CR systems
over generalized fading channels. Due to the inherent structure
of the considered system, it was effectively represented asa
respective maximal ratio combining system. Based on this,
new analytic expression was derived for then-th channel ca-
pacity moment which was subsequently employed in deriving
closed-form expressions for critical HOS metrics. The derived
expressions were extensively validated with respective results
from computer simulations and they were utilized in analyzing
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Fig. 5. Kurtosis versus average SNR in the first branch for twodifferent
scenarios (ScenarioA : γ2 = 2dB; µ1 = 1 and µ2 = 2; η1 = 2.3 and
η2 = 1.2. Scenario B : γ

2
= 3dB; µ1 = 1 and µ2 = 2; η1 = 1.2 and

η2 = 0.4.)

the performance of the system in terms of the average channel
capacity, the fading figure, the amount of dispersion, the
skewness and the kurtosis for unequal power and fading
parameters. It was shown that the for reliable transmission
in heterogeneous bands, the SNR at the transmitter should be
controlled and selected greater than the SNR for which the
AoD of the channel capacity is in its higher level.
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