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Abstract 

Steganography is the process of hiding one file inside another such that others can neither identify the 
meaning of the embedded object, nor even recognize its existence.  Current trends favor using digital image 
files as the cover file to hide another digital file that contains the secret message or information.  One of the 
most common methods of implementation is Least Significant Bit Insertion, in which the least significant bit 
of every byte is altered to form the bit-string representing the embedded file.  Altering the LSB will only 
cause minor changes in color, and thus is usually not noticeable to the human eye.  While this technique 
works well for 24-bit color image files, steganography has not been as successful when using an 8-bit color 
image file, due to limitations in color variations and the use of a colormap. 

This paper presents the results of research investigating the combination of image compression and 
steganography.  The technique developed starts with a 24-bit color bitmap file, and then compresses the file 
by organizing and optimizing an 8-bit colormap. After the process of compression, a text message is hidden 
in the final, compressed image. Results indicate that the final technique has potential of being useful in the 
steganographic world. [Journal of American Science 2009:5(2) 36-42] ( ISSN: 1545-1003) 
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Introduction 
Staganography is an ancient technology that has 

applications even in today’s modern society.  A 
Greek word meaning “covered writing,” 
steganography has taken many forms since its 
origin in ancient Greece.  During the war between 
Sparta and Xerxes, Dermeratus wanted to warn 
Sparta of Xerxes’ pending invasion.  To do this, he 
scraped the wax off one of the wooden tablets they 
used to send messages and carved a message on the 
underlying wood.  Covering it with wax again, the 
tablet appeared to be unused and thereby slipped 
past the sentries’ inspection.  However, this would 
not be the last time steganography would be used in 
times of war. 

In World War II, the Germans utilized this 
technology.  Unlike the Greeks, these messages 
were not physically hidden; rather they used a 
method termed “null ciphering.” Null ciphering is a 
process of encoding a message in plain sight.  For 
example, the second letter of each word in an 
innocent message could be extracted to reveal a 

hidden message. 
Although its roots lay in ancient Greece, 

steganography has continually been used with great 
success throughout history.  Today steganography 
is being incorporated into digital technology.  The 
techniques have been used to create the watermarks 
that are in our nation’s currency, as well as encode 
music information in the ever-popular mp3 music 
file.  Copyrights can be included in files, and 
fingerprints can be used to identify the people who 
break copyright agreements [5] [6] and 
[8].However, this technology is not always used for 
good intentions; terrorists and criminals can also 
use it to convey information.  According to various 
officials and experts, terrorist groups are “hiding 
maps and photographs of terrorist targets and 
posting instructions for terrorist activities on sports 
chat rooms, pornographic bulletin boards, and other 
Web sites”[1]. 

This aspect of steganography is what sparked the 
research into this vast field [3] and [4].  Education 
and understanding are the first steps toward 
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security.  Thus, it is important to study 
steganography in order to allow innocent messages 
to be placed in digital media as well as intercept 
abuse of this technology [7].  

Current Usage 

In modern society, steganographic techniques are 
used in a wide range of applications.  
Watermarking, a subclass of steganography, 
includes everything from watermarks on paper and 
security marks on paychecks to the hidden image of 
Abraham Lincoln on the five-dollar bill.  Its 
purpose is to verify authenticity, prevent 
counterfeiting, or to give information about the 
creator. These are not the limits of steganography; 
it is also used in much the same manner in the 
digital world.  Programs such as Adobe Photoshop 
version 4.0 or higher have the capability to embed 
and detect watermarks, while other programs like 
Stego can hide encrypted text messages in GIF 
images. 

As hidden messages are being found and 
algorithms cracked, new methods of steganography 
are being developed.  There has been a significant 
surge of interest since the first academic conference 
on the subject, the Workshop on Information 
Hiding, was organized in 1996 and held at the Isaac 
Newton Institute in Cambridge. One reason for this 
surge of interest is that the publishing and 
broadcasting industries have become interested in 
techniques for hiding encrypted copyright marks 
and serial numbers in digital films, audio 
recordings, books, and multimedia products.  The 
new market opportunities due to digital distribution 
coupled with the fear that digital products could be 
too easy to copy leaves these industries in a rather 
large dilemma.  Other motivations to study 
steganographic methods are due to governmental 
restrictions that have been placed on encryption 
services.  People desire a way to send private 
messages.  The controversial issue concerning this 
topic is that spies and criminals wanting to pass on 
secrets in inconspicuous data over public networks 
can abuse the same applications that are being 
developed to allow copyrights to be placed in 
digital media.

Least Significant Bit Insertion 

One of the most common techniques used in 
steganography today is called least significant bit 
(LSB) insertion.  This method is exactly what it 

sounds like; the least significant bits of the cover-
image are altered so that they form the embedded 
information.  The following example shows how 
the letter A can be hidden in the first eight bytes of 
three pixels in a 24-bit image.  

Pixels: (00100111 11101001 11001000) 
(00100111 11001000 11101001) 
(11001000 00100111 11101001) 

A: 01000001 

Result: (00100110 11101001 11001000) 
(00100110 11001000 11101000)
(11001000 00100111 11101001) 

The three underlined bits are the only three bits 
that were actually altered.  LSB insertion requires 
on average that only half the bits in an image be 
changed.  Since the 8-bit letter A only requires 
eight bytes to hide it in, the ninth byte of the three 
pixels can be used to begin hiding the next 
character of the hidden message.   

A slight variation of this technique allows for 
embedding the message in two or more of the least 
significant bits per byte.  This increases the hidden 
information capacity of the cover-object, but the 
cover-object is degraded more, and therefore it is 
more detectable.  Other variations on this technique 
include ensuring that statistical changes in the 
image do not occur.  Some intelligent software also 
checks for areas that are made up of one solid color.  
Changes in these pixels are then avoided because 
slight changes would cause noticeable variations in 
the area [9] and [10]. 

While LSB insertion is easy to implement, it is 
also easily attacked.  Slight modifications in the 
color palette and simple image manipulations will 
destroy the entire hidden message.  Some examples 
of these simple image manipulations include image 
resizing and cropping [11] and [12]. 

Bitmap File Structure

Before compression and steganographic 
techniques could be implemented, more 
information needed to be gathered about the bitmap 
file format. Microsoft defined the bitmap file 
format.  In hopes of making this a popular file 
format, Microsoft made structures so that the 
information can be extracted easily from the bytes 
of a file.  Bitmaps have two headers that contain the 
information needed to extract and display the image.  
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The first 14 bytes of the file make up the first 
header, which can be read into a structure called the 
BitmapFileHeader.  The information contained in 
this structure can be seen in Table 1. 

Table 1: Bitmap File Header Structure Items 
Item Name Size Description 

bfType 
2

bytes ASCII for "B" and "M" 

bfSize
4

bytes 
Size of the File in 

bytes 
bfReserved

1
2

bytes Reserved Equals 0 
bfReserved

2
2

bytes Reserved Equals 0 

bfOffBits
4

bytes 
Number of Bytes to 

the Picture Data 

The next header in the bitmap can be read into a 
structure called the BitmapInfoHeader.  The length 
of this header is determined by the first four bytes 
in the header, the biSize field. Generally, the length 
of the header is 40 bytes long.  Table 2 shows the 
items that are contained in this structure.  

Table 2: Bitmap Information Header 
Structure Items 

Item Name Size Description 

biSize
4

bytes 
Size of the Bitmap 

Info Header in bytes 

biWidth
4

bytes 
Width of the Bitmap 

in pixels 

biHeight
4

bytes 
Height of the Bitmap 

in pixels 

biPlanes
2

bytes 
Number of Planes 

(Equals 1) 

biBitCount
2

bytes 
Number of Bits Per 

Pixel (1,4,8,16,24, or 32)

biCompression
4

bytes 
Type of Compression 

(0,1,2)

biSizeImage
4

bytes 
Size of the Picture 

Data in bytes 

biXPelsPerMeter
4

bytes 
Horizontal Resolution 

(Pixels/Meter) 

biYPelsPerMeter 
4

bytes 
Vertical Resolution 

(Pixels/Meter) 

biClrUsed
4

bytes 
Number of Actual 

Colors Used 

biClrImportant
4

bytes 
Number of Important 

Colors (0 = all) 

An optional colormap follows the 
BitmapInfoHeader in the bitmap image file.  Each 
color in the colormap is four bytes long and is 
contained in a RGBQUAD structure.   Table 3 
shows the items within the RGBQUAD structure.  
The program determines whether or not a colormap 

exists by examining the bfOffbits field in the 
BitmapFileHeader.  If this field is greater than the 
total size of the two headers, then a colormap is 
present. 

Table 3: RGBQUAD Structure Items 
Item Name Size Description 

rgbBlue 
1

byte
Blue

Intensity 

rgbGreen 
1

byte
Green 

Intensity 

rgbRed 
1

byte
Red

Intensity 

rgbReserved
1

byte
Unused 

(Equals 0) 

A colormap is used in different ways depending 
on the biBitCount field in the BitmapInfoHeader.  
If the biBitCount equals 24, the colormap is used to 
list the most important colors of the image, but the 
colormap is not actually used by the picture data.  If 
the biBitCount equals 8, each pixel in the picture 
data is an 8-bit pointer to a color in the colormap.  
A colormap in an 8-bit bitmap has a maximum 256 
colors since the pointer into it can only be 1 byte 
(2^8 = 256).  The biBitCount field can be other 
values than 8 or 24, but since these are uncommon 
the current project does not deal with them.   

Following the colormap (if a colormap exists) is 
the picture data.  The picture data also varies 
depending on the value of biBitCount.  If the 
biBitCount equals 24, then each pixel is 
represented by three bytes. There is exactly one 
byte for each intensity: red, green, and blue.  If the 
biBitCount equals 8, each pixel is represented by 8-
bits, which point to a RGBQUAD structure in the 
colormap.  

One complication to the picture data is that each 
line of pixels in a picture, known as a scanline, 
must start on a LONG boundary.  Since a LONG is 
four bytes in length, a LONG boundary is an 
address that is evenly divisible by four.  The pixels 
in the image formats being discussed here are either 
1 byte (8-bit images) or 3 bytes (24-bit images) 
long in the picture data.  The number of bytes 
needed to accurately display a scanline may not be 
divisible by four.      Since images can be any 
number of pixels wide, the end of the scanline may 
not end on a LONG boundary.  In such cases, extra 
bytes of value zero are padded to the end of the 
scan line in order to make the scan line end on a 
LONG boundary.  The next scanline can then start 
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on the LONG boundary as well. 

Proposed Technique 

After reviewing the current products on the 
market for steganography, it was determined that 
there was not a practical implementation for 8-bit 
images.  Although network speed is increasing, and 
bandwidth problems are decreasing, file size is still 
of utmost importance and smaller file sizes are 
optimal in network communication.  Thus, the 
current steganographic use of 24-bit images leads 
to slower communication and development of an 8-
bit image format would be beneficial. 

The aim of this research is to create a practical 
steganographic implementation for 8-bit images.  A 
24-bit bitmap image would be converted to an 8-bit 
bitmap image while simultaneously encoding the 
desired hidden information.  An algorithm would 
be created to select representative colors out of the 
24-bit image to create the palette for the 8-bit 
image.  This palette would then be optimized to an 
8-bit colormap that could be applied with minimal 
changes to the quality of the original image.   

This process of compressing the image from a 
24-bit bitmap to an 8-bit bitmap resulted in minor 
variations in the image, which are barely noticeable 
to the human eye.  However, these slight variations 
aid in hiding the data.  Since there would not be an 
original 8-bit image to compare with the stego-
image, it would be impossible to discern that the 
slight variations caused by hiding the data are 
different from the slight variations caused by 
compression.   

A practical steganographic implementation for 8-
bit images enabled smaller file sizes to be utilized 
in steganographic communications.   While also 
limiting the size of the hidden file, this 
implementation addressed issues that have been 
passed by in other applications, and provided a 
more compact vehicle for those secret 
communications that do not require a large cover-
file.

Creating the Colormap 

The colormap in an 8-bit color image has a 
maximum of 256, 24-bit colors.  However, in order 
to minimize the noise added when the least 
significant bits are changed, a starting colormap of 

only 240 colors is created.  Sixteen additional 
colors will be added to the colormap by the time 
the final picture is written. 

In order to select the 240 original colors, the 
image is divided into a grid of fifteen quadrants by 
sixteen quadrants, as seen in Figure 1.  One color is 
chosen from each of these quadrants by randomly 
selecting a set of X and Y coordinates within each 
quadrant.  Calculations are then made to determine 
the index of the pixel in the array of RGBQUADS 
that represent the image data.  (An RGBQUAD is a 
structure containing four bytes, one each for the red, 
green, and blue intensity and a reserved byte.) 

Each time a color is selected from a quadrant, it 
is compared to every other color in the colormap, 
and the minimum error between any two colors is 
calculated.  If this error is lower than a certain error 
level (currently set at 20), then the new color is 
discarded and another color is selected from the 
image.  After five attempts to find a color from a 
certain quadrant that differs enough from all the 
other colors in the colormap, the selected color is 
added to the colormap and the program moves to 
the next quadrant. 

Optimizing the Colormap 

The initial colormap contains 240 colors that 
were picked out of the original image.  These 
colors were chosen from the entire image but that 
does not guarantee that these colors are the most 
representative of the colors that exist in the image.  
Therefore, the colormap must then be optimized to 
provide the best 240 colors for the colors in this 
particular image.   

The optimization algorithm uses a Linde-Buzo-
Gray methodology3.  A pixel is chosen from the 
original 24-bit image and its RGB values are 
compared to the RGB values of every color in the 
colormap.  For each comparison an error level is 
calculated using the mean absolute error of the red, 
green, and blue component of the color.  The 
colormap color that produces the smallest amount 
of error is the colormap color that is closest to the  
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Figure 1: Image overlaid with 15x16 grids 

pixel’s RGB values.  The RGB values of the pixel 
are then added to the RGB values of the colormap 
color.  A counter is implemented to keep track of 
how many pixels are assigned to each colormap 
color and is incremented each time a match is 
found.  Approximately 25% of the pixels in the 
original image are run through this process.  Once 
the algorithm has gone through the whole image, 
the RGB values of each colormap container are 
averaged by dividing the red, green, and blue 
values by the counter for that particular container.  
This process produces a colormap with slightly new, 
“better” colors in it.  The process is repeated until 
the new colormap is considered to be optimized.  
To determine when the colormap is optimized, the 
error levels are recorded during each run and when 
a certain error level is attained the algorithm is 
finished. 

Sorting the Colormap 

Each pixel in an 8-bit color image is an 8-bit 
pointer to a 24-bit color in the colormap.  Looking 
ahead to the LSB insertion, a pixel pointing to a red 
color could suddenly point to a yellow color by a 
simple flip of the least significant bit.  In order to 
reduce dramatic noise such as that, the colormap 
was sorted so that similar colors are next to each 
other before the pixels are assigned to colormap 
colors.  The sorting algorithm works as follows. 

Beginning with the first color in the colormap 
array, the pixel that is the closest in color to the 
starting pixel is found using the mean absolute 
error measure.  If the best match to a color results 
in an error level greater than 100 (meaning that 
there really was not a very good match to the color), 
a new color is created in the first open slot (using 
the sixteen extra spaces in the colormap) and this 
new color is used as the pair.  The best-matched 

color is then switched with the color immediately 
following the starting color.  The same procedure is 
repeated with the next color that has not been 
matched.  Once the original 240 colors have been 
matched, additional colors are created to fill any of 
the extra sixteen positions left in the original 
colormap.   

Assigning Pixels 

After sorting the colormap, the 8-bit image is 
almost ready to be created.  An 8-bit bitmap 
contains a colormap of 256 colors and contains an 
assignment of each pixel to a color in the colormap.  
To assign the pixels to a colormap color, the 
original 24-bit image pixels are used.  A pixel is 
chosen from the original 24-bit image and its RGB 
values are compared to the RGB values of every 
color in the colormap.  For each comparison an 
error level is calculated using the mean absolute 
error of the red, green, and blue color components.  
The colormap color that produces the smallest 
amount of error is the colormap color that gets 
assigned to this pixel.   

Encoding the Data 

The image is now ready to have data embedded 
into it.  The encode function takes three parameters 
and two steps in order to complete.  The data string 
of text, picture data, and binary data string are the 
three parameters for the first step in encoding the 
text into the image.  The first step in the encoding 
function is to convert the ASCII text into its binary 
equivalent.  In order to do this, each character of 
the text message is converted to its ordinal number 
(example: ‘a’ = 97).  The ordinal number is then 
converted to binary using the following method 
called the division-remainder routine. An ordinal 
number is divided by two using the mod () function.  
This function returns either a one or a zero, which 
is then placed in a remainder array.  This is 
continued until the dividend is zero.  The ones and 
zeros in the remainder array is the binary 
equivalent of the ASCII ordinal number.  Then, 
once all characters have been converted in this 
fashion, the binary data is embedded in the image 
by sequentially altering the least significant bit of 
the image data as necessary. 

Additional features 
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Since LSB insertion is easily attacked, repetition 
of the hidden message throughout the entire image 
will improve the integrity of the message.  For 
example, if the image were cropped with the 
message embedded throughout the entire image, 
chances are good that the message could still be 
extracted from the cropped image.  Repetition of 
the hidden message also causes the image quality to 
be uniform throughout instead of having noticeable 
areas of variations in certain sections of the image. 

An encryption algorithm can also be added to 
this to further protect the end user’s message if so 
desired.  While embedding a message in an image 
will prevent most people from knowing a message 
exists, encrypting the message before embedding it 
will aid in safeguarding it from being read by 
someone who happens to find the message. 

The encryption technique employed is a 24-bit 
algorithm.  The user enters a number between 0 and 
16,777,216 to use as the encryption key, which is 
converted to a 24-bit representation.  The first three 
bytes (twenty-four bits) of the message are XORed 
with the 24-bit key.  The next three bytes of the 
message are then XORed with the 24-bit key.  This 
process is continued in a similar fashion for the 
remainder of the message.  The following example 
shows how the algorithm would encrypt a 6-
character message. 
Message =  ‘abcdefg’ 
Key =   9,657,852 
‘abc’ =  01100001     01100010     01100011 
‘def’ =  01100100     01100101     01100110 
9,657,852 = 10010011     01011101     11111100 

resultabc =  ‘abc’ XOR 9,657,852  
              = 011000010110001001100011 XOR
100100110101110111111100 
              = 111111100011111110011111 

resultdef = ‘def’ XOR 9,657,852  
 =    011001000110010101100110 XOR       
100100110101110111111100 
      = 111101110011100010011010  

Encrypted Message = 
11111110001111111001111111110111001110001
0011010 

Conclusion 
The purpose of this research is to investigate 
steganographic techniques, and apply them to 8-bit 
images.  While this research does not cover every 

aspect of steganographic technology, it is a good 
starting point for anyone interested in 
implementing and learning how the technology can 
be applied to digital images.  Further developments 
to this could include using different picture formats, 
such as JPEG and GIF, to serve as the cover object.  
Additional features could allow other files such as 
other pictures or MS Word documents to be used as 
hidden messages.  Other future endeavors could 
employ some of the variations of least significant 
bit insertion such as using two or more of the least 
significant bit to embed the data.  This will yield a 
higher embedding space but also increase image 
degradation levels.  To counteract this, the sorting 
of the colormap would need to be adjusted based on 
the number of bits used in the LSB insertion 
algorithm 
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