
Marsland Press
Journal of American Science 2009:5(2) 36-42

36

Implementation of Improved Steganographic Technique for 24-bit Bitmap
Images in Communication

Mamta Juneja, Parvinder Sandhu
Department of Computer Science and Engineering, Rayat and Bahra Institute of Engineering and
Biotechnology,
V.P.O Sahauran, Tehsil Kharar, Distt. Mohali, Punjab- 140104, INDIA
91-098786-77624
er_mamta@yahoo.com

Abstract

Steganography is the process of hiding one file inside another such that others can neither identify the
meaning of the embedded object, nor even recognize its existence. Current trends favor using digital image
files as the cover file to hide another digital file that contains the secret message or information. One of the
most common methods of implementation is Least Significant Bit Insertion, in which the least significant bit
of every byte is altered to form the bit-string representing the embedded file. Altering the LSB will only
cause minor changes in color, and thus is usually not noticeable to the human eye. While this technique
works well for 24-bit color image files, steganography has not been as successful when using an 8-bit color
image file, due to limitations in color variations and the use of a colormap.

This paper presents the results of research investigating the combination of image compression and
steganography. The technique developed starts with a 24-bit color bitmap file, and then compresses the file
by organizing and optimizing an 8-bit colormap. After the process of compression, a text message is hidden
in the final, compressed image. Results indicate that the final technique has potential of being useful in the
steganographic world. [Journal of American Science 2009:5(2) 36-42] (ISSN: 1545-1003)

Keywords: Bitmap, Colormap, Compression, LSB Based Insertion, Steganography

Introduction
Staganography is an ancient technology that has

applications even in today’s modern society. A
Greek word meaning “covered writing,”
steganography has taken many forms since its
origin in ancient Greece. During the war between
Sparta and Xerxes, Dermeratus wanted to warn
Sparta of Xerxes’ pending invasion. To do this, he
scraped the wax off one of the wooden tablets they
used to send messages and carved a message on the
underlying wood. Covering it with wax again, the
tablet appeared to be unused and thereby slipped
past the sentries’ inspection. However, this would
not be the last time steganography would be used in
times of war.

In World War II, the Germans utilized this
technology. Unlike the Greeks, these messages
were not physically hidden; rather they used a
method termed “null ciphering.” Null ciphering is a
process of encoding a message in plain sight. For
example, the second letter of each word in an
innocent message could be extracted to reveal a

hidden message.
Although its roots lay in ancient Greece,

steganography has continually been used with great
success throughout history. Today steganography
is being incorporated into digital technology. The
techniques have been used to create the watermarks
that are in our nation’s currency, as well as encode
music information in the ever-popular mp3 music
file. Copyrights can be included in files, and
fingerprints can be used to identify the people who
break copyright agreements [5] [6] and
[8].However, this technology is not always used for
good intentions; terrorists and criminals can also
use it to convey information. According to various
officials and experts, terrorist groups are “hiding
maps and photographs of terrorist targets and
posting instructions for terrorist activities on sports
chat rooms, pornographic bulletin boards, and other
Web sites”[1].

This aspect of steganography is what sparked the
research into this vast field [3] and [4]. Education
and understanding are the first steps toward

Implementation of Improved Steganographic Technique Mamta Juneja et al.

37

security. Thus, it is important to study
steganography in order to allow innocent messages
to be placed in digital media as well as intercept
abuse of this technology [7].

Current Usage

In modern society, steganographic techniques are
used in a wide range of applications.
Watermarking, a subclass of steganography,
includes everything from watermarks on paper and
security marks on paychecks to the hidden image of
Abraham Lincoln on the five-dollar bill. Its
purpose is to verify authenticity, prevent
counterfeiting, or to give information about the
creator. These are not the limits of steganography;
it is also used in much the same manner in the
digital world. Programs such as Adobe Photoshop
version 4.0 or higher have the capability to embed
and detect watermarks, while other programs like
Stego can hide encrypted text messages in GIF
images.

As hidden messages are being found and
algorithms cracked, new methods of steganography
are being developed. There has been a significant
surge of interest since the first academic conference
on the subject, the Workshop on Information
Hiding, was organized in 1996 and held at the Isaac
Newton Institute in Cambridge. One reason for this
surge of interest is that the publishing and
broadcasting industries have become interested in
techniques for hiding encrypted copyright marks
and serial numbers in digital films, audio
recordings, books, and multimedia products. The
new market opportunities due to digital distribution
coupled with the fear that digital products could be
too easy to copy leaves these industries in a rather
large dilemma. Other motivations to study
steganographic methods are due to governmental
restrictions that have been placed on encryption
services. People desire a way to send private
messages. The controversial issue concerning this
topic is that spies and criminals wanting to pass on
secrets in inconspicuous data over public networks
can abuse the same applications that are being
developed to allow copyrights to be placed in
digital media.

Least Significant Bit Insertion

One of the most common techniques used in
steganography today is called least significant bit
(LSB) insertion. This method is exactly what it

sounds like; the least significant bits of the cover-
image are altered so that they form the embedded
information. The following example shows how
the letter A can be hidden in the first eight bytes of
three pixels in a 24-bit image.

Pixels: (00100111 11101001 11001000)
(00100111 11001000 11101001)
(11001000 00100111 11101001)

A: 01000001

Result: (00100110 11101001 11001000)
(00100110 11001000 11101000)
(11001000 00100111 11101001)

The three underlined bits are the only three bits
that were actually altered. LSB insertion requires
on average that only half the bits in an image be
changed. Since the 8-bit letter A only requires
eight bytes to hide it in, the ninth byte of the three
pixels can be used to begin hiding the next
character of the hidden message.

A slight variation of this technique allows for
embedding the message in two or more of the least
significant bits per byte. This increases the hidden
information capacity of the cover-object, but the
cover-object is degraded more, and therefore it is
more detectable. Other variations on this technique
include ensuring that statistical changes in the
image do not occur. Some intelligent software also
checks for areas that are made up of one solid color.
Changes in these pixels are then avoided because
slight changes would cause noticeable variations in
the area [9] and [10].

While LSB insertion is easy to implement, it is
also easily attacked. Slight modifications in the
color palette and simple image manipulations will
destroy the entire hidden message. Some examples
of these simple image manipulations include image
resizing and cropping [11] and [12].

Bitmap File Structure

Before compression and steganographic
techniques could be implemented, more
information needed to be gathered about the bitmap
file format. Microsoft defined the bitmap file
format. In hopes of making this a popular file
format, Microsoft made structures so that the
information can be extracted easily from the bytes
of a file. Bitmaps have two headers that contain the
information needed to extract and display the image.

Marsland Press
Journal of American Science 2009:5(2) 36-42

38

The first 14 bytes of the file make up the first
header, which can be read into a structure called the
BitmapFileHeader. The information contained in
this structure can be seen in Table 1.

Table 1: Bitmap File Header Structure Items
Item Name Size Description

bfType
2

bytes ASCII for "B" and "M"

bfSize
4

bytes
Size of the File in

bytes
bfReserved

1
2

bytes Reserved Equals 0
bfReserved

2
2

bytes Reserved Equals 0

bfOffBits
4

bytes
Number of Bytes to

the Picture Data

The next header in the bitmap can be read into a
structure called the BitmapInfoHeader. The length
of this header is determined by the first four bytes
in the header, the biSize field. Generally, the length
of the header is 40 bytes long. Table 2 shows the
items that are contained in this structure.

Table 2: Bitmap Information Header
Structure Items

Item Name Size Description

biSize
4

bytes
Size of the Bitmap

Info Header in bytes

biWidth
4

bytes
Width of the Bitmap

in pixels

biHeight
4

bytes
Height of the Bitmap

in pixels

biPlanes
2

bytes
Number of Planes

(Equals 1)

biBitCount
2

bytes
Number of Bits Per

Pixel (1,4,8,16,24, or 32)

biCompression
4

bytes
Type of Compression

(0,1,2)

biSizeImage
4

bytes
Size of the Picture

Data in bytes

biXPelsPerMeter
4

bytes
Horizontal Resolution

(Pixels/Meter)

biYPelsPerMeter
4

bytes
Vertical Resolution

(Pixels/Meter)

biClrUsed
4

bytes
Number of Actual

Colors Used

biClrImportant
4

bytes
Number of Important

Colors (0 = all)

An optional colormap follows the
BitmapInfoHeader in the bitmap image file. Each
color in the colormap is four bytes long and is
contained in a RGBQUAD structure. Table 3
shows the items within the RGBQUAD structure.
The program determines whether or not a colormap

exists by examining the bfOffbits field in the
BitmapFileHeader. If this field is greater than the
total size of the two headers, then a colormap is
present.

Table 3: RGBQUAD Structure Items
Item Name Size Description

rgbBlue
1

byte
Blue

Intensity

rgbGreen
1

byte
Green

Intensity

rgbRed
1

byte
Red

Intensity

rgbReserved
1

byte
Unused

(Equals 0)

A colormap is used in different ways depending
on the biBitCount field in the BitmapInfoHeader.
If the biBitCount equals 24, the colormap is used to
list the most important colors of the image, but the
colormap is not actually used by the picture data. If
the biBitCount equals 8, each pixel in the picture
data is an 8-bit pointer to a color in the colormap.
A colormap in an 8-bit bitmap has a maximum 256
colors since the pointer into it can only be 1 byte
(2^8 = 256). The biBitCount field can be other
values than 8 or 24, but since these are uncommon
the current project does not deal with them.

Following the colormap (if a colormap exists) is
the picture data. The picture data also varies
depending on the value of biBitCount. If the
biBitCount equals 24, then each pixel is
represented by three bytes. There is exactly one
byte for each intensity: red, green, and blue. If the
biBitCount equals 8, each pixel is represented by 8-
bits, which point to a RGBQUAD structure in the
colormap.

One complication to the picture data is that each
line of pixels in a picture, known as a scanline,
must start on a LONG boundary. Since a LONG is
four bytes in length, a LONG boundary is an
address that is evenly divisible by four. The pixels
in the image formats being discussed here are either
1 byte (8-bit images) or 3 bytes (24-bit images)
long in the picture data. The number of bytes
needed to accurately display a scanline may not be
divisible by four. Since images can be any
number of pixels wide, the end of the scanline may
not end on a LONG boundary. In such cases, extra
bytes of value zero are padded to the end of the
scan line in order to make the scan line end on a
LONG boundary. The next scanline can then start

Implementation of Improved Steganographic Technique Mamta Juneja et al.

39

on the LONG boundary as well.

Proposed Technique

After reviewing the current products on the
market for steganography, it was determined that
there was not a practical implementation for 8-bit
images. Although network speed is increasing, and
bandwidth problems are decreasing, file size is still
of utmost importance and smaller file sizes are
optimal in network communication. Thus, the
current steganographic use of 24-bit images leads
to slower communication and development of an 8-
bit image format would be beneficial.

The aim of this research is to create a practical
steganographic implementation for 8-bit images. A
24-bit bitmap image would be converted to an 8-bit
bitmap image while simultaneously encoding the
desired hidden information. An algorithm would
be created to select representative colors out of the
24-bit image to create the palette for the 8-bit
image. This palette would then be optimized to an
8-bit colormap that could be applied with minimal
changes to the quality of the original image.

This process of compressing the image from a
24-bit bitmap to an 8-bit bitmap resulted in minor
variations in the image, which are barely noticeable
to the human eye. However, these slight variations
aid in hiding the data. Since there would not be an
original 8-bit image to compare with the stego-
image, it would be impossible to discern that the
slight variations caused by hiding the data are
different from the slight variations caused by
compression.

A practical steganographic implementation for 8-
bit images enabled smaller file sizes to be utilized
in steganographic communications. While also
limiting the size of the hidden file, this
implementation addressed issues that have been
passed by in other applications, and provided a
more compact vehicle for those secret
communications that do not require a large cover-
file.

Creating the Colormap

The colormap in an 8-bit color image has a
maximum of 256, 24-bit colors. However, in order
to minimize the noise added when the least
significant bits are changed, a starting colormap of

only 240 colors is created. Sixteen additional
colors will be added to the colormap by the time
the final picture is written.

In order to select the 240 original colors, the
image is divided into a grid of fifteen quadrants by
sixteen quadrants, as seen in Figure 1. One color is
chosen from each of these quadrants by randomly
selecting a set of X and Y coordinates within each
quadrant. Calculations are then made to determine
the index of the pixel in the array of RGBQUADS
that represent the image data. (An RGBQUAD is a
structure containing four bytes, one each for the red,
green, and blue intensity and a reserved byte.)

Each time a color is selected from a quadrant, it
is compared to every other color in the colormap,
and the minimum error between any two colors is
calculated. If this error is lower than a certain error
level (currently set at 20), then the new color is
discarded and another color is selected from the
image. After five attempts to find a color from a
certain quadrant that differs enough from all the
other colors in the colormap, the selected color is
added to the colormap and the program moves to
the next quadrant.

Optimizing the Colormap

The initial colormap contains 240 colors that
were picked out of the original image. These
colors were chosen from the entire image but that
does not guarantee that these colors are the most
representative of the colors that exist in the image.
Therefore, the colormap must then be optimized to
provide the best 240 colors for the colors in this
particular image.

The optimization algorithm uses a Linde-Buzo-
Gray methodology3. A pixel is chosen from the
original 24-bit image and its RGB values are
compared to the RGB values of every color in the
colormap. For each comparison an error level is
calculated using the mean absolute error of the red,
green, and blue component of the color. The
colormap color that produces the smallest amount
of error is the colormap color that is closest to the

Marsland Press
Journal of American Science 2009:5(2) 36-42

40

Figure 1: Image overlaid with 15x16 grids

pixel’s RGB values. The RGB values of the pixel
are then added to the RGB values of the colormap
color. A counter is implemented to keep track of
how many pixels are assigned to each colormap
color and is incremented each time a match is
found. Approximately 25% of the pixels in the
original image are run through this process. Once
the algorithm has gone through the whole image,
the RGB values of each colormap container are
averaged by dividing the red, green, and blue
values by the counter for that particular container.
This process produces a colormap with slightly new,
“better” colors in it. The process is repeated until
the new colormap is considered to be optimized.
To determine when the colormap is optimized, the
error levels are recorded during each run and when
a certain error level is attained the algorithm is
finished.

Sorting the Colormap

Each pixel in an 8-bit color image is an 8-bit
pointer to a 24-bit color in the colormap. Looking
ahead to the LSB insertion, a pixel pointing to a red
color could suddenly point to a yellow color by a
simple flip of the least significant bit. In order to
reduce dramatic noise such as that, the colormap
was sorted so that similar colors are next to each
other before the pixels are assigned to colormap
colors. The sorting algorithm works as follows.

Beginning with the first color in the colormap
array, the pixel that is the closest in color to the
starting pixel is found using the mean absolute
error measure. If the best match to a color results
in an error level greater than 100 (meaning that
there really was not a very good match to the color),
a new color is created in the first open slot (using
the sixteen extra spaces in the colormap) and this
new color is used as the pair. The best-matched

color is then switched with the color immediately
following the starting color. The same procedure is
repeated with the next color that has not been
matched. Once the original 240 colors have been
matched, additional colors are created to fill any of
the extra sixteen positions left in the original
colormap.

Assigning Pixels

After sorting the colormap, the 8-bit image is
almost ready to be created. An 8-bit bitmap
contains a colormap of 256 colors and contains an
assignment of each pixel to a color in the colormap.
To assign the pixels to a colormap color, the
original 24-bit image pixels are used. A pixel is
chosen from the original 24-bit image and its RGB
values are compared to the RGB values of every
color in the colormap. For each comparison an
error level is calculated using the mean absolute
error of the red, green, and blue color components.
The colormap color that produces the smallest
amount of error is the colormap color that gets
assigned to this pixel.

Encoding the Data

The image is now ready to have data embedded
into it. The encode function takes three parameters
and two steps in order to complete. The data string
of text, picture data, and binary data string are the
three parameters for the first step in encoding the
text into the image. The first step in the encoding
function is to convert the ASCII text into its binary
equivalent. In order to do this, each character of
the text message is converted to its ordinal number
(example: ‘a’ = 97). The ordinal number is then
converted to binary using the following method
called the division-remainder routine. An ordinal
number is divided by two using the mod () function.
This function returns either a one or a zero, which
is then placed in a remainder array. This is
continued until the dividend is zero. The ones and
zeros in the remainder array is the binary
equivalent of the ASCII ordinal number. Then,
once all characters have been converted in this
fashion, the binary data is embedded in the image
by sequentially altering the least significant bit of
the image data as necessary.

Additional features

Implementation of Improved Steganographic Technique Mamta Juneja et al.

41

Since LSB insertion is easily attacked, repetition
of the hidden message throughout the entire image
will improve the integrity of the message. For
example, if the image were cropped with the
message embedded throughout the entire image,
chances are good that the message could still be
extracted from the cropped image. Repetition of
the hidden message also causes the image quality to
be uniform throughout instead of having noticeable
areas of variations in certain sections of the image.

An encryption algorithm can also be added to
this to further protect the end user’s message if so
desired. While embedding a message in an image
will prevent most people from knowing a message
exists, encrypting the message before embedding it
will aid in safeguarding it from being read by
someone who happens to find the message.

The encryption technique employed is a 24-bit
algorithm. The user enters a number between 0 and
16,777,216 to use as the encryption key, which is
converted to a 24-bit representation. The first three
bytes (twenty-four bits) of the message are XORed
with the 24-bit key. The next three bytes of the
message are then XORed with the 24-bit key. This
process is continued in a similar fashion for the
remainder of the message. The following example
shows how the algorithm would encrypt a 6-
character message.
Message = ‘abcdefg’
Key = 9,657,852
‘abc’ = 01100001 01100010 01100011
‘def’ = 01100100 01100101 01100110
9,657,852 = 10010011 01011101 11111100

resultabc = ‘abc’ XOR 9,657,852
 = 011000010110001001100011 XOR
100100110101110111111100
 = 111111100011111110011111

resultdef = ‘def’ XOR 9,657,852
 = 011001000110010101100110 XOR
100100110101110111111100
 = 111101110011100010011010

Encrypted Message =
11111110001111111001111111110111001110001
0011010

Conclusion
The purpose of this research is to investigate
steganographic techniques, and apply them to 8-bit
images. While this research does not cover every

aspect of steganographic technology, it is a good
starting point for anyone interested in
implementing and learning how the technology can
be applied to digital images. Further developments
to this could include using different picture formats,
such as JPEG and GIF, to serve as the cover object.
Additional features could allow other files such as
other pictures or MS Word documents to be used as
hidden messages. Other future endeavors could
employ some of the variations of least significant
bit insertion such as using two or more of the least
significant bit to embed the data. This will yield a
higher embedding space but also increase image
degradation levels. To counteract this, the sorting
of the colormap would need to be adjusted based on
the number of bits used in the LSB insertion
algorithm

Correspondent Author:
Mamta Juneja
Assistant Professor, CSE Department,
 RBIEBT, Sahuran-mohali, Punjab, INDIA
Email:er_mamta@yahoo.com
Phone: +91-98786-77624

References
B.Schneier, “Terrorists and Steganography”, 24
Sep.2001,available: http://www.zdnet.com/zdnn /
tories/comment/0,5859,2814256,00.html.

Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm
for Vector Quantizer Design,” IEEE Transactions
on Communications, pp. 84-95, January 1989.

Andersen, R.J., Petitcolas, F.A.P., On the limits of
steganography. IEEE Journal of Selected Areas in
Communications, Special Issue on Copyright and
Privacy Protection 16 No.4 (1998) 474 481.

Johnson, Neil F. and Jajodia, Sushil.
“Steganography: Seeing the Unseen.” IEEE
Computer, February 1998, pp.26 34.

William Stallings; Cryptography and Network
Security: Principals and Practice, Prentice Hall
international, Inc.; 2002.[2]

Eric Cole,"Hiding in Plain Sight: Steganography
and the Art of Covert Communication"

Marsland Press
Journal of American Science 2009:5(2) 36-42

42

Gregory Kipper, “Investigator’s Guide to
Steganography”
Stefan Katzenbeisser and Fabien, A.P. Petitcolas,"
Information Hiding Techniques for Steganography
and Digital Watermarking”

Hiding secrets in computer files: steganography is
the new invisible ink, as codes stow away on
images-An article from: The Futurist by Patrick
Tucker

Ismail Avcıbas¸, Member, IEEE, Nasir
Memon,Member, IEEE, and Bülent Sankur,
Member, "Steganalysis Using Image Quality

Metrics," IEEE Transactions on Image Processing,
Vol 12, No. 2,February 2003..

Niels Provos and Peter Honeyman, University of
Michigan, "Hide and Seek: An Introduction to
Steganography" IEEE Computer Society IEEE
Security &Privacy.

R. Chandramouli and Nasir Memon, "Analysis of
LSB Based Image Steganography Techniques",
IEEE 2001

