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Abstract. Registration of the lungs in thoracic CT images is required
in many fields of application in medical imaging, for example for motion
estimation, analysis of pathology progression or the generation of shape
atlases.
In this paper, we present a robust registration approach that has been
optimized for the registration of thoracic CT data. The algorithm con-
sists of an initial shape-based adjustment of lung surfaces followed by an
intensity-based diffeomorphic image registration.
The approach is evaluated based on 20 CT scans provided for the EM-
PIRE10 study for pulmonary image registration. A fourth place out of
34 participants suggests a good applicability for the registration of lung
CT images.
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1 Introduction

Lung registration on the base of thoracic CT data is an essential part of many
applications in medical imaging and used for example for estimation of respira-
tory motion [16], image reconstruction [7], analysis of tumor or nodule growth in
follow-up examinations or the generation of shape and motion atlases of the lung
[8]. Its clinical relevance is underlined by the huge number of recent publications
dealing with this topic.

With the aim of establishing a platform for in-depth validation of different
registration approaches, the challenge “Evaluation of Methods for Pulmonary
Image Registration 2010” - EMPIRE10 was initiated in the course of MICCAI
2010 conference. An objective comparison of registration approaches is realized
by applying the algorithms on the same set of 20 CT images and evaluating
the results with the same criteria. These criteria include the alignment of lung
boundaries and fissures, average landmark distances and analysis of singularities
in the displacement field.

In this paper, a fully automatic registration approach is presented and evalu-
ated using the EMPIRE10 platform. The algorithm consists of two steps. First,
a coarse pre-registration is performed combining a registration of surface points
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Fig. 1. Outline of the algorithm.

with a thin plate spline interpolation. Second, an image-based diffeomorphic
registration algorithm is applied.

In the EMPIRE10 study, the approach reached a final placement of four
out of 34 participating algorithms, which demonstrates its applicability for the
registration of lung CT images.

This paper is organized as follows: In section 2, pre-registration (Sect. 2.1)
and diffeomprohic registration (Sect. 2.2) are introduced. Some details of the
implementation and the required parameters are explained in section 2.3. The
results of the EMPIRE10 evaluation are presented in section 3 and the paper
concludes with a discussion in section 4.

2 Methods

The goal of image registration is to calculate a transformation ϕ : ΩF → ΩM

that deforms a moving image IM : ΩM → R to match a fixed image IF : ΩF → R,
where ΩM , ΩF ⊂ R

3 denote the domains of fixed and moving image, respectively.
In the context of EMPIRE10, the transformation is specified by a displacement
field u(x) with ϕ(x) = x+ u(x) and x ∈ ΩF .

The registration method presented in this paper is outlined in figure 1 and
basically consists of two steps. First, a surface-based pre-registration is performed
combining a coarse affine alignment with a following nonlinear registration of the
lung surfaces. In a second step, a dense diffeomorphic registration of the CT data
is performed.

These steps are detailed in the following.

2.1 Pre-registration

Pre-registration is based on binary lung masks MF : ΩF → {0, 1} and MM :
ΩM → {0, 1} of fixed and moving image. While these are provided for the EM-
PIRE10 study and therefore assumed to be known in this work, several applicable
approaches for automatic lung segmentation have been proposed in the past [10,
13].
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The pre-registration consists of four steps. In the first step, surface models
SF and SM of the lungs are generated from the lung segmentation masks. These
surface models are constructed by the Marching Cubes algorithm, followed by
a triangle decimation and a surface smoothing to obtain smooth surfaces with
appropriate surface normals and to reduce the computational complexity in the
following steps. Second, the surface models SF and SM are coarsely aligned by
an affine pre-registration using the Iterative-Closest-Point (ICP) algorithm [5].
The resulting affine transformation ϕaff is used as initialization for a symmetric
non-linear surface registration algorithm related to the Geometry-Constrained
Diffusion presented in [1]. Finally, the resulting point correspondences are used
to generate a dense transformation ϕpre based on a thin plate spline (TPS)
interpolation.

Due to space constraints and to avoid redundancy, we refer to [9] for a detailed
description of these steps.

2.2 Diffeomorphic Variational Registration

The intrinsic registration is done using a variational diffeomorphic approach,
which has been used before in several works.

Diffeomorphic transformations ϕ ∈ Diff(Ω) guarantee that the topology
of the objects is preserved and they are therefore often used in computational
anatomy to describe and analyze physiological processes. For the sake of effi-
ciency, it was proposed to constrain ϕ to the subgroup of diffeomorphisms that
are parametrized by a stationary velocity field v [15]. The transformation ϕ is
then given by the solution of the stationary flow equation at time t = 1 [2]:

∂

∂t
φ(x, t) = v(φ(x, t)) and φ(x, 0) = x . (1)

The solution of eq. (1) is given by the group exponential map ϕ(x) = φ(x, 1) =
exp(v(x)), which can be computed very efficiently using the scaling-and-squaring
algorithm [3].

The problem of image registration can now be understood as finding a para-
metrizing velocity field v, so that the diffeomorphic transformation ϕ = exp(v)
minimizes a distance D between moving and fixed image with respect to a desired
smoothness S of the transformation:

J [ϕ] = D[IM , IF ;ϕ] + αS[ϕ] .

Using the diffusion regularization S[ϕ] = ∫
Ω
‖∇v‖2dx (with ϕ = exp(v)), the

iterative registration algorithm 1 can be derived. The force term f is defined by:

fIF ,IM◦ϕ(x) = − (IF (x)− IM ◦ϕ(x))∇IM ◦ϕ(x)
κ2(IF (x)− IM ◦ϕ(x))2 + ‖∇IM ◦ϕ(x)‖2 , (3)

with κ2 being the reciprocal of the mean squared spacing. Even though the exact
energy term D to this force is unknown for the particular choice of κ, previous
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Algorithm 1 Diffeomorphic registration

Set v0 = 0, ϕ0 = Id and k = 0
repeat

Compute the update step fIF ,IM◦ϕk

Update the velocity field and perform a diffusive regularization:

vk+1 = (Id− ταΔ)−1
(
vk + τfIF ,IM◦ϕk

)
(2)

Calculate ϕk+1 = exp(vk+1)
Let k ← k + 1

until a stop criterion is fulfilled, i.e. the algorithm converges

studies showed a considerably better performance then with the standard sum
of squared differences (SSD) [14]. This can be explained by the normalization of
the gradient, which leads to a better registration of regions with low contrast.
Moreover, the masks are used to restrict force calculation to the inside of the
lung by setting f(x) = 0 for all x with MF (x) = 0. The update of the velocity

field v is performed using (2), where τ is the step width. The term (Id− ταΔ)
−1

is related to the diffusion regularization S and can be computed efficiently using
additive operator splitting (AOS) [11].

We have chosen this registration approach because of three reasons: First, in
comparison to the conventional demons registration, the diffeomorphic approach
prevents singularities from arising in the displacement field. Second, even though
a diffeomorphic registration was not mandatory for the challenge, it is required
in many applications, where for example the inverse of the transformation is
needed or statistics have to be done on transformations [8]. The third reason
is related to runtime and memory requirements: due to the size of the 4D CT
images, diffeomorphic registration algorithms using non-stationary vector fields,
e.g. [4], are not feasible.

2.3 Algorithmic and implementation details

In the following section, some details and implementation specifications of the
algorithm are discussed. These considerations have been made with respect to the
EMPIRE10 test data and choices may differ for other applications. For example,
fixed and moving images provided for the challenge are always cropped close to
the lung borders, leading to ΩF 	= ΩM . This aspect requires a special handling,
which might not be advisable if IF and IM represent different time frames of a
4D data set as it is generally the case if registration is used for motion estimation.
In fact, the whole pre-registration may be dispensable in this case.

Still, the number and diversity of the data sets considered for the study
guarantee a certain generality of the observations and statements below.

Initialization The algorithm can be seen as the concatenation of three registra-
tion steps: an affine alignment, a surface-based adjustment and the image-based

58



diffeomorphic registration. In principle, each step could be initialized with the
results of the preceding one. However, the further velocity vectors point outside
the domain ΩF of the fixed image, the more notable extrapolation errors occur
during calculation of the exponential map exp(v). This is especially considerable
for the scaling-and-squaring algorithm, but also holds for other implementations,
e.g. the Euler step approach [6].

As a result, the diffeomorphic registration is not initialized with the result
of the pre-registration ϕpre. Instead, the fixed image IF is registered with the
warped image IpreM := IM ◦ ϕpre. By this, velocities and accordingly the extrap-
olation error remain comparatively small. To calculate the final displacement
field, the resulting transformation ϕdiff is concatenated with ϕpre using linear
interpolation. However, this procedure introduces an interpolation error and is
not recommended if, e.g., fixed and moving image are frames of a 4D data set.

Histogram matching A histogram matching between fixed and moving im-
age was performed before the diffeomorphic registration to overcome gray value
deviations due to different modalities or respiration-induced lung compression.

Multi resolution strategy Amulti resolution strategy is applied for the diffeo-
morphic registration. More precisely, the image is recursively smoothed (Gaus-
sian smoothing, σ = 1.0) and its size divided by two in each dimension. A number
of three levels provided the best results on average, however, this approach could
potentially be optimized depending on the actual image size and and by choosing
a scaling factor independently for each dimension.

Stop-criterion The affine ICP registration stops either after a maximal number
of iterations (kmax = 50) or if the mean point distance is below a threshold (t =
0.01). The same holds for the non-linear surface registration, where kmax = 50
and t = 10−5 are chosen.

For the stop criterion of the variational registration, the mean squared differ-
ence (MSD) of fixed and warped moving image is considered. If no improvement
of the MSD can be achieved over the last k iterations, registration is stopped
(here: k = 10). However, on the finest level, this approach can be very time
consuming due to the high computational cost of each iteration and the slow
convergence of the registration. Therefore, on this level a least squares linear re-
gression on the MSD values of the 20 most recent iterations is performed. If the
slope of the fitted line is below a certain threshold (here: t = 10−5), registration
is aborted.

Parameter determination Parameter values have generally been determined
empirically and are chosen to be fixed for all test data sets. Test runs were not
limited to the EMPIRE10 data sets, and so registration of other thoracic CT
images should lead to similar registration quality using the parameter values
described hereinafter.
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The values of parameters introduced by the pre-registration, the histogram
matching or the multi resolution strategy can be easily determined empirically.
Tests showed that the algorithm is robust with respect to them.

A reasonable choice for the step with is τ = 1.0, which provides fast enough
convergence while maintaining stability. The latter is explained by the chosen
force term (3), which restricts the maximal magnitude of the force vectors to
half of the mean pixel spacing.

The most considerable choice is the value of the regularization parameter
α. This usually implies a trade-off between the different validation metrics, e.g.
landmark distance vs. boundary alignment. In this work, emphasis is put on the
mean landmark distance, because we consider this to be the most significant
metric with respect to registration accuracy. For quantifying the registration
error, automatically detected landmarks where used [9]. A value of α = 0.7
provided the best results on average.

3 Results

The evaluation criteria for pulmonary image registration in the EMPIRE10 study
are (see ref. [12]):

(1) alignment of the lung boundaries,
(2) alignment of the major fissures,
(3) correspondence of annotated point pairs and
(4) analysis of singularities in the deformation field.

The results are detailed in table 1.
Computation times strongly depend on the image size and the number of

iterations performed with respect to the stop criterion. For the EMPIRE10 data
sets, registration was done on a Intel Xeon machine with 2.67GHz and 24GB
RAM. The affine alignment took between 12 sec (dataset 17) and 65 sec (dataset
14), the surface registration between 8 min and 70 min and the diffeomorphic
registration between 2 min and 150 min. Please note that the surface registration
is currently realized in a very basic implementation with a huge potential for
optimization.

4 Discussion

The results show that algorithm presented in this paper is highly applicable for
the registration of thoracic CT images.

The pre-registration introduced in section 2.1 emerged to be essential for the
success of the diffeomorphic registration. This has mainly two reasons: First,
most of the image pairs show considerable differences between moving and fixed
image, which results from a notable shift in patient position on the one hand
and from the cropping of the images on the other hand. This demands for a well
pre-alignment. The second reason is related to the usage of the masks during the
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Lung Boundaries Fissures Landmarks Singularities

Scan
Pair

Score Rank Score Rank Score Rank Score Rank

01 0.00 7.00 0.00 2.00 2.12 9.00 0.00 24.00

02 0.00 11.00 0.00 15.00 0.35 4.00 0.00 12.50

03 0.00 5.50 0.00 12.50 0.33 5.00 0.00 12.00

04 0.00 7.00 0.00 16.50 0.97 10.00 0.00 14.00

05 0.00 13.00 0.00 16.00 0.00 5.50 0.00 13.50

06 0.00 16.00 0.00 21.00 0.38 17.00 0.00 14.00

07 0.04 18.00 0.32 4.00 1.46 5.00 0.00 10.00

08 0.00 10.00 0.00 7.00 0.75 7.00 0.00 12.50

09 0.00 5.00 0.00 6.50 0.53 5.00 0.00 13.00

10 0.00 6.00 0.00 15.00 1.20 9.00 0.00 13.50

11 0.00 11.00 0.00 8.00 0.66 6.00 0.00 11.50

12 0.00 28.00 0.00 13.50 0.00 5.00 0.00 14.50

13 0.00 10.00 0.06 4.00 0.86 10.00 0.00 26.00

14 0.01 10.00 2.01 5.00 1.79 6.00 0.00 9.50

15 0.00 8.00 0.00 7.00 0.65 14.00 0.00 12.50

16 0.00 8.00 0.04 12.00 0.97 8.00 0.00 13.50

17 0.00 6.50 0.04 7.50 0.67 4.00 0.00 14.00

18 0.07 20.00 0.07 3.00 2.25 10.00 0.00 10.50

19 0.00 14.00 0.00 12.00 0.61 21.00 0.00 14.50

20 0.11 23.00 1.97 9.00 1.26 4.00 0.00 21.00

Avg 0.01 11.85 0.22 9.82 0.89 8.22 0.00 14.32

Average Ranking Overall 11.05

Final Placement 4
Table 1. Results for each scan pair, per category and overall. Rankings and final
placement are from a total of 34 competing algorithms.

image-based registration: if fixed and moving image mask don’t coincide with
each other, registration errors may be introduced at the boundaries. Therefore,
a simple affine alignment is not adequate.

Assuming a good pre-registration, the diffeomorphic approach behaves very
robust and provides especially good results for fissure alignment and landmark
distances.

In the tests, singularities occurred in the displacement fields for three of the
test cases. These were introduced by the TPS interpolation and the point-based
surface registration, which currently do not guarantee diffeomorphic transforma-
tions. This point will be adressed in future work.
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7. Ehrhardt, J., Werner, R., Säring, D., Lu, W., Low, D.A., Handels, H.: An optical
flow based method for improved reconstruction of 4D CT data sets acquired during
free breathing. Med Phys 34(2), 711–21 (2007)

8. Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Prediction of Respi-
ratory Motion Using A Statistical 4D Mean Motion Model. In: The Second Inter-
national Workshop on Pulmonary Image Analysis, Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2009. pp. 3–14 (2009)

9. Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Automatic Landmark
Detection and Non-linear Landmark- and Surface-based Registration of Lung CT
Images. In: Medical Image Analysis for the Clinic - A Grand Challenge, MICCAI
2010 (2010)

10. Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic Lung Segmentation for Accu-
rate Quantitation of Volumetric X-Ray CT Images. IEEE Trans Med Imag 20(6),
490–498 (2001)

11. Modersitzki, J.: Numerical Methods for Image Registration. Oxford Univ Press
(2004)

12. Murphy, K., van Ginneken, B., Reinhardt, J., Kabus, S., Ding, K.: Evaluation of
methods for pulmonary image registration: The EMPIRE10 study. In: Deng, X.,
Pluim, J. (eds.) Grand Challenges in Medical Image Analysis (2010)

13. van Rikxoort, E.M., de Hoop, B., Viergever, M.A., Prokop, M., van Ginneken, B.:
Automatic lung segmentation from thoracic computed tomography scans using a
hybrid approach with error detection. Medical Physics 36(7), 2934–2947 (2009)

14. Schmidt-Richberg, A., Ehrhardt, J., Werner, R., Handels, H.: Evaluation and Com-
parison of Force Terms for the Estimation of Lung Motion by Non-linear Registra-
tion of 4D-CT Image Data. In: World Congress on Medical Physics and Biomedical
Engineering 2009. pp. 2128–2131 (2009)

15. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain
diffeomorphic registration: a demons-based approach. Med Image Comput Comput
Assist Interv 11(Pt 1), 754–761 (2008)

16. Werner, R., Ehrhardt, J., Schmidt-Richberg, A., Handels, H.: Validation and com-
parison of a biophysical modeling approach and non-linear registration for esti-
mation of lung motion fields in thoracic 4D CT data. In: Image Processing, SPIE
Medical Imaging 2009. vol. 7259, pp. 0U1–0U8 (2009)

62




