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Abstract
Regulators of G-protein signaling (RGS proteins) interact with

Ga subunits of heterotrimeric G-proteins, accelerating the rate

of GTP hydrolysis and finalizing the intracellular signaling

triggered by the G-protein-coupled receptor (GPCR)–ligand

interaction. Angiotensin II (Ang II) interacts with its GPCR in

adrenal zona glomerulosa cells and triggers a cascade of

intracellular signals that regulates steroidogenesis and prolifer-

ation. On screening for adrenal zona glomerulosa-specific

genes,we found thatRGS4was exclusively localized in the zona

glomerulosa of the rat adrenal cortex. We studied RGS4

expression and regulation in the rat adrenal gland, including the

signaling pathways involved, as well as the role of RGS4 in

steroidogenesis in human adrenocortical H295R cells. We

reported that RGS4mRNA expression in the rat adrenal gland

was restricted to the adrenal zonal glomerulosa and upregulated
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by low-salt diet and Ang II infusion in rat adrenal glands in vivo.

In H295R cells, Ang II caused a rapid and transient increase in

RGS4 mRNA levels mediated by the calcium/calmodulin/

calmodulin-dependent protein kinase and protein kinase C

pathways. RGS4 overexpression by retroviral infection in

H295R cells decreasedAng II-stimulated aldosterone secretion.

In reporter assays, RGS4 decreased Ang II-mediated aldoster-

one synthase upregulation. In summary, RGS4 is an adrenal

gland zona glomerulosa-specific gene that is upregulated by

aldosterone secretagogues, in vivo and in vitro, and functions as a

negative feedback of Ang II-triggered intracellular signaling.

Alterations in RGS4 expression levels or functions may be

involved in deregulations of Ang II signaling and abnormal

aldosterone secretion.
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Introduction

Regulators of G-protein signaling (RGS proteins) com-

prise a complex and diverse family of proteins that interact

with the activated Ga subunits of heterotrimeric

G-proteins accelerating GTP hydrolysis and consequently

Ga inactivation and termination of G-protein signaling

(Berman & Gilman 1998, De Vries & Gist Farquhar 1999,

Burchett 2000, Ross & Wilkie 2000, De Vries et al. 2000,

Hollinger & Hepler 2002, Abramow-Newerly et al. 2006,

Sato et al. 2006). G-protein signaling pathways are essential

for adrenal gland regulation. Peptide hormones angiotensin

II (Ang II), adrenocorticotrophic hormone (ACTH), and

endothelin-1, potent physiological inducers of adrenal

steroidogenesis, regulate adrenal cells through G-protein-

mediated intracellular signaling pathways. G-proteins are

heterotrimeric proteins composed of Ga, Gb, and Gg
polypeptides. When the ligand binds its seven-trans-

membrane G-protein-coupled receptor (GPCR), it causes
a conformational change of the receptor that promotes the

exchange of GDP with GTP on the Ga subunit of

G-proteins. When G-protein binds GTP, it becomes

activated and the Ga subunit dissociates from the Gbg
complex. Both the activated Ga and the Gbg complex

interact with effector molecules to generate the intra-

cellular signaling events triggered by the ligand. Termin-

ation of signaling depends on the rate of hydrolysis of the

GTP bound to the Ga protein. Ga has intrinsic GTPase

activity, but its hydrolysis rate is too slow to account for

the rapid termination of the intracellular signaling observed

in physiological processes. RGS-mediated acceleration of

the Ga-protein intrinsic GTPase activity overcomes this

rate-limiting step in GPCR inactivation and signaling

termination.

More than 20 members of the RGS family of polypeptides

are characterized by the presence of a highly conservedw130

amino acid RGS domain to which the Ga subunit of

heterotrimeric G-proteins is bound. RGS4 is a member of the
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B/4R subfamily within the RGS protein family that is

characterized by the presence of an amphipathic helix domain

in addition to the RGS domain common to all family

members (Berman & Gilman 1998, De Vries & Gist Farquhar

1999, Burchett 2000, Ross & Wilkie 2000, De Vries et al.

2000, Hollinger & Hepler 2002, Blumer 2005, Abramow--

Newerly et al. 2006, Sato et al. 2006). RGS4 interacts with

several Ga proteins (Berman et al. 1996, Watson et al. 1996,

Hepler et al. 1997, Roy et al. 2003), including Gaq/11 which is
the Ga subclass that has been implicated in Ang II receptor

signal transduction (Spat & Hunyady 2004). RGS4 proteins

have been studied in several tissues, including the cardiovas-

cular and nervous systems where it plays very important roles

(Riddle et al. 2005). In the cardiovascular system, RGS4 levels

were reported to be increased in the hearts of pulmonary

artery-banded mice and in a rat model of genetic congestive

heart failure (Zhang et al. 1998), as well as in failing human

hearts (Owen et al. 2001, Mittmann et al. 2002). In vitro,

RGS4 overexpression inhibits phenylephrine and endothe-

lin-1-mediated induction of atrial natriuretic factor and

myosin light chain-2 genes (Tamirisa et al. 1999) and

attenuates sphingosine 1-phosphate receptor signaling (Cho

et al. 2003). In vivo,RGS4 overexpression in ventricular tissue

impairs the ability of the heart to adapt to acute ventricular

pressure overload and cardiac hypertrophy caused by

transverse aortic constriction (Rogers et al. 1999). Cardiac

RGS4 is involved in diabetic cardiomyopathy since its

overexpression confers resistance to streptozotocin-induced

cardiac fetal gene induction (Harris et al. 2004). In the

nervous system, RGS4 is also highly expressed and regulated

by physiological and pharmacological agents (Ingi & Aoki

2002, Neubig & Siderovski 2002, Larminie et al. 2004).

RGS4 mRNA levels are consistently decreased in the

prefrontal cortex of schizophrenic patients (Mirnics et al.

2001). Linkage analysis studies indicated that several

nucleotide polymorphisms in the RGS4 promoter region

may be associated with schizophrenia (Chowdari et al. 2002,

Morris et al. 2004), although more studies are required to

confirm these associations (O’Donovan et al. 2003).

We hypothesize that genes preferentially/exclusively

expressed in the rat adrenal zona glomerulosa may be

involved in specific responses to proliferation and steroido-

genesis of this adrenal gland zone. We used differential

display to screen for these genes and observed that RGS4

was preferentially expressed in the rat adrenal zona

glomerulosa. Since no studies have been reported regarding

RGS4 expression and role in the adrenal cortex, we have

conducted further studies to analyze RGS4 expression,

regulation, and function in adrenocortical cells. We

performed detailed analysis of RGS4 expression in rat

adrenal gland and analyzed its regulation by salt diet intake

manipulation and Ang II infusion in vivo. We also studied

RGS4 regulation, the intracellular signaling mechanisms

involved, and its role in aldosterone secretion using the

H295R human adrenal cell line as our in vitro experimental

model.
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Materials and Methods

Materials

Ang II was obtained from Sigma Chemical Co. Ionomycin,

nifedipine, SKF-96365 (SKF), calmidazolium, KN-93, auto-

camtide-2 cell permeable inhibitory peptide, phorbol-12-

myristate-13-acetate (PMA), bisindolylmaleimide I (GF

109203X), calphostin C, chelerythrine, Gö 6976, Gö 6983,

Ro-31-8220, Ro-32-0432, and myristoylated protein kinase C

(PKC) inhibitor peptide (20–28) were obtained from EMD

Biosciences (San Diego, CA, USA). W-7 and STO-609 were

obtained from Tocris (Ellisville, MO, USA). Merck Laboratories

generously provided Losartan. Human adrenal total RNA was

obtained from several sources: hAd1 (59-year-old male donor)

from BioChain Institute Inc. (Hayward, CA, USA), hAd2

(pooled from 61 male/female Caucasian donors, ages 15–61)

from BD Biosciences (Mountain View, CA, USA), and hAd3

(30-year-old female donor) from Stratagene (La Jolla, CA,USA).
Animals

All animal protocols were approved by the Institutional

Animal Care and Use Committee of the G V Montgomery

VA Medical Center and by the Central Office of the

Department of Veterans Affairs. Animal use and husbandry

were in accordance with the National Institutes of Health

Guide for the Care and Use of Laboratory Animals, and

conducted in AAALAC-accredited facilities.

Male Sprague–Dawley rats (3 months old) were obtained

from Harlan Sprague–Dawley (Indianapolis, IN, USA) and

maintained on standard rat chow (Teklad, Harlan, Indiana-

polis, IN, USA) and tap water in an environment with 12 h

light:12 h darkness cycles.

Salt diet manipulation Rats (nZ6 per group) were fed ad

libitum a standard normal salt diet (0.3% NaCl; Teklad,

Harlan, Madison, WI, USA), low-salt diet (0.03% NaCl), or

high-salt diet (standard chow plus 0.9% saline to drink) for 2

or 15 days.

Ang II infusionRats (nZ6 per group) were anesthetized by

isoflurane gas and a catheter was placed in the femoral vein.

The catheter was exteriorized at the back of the neck and rats

were allowed to recover for 2 days. Conscious unrestrained

rats were connected to an infusion pump and infused for 2 or

6 h with Ang II in saline at a dose of 100 ng/kg per min at rate

of 500 ml/h. Control rats received saline.

At the end of the experimental protocols, rats were

anesthetized with isoflurane, adrenal glands removed, excised

of fat, flash frozen in liquid nitrogen, and stored at K80 8C.
Northern blot

Northern blots were performed as previously described

(Zhou et al. 1995) with the following modifications. Nine
www.endocrinology-journals.org
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micrograms of total RNA from capsule and core fractions of

rat adrenal gland were separated by formaldehyde/formamide

denaturing electrophoresis and transferred to Zeta Probe GT

nylon membrane (Bio-Rad). PCR products were labeled

using the Strip-EZ DNA kit (Ambion, Austin, TX, USA).

Membranes were exposed to autoradiography film. Films

were scanned and quantified with a Kodak Image Station 440

using the 1D Kodak image analysis software. Membranes

were stripped and reprobed with GAPDH as loading control.
In situ hybridization

In situ hybridizations were performed as we previously

described (Wotus et al. 1998, Daido et al. 2003) using the

Sure-Site kit (EMD Biosciences) with the following

modifications. Sections were washed once with 2! SSC

for 30 min at 55 8C followed by one wash in 1! SSC plus

one more in 0.5! SSC under similar conditions. Sections

were air-dried and exposed to autoradiography film. Films

were scanned with a Kodak Image Station 440.
Cell culture

H295R human adrenocortical cells (Bird et al. 1993) were

cultured in H295R complete medium containing Dulbecco’s

modified Eagle’s medium (DMEM):F12 (1:1) supplemented

with 2% Ultroser G (Biosepra, Villeneuve-la-Garenne,

France), Insulin/Transferrin/Selenium-Plus (Discovery Lab-

ware, Bedford, MA, USA), and antibiotic/antimycotic

mixture (Invitrogen) as we previously described (Romero et

al. 2004), until subconfluent in 6-well plates. Medium was

replaced with 3 ml fresh medium containing various agents

and cultured for 3 h more unless otherwise indicated. At the

end of the incubation period, medium was removed and saved

for steroid determination. To study the intracellular signaling

pathways involved in RGS4 regulation, we used several

inhibitors of the calcium/calmodulin/calmodulin-dependent

protein kinase (CaMK) and PKC pathways (detailed in the

Results section) which were added 30 min before Ang II

addition. Reference sources used to select the inhibitor

concentration used are indicated in Supplementary material

Table 1(see supplementary data in the online version of
Table 1 Real-time PCR primers

Accession number Primers

Gene
Rat RGS4 NM_017214 Forward 5

Reverse 5
Rat GAPDH NM_017008 Forward 5

Reverse 5
Human RGS4 NM_005613 Forward 5

Reverse 5
Human GAPDH NM_002046 Forward 5

Reverse 5

www.endocrinology-journals.org
the Journal of Endocrinology at http://joe.endocrinology

-journals.org/content/vol 194/issue 2); preference was given

to previous reports in the following order: (1) H295R cells,

(2) other adrenocortical cell systems, (3) other cell systems.
RNA extraction and RT-PCR

Adrenal gland total RNA was extracted with Tri-Reagent

(MRC, Cincinnati, OH, USA), resuspended in diethyl

pyrocarbonate-treated H2O, DNase treated with Turbo

DNA-free kit (Ambion). H295R cell total RNAwas extracted

with the RNeasy Micro kit (Qiagen) and on-column DNase

digested. For RT, 5 mg total RNA was incubated with 0.5 mg
T12VN and Superscript III (Invitrogen) following the manu-

facturer’s suggested protocol. Primers were designed with

Primer3 software (Rozen & Skaletsky 2000) and are shown in

Table 1. Real-time PCRwas performed with 1 ml RT product,

1 ml titanium Taq DNA polymerase (Clontech), 1:20 000

dilution SYBR Green I (Molecular Probes, Carlsbad, CA,

USA), 0.2 mM dNTPs, and 0.1 mM of each primer. Cycling

conditionswere 1 min at 95 8C, 50cycles of 15 s at 95 8C, 15 s at

60 8C, and1 min at 72 8C.Real-time datawere obtained during

the extension phase and threshold cycle values were obtained at

the log phase of each gene amplification. PCR product

quantification was performed by the relative quantification

method (Pfaffl 2001) and standardized against GAPDH.

Efficiency for each primer pair was assessed by using serial

dilutions of RT product. Results are expressed as arbitrary units

and normalized against GAPDH mRNA expression. The

specificity of the PCR products was confirmed by melting

temperature determination of the PCRproduct, and restriction

enzyme digestion followed by high-resolution electrophoretic

analysis in 4% NuSieve 3:1 agarose gels (Cambrex, Rockland,

ME, USA) of PCR products (Supplementary Fig. 1; (see

supplementary data in the online version of the Journal

of Endocrinology at http://joe.endocrinology-journals.org/

content/vol 194/issue 2)).
Plasmids

pGEM-T (Promega) plasmid carrying a fragment of rat

RGS4 mRNA (bases 1397–2919 from NM_017214) was
Product size (bp)

0-CAGGCAACAAAAGAGGTGGAAC-30 100
0-TCTTCTGGGCTTCATCAAAAC-30

0-AAGATGGTGAAGGTCGGTGT-3 0 99
0-GTTGATGGCAACAATGTCCACT-30

0-CTGCAAAAATCTGATTCCTGTG-3 0 100
0-CCCATTTCTTGACTTCCTCTTG-3 0

0-CCCCTTCATTGACCTCAACTAC-3 0 103
0-GATGACAAGCTTCCCGTTCTC-3 0

Journal of Endocrinology (2007) 194, 429–440
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used for probe generation for northern blot or in situ

hybridization. A plasmid containing the human RGS4

insert in pDNR-1r was obtained from the University of

Missouri at Rolla cDNA Resource Center (www.cdna.

org). RGS4 was transferred from pDNR-1r to the

retroviral BD Creator acceptor vector pLP-LNCX using

the manufacturer’s suggested protocol. The pVSV-G

plasmid was purchased from Clontech.
Retroviral production and infection

VSV-G-pseudotyped retroviral particles were generated by

transient transfection in GP2-293 cells as previously described

(Romero et al. 2006). GP2-293 cells (Clontech) were cultured

inDMEMsupplementedwith 10% fetal bovine serumuntil 60–

70% confluent, then transfected with retroviral vector and

pVSV-G plasmids (0.25 mg/cm2, 1:1 molar ratio) using Trans-

IT 293 transfection reagent (2 ml/mg DNA, Mirus Bio,

Madison, WI, USA). Medium was replaced after 4 h and cells

cultured for an additional 48 h. Cell culture supernatant was

removed, centrifuged for 5 min at 200 g at 4 8C,filtered through

a 0.45 mm polyether sulfone (PES) membrane, aliquoted, and

stored at K80 8C. For retroviral infection, confluent H295R

cells were split 1:3 in 6-well plates and cultured overnight.

Retroviral supernatant was diluted 1:1 with fresh medium,

added to cells, and cultured for 24 h. Mediumwas replaced and

cells were selected with 500 mg/ml G-418. Infection efficiency

was more than 80% of the cell population. After antibiotic

selection, cellswere cultured for at least 4weeks in the absence of

selecting agent before performing the experiments to avoid any

confounding effect due to the selecting antibiotic.
Aldosterone ELISA

Aldosterone was measured in cell culture supernatants by

ELISA using an MAB developed in our laboratory as

previously described (Gomez-Sanchez et al. 1987). Assay

sensitivity was 20 pg/ml.
Figure 1 RGS4 expression in rat adrenal gland. (A) Rat adrenal
glands were separated into capsules and coarse for RGS4 and
GAPDH mRNA expression analysis by northern blot. (B) Rat
adrenal gland sections were probed with a RGS4 antisense probe or
a sense control probe by in situ hybridization. Representative
figures from experiments repeated at least six times.
Statistical analysis

All results were expressed as meanGS.E.M. Two groups

were compared by t-test and multiple groups were

analyzed by one-way ANOVA followed by Tukey’s post

hoc comparisons or two-way ANOVA followed by

Bonferroni comparisons. Time–response curves were

tested by two-way ANOVA followed by Bonferroni

comparisons. Dose–response curves were adjusted to a

four-parameter sigmoidal equation and its parameters

tested by F-test; values were tested by two-way ANOVA

followed by Bonferroni comparisons. All experiments

were repeated at least twice in triplicates. Differences

were considered statistically significant at P!0.05.
Statistical calculations were performed with Graphpad

Prism package version 4.03 (Graphpad Software Inc., San

Diego, CA, USA).
Journal of Endocrinology (2007) 194, 429–440
Results

RGS4 is expressed in the rat adrenal zona glomerulosa

To confirm our initial observation that RGS4 was

preferentially expressed in the rat adrenal zona glomerulosa,

we performed northern blot and in situ studies in the rat

adrenal gland. We performed a northern blot using the

capsule (outer cortex comprising zona glomerulosa and some

zona fasciculata) and core (internal cortex and medulla) of the

rat adrenal gland. RGS4 was preferentially expressed in the

capsule fraction with negligible amounts observed in the core

fraction (Fig. 1A). Membranes were stripped and reprobed

with a GAPDH probe as an internal loading control to ensure

that similar RNA amounts were loaded in each lane.

To more precisely localize RGS4 expression in the rat

adrenal gland, we performed an in situ hybridization with a

homologous rat RGS4 probe. RGS4 mRNA expression was

localized in the zona glomerulosa of rat adrenal gland (Fig. 1B).

The negative control sense probe showed no signal (Fig. 1B),

indicating the specificity of the antisense RGS4 probe.
RGS4 is regulated by salt intake in rat adrenal

One of themain physiological modulators of adrenal gland zona

glomerulosa physiology is salt intake. To study whether salt

intake regulates RGS4 expression in adrenal gland, rats were

placed on low- or high-salt diet for 2 or 15 days and RGS4

mRNA quantified in adrenal glands by real-time RT-PCR.

Low-salt diet caused a continuous increase in adrenal gland
www.endocrinology-journals.org
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RGS4mRNA expression reaching a 66% increase after 15 days

of treatment (1.01G0.08 vs 1.66G0.17, P!0.05; Fig. 2A). In
contrast, high-salt diet did not modify RGS4 mRNA levels up

to 15 days of treatment.
RGS4 is regulated by Ang II infusion in rat adrenal

To study whether Ang II, a well-known aldosterone

secretagogue and modulator of adrenal zona glomerulosa

physiology, regulates RGS4 expression in adrenal gland, rats

were infused with Ang II. Conscious chronically catheterized

rats were infused with Ang II for 2 or 6 h, and adrenal RGS4

mRNA was quantified by real-time RT-PCR. Ang II

infusion caused an increase in RGS4 mRNA expression

reaching a 131% increase after 6 h of treatment (1.00G0.10
vs 2.31G0.34, P!0.05; Fig. 2B).

RGS4 is upregulated by Ang II in H295R cells

To further study the molecular mechanisms involved in the

regulation and role of RGS4 in aldosterone secretion by adrenal
Figure 2 RGS4 mRNA expression regulation by sodium diet (A) or
angiotensin II infusion (B). Rats were placed on low or high sodium
diets for 2 or 15 days (A) or infusedwith 100 ng/kg per min angiotensin
II for 2 or 6 h (B). Adrenal glands were removed and RGS4 mRNA
quantified by real-time RT-PCR. *P!0.05 versus rats in control diet (A)
or versus rats infused with saline (B), nZ6 per group.

www.endocrinology-journals.org
cells, H295R human adrenocortical cells were used as the

experimental in vitro model. It is the only adrenal cell line that

expresses all of the steroidogenic enzymes required for the

synthesis of aldosterone from cholesterol and has a steroid

secretion pattern and regulation similar to that of primary

adrenal cell cultures (Rainey et al. 1994, 2004). H295R

adrenocortical cells, as well as normal human adrenal glands,

expressed RGS4 mRNA as detected by agarose gel electro-

phoresis of PCR products (Fig. 3A). Controls with no reverse

transcriptase showed no amplification. GAPDH was used as a

housekeeping control gene.

To determine whether RGS4 mRNA levels are subjected

to regulation by Ang II in H295R cells as in rat adrenal glands,

H295R human adrenocortical cells were incubated with

100 nM Ang II for increasing periods up to 72 h and RGS4

mRNA expression was quantified by real-time PCR

(Fig. 3B). Ang II caused a 25-fold increase in RGS4

mRNA levels 3 h after hormone stimulation. RGS4

mRNA then declined to basal levels within 24 h and

remained suppressed for up to 72 h after the initiation of

Ang II treatment. When H295R cells were treated with Ang

II for shorter periods, it was observed that RGS4 mRNA

levels reached maximal stimulation after 4-h treatment

(Fig. 3C). To study the effect of different doses of Ang II on

RGS4 mRNA expression, H295R cells were incubated with

increasing concentrations of Ang II for 3 h and RGS4

mRNA quantified (Fig. 3D). Ang II (0.1–1000 nM) dose

dependently increased RGS4 mRNA levels. To confirm the

specificity of Ang II treatment on RGS4 mRNA regulation,

H295R cells were treated with the Ang II receptor type 1

(AT1-R) blocker losartan (10 mM) in the presence or absence

of Ang II (10 nM) for 30 min (Fig. 3E). Losartan completely

abolished (98% inhibition) Ang II-mediated RGS4 mRNA

upregulation, indicating that AT1-R specifically mediates

RGS4 mRNA regulation by Ang II. The CaMK and PKC

pathways are primary mediators of Ang II intracellular

signaling in adrenal cells (Barrett et al. 1989, Ganguly &

Davis 1994, Bassett et al. 2004, Spat & Hunyady 2004). To

determine whether either of these pathways is involved in the

regulation of RGS4 mRNA expression in H295R cells, we

performed the following studies.
Calcium signaling is involved in Ang II-mediated RGS4
upregulation in H295R cells

To analyze whether calcium channel blocking would alter

Ang II-mediated RGS4 upregulation, H295R cells were

preincubated with the L-type Ca2C channel selective blocker

nifedipine before Ang II stimulation (Fig. 4A). Nifedipine

caused a 55% decrease in Ang II-mediated RGS4 upregula-

tion (100.0G8.9 vs 45.1G2.0, P!0.05).
To verify the involvement of calcium signaling on RGS4

mRNA upregulation, H295R cells were preincubated with

SKF, an inhibitor of both receptor-mediated and voltage-

gated calcium influx entry (Merritt et al. 1990), before Ang II

stimulation. SKF caused a 36% decrease in Ang II-mediated
Journal of Endocrinology (2007) 194, 429–440



Figure 3 RGS4 expression and regulation in H295R cells. (A) RGS4 mRNA expression in H295R cells and
human adrenal glands detected by agarose gel electrophoresis of RT-PCRs in the presence (C) or absence (K)
of reverse transcriptase. GAPDH mRNA expression was used as control. hAd1: 59-year-old male donor,
hAd2: pooled from 61 male/female white donors, ages 15–61, hAd3: 30-year-old female donor. (B and C)
H295R cells were incubated with or without 100 nM angiotensin II for 0–72 h (B) or 0–6 h (C) periods, RNA
extracted, and then quantified by real-time RT-PCR. RGS4 mRNA was normalized by GAPDH mRNA
expression and expressed as fold increase versus timeZ0. *P!0.05 versus basal, nZ3. (D) H295R cells were
incubated with increasing concentrations of Ang II for 3 h, RNA extracted, and then quantified by real-time
RT-PCR. RGS4 mRNA was normalized by GAPDH mRNA expression and expressed as fold increase versus
timeZ0. *P!0.05 versus control, nZ3. (E) H295R cells were treated with 10 mM losartan or vehicle (control)
for 30 min and then incubated in the presence or absence of angiotensin II (Ang II, 10 nM) for 3 h, RNA
extracted, and then quantified by real-time RT-PCR. RGS4 mRNA was normalized by GAPDH mRNA
expression and expressed as percentage of angiotensin II stimulation. *P!0.05 versus basal–control,
#P!0.05 versus Ang II–control, nZ3.
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RGS4 mRNA upregulation (100.0G7.6 vs 63.4G6.4,
P!0.05; Fig. 4B).

Furthermore, when H295R cells were incubated with the

calcium ionophore ionomycin (1 mM) for 3 h, RGS4 mRNA

levels were increased 2.1-fold when compared with control

cells (1.00G0.12 vs 2.17G0.29, P!0.05).
Journal of Endocrinology (2007) 194, 429–440
Calmodulin and CaMKK/CaMK mediates RGS4 mRNA
upregulation by Ang II in H295R cells

Calcium mediates most of its biological effects through

binding to the calcium-binding protein, calmodulin, causing

a conformational change allowing calmodulin to interact and
www.endocrinology-journals.org



Figure 4 Effect of Ca2Cchannel blockers on RGS4 mRNA
expression. H295R cells were treated with 10 mM nifedipine (A),
25 mM SKF (B), or vehicle for 30 min and then incubated in the
presence or absence of angiotensin II (Ang II, 100 nM) for 3 h. RNA
was extracted and then quantified by real-time RT-PCR. RGS4
mRNA was normalized by GAPDH mRNA expression and
expressed as fold increase or percentage of angiotensin II
stimulation. *P!0.05 versus basal–control, #P!0.05 versus
control for its treatment, nZ3.

Figure 5 Effect of calmodulin antagonists and CaMKK and CaMK
inhibitors on RGS4 expression. H295R cells were treated with
50 mM W-7 (A), 10 mM calmidazolium (A), 1 mg/ml STO-609 (B),
5 mM KN-93 (B), 10 mM autocamtide-2 (B), or vehicle for 30 min
and then incubated in the presence or absence of angiotensin II
(Ang II, 100 nM) for 3 h. RNA was extracted and then quantified by
real-time RT-PCR. RGS4 mRNA was normalized by GAPDH mRNA
expression and expressed as percentage of Angiotensin II
stimulation. *P!0.05 versus basal–control, #P!0.05 versus
control for its treatment, nZ3.

RGS4, Ang II, and aldosterone in adrenal gland . D G ROMERO and others 435
modify the activity of its target proteins. We studied the effect

of two calmodulin antagonists, W-7, and calmidazolium, on

basal and stimulated conditions. W-7 and calmidazolium

caused a 66% (100.0G4.4 vs 44.1G1.5, P!0.05) and 67%

(100.0G4.4 vs 32.8G1.36, P!0.05) decrease respectively in
Ang II-mediated RGS4 mRNA induction (Fig. 5A).

Once complexed with calcium, calmodulin can interact

with calmodulin kinases (CaMK), allowing phosphorylation

of the inhibitory subunit by CaMK regulatory subunit and

causing activation of the protein kinase. CaMK kinase

(CaMKK) is an upstream regulator of CaMK that is also
www.endocrinology-journals.org
regulated by calmodulin. CaMKs are expressed in the adrenal

gland and are among the main effectors of calcium

intracellular signaling in this gland (Barrett et al. 1989,

Ganguly & Davis 1994, Condon et al. 2002). Pretreatment of

H295R cells with the CaMKK-specific inhibitor STO-609

caused a 36% decrease in Ang II-mediated RGS4 mRNA

induction (100.0G5.1 vs 64.0G2.6, P!0.05; Fig. 5B).
To analyze whether CaMK mediates RGS4 mRNA

induction,H295R cellswere pretreatedwith theCaMK-specific

inhibitors KN-93 or autocamtide-2. Both KN-93 and auto-

camtide-2 caused a 42% (100.0G5.1 vs 58.5G2.6,P!0.05) and
38% (100.0G5.1 vs 62.4G2.0,P!0.05) decrease respectively in
Ang II-mediated RGS4 mRNA induction (Fig. 5B).
PKC mediates Ang II-mediated RGS4 mRNA upregulation in
H295R cells

To study the role of PKC in RGS4 mRNA upregulation, we

performed experiments involving activation and inhibition of
Journal of Endocrinology (2007) 194, 429–440
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this protein kinase. Incubation of H295R cells with increasing

concentrations of the PKC activator PMA caused a dose-

dependent increase inRGS4mRNAlevels, reachingmaximum

levels at 100 nM PMA (23.65G0.63 vs 1.00G0.05, P!0.05;
Fig. 6A). Since exogenous activation of PKC increases RGS4

mRNAlevels,we studiedwhetherPKCinhibitors couldmodify

Ang II-mediated RGS4 mRNA upregulation. The generic

PKC inhibitors bisindolylmaleimide I and Gö 6983 almost

completely blocked Ang II-mediated RGS4mRNA upregula-

tion (100.0G3.3 vs 16.4G0.7, P!0.05, vs 8.71G0.3,
Figure 6 Effect of protein kinase C on RGS4 mRNA expression.
H295R cells were incubated with increasing concentrations of PKC
activator PMA for 3 h (A) or treated with different PKC inhibitors or
vehicle for 30 min and then incubated in the presence or absence of
angiotensin II (Ang II, 100 nM) for 3 h (B). RNA was extracted and
then quantified by real-time RT-PCR. RGS4 mRNA was normalized
by GAPDH mRNA expression and expressed as percentage of
angiotensin II stimulation. *P!0.05 versus control, #P!0.05 versus
Ang II, nZ3.

Journal of Endocrinology (2007) 194, 429–440
P!0.05 respectively; Fig. 6B). Other PKC inhibitors,

calphostin C, chelerythrine, Gö 6976, Ro-31-8220, Ro-32-

0432, and thePKC inhibitory peptide (20–28) all decreasedAng

II-mediatedRGS4mRNAupregulation (Fig. 6B), suggesting a

critical role of PKC in RGS4 mRNA level modulation.
RGS4 overexpression decreased aldosterone secretion in
H295R cells

To examine the effect of RGS4 upregulation on aldosterone

secretion, we used retroviruses expressing RGS4 under

control of the cytomegalovirus (CMV) promoter to generate

H295R cells that stably overexpress RGS4 (H295R–RGS4

cells). H295R–RGS4 significantly overexpressed RGS4

mRNA (P!0.05, Fig. 7 insert). To study whether RGS4

overexpression alters aldosterone secretion in response to Ang

II, H295R and H295R–RGS4 cells were incubated with

increasing concentrations of Ang II, and the cell culture

supernatants were assayed for aldosterone. RGS4 over-

expression caused a significant decrease in aldosterone

secretion at all doses of Ang II tested (Fig. 7). RGS4

overexpression reduced basal (22.3G4.6 vs 0.38G1.44,
P!0.05) and maximal stimulation (108.4G6.7 vs 50.7G
4.3, P!0.05) aldosterone secretion.
Discussion

In the present study, we demonstrate that: (1) RGS4 is

expressed in the rat adrenal gland exclusively in the zona

glomerulosa, (2) rat adrenal RGS4 mRNA is upregulated

in vivo by low-salt diet intake and Ang II infusion, (3) RGS4 is

expressed in H295R human adrenocortical cells and is
Figure 7 Effect of RGS4 overexpression on aldosterone secretion.
H295R cells were infected with retroviruses expressing RGS4,
selected, and incubated with increasing concentrations of Angio-
tensin II for 24 h. Aldosterone concentration was measured in
medium supernatant and cells lysed to quantify total protein. Insert
shows RGS4 mRNA overexpression in H295R–RGS4 cells.
*P!0.05 versus control cells, nZ3.
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upregulated by Ang II, (4) Ang II-mediated RGS4 mRNA

upregulation in H295R cells is mediated by the calcium/

calmodulin/CaMK and PKC pathways, and (5) RGS4

overexpression in H295R cells caused a decrease in Ang

II-mediated aldosterone secretion.

Hormonal signals are crucial for the functional integration

of different organs and systems within living organisms. After

binding to cognate receptors, hormones trigger a cascade of

intracellular events that cause specific physiological responses.

The termination of intracellular signaling events is as

important as their initiation to achieve homeostasis at the

cellular and whole organism level. Ang II modifies several

aspects of adrenal cell metabolism and physiology including

steroid secretion and zona glomerulosa cell proliferation. Ang

II binds to its GPCRs, which interact with G-proteins, that

upon exchange of GDP by GTP are activated and available to

interact with target effector proteins to transduce the Ang II

signal from the extracellular space to the intracellular

compartment. Our results indicate that RGS4 is a gene in

the adrenal gland that is exclusively expressed in the zona

glomerulosa and whose expression is regulated in vivo by

physiological modulators of zona glomerulosa cells, salt

intake, and Ang II. RGS4 proved to be regulated by Ang II

in H295R cells in vitro and its overexpression caused a

decrease in Ang II-mediated aldosterone secretion. Since the

main physiological function of RGS proteins is to increase

the rate of Ga protein inactivation and consequently the

downregulation of the intracellular signal triggered by the

GPCR, RGS4 is probably crucial for the physiological

termination of Ang II signal in adrenal cells, prevention of an

exaggerated or prolonged Ang II signal, and promotion of

homeostasis.

We have recently reported that Ang II upregulates RGS2

expression in H295R human adrenocortical cells and exerts

similar physiological effects as RGS4 on adrenal steroidogen-

esis regulation (Romero et al. 2006). The regulation of RGS2

and RGS4 mRNA levels and the intracellular signaling

pathways involved, although similar, are unique. Ang II

caused a continuous increase in RGS4 mRNA levels up to

4 h after treatment, while RGS2 mRNA reached maximal

stimulation levels within 1 h (Romero et al. 2006). These

results agree with the few reports in which time–response

curves of RGS2 and RGS4 mRNA levels were generated.

Taymans et al. (2004) reported that dopamine receptor 2

blockade caused regulation of RGS2 and RGS4 mRNA

levels in rat brain in opposite directions, with RGS4 mRNA

levels upregulated more slowly than RGS2 levels. Although

Ang II-mediated RGS4 mRNA upregulation in adrenal cells

lags that of RGS2, the degree of stimulation is much higher

reaching 25-fold when compared with only 5-fold for RGS2

(Romero et al. 2006). Both Ang II-mediated RSG4 and

RGS2 mRNA upregulation are mediated by the calcium/

calmodulin/CaMKK/CaMK intracellular signaling pathway.

However, PKC seems to be a key mediator in Ang

II-mediated RGS4 mRNA upregulation, while this protein
www.endocrinology-journals.org
kinase does not seem to play a significant role in the regulation

of RGS2 mRNA in H295R cells (Romero et al. 2006).

To study the role of RGS4 in Ang II-mediated aldosterone

secretion, we overexpressed RGS4 in H295R cells. RGS4

overexpression caused a decrease in Ang II-mediated

aldosterone production as well as in basal aldosterone

secretion in the absence of added Ang II. This finding is

not surprising since H295R cells, like adrenal zona

glomerulosa cells in vivo, have an endogenous renin–

angiotensin system that generates Ang II under basal

conditions promoting basal aldosterone secretion in the

absence of exogenous stimuli (Hilbers et al. 1999). RGS4

overexpression in H295R cells reduced maximal Ang

II-mediated aldosterone secretion but did not modify the

responsiveness of the system, since it did not modify Ang II

pEC50 for aldosterone secretion. The effects of RGS4

overexpression on adrenal cell steroidogenesis are similar to

those we previously reported for RGS2 (Romero et al. 2006).

Although there was a significant increase in RGS4 mRNA

levels in H295R–RGS4 overexpressing cells, the fact that

RGS4 did not blunt Ang II-mediated steroidogenesis may

indicate that this RGS protein may be necessary but not solely

sufficient to turn off Ang II signaling in adrenal cells. Other

cellular processes, such as Ang II signaling and Ang II receptor

desensitization and downregulation, and Ang II receptor

internalization are known to occur in H295R cells as well as

adrenocortical cells in response to Ang II (Bianchi et al. 1986,

Penhoat et al. 1988, Naville et al. 1993, Bird et al. 1994,

Boulay et al. 1994, Ouali et al. 1997, Richard et al. 1997, Spat

& Hunyady 2004) and complement RGS4 role in the

regaining of cellular homeostasis after Ang II stimulation.

Ang II upregulates RGS4 mRNA levels through the

calcium/calmodulin/CaMKK/CaMK and PKC pathways. It

has been reported that Ang II upregulates CaMK activity in

bovine zona glomerulosa cells (Fern et al. 1995, Gambaryan

et al. 2006). CaMK inhibitors inhibit Ang II-mediated

aldosterone secretion (Denner et al. 1996, Gambaryan et al.

2006) and aldosterone synthase expression (Pezzi et al. 1997,

Condon et al. 2002). More recently, it has been shown by

cotransfection reporter assays that CaMKI may be the CaMK

isoform involved in Ang II-mediated aldosterone synthase

expression regulation (Condon et al. 2002). PKC negatively

affects Ang II-mediated aldosterone secretion and aldosterone

synthase expression (Bird et al. 1998, LeHoux & Lefebvre

1998, Hajnoczky et al. 1992, LeHoux et al. 2001). PKC

activators decrease and PKC inhibitors increase aldosterone

synthase expression (Bird et al. 1998, LeHoux & Lefebvre

1998, LeHoux et al. 2001). More recently, PKC3 has been

proposed to be the PKC isozyme involved in the regulation of

aldosterone synthase in H295R cells (LeHoux & Lefebvre

2006). RGS4 has a complex interaction with the intracellular

signaling pathways that regulate its expression. While the

calmodulin/CaMKK/CaMK signaling pathway is a positive

modulator of aldosterone secretion and aldosterone synthase

expression, it also upregulates RGS4 expression which then

functions as a negative feedback of Ang II-mediated
Journal of Endocrinology (2007) 194, 429–440
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aldosterone secretion. On the other hand, the decrease in

aldosterone secretion and aldosterone synthase expression

produced by PKCmay be mediated by its regulation of RGS4

expression. Perhaps, PKC activation decreases aldosterone

secretion by upregulating RGS4 expression, thus terminating

Ang II-mediated signaling that increases aldosterone

synthesis.

A limitation of the present report is that RGS4 regulation

was detected at the mRNA levels instead of the protein level.

Endogenous RGS4 levels are very low and below the

detection limit of currently available antibodies, as we have

observed in rat adrenal gland and H295R cells, and as other

researchers have reported in several other cell lines (Ingi et al.

1998). Plasmid-driven expression of RGS4 protein in

mammalian cells have a half-life of only 45 min (Davydov

& Varshavsky 2000) due to its rapid degradation by the

ubiquitin-dependent N-end rule pathway (Davydov &

Varshavsky 2000, Lee et al. 2005). The short half-life of

RGS4 protein makes it very likely that RGS4 protein levels

reflect those of its mRNA, and the determination of RGS4

mRNA levels are an achievable and valid extrapolation for the

study of the regulation of RGS4 levels in adrenal cells.

In the present report, we show that RGS4 is zona

glomerulosa-specific gene of adrenal gland, is upregulated

by low sodium intake and Ang II, and is involved in adrenal

cell aldosterone secretion regulation. These findings and our

previous ones regarding RGS2 elucidate a newmechanism by

which Ang II intracellular signaling is terminated and the Ang

II receptor desensitized independently of Ang II receptor

downregulation by internalization within the adrenal cell. We

speculate that RGS2 and RGS4 are crucial for the regulation

of aldosterone synthesis and that alteration in either their

expression or activity due to loss or gain of function mutations

may lead to abnormal adrenal GPCR signaling and

aldosterone synthesis.

Aldosterone exerts its effect not only in epithelial target

tissues, where its main function is regulation of sodium/

potassium and water balance, but also in non-epithelial tissues

such as the brain and the heart. High aldosterone levels have

been associated with severe target organ injury in the heart

and the kidney of hypertensive patients with primary

aldosteronism (Rossi et al. 1997, 2006, Tanabe et al. 1997).

In addition, excess aldosterone in non-hypertensive patients

has been reported to correlate with an increased risk to suffer

an increase in blood pressure or develop hypertension (Vasan

et al. 2004, Newton-Cheh et al. 2007). Alterations in Ang

II-mediated aldosterone synthesis and secretion by the adrenal

gland due to RGS4 alterations in its expression levels and/or

activity may underlie or exacerbate deleterious effects of

aldosterone caused by its excessive synthesis and secretion.
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