
MAAN: A Multi-Attribute Addressable Network for

Grid Information Services

Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely
Information Sciences Institute, University of Southern California

Jan 31, 2004

Abstract. Recent structured Peer-to-Peer (P2P) systems such as Distributed Hash
Tables (DHTs) offer scalable key-based lookup for distributed resources. However,
they cannot be simply applied to grid information services because grid resources
need to be registered and searched using multiple attributes. This paper proposes
a Multi-Attribute Addressable Network (MAAN) that extends Chord to support
multi-attribute and range queries. MAAN addresses range queries by mapping at-
tribute values to the Chord identifier space via uniform locality preserving hashing.
It uses an iterative or single attribute dominated query routing algorithm to resolve
multi-attribute based queries. Each node in MAAN only has O(log N) neighbors for
N nodes. The number of routing hops to resolve a multi-attribute range query is
O(log N + N × smin), where smin is the minimum range selectivity on all attributes.
When smin = ε, it is logarithmic to the number of nodes, which is scalable to a large
number of nodes and attributes. We also measured the performance of our MAAN
implementation and the experimental results are consistent with our theoretical
analysis.

Keywords: Grid Computing, Peer-to-Peer, Information Services, Multi-attribute
Range Queries

1. Introduction

Grid computing is emerging as a novel approach of employing dis-
tributed computational and storage resources to solve large-scale prob-
lems in science, engineering, and commerce. Grid computing on a large
scale requires scalable and efficient resource registration and lookup.
Traditional approaches maintain a centralized server or a set of hierar-
chically organized servers to index resource information. For example,
Globus (Foster and Kesselman, 1997) uses an LDAP-based directory
service named MDS (Fitzgerald et al, 1997) for resource registration
and lookup. However, the centralized server(s) can become a registra-
tion bottleneck in a highly dynamic environment where many resources
join, leave, and change characteristics (such as CPU load) at any time.
Thus, it does not scale well to a large number of grid nodes across
autonomous organizations. Also, centralized approaches have the in-
herent drawback of a single point of failure. Hierarchical approaches
provide better scalability and failure tolerance by introducing a set of

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

maan.tex; 25/05/2004; 12:38; p.1

2 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

hierarchically organized servers and partitioning resource information
on different servers, similar to the DNS. Typically, the partitioning
scheme is predefined and can not adapt to the dynamic change of virtual
organizations. Also it might take a long time for resource information
to be updated from the leaf nodes to the root node.

To overcome the above shortcomings of centralized approaches, Adri-
ana Iamnitch et al. (Iamnitchi et al, 2002) proposed a P2P approach to
organize the MDS directories in a flat, dynamic P2P network. Every vir-
tual organization in the grid dedicates a certain amount of its resources
as peers that host information services. Those peers constitute a P2P
network between organizations. Resource requesters can search desired
resources through query forwarding that is similar to unstructured P2P
systems such as Gnutella. However, this approach does not scale well
because of the large volume of query messages generated by flooding
(Ripeanu et al, 2002; Sen and Wong, 2002). In order to avoid flooding
of the complete network, the number of hops on the forwarding path is
typically bounded by the Time to Live (TTL) field of query messages.
Thus, the search results are not deterministic and this approach cannot
guarantee to find the desired resource even if it exists.

In contrast, recent structured P2P systems use message routing in-
stead of flooding by leveraging a structured overlay network among
peers. These systems typically support distributed hash table (DHT)
functionality and the basic operation they offer is lookup (key), which
returns the identity of the node storing the object with the key (Rat-
nasamy et al, 2003). Current proposed DHT systems include Tapestry
(Zhao et al, 2001), Pastry (Rowstron and Druschel, 2001), Chord (Sto-
ica et al, 2001), CAN (Ratnasamy et al, 2001) and Koorde (Kaashoek
and Karger, 2003). In these DHT systems, objects are associated with
a key that can be produced by hashing the object name. Nodes have
identifiers that share the same space as the keys. Each node is respon-
sible for storing a range of keys and corresponding objects. The DHT
nodes maintain an overlay network with each node having several other
nodes as neighbors. When a lookup (key) request is issued from one
node, the lookup message is routed through the overlay network to the
node responsible for the key. Different DHT systems construct different
overlay networks and employ different routing algorithms. They can
guarantee to finish lookup in O(log N) or O(dN1/d) hops and each
node only maintains the information of O(log N) or d neighbors for a N
nodes network (where d is the dimension of the hypercube organization
of the network). Therefore, they provide very good scalability as well
as failure resilience.

While DHTs have some desirable properties, they can not be directly
applied to grid information services. This is because DHTs can only

maan.tex; 25/05/2004; 12:38; p.2

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 3

look up a resource that exactly matches the given key. Current DHT
systems typically assume their applications already know the key of
the target resource. For example, file systems such as CFS use DHT
to index each file block and use the unique block identifier as a key to
store and retrieve the block.

However, this kind of hash table functionality is not enough for
grid information services because resources typically have multiple at-
tributes and thus need to be registered with a list of attribute-value
pairs. For example, a resource provider would want to register its
multiple attributes like this:

register name=pioneer && url=gram://pioneer.isi.edu:8000
&& os-type=linux && cpu-speed=1000MHz
&& memory-size=512M

Consequently, resource requesters want to be able to search for re-
sources that meet multiple attribute requirements (as demonstrated
by e.g. the Resource Specification Language (RSL) (Czajkowski et al,
1998) in Globus), using a query like:

search os-type=linux && 800MHz<=cpu-speed<=1000MHz
&& memory-size>=512MB

The attributes in the above example have two different types: string
and numerical. Attribute ”name”, ”url” and ”os-type” are string based
and only have a limited number of values, while attribute ”cpu-speed”
and ”memory-size” have continuous numerical values. For numerical
types of attributes, being able to query with attribute ranges instead
of exact values is a critical requirement. However, current DHT systems
can neither handle multi-attribute queries nor range queries.

In this paper, we proposed a new structured P2P system for grid
information services that we call Multi-Attribute Addressable Network
(MAAN). In MAAN, resources can be registered with a set of attribute-
value pairs and can be searched by multi-attribute based range queries.

The remainder of this paper introduces Chord in Section 2, describes
MAAN and its routing algorithms in Section 3, presents experimental
performance results of MAAN in Section 4, discusses related work in
Section 5, and presents conclusions and future work in Section 6.

2. Chord

In this section, we briefly describe the Chord DHT system proposed
by Ion Stoica al el. (Stoica et al, 2001). Like all other DHT systems,

maan.tex; 25/05/2004; 12:38; p.3

4 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

Figure 1. An 6-bit Chord network consisting of 8 nodes and 4 object keys

Chord supports scalable < key, object > pairs registration and lookup
operations. Chord uses a one-dimensional circular identifier space with
modulo 2m where m is the number of bits in node identifiers and object
keys. Every node in Chord is assigned a unique m-bit identifier (called
the node ID) and all nodes self-organize to a ring topology based on
their node IDs. The node ID can be chosen locally by hashing the node’s
IP address and port number using a hashing function, such as SHA1.
Each object is also assigned a unique m-bit identifier (called object
key). Chord uses consistent hashing to assign keys to nodes. Key k is
assigned to the first node whose identifier is equal to or follows the
identifier of k in the identifier circle. This node is called the successor
node of key k, denoted by successor(k). Each object is registered on
the successor node of its object key. Figure 1 shows an 8-node Chord
network with 6-bit circular identifier space. Node N20 has the node ID
of 20 and stores the objects with key 10 and key 15.

Each Chord node maintains two sets of neighbors, the successor list
and finger table. The nodes in the successor list immediately follow
the node in the identifier space, while the nodes in the finger table
are spaced exponentially around the identifier space. The finger table
has at most m entries. The i-th entry in the table for the node with

maan.tex; 25/05/2004; 12:38; p.4

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 5

ID n contains the identity of the first node s, that succeeds n by at
least 2i−1 on the identifier circle, i.e. s = successor(n + 2i−1), where
1 ≤ i ≤ m (and all arithmetic is modulo 2m) . In Chord, s is called the
i-th finger of node n, and denoted by n.finger[i]. The first finger is the
immediate successor of n (i = 1). The finger table contains more close
nodes than far nodes at a doubling distance. Thus each node only needs
to maintain the state for O(log N) neighbors for a Chord network with
N nodes.. For example, the fingers of N4 in Figure 1 are N8, N20 and
N40 correspondingly.

When node n wants to search the object with key k, it will route a
lookup request to the successor node x of key k, x = successor(k). If
node x is far away from n, n can forward the request to a far node in its
finger table, which is much closer to x than n. The routing algorithm
works as follows: given a lookup request with key k, the node searches
its successor list for the successor of k and forwards the request to it if
possible. If it does not know the successor of k, it forwards the request
to the node j whose identifier most immediately precedes k in its finger
list. By repeating this process, the request gets closer and closer to the
successor of k. In the end, x receives the lookup request for object with
key k, finds the object locally and sends the response back to n. For
example, if N4 in Figure 1 issues a lookup request for K52, it sends the
request to its finger N40 that is the closest one to K52 in the identifier
space. N40 then forwards the request to N48 that will forward it to
N56. Since N56 is the successor node of K52, it looks up the object
corresponding to K52 locally and returns the result to N4. Because the
fingers in the node’s finger table are spaced exponentially around the
identifier space, each hop from node n to the next node covers at least
half the identifier space (clockwise) between n and k. So the average
number of hops for a lookup is O(log N), where N is the number of
nodes in the network.

Chord achieves the load balancing of nodes by using consistent hash-
ing and virtual nodes. Since the node identifiers generated by SHA1
hash do not uniformly cover the identifier space, consistent hashing
can not guarantee that the keys will be evenly distributed on each
node. Chord solves this problem by associating keys with virtual nodes
and hosting multiple virtual nodes on each real node. Chord also has a
stabilization algorithm for constructing finger tables when a node joins
and for maintaining finger tables when nodes fail.

However, each hop in Chord overlay might correspond to multiple
hops in underlying IP network. (Zhang et al, 2003) proposed a lookup-
parasitic random sampling (LPRS) algorithm for Chord to reduce its
IP layer lookup latency. They prove that LPRS-Chord can result in
lookup latencies propositional to the average unicast latency of the net-

maan.tex; 25/05/2004; 12:38; p.5

6 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

work, provided the underlying physical topology has power-law latency
expansion.

3. Multi-Attribute Addressable Network

Like many other DHT systems, Chord offers efficient and scalable
single-key based registration and lookup service for decentralized re-
sources. However, it can not support range queries and multi-attribute
based lookup. Our MAAN approach addresses this problem by ex-
tending Chord with locality preserving hashing and a recursive multi-
dimensional query resolution mechanism.

3.1. Range Queries in MAAN

Chord assigns each node and key an m-bits identifier using a base
hashing function such as SHA1, and uses consistent hash to map keys
to nodes. This approach can achieve load balancing because SHA1 hash
can generate randomly distributed identifiers no matter the distribution
of actual node addresses and keys. However, SHA1 hashing destroys
the locality of keys, and cannot support range queries for numerical
attribute values.

MAAN uses SHA1 hashing to assign an m-bits identifier to each
node and the attribute value with string type. However, for attributes
with numerical values MAAN uses locality preserving hashing functions
to assign each attribute value an identifier in the m-bit space.

DEFINITION 1. Hash function H is a locality preserving hashing func-
tion if it has the following property: H(vi) < H(vj) iff vi < vj, and if an
interval [vi, vj] is split into [vi, vk] and [vk, vj], the corresponding inter-
val [H(vi),H(vj)] must be split into [H(vi),H(vk)] and [H(vk),H(vj)].

Suppose we have an attribute a with numerical values in the range
of [vmin, vmax]. A simple locality preserving hashing function we can
use could be H(v) = (v − vmin) × (2m − 1)/(vmax − vmin), where v ∈
[vmin, vmax]. So for each attribute value v, it has the corresponding
identifier H(v) in the [0, 2m − 1] identifier space. MAAN also use the
same consistent hashing as Chord and assign attribute value v to the
successor node of its identifier, i.e. successor(H(v)).

THEOREM 1. If we use locality preserving hash function H to map
attribute value v to the m-bit circular space [0, 2m − 1], given a range

maan.tex; 25/05/2004; 12:38; p.6

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 7

query [l, u] where l and u are the lower bound and upper bound re-
spectively, nodes that contain attribute value v in [l, u] must have an
identifier equal to or larger than successor(H(l)) and equal to or less
than successor(H(u)).

Proof: Attribute value v is assigned to successor(H(v)) and successor(H(v))
is the first node whose identifier is equal to or follows the identifier of
H(v) in the identifier circle. Since l ≤ v ≤ u and from Definition 1,
we can see that attribute value v can only be assigned to node n and
successor(H(l)) ≤ n ≤ successor(H(u)) �.

Thus we can use the following algorithm to resolve range queries for
numeric attribute values. Suppose node n wants search for resources
with attribute value v between l and u for attribute a, i.e. l ≤ v ≤ u,
where l and u are the lower bound and upper bound respectively. Node
n composes a search request and uses the Chord routing algorithm to
route it to node nl, the successor of H(l). The search request is as
following: SEARCH REQUEST(k, R, X). k is the key used for Chord
routing, initially k = H(l). R is the desired attribute value range: [l, u]
and X is a list of resources discovered in the range. Initially, X is empty.
When node nl receives the search request, it searches its local resource
entries and appends those resources that satisfy the range query to X
in the request. Then it checks whether it is the successor of H(u) also.
If true, it sends back the search response to node n with the search
result in X of the search request. Otherwise, it forwards the search
request to its immediate successor ni. Node ni also searches its local
resource entries, appends matched resources to X, and forwards the
request to its immediate successor until the request reaches node nu,
the successor of H(u). In terms of Theorem 1, the resources that have
attribute values in the range of [l, u] must be registered on the nodes
between nl and nu (clockwise) in the Chord ring. So the above search
algorithm is complete. Obviously, routing the search request to node nl

using Chord routing algorithm takes O(log N) hops for N nodes. The
next sequential forwarding from nl to nu takes O(K) , where K is the
number of nodes between nl and nu. So there are total O(log N + K)
routing hops to resolve a range query for single attribute. Since there
are K nodes that might contain the resources matching the range query,
we have to visit all of those K nodes to guarantee to find the correct
search result. In this sense, O(log N + K) routing hops is optimal for
range queries in Chord.

Uniform Locality Preserving Hashing
Though our simple locality preserving hashing function keeps the lo-
cality of attribute values, it does not produce uniform distribution of

maan.tex; 25/05/2004; 12:38; p.7

8 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

hashing values if the distribution of attribute values is not uniform.
Consequently, the load balancing of resource entries can be poor across
the nodes. To address this problem, we propose a uniform locality
preserving hashing function that can always produce uniform distri-
bution of hashing values if the distribution function of input attribute
values is continuous and monotonically increasing, and is known in
advance. This condition is satisfied for many common distributions,
such as Gaussian, Pareto, and Exponential distributions. Suppose at-
tribute value v of resources conforms to a certain distribution with
continuous and monotonically increasing distribution function D(v)
and possibility function P (v) = D(v)

dv , and v ∈ [vmin, vmax]. We can
design a uniform locality preserving hashing function H(v) as following:
H(v) = D(v)× (2m − 1).

THEOREM 2. Hash function H(v) is a locality preserving hashing
function.

Proof: Since D(v) is monotonically increasing, H(v) is monotonically
increasing too. Obviously, H(v) is a locality preserving hashing function
according to definition 1 �.

THEOREM 3. Suppose attribute value v ∈ [vmin, vmax] and v has dis-
tribution function D(v). Let hashing value y = H(v), then y conforms
to a uniform distribution in the range of [H(vmin),H(vmax)].

Proof: The possibility distribution of y, denoted P (y)dy, is determined
by the fundamental transformation law of probabilities, which is

|P (y)dy| = |P (v)dv|
or

P (y) = P (v)
∣∣∣dv
dy

∣∣∣ (1)
Since

y = H(v) = D(v)× (2m − 1)
we have ∣∣∣dy

dv

∣∣∣ = d(D(v))
dv × (2m − 1)

or ∣∣∣dy
dv

∣∣∣ = P (v)× (2m − 1) (2)
From (1) and (2), we have

P (y) = 1
(2m−1) (3)

Since attribute value v ∈ [vmin, vmax] and its probability function P (v)
is normalized by definition, as in∫ vmax

vmin
P (v)dv = 1

or
D(vmax)−D(vmin) = 1

maan.tex; 25/05/2004; 12:38; p.8

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 9

Also since
vmin∫
−∞

P (v)dv = 0

we have
D(vmin) = 0 and D(vmax) = 1

Therefore,
H(vmin) = D(vmin)× (2m − 1) = 0

and
H(vmax) = D(vmax)× (2m − 1) = 2m − 1,

so that ∫ H(vmax)
H(vmin) P (y)dy =

∫ 2m−1
0

1
(2m−1)dy = 1 (4)

From (3) and (4), we can see that hashing value y conforms to a uniform
distribution in the range of [H(vmin),H(vmax)] �.

Thus, with this uniform locality preserving hashing function, re-
sources will be uniformly distributed on all nodes if the nodes uni-
formly cover the m-bit identifier space. We know that the latter is true
when each node hosts O(log N) virtual nodes with unrelated identifiers
(Stoica et al, 2001).

3.2. Multi-Attribute Query Resolution

Instead of only supporting one attribute based lookup, our MAAN
scheme also extends the above routing algorithm for range queries
to support multi- attribute lookup. In this multi-attribute setting, we
assume each resource has M attributes a1, a2, . . . , aM and correspond-
ing attribute value pairs< ai, vi >, where 1 ≤ i ≤ M . For each
attribute ai, its attribute value vi is in the range of [vi min, vi max] and
conforms to a certain distribution with distribution function Di(v).
Thus, we can generate a uniform locality preserving hashing function
Hi(v) = Di(v) × (2m − 1) for each attribute ai. With these hashing
functions we can map all attribute values to the same m-bit space in
Chord.

Each resource will register its information (attribute value pairs)
at node ni = successor(H(vi)) for each attribute value vi, where 1 ≤
i ≤ M . Resource registration request for attribute value vi is routed
to its successor node using Chord routing algorithm with key identifier
H(vi). Each node categorizes the indices of <attribute-value, resource-
info> pairs by different attributes. When a node receives a resource
registration request from resource x with attribute value ai = vix and
resource information rx, it adds the < vix, rx > pair to corresponding
list for attribute ai.

When a node searches for interested resources, it composes a multi-
attribute range query that is the combination of sub-queries on each

maan.tex; 25/05/2004; 12:38; p.9

10 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

attribute dimension, i.e. vil ≤ ai ≤ viu where 1 ≤ i ≤ M , vil and viu

are the lower bound and upper bound of the query range respectively.
We support two approaches to search candidate resources for multi-

attribute range queries: iterative and single attribute dominated query
resolution.

Iterative Query Resolution
The iterative query resolution scheme is very straightforward. If node
n wants to search resources by a query of M sub-queries on different
attributes, it iteratively searches all candidate resources for each sub-
query on one attribute dimension, and intersects these search results
at query originator. We can reuse the search algorithm we proposed
for single attribute based lookup in Section 3.1. The only modification
is to carry a < attribute > field in each search request to indicate
which attribute we are interested in. The search request is as follows:
SEARCH REQUEST(k, a, R, X), where a is the name of the attribute
we are interested in, and k, R and X are the same as in a single attribute
based query. When a node receives a query request and it intersects with
the query range, it only searches the index that matches the attribute
name in the search request. Though this approach is simple and easy
to implement, it is not very efficient. For M -attribute queries, it takes

O(
M∑
i=1

(log N + Ki)) routing hops to resolve the queries, where Ki is the

number of nodes intersects the query range on attribute ai. We define
selectivity si as the ratio of query range width in identifier space to
the size of the whole identifier space, i.e. si = H(viu)−H(vil)

2m . Suppose
attribute values are uniformly distributed on all N nodes, then we have

Ki = si×N and routing hops would be O(
M∑
i=1

(log N + N × si)). Thus,

the routing hops for searching increase linearly with the number of
attributes in the query.

Single Attribute Dominated Query Resolution
Obviously, the search result of a multi-attribute query must satisfy all
the sub-queries on each attribute dimension and it is the intersection
set of all resources that satisfies each individual sub-query. Suppose X
is the set of resources satisfying all sub-queries, and Xi is the set of
resources satisfying the sub-query on attribute ai, where 1 ≤ i ≤ M .
So we have X =

⋂
Xi and each Xi is a superset of X. The itera-

tive query resolution approach computes all Xi using M iterations
and calculates their intersection set. However, since we register the
resource information for each attribute dimension, resources in the
set of Xi also contain the information of other attribute value pairs.

maan.tex; 25/05/2004; 12:38; p.10

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 11

The single attribute dominated query resolution approach can utilize
this extra information and only need to compute a set of candidate
resources Xk that satisfies the sub-query on the attribute ak. Then it
apply the sub-queries for other attributes on these candidate resources
and computes the set X that satisfies all sub-queries. Here, we call
attribute ak dominated attribute. There are two possible approaches
to apply these sub-queries. One approach is to apply them at the query
originator after it receives all candidate resources in Xk. Since the set
Xk is typically much larger than X, search requests and responses might
contain many candidate resources that do not satisfy other sub-queries.
Thus this approach will introduce unnecessarily large search messages
and increase communication overhead. Another approach is to carry
these sub-queries in the search request, and apply them locally at the
nodes that contain candidate resources in Xk. This approach is more
efficient because search requests and responses only carry the resources
satisfying all sub-queries.

The search request in single attribute dominated approach is as
following: SEARCH REQUEST(k, a, R, O, X). k, a, R are the same
as those in iterative query resolve approach. O is a list of sub-queries
for all other attributes except a, and X is a list of discovered resources
satisfying all sub-queries. When node n wants to issue a search request
with R = [l, u], it first routes the request to node nl = successor(H(l)).
The node nl, searches its local index corresponding to attribute a for
the resources with attribute value in the range of [l, u] and with all other
attributes satisfying sub-queries in O, and appends them to X. Then
it checks whether it is also the successor of H(u). If true, it sends back
a search response to node n with the resources in X. Otherwise, it for-
wards the search request to its immediate successor ns. ns repeats this
process until the search request reaches node nu = successor(H(u)).

Since this approach only need to do one iteration for the dominated
attribute ak, it takes O(log N + N × Sk) routing hops to resolve the
query. We can further minimize the routing hops by choosing the at-
tribute with minimum selectivity as the dominated attribute. Thus, the
routing hops will be O(log N + N × Smin), where Smin is the minimum
selectivity for all attributes.

Figure 2 shows an example of the single attribute dominated algo-
rithm in an 8-node MAAN network storing 11 resources. This MAAN
network has the identifier space of [0, 64). Each resource has two at-
tributes: cpu-speed and memory-size. The attribute ranges and corre-
sponding locality preserving hash functions are shown in the attribute
settings table. Each node has one or more resources. For example, node
B has two resources: B1 with 0.8GHz CPU and 128MB memory, and
B2 with 4.8GHz CPU and 256MB memory. Each resource is regis-

maan.tex; 25/05/2004; 12:38; p.11

12 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

Figure 2. An example for single-attribute-dominated query resolution algorithm

tered by both cpu-speed and memory-size. For instance, resource B1 is
registered at node C that is the successor node of its cpu-speed, and it
is also registered at node B for its memory-size. When node A wants
to look for resources with cpu-speed in the range of (4.0GHz, 5.0GHz)
and memory-size in the range of [768MB, 1024MB], it will first ap-
ply the locality preserving hashing on each sub-query and compute
the sub-queries in the Chord identifier space. It chooses the attribute
with minimum selectivity as the dominated attribute, which is cpu-
speed in this example. Then node A composes a search request with
the hash value of lower bound as the key and routes it to the corre-
sponding successor node G using Chord’s routing algorithm. The initial
search request(1) in this example is SEARCH REQUEST (50.4, cpu-
speed,(4.0GHz, 5.0GHz), memory-size ∈ [768MB, 1024MB], {EMP -
TY }). When node G receives search request(1), it will find the matched
resource F1 for both sub-queries and append it into the set X. Since
node G is not the successor node of upper bound, it forwards the search
request to its immediate successor that is node H. The search request(2)

maan.tex; 25/05/2004; 12:38; p.12

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 13

will be SEARCH REQUEST (57, cpu-speed, (4.0GHz, 5.0GHz), memory-
size ∈ [768MB, 1024MB], {F1}). Since there is no resource registered
at node H, it just simply forwards the request to node A and the
search request(3) will be the same as search request(2) except that k
is set to be 61. Node A has no matched resource for the sub-query of
memory-size and it is already the successor node of the upper bound.
So it just returns the resource F1 in set X as the search result to the
search originator that happens to be itself.

In the single attribute dominated approach, the number of rout-
ing hops is independent of the number of attributes, and thus scales
perfectly in the number of attributes of a query. On the other hand,
it incurs the memory cost of registering all attributes for a resource if
any of its attributes is registered; and it incurs more updating overhead
of attribute values change. However, the good query performance of
the single attribute dominated approach will typically outweigh the
greater updating cost in the Grid environment since node registration
operations (of OS-Type, CPU-Speed, Memory-Size, CPU-Count, etc.)
are typically far less frequent than query operations (to find suitable
machines).

4. Implementation and Evaluation

We verified our theoretical MAAN results by measuring the perfor-
mance of an implementation in Java. It can easily be configured to
support different attribute schemas, such as an example for grid nodes
shown in Table I. Our implementation runs each distributed node in
its own Java virtual machine as a separated process. The implementa-
tion uses sockets to communicate between the peers, and supports the
“register” and “search” commands described in the Introduction. New
nodes can be added by contacting any existing peer at its IP address
and port number.

To collect the performance data from the distributed nodes, we im-
plemented a status message that is flooded to all nodes (it exists for
experimental measurement purposes only). The message causes every
node to dump its neighborhood state to a log file. We also instrumented
MAAN messages with additional fields, such as hops taken. Our ex-
periment environment consists of 2 dual Xeon workstations with 1GB
memory, 4 P4 desktops with 1GB memory and 8 dual PIII workstations
with 512MB memory. The operating systems installed on these ma-
chines include Redhat 9.0, FreeBSD 4.9 and Windows XP professional.
In order to setup a large MAAN network with 512 nodes, we ran up to
64 nodes each on 2 dual Xeon workstations and up to 32 nodes each on

maan.tex; 25/05/2004; 12:38; p.13

14 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

Table I. An example attribute schema for grid nodes

Attribute Name Type Min Max Unit

Name String / / /

URL String / / /

OS-Type String / / /

CPU-Speed Numerical 1 105 MHz

Memory-Size Numerical 1 106 MBytes

Disk-Size Numerical 1 106 GBytes

Bandwidth Numerical 10−3 104 MBps

CPU-Count Numerical 1 104 CPU

other machines. Since we use routing hops as our performance metric
in this experiment, hosting multiple nodes on each machine will not
affect the correctness of the results.

Figure 3. The number of neighbors as a logarithmic function of network size

We know that the number of neighbors per node in Chord increases
logarithmically with the network size. MAAN uses the Chord algo-
rithm to maintain the overlay network among nodes, and thus has the
same property of neighborhood states as Chord. To validate our java
implementation of MAAN, we measured the number of neighbors per
node against network size. In this experiment, we set the successor
replication factor to be 4, i.e. each node maintains 4 successors instead
of only its immediate successor. These redundant successors will be
used to recover the ring topology when nodes fail and also replicate
resources. The result shown in Figure 3 confirms that similar to Chord

maan.tex; 25/05/2004; 12:38; p.14

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 15

the neighborhood states in MAAN can scale well to a large number of
nodes.

(a)

(b)
Figure 4. The routing hops as a function of network size, (a) logarithmic for 5-at-
tribute range query with ε% range selectivity, (b) linear for 2-attribute range query
with 10% range selectivity

Another important performance metric is the number of routing
hops a search request would take to resolve a query. From Section 3.2,
we know that the number of routing hops is O(log N +N×smin), where
N is the total number of nodes in network, and smin is the minimum
range selectivity for all attributes. So if we want to search resources
with at least one exact matching sub-query, i.e. smin = ε%, the num-
ber of routing hops is O(log N), which is logarithmic to network size.
Figure 4(a) shows our measurement result for 5-attribute queries with
ε% range selectivity on a network with up to 512 nodes. The measured

maan.tex; 25/05/2004; 12:38; p.15

16 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

average routing hops roughly match with our theoretical analysis as
the dotted line (log2 (N)/2) shows in Figure 4(a).

Figure 5. The routing hops as a linear function of query’s range selectivity (64 nodes,
1 attribute)

However, for normal range queries whose selectivity si > ε% , the
number of routing hops increases linearly with network size. This is
because si of total N nodes have to be visited by the search queries if
we want to balance the load to all the nodes. Figure 4(b) shows this
linear relationship between the number of routing hops and the number
of nodes for 2-attribute range queries with 10% range selectivity in a
64 nodes network. For the same reason, the number of routing hops
also increases linearly with the range selectivity of search queries as
shown in Figure 5. Theoretically, the average number of routing hops
for range queries is log2 (N)/2 + N × smin. Our measurement result
matches quite well with the analysis result, as shown by the dotted line
in Figure 4(b) and Figure 5. However we can see that range queries
with large range selectivity are very costly – they will basically flood
the whole network.

We also compared the two multi-attribute query resolution algo-
rithms we proposed in Section 3.2, i.e. iterative vs. single attribute dom-
inated. Figure 6 shows the comparison result of these two approaches.
It is consistent well with our theoretical analysis.

5. Related Work

Many recent structured P2P systems are related to our research. These
systems can be classified into three broad categories: DHTs, tree-based,
and skiplist-based.

maan.tex; 25/05/2004; 12:38; p.16

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 17

Figure 6. The expected number of routing hops as a function of the number of
attributes (64 nodes, 10% range selectivity)

Besides Chord, other DHT systems include Tapestry (Zhao et al,
2001), Pastry (Rowstron and Druschel, 2001), CAN (Ratnasamy et
al, 2001), and Koorde (Kaashoek and Karger, 2003). The routing al-
gorithms used in Tapestry and Pastry are both inspired by Plaxton
(Plaxton et al, 1997). The idea of the Plaxton algorithm is to find
a neighboring node that shares the longest prefix with the key in
lookup message, repeat this operation until find a destination node
that shares the longest possible prefix with the key. In Tapestry and
Pastry, each node has O(log N) neighbors and the routing path takes at
most O(log N) hops. CAN maps its keys to a d-dimensional Cartesian
coordinate space that is partitioned into n zones. Each CAN node
owns the zone corresponding to the mapping of its node id’s on the
coordinate space. The neighbors in each node are the nodes that own
the contiguous zones to its local zone. Routing in CAN is straight-
forward: a message is always greedily forwarded to a neighbor that
is closer to the key’s destination in the coordinate space. Nodes in
CAN have O(d) neighbors and routing path length are O(dN1/d) hops.
M. F. Kaashoek el al (Kaashoek and Karger, 2003) proved that for
any constant neighborhood state k, Θ(log N) routing hops is optimal.
But in order to provide a high degree of fault tolerance, a node must
maintain O(log N) neighbors. In that case, O(log N/ log log N) optimal
routing hops can be achieved. Koorde is a neighborhood state optimal
DHT based on Chord and de Bruijn graphs. It embeds a de Bruijn
graph on the identifier circle of Chord for forwarding lookup request.
To lookup a key k, Koorde find the successor of k by walking down the
de Bruijn graph.

maan.tex; 25/05/2004; 12:38; p.17

18 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

TerraDir (Silaghi, 2002) is a tree-based structured P2P system. It
organizes nodes in a hierarchical fashion according to the underlying
data hierarchy. Each query request will be forwarded upwards repeat-
edly until reaching the node with the longest matching prefix of the
query. Then the query is forward to the destination downwards the
tree. In TerraDir, each node maintains constant number of neighbors
and routing hops are bounded in O(h), where h is the height of the
tree.

Skip Graphs (Aspnes and Shah, 2003) and SkipNet (Harvey et al,
2003) are two skip-list based structured P2P systems. Skip Graphs and
SkipNet maintain O(log N) neighbors in their routing table. For each
node, the neighbor at level h has the distance of 2h to this node, i.e. they
are 2h nodes far away. This is very similar to the fingers in Chord. There
are 2h rings at level h with n/2h nodes per ring. Searching a key in Skip
Graphs or SkipNet is started at the top-most level of the node seeking
the key. It proceeds along the same level without overshooting the key,
continuing at a lower level if required, until it reaches level 0. Their
routing hops of searching a key are also O(log N).

The above structured P2P systems provide scalable distributed lookup
for unique keys. However they can not support efficient search, such as
keyword search and multi-dimensional range queries. Patrick Reynolds
and Amin Vahdat (Reynolds and Vahdat, 2003) proposed an efficient
distributed keyword search system, which distributes an inverted index
into a distributed hash table, such as Chord or Pastry. To minimize
the bandwidth consumed by multi-keyword conjunctive searches, they
use bloom filters to compress the document ID sets by about one or-
der of magnitude and use caching to exploit temporal locality in the
query workload. For large sets of search results, they also use streaming
transfers and return only the desired number of results.

pSearch (Tang et al, 2003) is another peer-to-peer keyword search
system that distributes document indices into a CAN network based
on the document semantics generated by Latent Semantic Indexing
(LSI). In pSearch, the rolling index scheme is used to map the high
dimensional semantic space to the low dimensional CAN space. Also
it uses content-aware node bootstrapping to force the distribution of
nodes in the CAN to follow the distribution of indices.

Artur Andrzejak et al (Andrzejak and Xu, 2002) extend CAN for
handling range queries on single attributes by mapping one dimensional
space to CAN’s multi-dimensional space using Hibert Space Filling
Curve as hash function. For a range query [l, u], they first route to a
node whose zone includes the middle point (l + u)/2. Then the node
recursively propagates the request to its neighbors until all the nodes
that intersect the query are visited (a flooding strategy). They also

maan.tex; 25/05/2004; 12:38; p.18

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 19

proposed and compared three different flooding strategies: brute force,
controlled flooding and directed controlled flooding. However, this work
did not address multi-attribute range queries.

In contrast to Andrzejak’s system, Cristina Schmidt and Manish
Parashar (Schmidt and Parashar, 2003) proposed a dimension reducing
indexing scheme that efficiently maps the multi-dimensional informa-
tion space into the one dimensional Chord identifier space by using
Hibert Space Filling Curve. This system can support complex queries
containing partial keywords, wildcards, and range queries. They solve
the load balance problem by probing multiple successors at node join
and migrating virtual nodes at runtime. Thus this system do not need
to know the distribution of different attribute values, but they will
introduce some extra joining and migration overhead.

6. Conclusion and Future Work

In this paper, we proposed a multi-attribute addressable network (MA-
AN) for grid information services. It can register grid resources with a
set of (attribute,value) pairs and search interested resources via multi-
attribute based range queries. MAAN routes search queries to the nodes
where the target resources are registered, and avoids flooding queries
to all other irrelevant nodes.

MAAN supports efficient range queries by mapping attribute values
to Chord identifier space via uniform locality preserving hashing. It not
only preserves the locality of resources but also distributes resources to
all nodes uniformly and achieves good load balancing among nodes.
MAAN can use iterative or single attribute dominated query routing
algorithm to resolve multi-attribute based queries. In MAAN, each
node only maintains routing information for O(log N) other nodes.
When using single attribute dominated query routing, the number of
routing hops to resolve a query is O(log N + N × smin), where smin is
the minimum range selectivity on all attributes; thus, it scales well in
the number of attributes. Also when smin = ε, the number of routing
hops is logarithmic to the number of nodes.

While MAAN can support multi-attribute range queries quite well,
it does have important limitations. First, the attribute schema of re-
sources has to be fixed and known in advance with MAAN. We believe
that supporting attribute schemas that evolve during P2P network use
is an important future research direction. Second, when the range selec-
tivity of queries is very large, flooding the query to the whole network
can actually be more efficient than routing it to nodes one by one as
MAAN does. It would be interesting to analyze the threshold of range

maan.tex; 25/05/2004; 12:38; p.19

20 Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

selectivity at which flooding becomes more efficient than routing, and
to have MAAN use different query resolution algorithms for different
kind of queries.

Our current MAAN implementation uses MAAN-specific and non-
standard protocol on top of TCP to communicate between nodes. How-
ever, recently the Grid community has moved to the Web Services
based infrastructure, such as OGSA (Tuecke et al, 2003). To be used
in the real Grid environment, it is important to design and implement
P2P resource information services based on standard Grid services.
One approach is to implement the whole MAAN network as a dis-
tributed Grid service, which exposes a generic resource registration
and discovery interface to other Grid services. In the MAAN network,
each node will still uses MAAN specific protocol to communicate to
each other, although they can be based on SOAP. This is similar to
OpenHash (Karp et al, 2003) that provides an service-oriented DHT
network instead of libraries to other applications.

7. Acknowledgements

We gratefully acknowledge AFOSR program funding for this project
under contract number F49620-01-1-0341. We thank Ramesh Govindan
for helpful discussions, and Baoshi Yan for contributing the single-
attribute-dominated query resolution idea.

References

Foster, I. and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115–128, 1997.

Fitzgerald, S., I. Foster, C. Kesselman, G. Laszewski, W. Smith and S. Tuecke.
A Directory Service for Configuring High-Performance Distributed Computa-
tions. Proceedings of the 6th IEEE Symposium on High-Performance Distributed
Computing, 365-375, 1997.

Iamnitchi, A., I. Foster and D. Nurmi. A peer-to-peer approach to resource discovery
in grid environments. Proceedings of the 11th Symposium on High Performance
Distributed Computing, 2002.

Gnulella. http://freenet.sourceforge.net, 2002 .
Ripeanu, M., I. Foster and A. Iamnitchi. Mapping the gnutella network: Properties

of large-scale peer-to-peer systems and implications for system design. IEEE
Internet Computing Journal, 6(1), 2002.

Saroiu, S., P. K. Gummadi and S. D. Gribble. A Measurement Study of Peer-to-Peer
File Sharing Systems. Proceedings of Multimedia Computing and Networking
2002, 2002.

maan.tex; 25/05/2004; 12:38; p.20

MAAN: A Multi-Attribute Addressable Network for Grid Information Services 21

Sen, S., J. Wong. Analyzing peer-to-peer traffic across large networks. Proceedings
of ACM SIGCOMM Workshop on Internet measurement workshop, 2002.

Czajkowski, K., I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith and
S. Tuecke. A Resource Management Architecture for Metacomputing Systems.
Lecture Notes in Computer Science, vol. 1495, 1998.

Zhao, B., J. Kubiatowicz and A. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,
2001.

Rowstron, A., P. Druschel. Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer
Science, vol. 2218, 2001.

Stoica, I., R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications. Proceedings of
ACM SIGCOMM, 2001.

Ratnasamy, S., P. Francis, M. Handley, R. Karp and S. Shenker. A Scalable Content
Addressable Network. Proceedings of ACM SIGCOMM, 2001.

Kaashoek, F. and D. R. Karger. Koorde: A Simple Degree-optimal Hash Table. The
2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

Ratnasamy, S., S. Shenker and I. Stoica. Routing Algorithms for DHTs: Some Open
Questions. The 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), 2003.

Plaxton, C. G., R. Rajaraman and A. W. Richa. Accessing Nearby Copies of
Replicated Objects in a Distributed Environment. ACM Symposium on Parallel
Algorithms and Architectures, 311-320, 1997.

Silaghi, B., B. Bhattacharjee and P. Keleher. Query Routing in the TerraDir
Distributed Directory. SPIE ITCOM’02, 2002.

Aspnes, J. and G. Shah. Skip Graphs. Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, 384–393, 2003.

Harvey, N. J. A., M. B. Jone, S. Saroiu, M. Theimer and A. Wolman. SkipNet: A
Scalable Overlay Network with Practical Locality Properties. Proceedings of the
Fourth USENIX Symposium on Internet Technologies and Systems, 2003.

Andrzejak, A. and Z. Xu. Scalable, Efficient Range Queries for Grid Information
Services. Proceedings of the Second IEEE International Conference on Peer-to-
Peer Computing, 2002.

Zhang, H., A. Goel, and R. Govindan. Incremental Optimization In Distributed
Hash Table Systems. ACM Sigmetrics, 2003 .

Reynolds, P. and A. Vahdat. Efficient Peer-to-Peer Keyword Searching.
ACM/IFIP/USENIX International Middleware Conference(Middleware 2003),
2003 .

Schmidt, C. and M. Parashar. Flexible Information Discovery in Decentralized
Distributed Systems. 12th IEEE International Symposium on High Performance
Distributed Computing (HPDC’03), 2003 .

Tang, C., Z. Xu and S. Dwarkadas. Peer-to-Peer Information Retrieval Using Self-
Organizing Semantic Overlay Networks. ACM SIGCOMM, 2003 .

Karp, B., S. Ratnasamy, S. Rhea, S. Shenker. Spurring Adoption of DHTs with
Open Hash, a Public DHT Service. IRP-TR-03-16, 2003 .

Tuecke, S., K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire,
T. Sandholm, P. Vanderbilt, D. Snelling. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Global Grid
Forum Draft Recommendation , 2003.

maan.tex; 25/05/2004; 12:38; p.21

maan.tex; 25/05/2004; 12:38; p.22

