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Abstract: This article deals with the reactive control of an autonomous robot, which moves safely
in a crowded real-world unknown environment and reaches a specified target by avoiding static
as well as dynamic obstacles. The inputs to the proposed neural controller consist of left, right,
and front obstacle distance to its locations and the target angle between a robot and a specified
target acquired by an array of sensors. A four-layer neural network has been used to design and
develop the neural controller to solve the path and time optimization problem of mobile robots,
which deals with cognitive tasks such as learning, adaptation, generalization, and optimization.
The back-propagation method is used to train the network. This article analyses the kinematical
modelling of mobile robots as well as the design of control systems for the autonomous motion
of the robot. Training of the neural net and control performances analysis were carried out in a
real experimental set-up. The simulation results are compared with the experimental results and
they show very good agreement.
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1 INTRODUCTION

There is significant interest in autonomous mobile
robots, which may be defined as vehicles that are
capable of intelligent autonomous navigation. Over
the last decade, a great deal of research has reported
on machine learning and how it has been applied to
help mobile robots optimize their operational capa-
bilities. One of the most important issues in the
design and development of an intelligent mobile sys-
tem is the navigation problem. This consists of the
ability of a mobile robot to plan and execute collision-
free motions within its environment. However, this
environment may be imprecise, vast, dynamical, and
either partially structured or non-structured. Robots
must be able to understand the structure of this envi-
ronment [1–5]. To reach their targets without colliding,
robots must be endowed with perception, data pro-
cessing, recognition, learning, reasoning, interpreting,
and decision-making and action capacities.

∗Corresponding author: Department of Mechanical Engineering,

NIT Rourkela, C/14, NIT Campus, Rourkela, Orissa 769008, India.

email: dayalparhi@yahoo.com

Service robotics today require synthesizing robust
automatic systems able to cope with a complex and
dynamic environment [6]. To demonstrate this kind of
autonomy Muñiz et al. [7] introduced a neural con-
troller for a mobile robot that learns both forward
and inverse odometry of a differential drive robot
through unsupervised learning. They introduced an
obstacle-avoidance module that is integrated into
a neural controller. However, generally, the evolved
neural controllers could be fragile in inexperienced
environments, especially in real worlds, because the
evolutionary optimization processes are executed in
idealized simulators. This is known as the gap prob-
lem between simulated and real worlds. To overcome
this, Kondo [8] focused on an evolving on-line learn-
ing ability instead of weight parameters in a simulated
environment. Based on this, a neuromodulatory neu-
ral network model was proposed by them and is
utilized as a mobile robot controller. Corradini et al. [9]
used a neural network approach for the solution of
the tracking problem of mobile robots. Racz and
Dubrawski [10] presented a neural network-based
approach for mobile robot localization in front of a
certain local object. Yang and Meng [11] proposed
a biologically inspired neural network approach for
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real-time collision-free motion planning of mobile
robots or robot manipulators in a non-stationary envi-
ronment. Braganza et al. [12] described a controller
for continuum robots, which utilizes a neural network
feed-forward component to compensate the dynamic
uncertainties. Research in autonomous multi-robot
systems often focuses on mechanisms to enhance the
efficiency of the group through some form of coop-
eration among the individual agents. Moreover, the
versatility of a multi-robot system can provide the
heterogeneity of structures and functions required to
undertake different missions in unknown environ-
mental conditions [1–3, 13].

This article has proposed a neural network-based
approach for the solution of the path and time opti-
mization problem of mobile robots. A biologically
inspired neural network has been used for real-time
collision-free motion planning of mobile robots in an
unknown environment. A four-layer perceptron neu-
ral network has been used to design the controller. The
first layer is used as an input layer, which directly reads
from the arrays of sensors of the robot. The neural
network consists of two hidden layers, which adjust
the weight of the neuron, and an output layer, which
provides the heading angle of the robot. The back-
propagation method has been used to minimize the
error and optimize the path and time of the mobile
robot to reach the target.

This article has been organized into five sections.
Following the introduction, the kinematics behaviour
of the mobile robot is described in section 2. Analy-
sis of the navigation method using neural network
architecture is explained in section 3. The simula-
tion results are discussed in section 4. In section 5
experimental results are verified with simulation to
demonstrate the superiority of the proposed method-
ology, and comparison has also been made with other
methods [3, 14]. Finally the conclusions are given in
section 6.

2 KINEMATICS ANALYSIS OF THE
MOBILE ROBOT

The kinematics analysis of the Khepra-III mobile robot
has been worked out in this section. The kinemat-
ics model of the Khepra-III mobile robot is shown in
Fig. 1. It consists of a vehicle chassis with two driving
wheels mounted on the same axis and a front point
sliding support. The two driving wheels are indepen-
dently driven by two actuators to achieve the motion
and orientation. Both wheels have the same diame-
ter denoted by 2r (Fig. 2). The two driving wheels are
separated by distance W . The centre of gravity (COG)
of the mobile robot is located at point ‘C’. Point ‘P’ is
located at the intersection of a straight line passing
through the middle of the vehicle and a line pass-
ing through the axis of the two wheels. The distance

Fig. 1 Chassis of the Khepra-III robot

Fig. 2 Kinematics of the mobile robot

between points P and C is d. A motion controller based
on a neural network technique has been proposed for
navigation of the mobile robot. The main component
in the motion controller is the low-level inverse neural
controller, which controls the dynamics of the mobile
robot.

The kinematics of the differential drive mobile robot
is based on the assumption of pure rolling and there is
no slip between the wheel and surface

vt = 1
2
(vr + vl) (1)

ωt = 1
w

(vr − vl) (2)

vr = rωr and vl = rωl (3)

where v is the linear velocity and ω is the angular veloc-
ity of the vehicle. Superscript r, l, and t stand for right
wheel, left wheel, and tangential (with respect to its
COG point ‘C’ measured in a right wheel), respectively.
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The position of the robot in the global coordinate
frame [O X Y ] is represented by the vector notation as

q = [Xc Yp θ ]T (4)

where Xc and Yp are the coordinates of point P in the
global coordinate frame (Fig. 2). The variable θ is the
orientation of the local coordination of the local coor-
dinate frame [P Xc Yp] attached on the robot platform
measured from the horizontal axis. Three generali-
zed coordinates can describe the configuration of the
robot as equation (4).

The mobile robot system considered here is a rigid
body and the wheels are pure rolling and no slippage.
This states that the robot can only move in the direc-
tion normal to the axis of the driving wheels. Therefore,
the component of the velocity of the contact point with
the ground, orthogonal to the plane of the wheel, is
zero [15, 16], i.e.

[ẏp cos θ − ẋc sin θ − dθ̇ ] = 0 (5)

All kinematics constraints are independent of time,
and can be expressed as

AT(q)q̇ = 0 (6)

where A(q) is the input transformation matrix associ-
ated with the constraints

CTA(q) = 0 (7)

where C(q) is the full rank matrix formed by a set
of smooth and linearly independent vector fields
spanning the null space of AT(q).

From equations (6) and (7) it is possible to find an
auxiliary vector time function V (t) for all time t

q̇ = C(q)V (t) (8)

The constraint matrix in equation (6) for a mobile
robot is given by

AT(q) = [−sin θ cos θ −d] (9)

The C(q) matrix is given by

C(q) =
⎡
⎣cos θ −d sin θ

sin θ d cos θ

0 1

⎤
⎦ (10)

and

V (t) = [v ω]T (11)

where v is the linear velocity of point ‘p’ along the robot
axis and ω is the angular velocity.

Therefore, the kinematics equation in (8) can be
described as

q̇ =
⎡
⎢⎣

ẋc

ẏp

θ̇

⎤
⎥⎦ =

⎡
⎣cos θ −d sin θ

sin θ d cos θ

0 1

⎤
⎦ [

v
ω

]
(12)

Equation (12) is called the steering system of the vehi-
cle. The control problem is to find a suitable control
law so that the system can track desired reference tra-
jectories. The control laws are designed to produce
suitable left and right wheel velocities for driving the
mobile robot to follow required path trajectories.

3 ANALYSIS OF A NEURAL NETWORK
FOR NAVIGATION

Artificial neural networks consist of a set of simple,
densely interconnected processing units. These units
transform signals in a non-linear way. Neural networks
are non-parametric estimators that can fit smooth
functions based on input–output examples [17]. The
neural network designed in this article is a four-layer
perceptron. The number of layers is set empirically to
facilitate the training. The input layer has four neu-
rons, three for receiving the values of the distances
from obstacles (i.e. in front and to the left and right
of the robot) and one for the target bearing. If no tar-
get is detected, the input to the fourth neuron is set
to ‘zero’. The output layer has a single neuron, which
produces the steering angle to control the direction
of movement of the robot. The first hidden layer has
ten neurons and the second hidden layer has three
neurons. These numbers of hidden neurons were also
found empirically. Figure 3 depicts the neural network
with its input and output signals.

The neural network is trained to navigate by present-
ing it with 200 patterns representing typical scenarios,

Fig. 3 Four-layer neural network for robot navigation
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Fig. 4 Example training patterns

some of which are depicted in Fig. 4. For example,
Fig. 4(a) shows a robot advancing towards an obstacle,
another obstacle being on its right hand side. There
are no obstacles to the left of the robot and no target
within sight. The neural network is trained to output a
command for the robot to steer towards its left.

During training and during normal operation, the
input patterns fed to the neural network comprise the
following components

y{1}
1 = left obstacle distance from the robot (13a)

y{1}
2 = front obstacle distance from the robot (13b)

y{1}
3 = right obstacle distance from the robot (13c)

y{1}
4 = target bearing (13d)

These input values are distributed to the hidden
neurons, which generate outputs given by [17]

y{lay}
j = f (V {lay}

j ) (14)

where

V {lay}
j =

∑
i

W {lay}
ji y{lay−1}

i (15)

lay = layer number (2 or 3), j = label for jth neuron in
hidden layer ‘lay’, i = label for ith neuron in hidden
layer ‘lay-1’, W {lay}

ji = weight of the connection from

Fig. 5 Robot navigation software package (ROBNAV)
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Table 1 Reactive behaviours adopted by a mobile robot during navigation

Type of behaviour Description of the behaviour Implementations

Obstacle avoidance (a) The mobile robot detects (by sensory
information) any obstacle in the front, left, or
right side. This behaviour is required to avoid
collision with obstacles (Fig. 6)

(b) When the acquired information from the
sensors shows the presence of obstacles to
the front, left, and right side of the robot, the
robot reverses its movement (Fig. 8)

The robot reduces the speed and sets the steering
angle accordingly

The robot stops and takes counterclockwise
rotation for both the left and right wheel at the
same speed (i.e. reverse direction)

Target seeking When the acquired information from the sensors
shows that there are no obstacles around the
robot, its main reactive behaviour is to seek the
target. This behaviour is required in locating the
target (Figs 6 to 8)

The robot mainly adjusts its motion direction and
quickly moves towards the target

Wall following The mobile robot detects an obstacle in the front
while it is moving towards the target and also
has the wall to the left or right side. The robot
has to follow the wall to reach the target (Fig. 7)

The robot adjusts the speed and sets the heading
angle 90◦ with the wall so that it aligns with
the wall and moves along the wall. The robot
automatically makes a turn to align itself along
the wall and moves in parallel with the wall to
reach the target

Fig. 6 Static as well as dynamic obstacle-avoidance behaviour

neuron i in layer ‘lay-1’ to neuron j in layer ‘lay’, and
f (·) = activation function, chosen in this work as the
hyperbolic tangent function

f (x) = ex − e−x

ex + e−x
(16)

During training, the network output θactual may differ
from the desired output θdesired as specified in the train-
ing pattern presented to the network. A measure of the
performance of the network is the instantaneous sum-
squared difference between θdesired and θactual for the set

of presented training patterns

Err = 1
2

∑
all training

patterns

(θdesired − θactual)
2 (17)

The error back-propagation method is employed to
train the network [17]. This method requires the com-
putation of local error gradients in order to determine
appropriate weight corrections to reduce Err. For the
output layer, the error gradient δ{4} is

δ{4} = f ′(V {4}
1 )(θdesired − θactual) (18)
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Fig. 7 Robot escaping from U-shaped wall

Fig. 8 Robot escaping from dead-end obstacle

The local gradient for neurons in hidden layer {lay} is
given by

δ
{lay}
j = f ′(V {lay}

j )

(∑
k

δ
{lay+1}
k W {lay+1}

kj

)
(19)

The synaptic weights are updated according to the
expressions

Wji(t + 1) = Wji(t) + �Wji(t + 1) (20)
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Fig. 9 Result comparisons with Pradhan et al. (a) Navigation path of a mobile robot using a fuzzy
controller by Pradhan et al. and (b) navigation path of a mobile robot using a proposed
neural controller

and

�Wji(t + 1) = α�Wji(t) + ηδ
{lay}
j y{lay−1}

i (21)

where α = momentum coefficient (chosen empiri-
cally as 0.2 in this work), η = learning rate (cho-
sen empirically as 0.35 in this work), t = iteration

number, each iteration consisting of the presen-
tation of a training pattern and correction of the
weights.

The final output from the neural network is

θactual = f (V {4}
1 ) (22)
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Fig. 10 Result comparisons with Ray et al. (a) Navigation of a mobile robot in unknown environ-
ment by Ray et al. and (b) navigation of a mobile robot in unknown environment using a
developed controller

where

V {4}
1 =

∑
i

W {4}
1i y{3}

i (23)

It should be noted that learning can take place contin-
uously even during normal target seeking behaviour.
This enables the neural controller to adopt the changes
in the robot’s path while moving towards the target.
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The proposed neural controller and kinematics give
the steering angle from wheel velocities based on the
environmental conditions.

4 SIMULATION RESULTS

Simulations are conducted with the ROBNAV software
being developed in the laboratory using C++ [18], as
with C++ it is easier to talk with hardware and access
physical memory. Figure 5 shows a typical screen of
the software. It can be noted that, in addition to the
neural network-based navigation, the software also
allows other navigation control. The techniques menu
in the software enables the user to select techniques
to control the navigation of robots. This menu also
allows a user to embed external controller code (coded
by third party). The real windows environment (e.g.
obstacle, target, speed, path length, time, etc.) of the
software has been coded for generic application. For
efficient real-time navigation of a mobile robot in a real
world environment, the reactive behaviours adopted
by the robot during navigation are shown in Table 1.
To demonstrate the effectiveness and robustness of the
proposed method, simulation results on mobile robot
navigation in various environments are exhibited.

Obstacle avoidance behaviour is activated when the
readings from any sensor are less than the minimum
threshold values. This is how the robot determines if an
object is close enough for a collision. When an object
is detected too close to the robot, it avoids the collision
by moving away from it in the opposite direction. Col-
lision avoidance is the highest priority and, therefore,
it can override other behaviours; in this case, its main
reactive behaviour is decelerating for static as well as
dynamic obstacle avoidance as shown in Fig. 6.

The wall following behaviour mode was adopted
when the mobile robot detects an obstacle in the front
while it is moving towards the target along the left
or right side of the wall. The mobile robot may turn
left or right due to the presence of an obstacle in
the front. Another special condition appears as the
mobile robot detects an obstacle in the front while the
target tracking control mode is in operation. In this
case, the fixed wall following behaviour should be per-
formed on a priority basis. That is, the mobile robot
must rotate clockwise or counterclockwise such that it
can align and move along the wall, when the robot is
moving to a specified target through a narrow channel
or escaping from a U-shaped obstacle (Fig. 7). In the
absence of wall following behaviour, the robot is inca-
pable of reaching the goal position when it encounters
U-shaped or dead-end obstacles in its path. In such
a situation the robot should keep on heading towards
the goal position. But when it moves towards the goal
position, the robot also comes closer to the obstacles.
Any obstacle-avoidance behaviour except wall follow-
ing behaviour would make the robot divert from its

goal position. Figures 7 and 8 exhibit a wall following
behaviour along with target seeking.

When the acquired information from the sen-
sors shows that there are no obstacles around the
robot, its main reactive behaviour is target steer.
A neural controller mainly adjusts robot motion
direction and steers the robot towards the target if
there are no obstacles around the robot as shown
in Fig. 6. In the proposed control strategy, reactive
behaviours are formulated and trained by a neural
network.

The results from the proposed neural controller
were compared with the results from the fuzzy con-
troller by Pradhan et al. [3] (Fig. 9). Also, a com-
parison was made between the results obtained by
Ray et al. [14] for navigation of a mobile robot in an
unknown environment and the results from the cur-
rent developed controller (Fig. 10). They show good
agreement.

5 EXPERIMENTAL RESULTS

Experimental results were obtained using the Khepra-
III mobile robot. The chassis of the robot measures
130 × 70 mm (D × H ), weight 690 g, pay load ≈2000 g
fitted DsPIC 30F5011 at 60 MHz processor with 4 KB
on DsPIC and 64 MB KoreBot RAM. The robot has two
DC brushed servo motors with incremental encoders
(roughly 22 pulses per mm of robot motion), and nine
infrared proximity and ambient light sensors with up
to 25 cm range, two infrared ground proximity sensors
for line following applications, and five ultrasonic sen-
sors with range 0.2–4 m. The speed range of the robot
is 0–0.5 m/s, with a power adapter lithium–polymer
battery pack (1400 mAh) as shown in Fig. 11. The
assumptions for real navigation control of a mobile
robot are as follows:

(a) a mobile robot moves on a plane surface (on lab-
specified floor area);

Fig. 11 Khepra-III mobile robot developed by K-team
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Fig. 12 (a) and (b): experimental results during target seeking by the mobile robot
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Fig. 13 Comparison of experimental results with simulation results

Table 2 Time taken by robots in simulation and experiment to reach targets

Average of nine experiments Path length Time during Time during
S. no. in each environment (in pixels) simulation (s) experiment (s)

1 For first environment scenario
Fig. 12(a) (set a) and Fig. 13(a)

221 23 26

2 For second environment scenario
Fig. 12(a) (set b) and Fig. 13(b)

206 22 25

3 For third environment scenario
Fig. 12(b) (set c) and Fig. 13(c)

175 18 21

4 For fourth environment scenario
Fig. 12(b) (set d) and Fig. 13(d)

234 25 27

(b) the wheel of a mobile robot rolls on the floor
without any translational slip.

The experimental paths followed by mobile robots
to reach the target are traced. From the neural con-
troller (inputs: left, front, right obstacle distances, and
heading angle) after learning, training, and testing,
robots get the left and right wheel velocities, which
subsequently give the new steering angles. The paths
traced by the robots are marked on the floor by a
pen (fixed to the front of the robots) as they move as

shown in Fig. 12. The experimentally obtained paths
follow closely those traced by the robots during sim-
ulation (Fig. 13). During experiments, it has been
found that the experimental path length and time are
more than the simulation path length and time. This is
due to the presence of various errors (e.g. signal trans-
mission error, obstacle/target tracking error, friction in
rotating elements, slippage between floor and wheels,
friction between supported point and floor, etc.).

From these figures, it can be seen that the robots
indeed avoid obstacles and reach the targets. Table 2

JMES1410 © IMechE 2009 Proc. IMechE Vol. 223 Part C: J. Mechanical Engineering Science

 at PENNSYLVANIA STATE UNIV on March 6, 2016pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


1724 D R Parhi and M K Singh

shows the times taken by the robots in simulations and
in experimental tests to find the targets. The figures
given are the averages of three experiments on each
environmental scenario conducted in the laboratory.
These robotic behaviours are verified in simulation
and experimental mode (Figs 12 and 13). It is observed
that the robots are able to reach the targets efficiently
during simulation and experiment. The fuzzy logic
controller proposed by Pradhan et al. [3] has been
examined and compared with the proposed neural
controller in a similar navigational environment. It
has been found that the neural controller gives a
more optimized path than the fuzzy controller (the
total path length using a fuzzy controller by Prad-
han et al. [3] is 13.7 m and the time taken is 14.67 s
to reach the target, whereas the total path length
using a proposed neural controller is 12.0 m and the
time taken is 12.84 s). In addition, a neural controller
requires less computing time and computing mem-
ory than a fuzzy controller. It has been observed that
the robot controlled through neural control has better
performance than the fuzzy controller in terms of
positioning accuracy and collision avoidance.

6 CONCLUSIONS

From the kinematics, simulations, and experimental
analysis, the following conclusions are drawn.

The effectiveness of the developed controller has
been verified in both simulation and real mode and
they are in good agreement. The simulation results are
also compared with the results obtained from the other
investigation and they are in very good agreement.
The back-propagation neural network technique has
been used for making the controller. Software has been
developed using C++ to obtain the simulation results.
The developed neural controller has the following
salient features:

(a) avoids static as well as dynamic obstacles along
the path;

(b) the robot rapidly recognizes its surroundings,
which provides sufficient information for path
optimization during navigation;

(c) behaviours such as obstacle avoidance, wall fol-
lowing, and target seeking are integrated in the
current controller to obtain an efficient naviga-
tional controller;

(d) the developed neural controller is more efficient
than the fuzzy logic controller (Pradhan et al.);

(e) the proposed neural controller is a simple but effi-
cient tool for mobile robot navigation, especially
in a dynamic environment;

(f) training patterns of each network can be gen-
erated by simulation rather than by experiment,
saving considerable time and effort.

Some features of the intelligent controller cannot be
added by using a single technique like fuzzy logic or
neural network technique. Certainly, these two fields
can be integrated into a new emerging technology
called neuro-fuzzy or fuzzy-neuro, which combines
the benefits of each field (i.e. perception, cognition,
and motion control). In future analysis a hybrid con-
troller can be designed for more efficient navigation of
the mobile robots.
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